Gravity capillary standing water waves

Thomas Alazard and Pietro Baldi

Abstract. The paper deals with the 2D gravity-capillary water waves equations in
their Hamiltonian formulation, addressing the question of the nonlinear interaction of a
plane wave with its reflection off a vertical wall. The main result is the construction of small
amplitude, standing (namely periodic in time and space, and not travelling) solutions of
Sobolev regularity, for almost all values of the surface tension coefficient, and for a large set
of time-frequencies. This is an existence result for a quasi-linear, Hamiltonian, reversible
system of two autonomous pseudo-PDEs with small divisors. The proof is a combination
of different techniques, such as a Nash-Moser scheme, microlocal analysis, and bifurcation
analysis. MSC2010: 76B15, 76D45, 35B10 (37K50, 37K55, 35505).
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1 Introduction

This paper deals with the 2D gravity-capillary water waves equations in their Hamil-
tonian formulation (see equation (2.1))). The main result (Theorem is the con-
struction of small amplitude, standing (namely periodic in time and space, and not
travelling) solutions of Sobolev regularity, for almost all values of the surface tension
coefficient, and for a large set of time-frequencies. This is an existence result for a
quasi-linear system of two autonomous pseudo-PDEs with small divisors.



Before stating precisely the result and describing the strategy of the proof, we
introduce the problem within a more general framework.

A classical topic in the mathematical theory of hydrodynamics concerns the Euler
equations for the irrotational flow of an incompressible fluid in a domain which, at
time ¢, is of the form

Q(t) ={(z,y) e R x R|y < n(t,z)},

whose boundary is a free surface, which means that 7 is an unknown. The simplest
type of nontrivial solution for the problem is a progressive wave, which is a profile
of the form n(t,x) = o(k -  — wt) for some periodic function o: R — R, together
with a similar property for the velocity field. Despite intensive researches on this old
subject, many natural questions are far from being fully resolved. Among these, most
questions about the boundary behavior of water waves are not understood. Also, the
question of the nonlinear interactions of several progressive waves is mostly opened.

This paper is concerned with these two problems. We shall study the reflection of
a progressive wave off a wall. More precisely, we shall study the nonlinear interaction
of a 2D gravity-capillary plane wave with its reflection off a vertical wall. To clarify
matters, recall that 2D waves are waves such that the motion is the same in every
vertical section, so that one can consider the two-dimensional motion in one such
section (the free surface is then a 1D curve).

Interaction of two gravity-capillary waves. The problem consists in seeking
solutions of the water waves equations, periodic in space and time, and such that

n(t,z) = ecos(ky - & — w(ki)t) + ecos(k - & — w(ka)t) + O(e?), (1.1)
together with a similar property for the velocity field, where
e ¢ is a small parameter which measures the amplitude of the waves;

e k; and ks belong to R? and are mirror images such that either k; = —ky or
ki = (1,7), ko = (1,—7) for some 7. This is the assumption that there is
one incident plane wave, say ecos(ky - ¢ — w(k1)t), and one reflected wave,
ecos(k - x — w(ka)t);

e there holds
w(k) == \/glk| + k|k[?
where g > 0 is the acceleration of gravity and x € [0, 1] is the surface tension
coefficient. Thus k& — w(k) is the dispersion relation of the water waves equa-

tion linearized at the rest position, which (after transforming the system into
a single equation) can be written in the form

Lu := 0?u + g|Dg|u + k| Dy|*u = 0. (1.2)

Here |D,| is the Fourier multiplier defined by |D,|e**® = |k|e?** where |k| is
the Euclidean norm of k. Note that w(ki) = w(ka).

This problem was initiated by Reeder and Shinbrot [45] and further developed
by Craig and Nicholls [20, 2I] and Groves and Haragus [26]. They considered the
superposition of two oblique 2D travelling waves, such that k; = (1,7) and k2 =



(1, —7) for some 7. This produces 3D short crested waves. Indeed, setting w =
w(k1) = w(ke) and writing x = (z1, x2), one has

ecos(xy + T2 — wt) + e cos(xy — T2 — wt) = 2e cos(x1 — wt) cos(Tx2).

Since these waves are propagating in the direction (1,0) (the x; axis), one has to
study solutions of the equation that is obtained by replacing 0; with —wd,, in ,
which is

Ku = (wdy,)*u + g|Dp|u + k| Dy 3u = 0. (1.3)

For k > 0, K is an elliptic operator. Consequently, in this context, the existence
of solutions for the nonlinear equation is a problem in bifurcation theory (without
small divisors).

Standing waves. In this paper, we consider the case where the crest of the incident
waves are parallel to the wall. This implies that k; = —ko and therefore

ecos(ky -z —w(ky)t) + ecos(ky - © — w(ke)t) = 2¢ cos(w(k1)t) cos(ky - x).

Hence the waves obtained by superimposing the incident and the reflected waves
are standing waves (namely periodic in time and space, and not travelling). Since
standing waves are not travelling, one cannot replace the time derivative by a space
derivative. This changes dramatically the nature of the problem, as small divisors
appear. In this paper we are interested in the case with surface tension x > 0, while
in the case without surface tension, namely x = 0, a similar small divisors problem
was studied in a series of papers of Iooss, Plotnikov and Toland [28, 291 30, 31, [32]
33, [43], which are described below.

The standing waves we are interested in are 2D waves. Without loss of generality,
we can assume that k; = (A\,0) = —kg for some A # 0. Thus we shall consider
functions that are independent of xo. In the rest of the paper, x € R.

Small divisors. Let us explain why small divisors enter into the analysis. Looking
for solutions that are 27-periodic in space and (27 /w)-periodic in time (where the
time frequency w is an unknown of the problem), ([1.2)) gives

Letlztwlt) p(w@,j)ei(ijr”&), p(wl, j) = —w?C* + g|j] + &|j[>.

In general, namely for almost all values of w, k, the eigenvalues {p(w/, j)}¢ jez of L
accumulate to zero. To invert L in the orthogonal of its kernel, one finds these small
eigenvalues as denominators (in fact, small divisors), so that the inverse of L is not
a bounded operator, in the sense that it does not map any function space (Sobolev
or analytic or Holder or others) into itself. This makes it impossible to apply the
standard implicit function theory to solve the orthogonal component of the nonlinear
problem (i.e. the range equation, in the language of bifurcation theory).

Main result. Our main result is stated in the next section, see Theorem [2.4] It
asserts that, for almost all values k of the surface tension coefficient, for gy small
enough there exists a set G C [0, g9 of Lebesgue measure greater than go(1 —C’e(l]/ 18),
such that for € in G there exists a standing wave whose free surface is of the form
(L.1), or, more precisely, n(t,z) = ecos(wt)cos(z) + O(g?), with time-frequency
w=+/g+ K+ O(g?). (In Theorem the result is stated precisely for the problem



one obtains after normalizing the gravity constant g, rescaling time, and introducing
an additional amplitude parameter £, see Section )

Our proof is based on Nash-Moser methods for quasi-linear PDEs on the one
side, and on techniques of microlocal analysis on the other side.

Regarding Nash-Moser and KAM theory for quasi-linear PDESs, we remark that
in general, as it was proved in the works of Lax, Klainerman and Majda on the
formation of singularities (see e.g. [35]), the presence of nonlinear unbounded op-
erators — as it is in our water waves problem — can compromise the existence of
invariant structures of the dynamics like periodic or quasi-periodic solutions. In fact,
the wide existing literature on KAM and Nash-Moser theory for PDEs mainly deals
with problems where the perturbation is bounded (see e.g. Kuksin [36] and Wayne
[47]; see [37], [19] for a survey). For unbounded perturbations where the nonlinear
term contains less derivatives than the linear one, time-periodic solutions have been
obtained by Craig [19] and Bourgain [I6], while quasi-periodic solutions for PDEs
of that type have been constructed via Nash-Moser or KAM methods by Bourgain
[15], Kuksin [37], Kappeler-Poschel [34] for KAV, and, more recently, by Liu-Yuan
[40] and Zhang-Gao-Yuan [49] for NLS and Benjamin-Ono, and Berti-Biasco-Procesi
[11l 12] for NLW.

For quasi-linear PDEs, namely for equations where there are as many derivatives
in the nonlinearity as in the linear part (sometimes called “strongly nonlinear” PDEs,
e.g. in [37]), the extension of KAM and Nash-Moser theory is a very recent subject,
which counts very few results. Time-periodic solutions for this class of equations
have been constructed by Iooss, Plotnikov and Toland for gravity water waves [43],[33]
(which, even more, is a fully nonlinear system), and by Baldi for forced Kirchhoff [6]
and autonomous Benjamin-Ono equation [7], all using Nash-Moser methods. We also
mention the pioneering Nash-Moser results of Rabinowitz [44] for periodic solutions
of fully nonlinear wave equations (where, however, small divisors are avoided by a
dissipative term). The existence (and linear stability) of quasi-periodic solutions for
a quasi-linear PDE has been only proved last year by Baldi, Berti and Montalto
for forced Airy [§] and autonomous KdV [9] equations, by Nash-Moser, linear KAM
reducibility, and Birkhoff normal forms.

Regarding the water waves problem, in [43] Plotnikov and Toland proved the
existence of pure gravity (i.e. kK = 0) standing waves, periodic in time and space.
This work has been extended by Iooss, Plotnikov and Toland [33] and then by Iooss
and Plotnikov [30, 29] who proved the existence of unimodal [33] and multimodal
[30, 29] solutions in Sobolev class via Nash-Moser theory, overcoming the difficulty
of a complete resonance of the linearized operator at the origin. On the contrary,
the gravity-capillary case has an additional parameter, the surface tension coeffi-
cient x, whose arithmetic properties determine the bifurcation analysis of the linear
theory. In particular, for all irrational values of k (and therefore for almost all k)
the linearized operator at the origin has a one-dimensional kernel (see section [4.1)).

We also mention the recent proof by Iooss and Plotnikov [31], 32] of the existence
of three-dimensional periodic progressive gravity waves, obtained with Nash-Moser
techniques related to [30, 29]. The question of the existence of such waves was a
well known problem in the theory of surface waves — we refer the reader to [10} [17,
20, 24, 25], 28], B1] for references and an historical survey of the background of this
problem.



Apart from the dimension of the kernel of the linear problem, there are other
important differences between the gravity water waves problem, as studied by looss-
Plotnikov-Toland, and the gravity-capillary water waves problem studied here. The
difference is clear at the level of the dispersion relation w = +/g|k| + |k|?. One could
think that the dispersion is stronger for x > 0 than for x = 0 (and this is certainly
true for the linear part of the problem), but this does not help the study of the
nonlinear problem, because higher order derivatives also appear in the nonlinearity.
In fact, this requires the introduction of new techniques. A more detailed explanation
about which are the new problems emerging in presence of surface tension and why
the techniques of [33] do not work for £ > 0 is given in the lines below (L.4)).

To conclude this introduction, let us discuss the main ingredients in our proof.
Applying a Nash-Moser scheme, the main difficulty regards the invertibility of the
operator linearized at a nonzero point. Like in [33, [7, 8, 9], we seek a sufficiently ac-
curate asymptotic expansion of the eigenvalues in terms of powers of € and in terms
of inverse powers of the spatial wavelength. To do so, we conjugate the linearized
operator to a constant coefficient operator plus a smoothing remainder which can
be handled as a perturbation term. (We remark that a similar eigenvalues expan-
sion was obtained in [33] using inverse powers 9; ! of the time-derivative, instead of
space-derivative 9, !, destroying the structure of dynamical system. Such a struc-
ture is preserved, instead, by the transformations performed in this paper, as well as
those in [7,[8[9]). To obtain such a precise knowledge of the asymptotic behavior of
the eigenvalues requires to find the dispersion relationship associated to a variable
coefficient equation, which in turn requires microlocal analysis. In this direction,
we shall follow a now well developed approach in the analysis of water waves equa-
tions, which consists in working with the Craig-Sulem-Zakharov formulation of the
equations, introducing the Dirichlet-Neumann operator. In particular, we shall use
in a crucial way two facts proved by Lannes in [3§]. Firstly, by introducing what is
known as the good unknown of Alinhac (see [0, [3]), one can overcome an apparent
loss of derivative in the analysis of the linearized equation. (Another advantage is
that, working with the Craig-Sulem-Zakharov formulation of the problem as a
dynamical system in two unknowns, and thanks to the good unknown of Alinhac,
here we do not need to introduce any “approximate inverse” for the linearized op-
erator, as it was done in [33]). Secondly, one can use pseudo-differential analysis
to study the Dirichlet-Neumann operator in domains with limited regularity. In
[3], this analysis is improved by showing that one can paralinearize the Dirichlet-
Neumann operator, introducing the paradifferential version of the good unknown
of Alinhac (see [4]). Notice that the analysis of the Cauchy problem for capillary
waves requires an analysis of the sub-principal terms (see [42] [I]). In this paper,
we shall use in an essential way the fact that it is also possible to symmetrize sub-
sub-principal terms (the method used below can be extended at any order). We
underline, in particular, the use of a pseudo-differential operator with symbol in
Hormander class 527 5o 0 =0 = 1/2 (except for the fact that the symbol here has
finite regularity), see and also the discussion about the related model problem
. Moreover, to apply a Nash-Moser scheme one needs tame estimates (these are
estimates which are linear with respect to the highest-order norms). We shall use
the estimates proved in [2] together with several estimates proved in Section [12f of
this paper using a paradifferential decomposition of the frequencies.



Eventually, we refer the reader to [I8, [4I] for recent results establishing the
existence of progressive waves localized in space.

The content of the next sections is the following. In Section [2| the water waves
equations are written, some symmetries are shown (such symmetries play a role
in the bifurcation analysis of Section [{.1], especially to deal with the space-average
terms), the functional setting is introduced, and the main theorem is stated. Section
B] collects preliminary facts about the Dirichlet-Neumann operator, and fix some
notations.

In Section ] we perform a bifurcation analysis. In particular, in Section [4.3
we construct an “approximate solution” #., which corresponds to the need of any
quadratic Newton scheme of having a sufficiently good “initial guess”. In Section
4.4) we exploit the (nonlinear) construction of Section to deduce a restriction for
the (linear) problem of the inversion of the linearized operator F'(u) at a nonzero
point u which is close to @.. This restriction is given by a linearized version of the
Lyapunov-Schmidt approach first (Lemma , and then by a further restriction
with respect to the space frequencies only, closer to a dynamical system point of
view (Lemma [£.4).

In Sections we conjugate the linearized operator F”(u) to the sum of a con-
stant coefficient part D and a regularizing, small remainder R, see (0.40). In
Section [5] we use (a linear version of) the good unknown of Alinhac. In Section [ we
perform a time-dependent change of the space variable, a (space-independent) re-
parametrization of the time-variable, and a matrix multiplication, to obtain constant
coeflicients in front of the highest order terms, see . In Section [7| we symmetrize
the highest order terms, keeping altogether the few terms that are not small in &
(this is visible in ([7.7])). Section [8| completes the symmetrization procedure, obtain-
ing a symmetric part (see the operator matrix L5 in ) plus a remainder of order
O(e|D,|73/?), after solving a block-triangular system of 8 equations in 8 unknowns.
At this point the 2 x 2 real linear system can be written as a single equation for a
single complex-valued function h : T? — C, see (8.13).

Here comes the most interesting part of our conjugation analysis, where it be-
comes most evident the reason for which the method of [33] does not work in presence
of surface tension. The point can be better explained when reformulated in terms
of a modified model problem (for the full operator see (8.13)).

e Model problem: conjugate the linear operator
w8y + ic| Dy [*? + a(t, )0, (1.4)

to constant coefficients up to order O(|Dy|~%/2), knowing that ¢ is a real constant,
and the variable coefficient a(t,x) is small in size, odd in t, and odd in x. The
technique used in [33] to eliminate the term a(t,2)0; was the one of conjugating
the vector field wd; + a(t, )0, to wd; using a suitable change of variable, namely
the composition map with a diffeomorphism of the torus (this can be done by the
method of the characteristics, i.e. by solving an ODE). However, in , the change
of variables that rectifies wd; + a(t, )0, produces a variable coefficient in front of
|D,,|?/2, which is even worst than for our purposes. A similar effect is obtained
by any other Fourier integral operator (FIO) with homogeneous phase function (re-
call that the changes of variables are special cases of FIOs). On the other hand,



one cannot eliminate a(t, )0, by commuting the equation with any multiplication
operator, or any other “standard” pseudo-differential operator of order zero (with
symbol in Hérmander class 527 s With p =1, 0 = 0, see Chapter 7.8 in [27]). Indeed,

the commutator between such an operator and |D,|?/? is an operator of order 1/2,
which leaves a(t, )9, unchanged. Hence, the algebraic rigidity of the equation forces
us to commute the equation with a pseudo-differential operator with symbol of type
Sg’ s With p = 6 = 1/2, see (9.2). In Section |§| we calculate the right candidate

to complete the reduction to constant coefficients up to O(|D,|~3/2). The study
of this operator, namely the proof of its invertibility, its commutators expansion
and tame estimates, is developed in Section using pseudo-differential and also
para-differential calculus.

Once the linearized operator has been reduced to constant coefficients up to a
domesticated remainder (end of Section @, its invertibility is straightforward by im-
posing the first order Melnikov non-resonance conditions (see )7 and is proved
in Section where the dependence of the eigenvalues on the parameters is also
discussed. In Section |11 we construct a solution of the water waves problem as
the limit of a Nash-Moser sequence converging in Sobolev norm, for a large set of
parameters, whose Lebesgue measure is estimated in Section [11.2] Finally, Section
collects some standard technical facts used in the previous sections.
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2 The equation and main result

We recall the Craig-Sulem-Zakharov formulation which allows one to reduce the
analysis of the Euler equation to a problem on the boundary, by introducing the
Dirichlet—Neumann operator.

We consider an incompressible liquid occupying a domain 2 with a free surface.
Namely, at time ¢ > 0, the fluid domain is

Qt) ={(z,y) e RxR : y <n(t,z)}

where 1 is an unknown function. We assume that the flow is incompressible and also
irrotational, so that the velocity field v is given by v = V, ,¢ for some harmonic
velocity potential ¢: Q@ — R. Following Zakharov [48], introduce the trace of the
potential on the free surface:

w(t7 l’) = ¢<t7 €, n(tv HJ))

Since ¢ is harmonic, n and v fully determines ¢. Craig and Sulem (see [23]) observe
that one can form a system of two evolution equations for 7 and ¢ by introducing
the Dirichlet-Neumann operator G(n) which relates ¢ to the normal derivative 9,,¢.



Definition 2.1. Given any functions n,19: R = R, set Q := {(x,y) e RxR|y <
n(x) } and define ¢ as the harmonic extension of v in €:

Ap=0 inQ, ¢ly—y=1, Vé—0asy— —oo.
The Dirichlet—-Neumann operator is defined by

G () = V1+ 03 Ondly=n) = (0y0) (@, n()) — ne(2) - (=) (2, n()).
(We denote by n, the derivative 0.n.)

The water waves equations are a system of two coupled equations: one equa-
tion describing the deformations of the domain and one equation coming from the
assumption that the jump of pressure across the free surface is proportional to the
mean curvature. Using the Dirichlet-Neumann operator, these equations are

om = G(n),

8t¢+977+2¢;2c—2( (n)fb_i_n;iw) = rH(n),

where g and k are positive constants and H(n) is the mean curvature of the free
surface:

D) ) Nz
H = am = .
() ( 11 0)2)  (L+np2)

The gravity constant g can be normalized by jointly rescaling the time ¢ and the
amplitude of v. With no loss of generality, in this paper we assume that g = 1.

Periodic solutions. We seek solutions u(t,z) = (n(t,x),1(t,z)) of system (2.1
which are periodic, with period 27 in space and period T' = 27/w in time, where
the parameter w > 0 is an unknown of the problem. Rescaling the time t — wt, the
problem becomes

F(u,w) =0,

where F' = (F1, F3), u = (n,) is 2m-periodic both in time and space, and
Fi(n, ¢) == win — G(n)v (2.2)

1 1 1 Nxax
Fy(n, ) == wopp +n + 51/1% 91 2 (G(UW =+ wax)z - fiw~ (2.3)

Functional setting. We use Sobolev spaces of functions with the same regularity
both in time and in space: consider the exponential basis {e*(*+7%) : (1, j) € Z?} on
T2, and the standard Sobolev space H* := H*(T?,R) on T? given by

m={r=3 fud®0 2 Y 1hPLHP <o), @4)

(1.j)ez? (L.j)ez?

where (1, 7) := max{1, |I| +|j|}. Also, we set in the natural way H*(T?,R?) := {u =
(n,%) +n,¢ € H*} with norm [|ul|3 := [In[|Z + ¥ 3.



Remark 2.2. Regularity in time and in space could be handled separately, as it is
natural when thinking of the Cauchy problem (see [13]). However, we shall consider
changes of variables of the form (¢, ) — (¢, z+3(t, x)), which, in some sense, mix the
regularity in time and the one in space. To work with regularity in the time-space
pair is a convenient choice. ]

Symmetries. Because of reversibility in time and symmetry in space, the problem
has an invariant subspace, where we look for solutions: X x Y = {u = (n,¢) : n €
X, peY},

X :={n(t,x): neven(t), even(z)}, Y :={Y(t,x): ¢ odd(t), even(z)}. (2.5)

The restriction to this subspace is used in Section to deal with the space and
time averages, and in Section [J] (see (9.12)).

2.1 Main result

We assume three hypotheses on the surface tension coefficient « > 0, which are
discussed in the comments below Theorem 2.4l First, k ¢ Q. Second, k # pg, where
po is the unique real root of the polynomial p(x) := 13623 + 6622 + 3x — 8 (by the
rational root test, pg is an irrational number, and it is in the interval 0.265 < py <
0.266). Third, we assume that x satisfies the Diophantine condition

\\/1+ml+\/j+nj3]>% ViezZ, j>2 (2.6)

for some ~, € (0, %), where 7, > 1. The next lemma says that (2.6 is a very mild
restriction on k.

Lemma 2.3. Let kg >0, 7. > 1. The set
K ={re€l0,ko]: 3 v« € (0,1/2) such that K satisfies (2.6))} (2.7)
has full Lebesgue measure |K| = k.

The proof of Lemma [2.3| is at the end of section Note that almost all
positive real numbers x satisfy all these three hypotheses. The main result of the
paper is in the following theorem.

Theorem 2.4. Assume that k > 0 is an irrational number, k # pg, and k satisfies
for some v, € (0,1/2), with 7. = 3/2. Then there exist constants C > 0,
so > 12, g9 € (0,1) such that for every e € (0,e9] there exists a set G C [1,2] of
parameters with the following properties.

For every £ € G, there exists a solution u = (n,v) of F(u,w) = 0 with time-
frequency

W =@ + W€ + w333/, (2.8)

where W := /1 + Kk and the coefficients wo, w3 depend only on k, with e # 0. The
solution has Sobolev reqularity w € H* (T?,R?), it has parity u € X x Y, and small
amplitude uw = O(g). More precisely, u has e-expansion

n = e\/Ecos(t) cos(x) + O(e?), 1 = —e\/EVT1 + k sin(t) cos(z) + O(2),

where O(g?) denotes a function f such that || f||s, < Ce2.
The set G. C [1,2] has positive Lebesgue measure |G| > 1—Ce/'®, asymptotically
full |Ge] = 1 ase — 0.



Some comment about the role of the three hypotheses on the surface tension
coeflicient k:

1. The first assumption x ¢ Q implies that the linearized problem at the equi-
librium w = 0 has a nontrivial one-dimensional kernel (see section , from
which the solution of the nonlinear water waves problem bifurcates. Rational
values of k would lead to a different bifurcation analysis.

2. The second assumption x # pg implies that the coefficient ws is nonzero (a
“twist” condition). As a consequence, the map £ — w in is a bijection
for e sufficiently small. Thus Theorem gives the existence of a solution
of the water waves system with time-frequency w for many values w in an
e2-neighbourhood of the “unperturbed” frequency @ := +/1 + . Instead, for
Kk = po one should push forward with the analysis of the frequency-amplitude
relation, looking for a higher order twist condition.

3. The third assumption (2.6) on x gives a Diophantine control on the small
divisors of the unperturbed problem, and it is used in the measure estimates
in section [11.2], see in particular Remark

Remark 2.5. One could rename ¢ := £+/¢ and work with one parameter ¢ instead
of two (g,&). However, it is convenient to work with the two parameters € and £ to
split two different roles: € < 1 merely gives the smallness, while £ € [1, 2] allows to
control the small divisors by imposing the Melnikov non-resonance conditions. [

3 Preliminaries

Notations. The notation a <, b indicates that a < C(s)b for some constant
C(s) > 0 depending on s and possibly on the data of the problem, namely &, s, Tx
(k is the surface tension coefficient and 7y, 7 are in )

Given ¢ > 0, for functions u € H*(T?) depending on a parameter £ € G C [1,2],
we define

]| “PE) = [|ul5™ + eflul"  with

lull = sup (), ul? = sup 1UE)Zu@)le @)
= £1,626G €1 — &2

§17E2

Properties of the Dirichlet-Neumann operator. We collect some fundamental
properties of the Dirichlet-Neumann operator G that are used in the paper, referring
to [38, 31} B, 2] for more details.

The mapping (n,v%) — G(n)y is linear with respect to 1) and nonlinear with
respect to 1. The derivative with respect to 7 is called the “shape derivative”, and
it is given by Lannes’ formula (see [38] [39])

1
G/l = lmm ~{Gln +=i)b — Gy} = —Go)(Bi) - 0.(Vi))  (32)
where we introduced the notations
T G
B = B(n, ) = W V= VU) = te— B (33)

10



Craig, Schanz and Sulem (see [22] and [46, Chapter 11]) have shown that one can
expand the Dirichlet-Neumann operator as a sum of pseudo-differential operators
with precise estimates for the remainders. Using repeatedly, we get the second
order Taylor expansion

Gl = GO} + GOy + 56" O)n, iy + Coaln)y
= 1Dl — |Dal(11D2l4) — 2 (102) + 50 D)

DDA Da0) + 3 IDel 0re) + Goalns, (34)

where G(0) = |D,| and G>4(n)v is of order 4, such that G>4(n) = O(n31). More-
over, it follows from [2, Section 2.6] that it satisfies the following estimate: for
so > 10 and any s > so, if ||n||s, is small enough, then

G20l gy <o Moy {16 zvocm) Il + Il ooy | ey - (3:5)

A key property is that one can use microlocal analysis to study G. In the present
case the matter is easier than in a more general case, because the physical problem
has space-dimension 2 (see Definition where the space variables are (z,y) € R?),
it is periodic in the horizontal direction « € T, with infinite depth, so that

G(n) = |Dz| + Ra(n), (3.6)

where the remainder R = Rg(n) is bounded in ¢t and regularizing in x at expense
of . More precisely, there exists a positive constant § such that, for n(x),h(z)
functions of x only, independent of time, if |||l zs(r) < d, then for any s > 1,

IRa(m)dllascry <s lnllmsvaem 191 v ery-

This estimate is proved in [2] (see Proposition 2.7.1 in Chapter 2, noticing that the
smallness condition on |||, assumed in this proposition is satisfied provided that
1/ 5 (ry is small enough). Moreover, if |[ngsr)y < 6, then for all s > 4 and all
S5<pu<s—1

IG) N e cry <s N10llgerrery + [0l =1 190 s (ry- (3.7)

Similar estimates can be also proved for functions of (t,2) € T?, where ¢ plays the
role of a parameter, using repeatedly the time-derivative formula

O {G ()} = G(n)d + G'(n) [0 = G(n)pr — G(n)(Bng) — (V)

(see the argument of section where it is explained in details how to extend
estimates for functions of x € T to include the dependence on time ¢t € T). Thus
in H*(T?) equipped with the norm | - ||s defined by (2.4), we have the following
(non-sharp) tame bounds: if ||n||¢ < 6, then for all s > 2, m >0,

IRc ()| D" lls <s [[9llslnll7+m + [[l2019l]s454m; (3.8)
if ||n]l¢ < 4, then, for all s > 6,
IGMYlls <s [1Plls41 + [Inlls41ll 6. (3.9)

Finally, regarding parities, we note that, if n € X, then G(n) preserves the parities,
namely G(n)y € X forp € X, and G(n)y € Y for ¢ €Y.
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4 Bifurcation analysis

Let us consider the linearized equations around the equilibrium (n,v) = (0,0).
Directly from (2.2)-(2.3]), one finds that the linearized operator is
N o w@t —G(O)
L, = F'(0,0) = <1—Ham wd, |- (4.1)

4.1 Kernel
We study the kernel of L. Let n € X, ¢ € Y, namely

n(t,z) = Y mycos(it)cos(jx), G(t,x)= Y ysin(lt)cos(jz),  (4.2)

1>0,j>0 1>1,5>0

where 7;;,1;; € R and, for convenience, we also define 1;; := 0 for [ = 0, as it does
not change anything in the sum. Recall that G(0) = |D|,

|Dg| cos(jz) = |j|cos(jz), |Da|sin(jz) = |j|sin(jz) Vj € Z,
and |Dg| = 0,H, where H is the Hilbert transform, with

H cos(jz) = sign(j) sin(jz), Hsin(jz) = —sign(j)cos(jz) Vj € Z,

namely |D,[e¥® = |j|e®, He¥™ = —isign(j)e”? for all j € Z. Hence
B (—wlm; — ;) sin(lt) cos(jx)
Lo[n, ] = Z ([(1 + k%) + wlthy;] cos(lt) cos(jz) ) (4.3)

1,j=0

Assume that Ly, [n,¢] = 0, so that win; + jib; = 0 = (1 + kj3)my; + wltyy; for all
I,j > 0. Since 1 + k52 > 1> 0, we get

wl ) .
mj = ———— b, {Wl? = j(1 + k%) by, = 0.

1+ KJ
At [ = 0, this implies 79; = t¢g; = 0 for all j > 0 (recall that ¢9; = 0 by definition,
see above). For [ > 1, choosing w # 0, we deduce that at j = 0 one has n9 = ¥;0 =0
for all [ > 1.
Hence ;5,15 can be nonzero only for [, j > 1. If (5, 1;) # (0,0), then vy; # 0,
and therefore (we assume w > 0)

31+ Kj?)
l :

w =

Suppose that there are two pairs (l1,j1), (I2,j2) that give the same w, namely

11+ k53) Vg1 + kj3)

l lo

Taking the square, x(j$13 — j313) + (j1l3 — j203) = 0. Now, if k ¢ Q, then both
the integers (j312 — j312) and (4112 — jal?) are zero, whence (I2,j2) = (I1,71). Thus
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irrational values of k give a kernel of dimension one. We consider the simplest
nontrivial case (I,7) = (1,1), and fix

w:=vV1+k, k>0, k¢ Q.
The factor
(@22~ j1+ R} £0 ¥L,5 >0, (L7) ¢ {(1,1),(0,0)}. (4.4)

The case (I, j) = (0,0), as already seen, does not give any contribution to the kernel.
Thus the kernel of L is

V:=Ker(Lg) ={ v : A € R}, vy := (_;OSSi(ﬁztc)O:é:()xD . (4.5)

There is some freedom in fixing another vector wg to span the subspace (I, 5) = (1,1).
It is convenient to define

W ={(nv)e X xY: holds, and (911, v11) = ¥11(0,1)}

_ D g ), (4.6)
where (t) cos(z)
(1,1 ._ . — w cos(t) cos(x
WD = g : A e R}, wp : ( sin(?) cos(z) ) (4.7)
and
WH) .= {(n,¢) € X x Y : (&2) holds, and 71, = 11 = 0}. (4.8)

Thus X xY =V @ WD @ W) namely every ©w € X x Y can be written in a
unique way as u = avg + bwg + w, where a,b € R and w € W&,

4.2 Range
Like F', also Ly maps X xY — Y x X. Let (f,g) € Y x X, namely

ft,x) =" fijsin(it) cos(jz), g(t,x) = > gijcos(lt) cos(jx), (4.9)

1,j=0 1,j=0

with fi;, g5 € R, fo; = 0 for I = 0,5 > 0. By (4.3) (with w = @), the equation
Lg[n,v] = (f,g) is equivalent to

— @l — gy = iy, (L4 K55 + Ol = gij. (4.10)
By (4.4), if ({,7) ¢ {(1,1),(0,0)}, then system (4.10) is invertible, with solution

(1 + &5%) fij + wlgij
@22 — j(1 + Kj?)

i — gy
MR G R

Py =

(4.11)

For (1,7) = (0,0), system (4.10) is also invertible, with solution 799 = goo, %o = 0
(remember that ¥g9 = 0 = foo by assumption). For (I,5) = (1,1), system (4.10)
has rank one, and it has solutions if and only if g11 + wfi11 = 0, in which case the
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solutions are (m11,%11) = (0, —f11) + A(1,—@), A € R (clearly (1, —w) corresponds
to Avg, namely an element of the kernel V). Thus

R :=Range(Lg) = {(f,9) € Y x X : (4.9) holds, and ¢1; + wf1; = 0}
= RWY ¢ R,

where

RLL .— {Arg: ANeR}, rp:= (;:;I;Eg Ezzgg) (4.12)

and
R :={(f,g9) €Y x X : ([£9) holds, and f1; = g11 = 0}. (4.13)

There is some freedom in fixing another vector zy to span the subspace (I, 75) = (1,1).
It is convenient to define

Z:={\n:AeR}CY xX, z:= <;§;§&;2§2&) . (4.14)

Note that Lg is an invertible map of W#) — R#) and (using the equality ©? =
1+ k)
L@[’wo] = ((;._}2 + 1)’/“0 = (2 + I{)To, Oy = —20. (415)

Thus Y x X = Z@ RO @ R®), namely every v € Y x X can be written in a
unique way as u = azo + brg 4+ 7, where a,b € R and r € R#). The formula for the
projection on 7g, zg is

psin(t) cos(x) P, 4q P, 4
= Ar A20, M =—5Sts=, A=s+5-, 0D, R. (4.1
<q cos(t) cos(x) To+A=20 2 + 20w 2 + 2 PaE (4.16)

4.3 Construction of an approximate solution

We look for solutions of ([2.1)) with frequency w close to the “unperturbed” frequency
w =1+ k. Write

W=0o+¢cw + 2wy + ..., UZ(U,¢):EU1+EQZL2+...,

F(u) = (w—@)0u + Lou+ No(u) + N3(u) + ..., Ni(u) = Tilu, ..., ul,

where T}, is a symmetric k-linear map, so that N2(u) denotes the quadratic part of
F, N3(u) the cubic one, etc. We get

Fu)=cF| +2F+ 3 F 4+ F 4+ 0(e0),
where F1 = Lguq,

Fo = Lgug 4+ wi10puy + Thlug, uq],

F3 = Lyus + w20sur + wi0pug + 215 [u, ug] + Tslur, ug, u1),

Fy = Lguy + w30pug + wodpug + wiOyus + 2To[ug, ug| + Toug, us)
+ 3T5[u1, uy, ua] + Tyluy, uy, uy, upl.

We prove that there exist uy, ug, u3, usg, w1, ws,ws such that F(u) = O(e?).
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Order e.  Fp = 0 if and only if vy € V, namely u1; = ajvg, for some a1 € R,
where vy is defined in (4.5). We assume that a; # 0 (otherwise the construction of
u becomes trivial).

Order €2. The quadratic part of F (see (2.2)-(2.3)) is
Oz () + Go [nGow]>
Tolu,u| = )
s = (0 G

where, for brevity, we write Gy := G(0) = |D,|. More generally, if v’ = (1/,1’) and
u// — (n//, /IJZ),/)7 then

rom 1 Oz (77'%’ + 77//1/};:) + Go [n/GOdJN + 77”G01/}/]
it )= 3 (M Gy )

In general, for n,j > 0,

Oz [cos(nx)0y cos(jx)] + Gocos(nz)Go cos(jz)]

= 3i(li =l +n— ) cos(( —m)a), (4.18)

and [j —n|+n—j =2(n—j) for j <n, and it is zero for j > n. In particular, for
n=1
Og[cos(x)0y cos(jx)] + Golcos(x)Go cos(jz)] =0 Vj > 0. (4.19)

For u; = ajvg (where vy is defined in (4.5))), we calculate
2

T ([cos(2t) —01] cos(2x)> - (420)

In particular, T[u1, u1] has no component Fourier-supported on (I,5) = (1,1). On
the contrary, dyu; = a10;v¢ is Fourier-supported only on (I, j) = (1,1). Split

Tour, u1] = aiTalvo, vo], Ta[vo,vo] =

Uy = aovg + bowgy + a%wg, as,bs €R, ws € W(i),

where wy, W& are defined in (4.7), (4.8). The equation IIpx)Fo = 0 (ie. the
projection on the Fourier modes (I,7) # (1,1)) is

a%(L@wg + TQ[UQ, ’Uo]) = 0. (421)

Since Ly : W& — R®) is invertible and a; # 0, we solve Lgyws + Tslvg, v9] = 0
and, by (4.11)) and (4.20]), we calculate

[ ap2cos(2z) + ana cos(2t) cos(2x)
w2 = ( Bag sin(2t) cos(2x) (4.22)
with 14 1+
Qo2 = 7H, Q22 1= 7K7 Pag 1= —wagg
A(1 + 4r) 4(1 — 2r)

(the denominators 1 + 4k, 1 — 2k are nonzero because k ¢ Q).
It remains to solve the equation F» = 0 on (I,j) = (1,1). By (4.15)), the com-
ponent of Lgug that is Fourier-supported on (1, 1) is Lglagvg + bowg] = ba Lg[wp] =
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ba(2+k)ro. By (4.15), Opu1 = a10v9 = —aq 2o, while Ta[uq, u1] gives no contribution
on (1,1) according to (4.20). Thus the equation projected on (1,1) is

b2(2 + I{)TO —wia1zp = 0.

ro and zg are linearly independent. Since a; # 0, we have to choose w; = 0 and
by = 0. There is no constraint on as. It is convenient to fix as = 0. With this choice

we have ug = a%wg.

Order €3, Since wy = 0, one has F3 = Lyus+waOput +2Ts uy, ug] +T3[uy, w1, u1].
Using the Taylor expansion (3.4]) of G(n) at n = 0, for a general u = (n, 1), the cubic
part of F' is given by

Tafuuyu] = (80l o) = GololiCub)) - (i)
e (Gow) (bae + Go(nGow)) + Lk () -

We calculate T3[uy,u1,u1] = a3 T3[vo, vo, vo], where vg is in (4.5)):

-1 200[sin(t) + sin(3t)] cos(z) )

Tslvo, vo, vo] = 32 ({(2 + 11k) cos(t) + (k — 2) cos(3t) }cos(x) — cos(3z)]

(as usual, we have used that @? = 1+x). We also calculate 275 [u1, us] = 2a3 T [vg, wa).

By (.17),

Ty[vo, ws] = ~ @ ({(2a02 — ag2) sin(t) + gz sin(3t) } cos(x)
2P0 TR Yy 2wz [cos(t) — cos(3t)] cos(3x) '
Split ug = agvy + bga‘%wo + a?wg, where ag, b3 € R, ws € W(#, and wy, W) are
defined in (4.7), (4.8). The projection on R#) of the equation F3 = 0 is

ai{’(L@wg + HR(;s) {2T2 [Uo, wg] + Tg[’Uo, 0, Uo]}) =0 (4.23)

because u1 = ajvg and ugy = a%wg. Since a1 # 0 and L : W& — R#) s invertible,
the equation determines w3, which depends only on k.

Let us study the projection of the equation F3 =0 on (/,j) = (1,1). As above,
L lagvg + bsadwo] = bza3(2 + k)rg and dyu; = a10,v9 = —ajzg. Using , we
calculate the projection Il(; 1) on RO ¢ 7 (namely on the Fourier mode (I,j) =
(1,1) in Y x X):

3 /o~ _ :
My 1y (2T w1, ug] + Tlu1, ur, u1]) = Y <2w[16a02 Bagz + 1] sint) COS(J:))

32 (2 + 11k) cos(t) cos(x)
ad 24+ 11k
= —?;(—L«_J[IGCVQQ—SO&QQ—FI]—F — )7“0
3
a;g (_ 2+ 11k
S (w[16a02 — 80122 + 1] + — >Zo.
32
Since v and rq are linearly independent, Il(; ;)F3 = 0 if and only if
a? 2411k
bsad(2 + k) — i( — &[1600s — 1 ) -
3a1( + K) 39 w[ 60&02 80[22 + ] + % 0,
3 2411
—Wwoa] — % <L«_J[16C¥02 — 8ago + 1] + t — K) =0
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Since a; # 0, the second equation determines wo as

_ o _ .:_9(41+@_2“+”>1 2+1m> 194
wp = ayly, @y i=a(n) = —ag (o - T P g ) A0 (24)

then the first equation determines b3 depending only on . Note that wy is nonzero
for k # po, where pg is the unique real root of the polynomial p(z) = 13623 + 6622 +
3x — 8 (after writing the common denominator in , one has wy = 0 if and only
if p(k) = 0). There is no constraint on asz. It is convenient to fix a3 = 0. With this
choice we have ug = a$(bswo + ws).

Order ¢*. In the previous steps we have found wy = 0, wy = a%@, and u; = ajvg,
ug = a?wy, uz = aj(bswo +ws3). Let uy = aqvg + ai(bgwo + wy), with ag, by € R and
wy € W(#) . The equation JF4 = 0 becomes

0 = w3a10:v9 + azll{b4L@ [wo] + Lg [w4] + woOywsy + 2b3T5 [UO, wo] + 275 [1)0, wg]
+ 15 [U)Q, UJQ] + 313 [Uo, 0, UJQ] + T4[U0, V0, V0, Uo]}. (4.25)

Its projection on R, after eliminating the factor aj # 0, is

Lg[ws] + M s {020,ws + 2T [vo, bawo + w3] + To[ws, wo]
+ 3T3[U0, 0, wg] + T4[UO, Vo, Vo, UO]} =0.

Since Ly : W#) — R®) is invertible, this equation determines wy, depending only
on k.

By (4.15)), the projection of (4.25)) on the Fourier mode (,5) = (1,1) is
a1 (ba(2 + k) + a)ro + (~wza1 + Pai)zo = 0

for some real coefficients «,3 depending only on x. We choose w3 = Ba3 and
by = —a/(2+ k), and the equation is satisfied. We also fix as = 0, so that uy =
a}(bswo + wy), and rename a? = £ > 0, B := w3 = w3 (k).

In conclusion, we have found the frequency-amplitude relation

W=+ cws + 3wy = @ + 2@ + 53@353/2 (4.26)

where the coefficient Wy is nonzero and both w9, w3 depend only on «, and an “ap-
proximate solution”

T = 1 (&) = etiy + 2ty + 33 + iy

4.27

= z-:\/gvo + €2§1I12 + 6353/21173 + 6452164, ( )
where vy is defined in " We = Wy € W(#), wy = bgwg + wg € W, wy :=
bywo + wy € W, such that F(a.) = O(£%). All vg, W, ws,ws depend only on k.
Moreover @, is a trigonometric polynomial, Fourier-supported on cos(lt) cos(jx),
sin(lt) cos(jx), with both [, j € [0, 5].
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4.4 Restriction of the linear inversion problem

In view of the Nash-Moser scheme, we have to study the inversion problem for the
linearized system: given f, find h such that F’(u)[h] = f. In this section we split
this (linear) inversion problem in a way that takes advantage of the (nonlinear) cal-
culations we have already done in section to construct the approximate solution
..

We assume that u = @ + @ and |5, 10 < Ce?19, where s9 > 2, 0 >4, 6 > 0.
The linearized operator is

F'(u)[h] = (e%wz + ew3)dsh + Loh + 2Ts[u, k] + 3T5[u, u, h] + N%,(u)[A]

where N>4(u) denotes the component of F' of order at least quartic. In the direction
h = U, := @i + 2¢clia + 3213 (which is 0.1, truncated at order £2) one has

F'(w)[U.] = F'(u)[uy + 2ets + 3ei3)
= 2e{Lg[us] + Tr[uy, u1]}
+ e2{wa0ty + 3Lg[us] + 6Ts[uy, te] + 3Ts[a1, G1, w1} + p
= —22w004y + 0, (4.28)

where

p = 63{0)3815’111 + (CUQ + 6003)815{27]2 + 36’113} + 675 [ﬂl, @3]
+ 2T ug, 2ug + 3eug) + 2Ts[us + euyq, Ue] + 3T5[u1, u1, 2ug + 3eus]
+ 315 [2@1 + cus + 827]3 + €3ﬂ4, Ug + €us + 62@4, Ug]}

+ 215 [ﬂa UE] + 6€T3[1~L, uy + eug + E21]3 + 631_/’47 UE] + 3T3 [ﬂa a? UE]
+ Ny (@ + w)[Ue].

To get we have used the equalities F; = 0, ¢« = 1,2, 3, namely the equations
at order ¢, €2, €3 solved in Section For s > sy > 10, we claim that the function
p satisfies

plls <s e+ @] s44- (4.29)

Indeed, directly from the above definition of p, this estimate is clear for all the terms
inside the brackets (recalling that u are trigonometric polynomials). To estimate
the terms To[u, U], T3], u1 + et +e2us +e3ty, Us] and T3[a, @, U:], we use the usual
nonlinear estimates in Sobolev spaces. The last term N, (. + @)[U;] is estimated
starting from the linearization formula recalled below in_, using the estimates
and for the Dirichlet-Neumann operator and its Taylor expansion, to-
gether with similar estimates for the Taylor expansion for the coefficients B and V
which appear in (5.1), see [2, Section 2.6] for these estimates.

Remember that —0;vg = zo. Split the datum f = bzg + f, where b € R and
f € R. We look for h of the form

h=aU; + h = a(uy + 2eug + 362@3) + il,
where a € R, h = il(t, x) € W are unknowns. For h of this form,

F'(u)[h] = aF (w)[U:] + F'(u)[h] = a(2e%w2 /€ 20 + p) + F'(u)[R].
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Projecting onto Z and R, one has F'(u)[h] = f if and only if

ZP) (4.30)

{a(252(,u2\/gz0 +TIzp) + L4 F'(u)[h] = bz
allgp + T F"(u) 1] = J.

Assume that the restricted operator LYY := IIpF" (u)jw : W — R is invertible, with

IR glls <s v~ (llglls+2 +7 Hlllstollgllso+2) (4.31)
for s > sg, where v := ¢P, p := 5/6. Then we solve for h in the second equation in
(4.30)) and find ) .

h=(LF)"(f — allgp), (4.32)
with estimate
1Rlls <s v N Flsv2 + 27 allsroll Fllsore + lal(€® + [|alls+0)3, (4.33)

because e279y~! < 1 and o > 4. Substituting (4.32)) in the first equation of (4.30)
gives

a{26%wan/€ 20 + Tzp — Tz F'(w) (LY ) HIgp} = bzo — Tz F' (u)(LY)71f. (4.34)
Since I1z Lg = 0, the operator 11z F'(u) starts quadratically, and it satisfies

TzF (w)gllo < Cllullso+2llgllz < Cellglls,,
HHZF’(u)(E%V)*lgHo <so 5771”.9"80-1—2

for all g. As a consequence,
T2 F'(w) (L) rpllo <so &7 Hlpllsora <so €570

Therefore the coefficient of azg in (4.34)) is 22wy + o(¢?), which is nonzero for €
sufficiently small because wo # 0. Hence from (4.34]) we find a as a function of b, f,

with estimate

lal <so € 201+ fllso+2) so € 2001+ 1 Fllso+2) <so € 2N fllsor2 (4:35)

(we have used that ey~! < 1). Then, substituting the value of a in (4.32)), we
find a formula for h as a function of b, f. We have solved the inversion problem

F'(u)[h] = f. Since ||hls = ||h+ aU|ls < ||h]ls +C(s)|al, by [{:33),(A35) we get
hlls = I1E ()™ flls <s v HIFllsrz + 7L+ allso I Fllsor
<s € 2 (If sz + 7 allstoll Fllso+2)- (4.36)

We have proved the following inversion result:

Lemma 4.1. Let u = . + @, with ||@||syr0 < Ce2T0 and s9 > 2, 0 > 4, § > 0.
Assume that the restricted operator L"{%V = ORF'(u)jw : W — R is invertible, and
its inverse satisfies , where v = €%/6. Then F'(u) is invertible, and its inverse
satisfies for all s > sg.
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The “loss of regularity” in is due to the inverse (E%V)_l on the component
W, R, while the “loss of smallness” ¢=2 (>> y~!) in is due to the inverse on
the kernel component V,Z. The starting point #. of the Nash-Moser scheme is
sufficiently accurate (F(u.) = O(e%)) to overcome both the loss of derivative and
the loss of smallness, and therefore we do not need to distinguish the components
on W, R,V, Z in the Nash-Moser iteration of Section

In conclusion, we have reduced the inversion problem for the linearized operator
F'(u) to the one of inverting LY = IIgF'(u)y : W — R.

In view of the transformations of the next sections, it is convenient (although this
is not the only option) to split the inversion problem for E‘év into its space-Fourier
components cos(jx), with 7 = 0,1 or j > 2, because these three cases lead to different
situations: j = 0, the space average, is the only space-frequency for which Lg gives a
triangular, not symmetrizable system; 7 = 1 is the space-frequency of the kernel V;
all the other j > 2 can be studied all together using non-trivial infinite-dimensional
linear transformations and a symmetrization argument (Sections .

Thus, to solve the equation g F'(u)w [h] = f, we split R = Ro® Ry ® Ry, where
the elements of Ry depend only on time, those of R; are space-Fourier-supported
on cos(z), and those of Ry are space-Fourier-supported on cos(jz), 7 > 2. Denote
Ry1 := Ry ® R;. Decompose W = Wy @ W1 @& Wy in the same way, and denote
Wor := Wo @ W1, Split h = hgr + he € W, f = fo1 + fo € R, where hg1 € Wy,
ha € Wa, and fo1 € Rot1, f2 € Rz. The problem IIgrF'(u)y[h] = f becomes
Mgy, F'(u)[ho1 + ha] = fo1, e L% hor + L31ho = for, (4.37)

IR, F'(u)[ho1 + he] = fa, | L9 o1 + L3he = fo, .

where £§; := gy, F'(u)w, : W2 — Ro1, ete.

Lemma 4.2. 58% : Wo1 — Ro1 is invertible, with

126 ™ Flls <s IFlls + szl fllsos  NCLGD ™" Fllso <so Iflso- (4.38)

Proof. To invert L3}, we write the linearized operator as F'(u) = Ly, +N"(u), where
N = N3+ N3+...is the nonlinear component of F', and Ly, is its linear one, defined
in . We begin with the invertibility of L, as a map of Wy; — Rg1. Since L,
maps Wy — Rop and Wi — R, “off-diagonal” one simply has Ilg, L, w, = 0 and
Hp, Lojw, = 0.

Step 1. The restricted linear part g, Ly,w, : Wo — Ro is invertible, because
the equation L,h = f in the unknown h = (n,v) € Wy with datum f = (o, 8) € Ry
is the triangular system wn/(t) = «(t), n(t) +wy’(t) = B(t), where n, 5 are even and
Y, « are odd, and 1, v, «, 8 are functions of ¢ only (this calculation has been done in
Section [1.2 with @ instead of w). Thus |[(Tg, Luwy) " flls < C|f[ls—1 for all s > 1.

Step 2. We prove that the restricted linear part IIg, Lw, : W1 — Ry is invert-
ible. Consider

n= Zm cos(lt) cos(z), = Zz/n sin(lt) cos(z), o =0, 1 =y,

>0 >0

so that (n,7) € Wi (recall (4.7)). Similarly, let f = 37 fisin(lt) cos(z), g =
2150 g1 cos(lt) cos(w), with fo = 0 and g1 = —wf1, so that (f, ,g) € Ry (recall (4.12] -)
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Using the projection (4.16) for [ = 1, the definition (4.12) of 7y, the assumption
n1 = @1 and the equality 1 + x = @?, we obtain

T, Los(n, ) — ( 0 (x)> tarro+Y) <—(wlm + i) sin(it) COS(x)> ’

w?ng cos — (@02 + withy) cos(It) cos(z)

where o := (w + ©)(1 + @?)/(2w). Thus Mg, Ly(n,v%) = (f,g) if and only if ny =
gO/wza ¢1 = _fl/aa and

—wlfi — g G2 f; + wlg

M= "3p _a2 ¢l:ma l>2. (4.39)

For all I > 2 the denominator is w?l? —w? > CI?, therefore |n;|+|vi| < C(1fil+|a])/!
for all [ > 2. Hence g, L,,w, is invertible, with

(TR, Lojwy) ™ flls < Cllflls—1

for all f € Ry, all s > 1.
Collecting Steps 1-2 we deduce that Iy, L wy, : Wor — Ro1 is invertible, with

I(MRgy Leojwoy) " flls < Cllflls—1 Vf € Rot, s> 1.

Step 3. The linear operator N’(u) does not contain derivatives with respect to
time, and it is a pseudo-differential operator of order 2 with respect to the space
variable z. Denoting Njj, i,j = 1,2, the operator-matrix entries of N’(u), for
h = (n(t) cos(x),(t) cos(z)) € Wi one simply has

, (N1 Nip n(t)cos(z)\ Ny [cos(z)] Nizlcos(x)]
N (w)h = <N21 N22> <1[)(t) cos(:v)) =n(t) (Nzl[cos(x)]> + () (Ngg[cos(x)]>’
and similarly for h € Wy (just replace cos(x) with 1). Therefore, for all h € Wy,

IV (W), [Bls < Cls0)ellhlls + C()llullsr2llllso,

4.40
I () pven ]l < Cs0)elllo (4.40)

because ||u||s,+2 < Ce. The conclusion follows by tame Neumann series. O

By Lemma[4.2] we solve for ho; in the first line of (£.37), and the system becomes
(L3 +R)he = fo — L3 (L51) ™" fou, (4.41)

where

R = —LY(LY) ' LE, : Wa — Ry,

Lemma 4.3. Let u = . + @, with ||il|sgro1m < Ce?10 for some sg > 2, m > 0,
0 > 0. Then the operator R defined in (4.41) satisfies for all s > sg

IRIDz|"hlls <s € 1hlls + ellllss2mlBllso- (4.42)
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Proof. (L31)~! is estimated in Lemma and L9 = I, N”(u)w,, satisfies (4.40)
because |lg,hlls < ||hlls. It remains to estimate £3,. Let h = (n,7). By the
explicit formula , using integration by parts and the self-adjointness of the
Dirichlet-Neumann operator, it follows that both the first and the second component

of Tlpy N’ (u)[0F*h] have the form

(/T(Uao + 1bo) dac) + </T(77a1 + 1by) d:n) cos(z)

for some coefficients a;(t, ), b;(t,z), i = 0, 1, depending on u and of size O(u). Note
that both the derivatives contained in N’(u) and the additional derivatives |D,|™
go to the coefficients a;,b; and do not affect n,1. Now, any function f(¢,z) of the
form f(t,z) = g(t) or f(t,r) = g(t)cos(z) satisfies ||f[|s <s |lgllu; (as usual, H
means H*®(T) where the variable is t € T). Also

H /T n(t, 2)a(t, z) da

<s [Inllczmg ol 2y + 0l 2z i llal 2 a1
Hy

<s [Inllsllally +lInll{lalls

and similarly for ¢b. Therefore, if ||ullstm < C, we get |[TIoaN'(w)[02A]|ls <s
Whllsllells+m + |12l 1wl s42-4m, and the lemma follows by composition. O

Lemma 4.3 will be used with m = 3/2 or m = 2.
Using (4.37), (£41)) and the estimates for £}, £3,, £, we deduce the following

inversion result:

Lemma 4.4. Let u = . + @, with ||@||syr0 < Ce2T0 and s9 > 2, 0 > 4, § > 0.
Assume that L'% + R : Wy — Ry is invertible, and its inverse satisfies

1023 +R)"Hglls <s v (llglls+2 + 77 lallsrollgllso+2) (4.43)

for all s > sg, where v = &%/6. Then EEV = rF'(u)jw : W — R is invertible, and
its inverse satisfies (4.31) (with the same o,7).

Remark 4.5. Collecting Lemmata [4.1] and [£.4] we have reduced the inversion prob-
lem for F'(u) to the one of inverting £3 + R : Wy — Ry, where L3 = Ilg, F'(u)w,
and R satisfies (4.42)). Therefore our goal now is to invert £3 + R and to prove
@43). O

We finish this section with the following lemma, which rests on both the result
of section and property (4.28) of the linearized operator. Recall the definition

(31) of the norm || |5,
Lemma 4.6. Let w,u. be as defined in (4.26)-(4.27). Then
1 (1, w) |57 <, €°

for all s > 0.
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Proof. By the construction of section [4.3|it follows immediately that ||F'(ue,w)||s <s
e®. It remains to estimate the derivative O¢{F(tis,w)} = (0ew)dytic + F'(u.)[Octic).
Recalling (#.27) and the definition U, := @1 + 2ctis + 3213, we get

3
D¢l = iUg + 2e¢w,.

Hence, using (4.28)), and recalling that we = @9&, for £ € [1,2] one has
3
Oc{ F (e, w)} = (52@2 + 5%3551/2)@@5 + 235 F'(2)[U2] + 264 F (0[]
£
2¢
Thus [|9¢{F (iic,w)}||s <s €*, and the lemma is proved. O

= 3000,11 + O(e?) + — (—2%w2011 + p) + O(e?) = O(e?).

5 Linearized equation

The computation of the linearized equations is based on formula (3.2)) for the “shape
derivative” of G(n)y. The derivative of the two components Fy, F of F' (see (2.2)-
(2.3) at the point u = (n,%) in the direction a = (7, ) is

F{(u)[@] = wdyij + 0:(Vij) — G(n) () — Bij)
Fy(u)[i] = wdp) + VIuh — BG(n)yh + (1 4+ BV,)ij + BG(n)(Bij)
— k0 ((1 4 12)~320,7),

as can be checked by a direct computation, noticing that B, (V7)) — By, +
B?1,ii, = BV,7), where B,V are defined in (3.3).

Notation: any function a is identified with the corresponding multiplication
operators h +— ah, and, where there is no parenthesis, composition of operators
is understood. For example, 0,c0, means: h — 0y(cOzh).

Using this notation, one can represent the linearized operator as a 2 x 2 operator
matrix

P = F.v) |1

v ~ (5.1)
- wo + 0,V +G(n)B —G(n) ]
~ \(1+ BV,) + BG(n)B — k00, wd+ V0, — BG(n)) |v|’
where
c:= (1472732 (5.2)
The linearized operator F’(u) has the following conjugation structure:
F'(u) = ZLo27 1, (5.3)

where
(1 0 1 (1 0 (w0 + 0V —G(n)
Z= <B 1) 2= (—B 1) » Lo= <a— kOncdy w1+ V) O
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and a is the coefficient
a:=14+wB; +VB,. (5.5)

a, B, V, c are periodic functions of (¢, x), namely they are variable coefficients. This
conjugation structure is now well-known (see [38]). Formula is verified by a
direct calculus, and it is a consequence of the following two facts:

(i) the pseudodifferential terms in F| and Fj are equal except than for a factor
B. Hence they cancel in the sum Fj + BFY;

(i1) both in the sum F}+ BF! and in F} the quantity ¢ := 1) — Bij arises naturally
and replaces ¢ completely. This ¢ is the “good unknown of Alinhac” (see [5, 3]).

Remark 5.1. Parities. Since u = (n,v) € X x Y, it follows that B € YV, V =
odd(t),odd(x), ¢,a = even(t),even(z), and Z maps X - X and Y — Y. O

We want to obtain a conjugation similar to for £3 + R, see Remark
where R : Wy — Ry satisfies and L3 = g, F'(u)w, : Wa — Ry (re-
member that Ry, Wy are subspaces of functions that are space-Fourier-supported
on cos(jx),j > 2). Denote, in short, P, F the projection

Ph(z) = Z hjcos(jx), TFh(xz)= hg+ hicos(z),
Jj=2

where h(x) = >~ hjcos(jz). Clearly for all s > 0, m > 0, all h(t, z),
[PAlls < \IAlls,  [[D2"Fhlls < [Fhlls < [lholl s + 1halle; < [Alls. (5.6)

We want to conjugate £3 + R = PF'(u)P + R. Let Z := PZP. By the parity of
B, the operator Z maps Ry — Ry and Wy — Wa. Moreover, by Neumann series,
Z is invertible (see Lemma below). Using the equalities F'(u)Z = ZLy and
I =P+ T, we get

(L2 4+ R)Z = (PF'(u)P + R)PZP = PZPLyP + PZFLyP — PF'(u)FZP + RPZP

whence o L ~
LE24+R=2Z(Lo+Ro)Z, Lo:=PLP,

N . N 5.7
Ro := Z YPZFL,P — PF'(u)FZP + RZ}. (5.7)

The remainder Ry has size O(u?) and it is regularizing of any order in d,. More
precisely,

Lemma 5.2. (i) Let u = @ + @, with ||il|sy+1 < Ce2*°, so > 5, 6 > 0. Then for
all s > sg the functions B,V satisfy || Bl|s + |V|s <s [|ulls+1 <s € + [|U][s41, and

1(Z = Dhlls < Clso)llullso+1lllls + C(s)llulls+al[Plso- (5.8)

Also Z and Z=' satisfy (5.8) (with possibly larger constants C(sq), C(s)). )
(ii) There is o > 2 such that, if ||| sg+otm < Ce?t9 then the operator Ry :
Wo — Ro defined in (5.7) satisfies for all s > sg

”7%0‘D93‘mh”s <s 52Hh||s + 5”aHs+o+mHhH80- (5'9)

Proof. (5.8)) holds because [|(Z — I)h[|s < |[Bhl|s. For Zz use that [|[Ph|ls < ||A[s,
for Z=! use tame Neumann series. To get the estimate for Rg, note that in FLP
and in PF’(u)F there is no derivative 9y, because FO,P = 0 = P9;F. Also use that

PZF = P(Z — I)F and FZP = F(Z — I)P. 0
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6 Changes of variables

We have arrived at the inversion problem for £y + R defined in (5.7), where

s (( @AV AV —|Dif - Ra
07 \a = KkeOyy — KepOy wo +Vo, |’

and |D,| + Rg = G(n). Our first goal is to obtain a constant coefficient in the
term of order 9;,. To do that, we use two changes of variables: a space-independent
change of the time variable (i.e. a reparametrization of time), and a time-dependent
change of the space variable.

We start with an elementary observation. Given by, by, bs, by functions of (¢, x),

the system
bi b2\ _(f O\ (A A\ (p O
bs by) N0 g/ \Xs A/ \O ¢

has solutions f, g, p, q,

_h b3 _ Aibop B
_Tlpa g_)\73p7 q= bl)\Q’ b = any,
if and only if b;, \; satisfy
biby A1\
bobs  Aodz

In particular, to have \; constant, it is necessary that b1bs/babs is a constant, and,
at the leading order, this is the condition we want to obtain after changing the
coefficients of Ly by the changes of variables.

First, consider the change of variable y = x + B(t,2) & » =y + B(t,y), where
B(t,x) is a periodic function with |8,;| < 1/2, and [5(t,y) is given by the inverse
diffeomorphism. Denote

(Bh)(t,z) := h(t,z + B(t, x)).

Conjugation rules for B are these: B~'aB = (B~ !a), namely the conjugate of the
multiplication operator h + ah is the multiplication operator h + (B~ 'a)h, and

B™10,B = {B~H(1+ 5:)}9,
B 0B = {B™H (1 + 82) 0y + (B B1a) 0y,
B~ 'oB = 0y + (B~ )0,
B Dy|B = {B~H(1+ 2)}| Dyl + R,
where Rp := {B~1(1+8;)}0,(B~1HB—H) is bounded in time, regularizing in space
at expense of 7, because
B YD,|B=B"10,HB = (B10,B)(B'HB)
= {B7'(1 + B.)}0,[H + (B~'"HB — H)],

and (B~'HB — H) is bounded in time, regularizing in space at expense of 1 (see
Lemma in Section of the Appendix). Thus

w0y + a18y + a» —(I3|Dy| + R1>

— R-1 —
Lri=bB"Lob = <—/<;a48yy — Kas0y + ag w0 + a1y
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where the variable coefficients a; = a;(t,y) are

ay = B_l[wﬁt + V(l + ﬁw)}a az ‘= B_l(vx)v
as = 8_1(1 + ﬂz)a a4 1= B_I[C(l + ﬁx)2]7
as 1= Bil[cﬁzz + cx(l + Bx)]y ag ‘= Bil(%

and Ri := —Rp — B~ 'RaB.

We want to conjugate Lo+ Ro = PLyP + Ry. Let B := PBP. The operator B
maps Ry — R and Wy — W and it is invertible (see Lemma below). Using the
equalities LoB = BL1 and [ =P+ F, we get

B_l(ﬁo + 7?,0)5’ = Zl + 7%17

with
Ly :=PLiP, R, :=B HPBFLP - PLFBP + RoB}.

Second, consider a reparametrization of time 7 = t + «o(t) < t = 7 + &(71),
where «(t) is a periodic function with |o/| < 1/2, and &(7) is given by the inverse
diffeomorphism. Denote

(Ah)(t,y) := h(t + a(t),y).

Conjugation rules for A are these: A 'aAd = (A~ 'a), namely the conjugate of the
multiplication operator h ~— ah is the multiplication operator h + (A~'a)h, and

AT19,A=0,, ATYDYA=Dy, AT'OA={AT(1+d)}0r.
Thus

Lyi= ./471»61./4 _ ( war0; + a88y + ag —alo‘Dy‘ + R2> 7

—K0110yy — Ka120y + a13 war0r + agdy
where Ry = AR 1A and where the coefficients a; = a;(7,y) are
a7 = A1 +d), ap = A ap_7), k=8, ...,13.

Note that a7(7) does not depend on y.

We want to conjugate Zl + 7?,1 = PL{P + 7@1. The transformation A maps
Wy — Wo and Ry — Rs, and commutes with P. Hence A := PAP = AP is the
restriction of A to the subspace W5 or R, and we get

A_l(ﬁl + 7%1).,1 = EQ + 7:\3/2, EQ = PLoP, 7?,2 = A_lﬁ,lA.
Following the elementary observation above, we look for «, 8 such that
ma% = ai1p0a11 (6.1)

for some constant m € R. Since ay = A7(1 + /), a0 = A a3, a11 = A tay, and
A~1 is bijective, (6.1)) is equivalent to

m(1 + a')? = azay. (6.2)
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Since ag = B~Y(1 + Bs), as = B~ e(1 + B.)?], and o/ = B~1(a/), (6.2) is equivalent
to

m(1+a')? = (14 5,)°, (6.3)
namely m'/3 (14 o/ (t))?/3 ¢(t, £)~1/3 = 1 + B,(t, x). Integrating this equality in dz,

the term [, disappears because it has zero mean. Therefore

2 -3/2
1+ o/ (t) =m /2 (21/ ct,z)”/3 dx) / .
T Jo

Integrating the last equality in dt determines the constant m:

1 2r 27 . —3/2 2
. — —1/3
m {27r/0 (27r/0 c(t, ) dx) dt} (6.4)

and, by (5.2), ¢7/% = (14 n?)V/2.
By construction, [m~1/2 (5 J ¢1/3 dz)=3/2 — 1] has zero average in t, therefore
we can fix a(t) as

a=0;" [m71/2 (% /27T et z)™/3 da:) R 1}, (6.5)
0

where 0, 1is the Fourier multiplier
A 1 .
ottt = o e viez\{0}, 97'1=0,
i

namely, for any function f, 0, 1 £ is the primitive of f in ¢, with zero average in ¢.
By construction, [m!/3(1 4 o/)?/3¢=1/3 — 1] has zero average in z, therefore we
can fix 5(t, x) as

B =0, [m'3(1+d(t)*3c(t,x) /3 — 1], (6.6)

where ;! is defined in the same way as 9; . With these choices of a, 3, (6.1)) holds,
with m given in (6.4). We have found formulae

1 -1
1+ 6 =v1+n2 <27T/\/1+77%dx) :
T

14 o() = — ( L[ i )_3/2
W= Tm \ar TG
Remark 6.1. Since ¢ € X, it follows that & = odd(t), even(z) and 5 = even(t), odd(x).
As a consequence, both the transformations A and B preserve parities, namely they
map X — X and Y — Y, and A~!, B~! do the same. Therefore

(6.7)

ai,ag = odd(t),odd(x); ag,a9 €Y; a3, a4,as,a7,a10,a11,a13 € X;

as, a1z = even(t),odd(x).
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We follow the elementary observation above, with Ay = Ay = Ay = 1, A3 = m,

p=1. Let
-1
P .= a7 0 —1 1> P_l - a7 —q )
0 aiim 0 a;gm

/1 0 (1 0
(o) @)

and calculate

_1 wo; + a148y + ais —‘Dy‘ + ai6H + R3
£3 =P EQQ = 5 (68)
—mﬁayy + mlia17ay + massg w@T + a148y + a9
where, using (6.1]),

. as . ag _ a1

aiqg = ) als = —, aie -

ar a7 alO

) a2 a3 . CL? 7 as (ar

arr = ——, aig ‘== —, ayg =mw— |— ) +m— | —

aii a1 ail \aijpp’/ T a11 \aio’vy

and

+ —Ry— (6.9)

Rs = —@8 [% alo} ar  aip

ar

The commutator [H, f] of the Hilbert transform #H and the multiplication by any
function f is bounded in 7 and regularizing in y at expense of f (see Lemma m

in Section of the Appendix). To calculate we have used (6.1).
We Want to conjugate Lo + Ry = PLoP + Ry. Let P := PPP and Q := PQP.
Using the equalities PL3 = L2Q and I =P 4+, we get

~_1(£~2 + 7?,2)@ = 53 + 7?,3,

with
L3 :=PL3P, Rs:= P YPPFLP — PLyFQP + R2Q}. (6.10)

Thus we have conjugate
fo+ Ro = BAP(Es + Ry) @~ AB,
and the coefficients of 0r, 0y, |Dy| in L3 are constants.
Remark 6.2. Using the parities of a;, ¢ < 13, it follows that
aiqg = odd(7),0dd(y); ais,a19 €Y; aig,a17 =even(r),odd(y); age X. O

Lemma 6.3. There is o > 2 with the following properties. (i) Let u = . + @, with
17| sg+0 < Ce2t9 50> 5,8 > 0. Then all the operators B, A, P, Q map Wa — Wa
and Ry — Ro, and they are all invertible. The inverse operators B! .A 1 P L Q 1
also map Wy — Wy and Re — Ry. All theses operators satisfy, for all S 2 S0,

1AR]s <s [Plls + @l sollhlls, A€ {B,AP,QB~ AT, P71,Q7"}. (6.11)
(i) The functions a;(T,y), i = 14,...,19 satisfy

la1alls + llaaslls + llaells + llarzlls + lais — 1[s + llarolls <s € + [|@]|s+o-
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(ii1) If allso+o+m < Ce?0 for some m > 0, then for all s > s the operator
Rs3 : Wo — Ry defined in (6.10) satisfies the same estimate (5.9) as Ro, and the
operator Ry defined in satisfies

IR3| D" hlls <s ellblls + [[@llsto+mllAllso- (6.12)

Proof. (i) The proof of the invertibility of B is based on these arguments: B is
invertible of X — X and Y — Y; B — I is of order O(8) = O(g?) in size and of
order 1 in 0,, therefore F(B — I)F is small and bounded (because Fd, is bounded).
As a consequence, FBF is invertible by Neumann series. Then PBP is invertible
by a standard argument of linear systems. The invertibility of A is trivial, because
Ah = Ahforallh € Wy or h € Ro, and A is invertible. The invertibility of P, Q, P, Q
follows by Neumann series.

(71) Composition estimates for all ai, ..., ajg.
(7i) The estimate for Rg is proved similarly as for Ry, see Lemma The
estimate for the term R¢ in R3 comes from (3.8]). O

7 Symmetrization of top order

Let g : R — R be a C* function such that g(£) > 0 for all { € R, and

K€\ 3
0O = (Fg=)" VlZ2m e© =1 Vg1 @

Let A be the Fourier multiplier of symbol g. Let

10 LN 0
SZ(O m1/2A>’ S :<0 m_l/zA_l)’

where m is the real constant in , so that

As m!'/2Bs\ AT Bf
Ly :=8"1L35 = ( = (03 D%),

m~Y2A"1C5  A1DsA
(A3 B3
‘C3 - <03 D3> b

where, in short, As, Bs, Cs, D3 are the entries of L3 (see ) Recall the formula for
the composition of the Fourier multiplier A and any multiplication operator h — ah:

(7.2)

Mo ~ 3 72y (GFa)(a) Op(@g)u (73)

where Op((?gg) is the Fourier multiplier with symbol agg(g). Thus AT = A3 =
wé?T + a148y + as,

Bf = —/m|Dy|Y2(1 — k8,,)2 + VmareH|Dy|"V2(1 — k)12

+vVmR3A (7.4)
Cf = Vm(D)2(1 = k8yy)? + Vm karr A1, + Vm k(air)y (A 1)1,

+v/m(aig — AT + RS (7.5)
DF = w0, + a140y + (a14)y(A™1)1A0, + (a14)yy (A" 1)2A0, + arg

+ (a19)y (A™1)1A + Rip (7.6)

where
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(Dy) is the Fourier multiplier with symbol () = max{1, [£|};

(A71)1 = Op(—ide(1/g)) and (A71)y = Op(—@?(l/g)) are the terms corre-
sponding to n = 1 and n = 2 respectively in the expansion (7.3)) of A=!;

e the remainder Ry 3¢ is an operator of order O(|D,|~%/2) regarding derivatives,
and of size H(an)yyH + |[(a18)y]| (therefore O(e)) regarding the amplitude;

e the remainder R, 3 p is an operator of order O(|Dy|~ %) regarding derivatives,
and of size ||(a14)yy|| + ||(a19)y|| (therefore O(e)) regarding the amplitude.

Note that, regarding size,

PLIP = <w7?t a_J;;> P+0(e), T:= \/E|Dy|1/2(1 - ’fayy)l/Q- (7.7)

For |j| > 1, let

— VIF R - VRl - g (78)

Then |r;| < Cy for all |j| > 1, and, in particular, |r;| < Cy 4]~ for all |j| > 2x1/2,

for some constant C}; > 0 depending on . Therefore, for all h = Z| iI>1 hjeijy,

(1- “ayy)l/Qh = VE|Dylh + 5—=|Dy|~ h+ Ryh (7.9)

f

where the remainder R, has order O(|Dy|_3). Similarly, we expand

A= Lip, 2 - L b, 4 oD, |0,

f 3/2
(A=~ VwaM P+ 0(1D,|TT),
Ay = ———|D,[752 + O(|D,|7/?).
(A7) Viyl (1
Using the equality 0, = —|Dy|H, we get
Bf = —T + vmk aig| D, |'/*H + O(|D,|~%/?) (7.10)
Cf =T + 7o — vVmk ayr|Dy|V/*H + ass| Dy |72 + O(|Dy|~3/?) (7.11)
Dy = wd; 4 a140, + agr + ags|Dy| "1 H + O(1D,|7%/?) (7.12)

where T is defined in (7.7)), mo is the space average (i.e. mo(h) := 5= [p hdx),

\/ 1 1

ags = 77: (a1 — 1) — S Vme (a17)y, agy = aig — 5(014)34,
3 1

a28 ‘= Z(a14)yy - 5(019)%

and the remainders are of order O(|Dy| =/ %) regarding derivatives, and of size O(e).
Let S := PSP = PS = SP, and note that S—! = S~'P. Define

L A4 By
£¢_<@D), (7.13)
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Ay = w0 + 4140y + azs,
By :=-T+ WCLI6|Dy|1/2H’
Cy:=T— Wan!Dy!l/ZH + a25|Dy|1/27
Dy := wOr + a140y + agr + ags|Dy| ' H
Thus L . -
S7HLs +R3)S = La + Ra, (7.14)
Ly =PLP, Ry:=P(L] — Ls)P+ 5 'RsS.

Unlike in C;r , the average term gy is not present in C; because mglP = 0. The
remainder R4 : Wa — Ry has order O(|D,|*/?) regarding derivatives, and size O(e)
regarding amplitude.

Remark 7.1. By the parities of a;, ¢ < 19, one has ags5 € X, ao7 € Y, asg =
odd(t),odd(x). O
Lemma 7.2. (i) The Fourier multiplier S is an operator of order 1/2, with ||Sh|s <

C’||h||SJr 1/2 for all s € R. S is invertible, and ||S~h||s < C||h|s, for all s. More-

over S, S~ satisfy the same estimates as S, S~ respectively.
(ii) There is o > 2 such that, if u = e + U, with |0z < Ce*, 59 > 5,
6 >0, then for all s > sg

lazsls + [lazzlls + [lagslls <s &+ [[allsto-

The operator Ry : Wo — Ry defined in 4)) satisfies the same estimate (6.12)) as
Ra, with m = 3/2.

8 Symmetrization of lower orders

Let

Lsm <A5 —C5> As == wd: + a140y + azg + azoH|Dy| 7,

8.1
G s Cs := T + asiH|Dy| '/ + agz| Dy| /2, ®.1)

so that L5 is a “symmetrized” version of L4 in ((7.13)). The coefficients asg, asg, as1, asz
are unknown real-valued periodic functions of (7,y). We prove that there is a trans-
formation . )
1 g v = 1+U2H|Dy|_ +U4|Dy|_ ,
M= 0 -3/2 —5/2
v g = 93| Dy| 7= 4 gsH|Dy |77,

where vy, vy, g3, 95 are real-valued, periodic functions of (7,y), such that £4M —
MLs = O(D,|-37)
Using formula (7.3) to commute |D,|* with multiplication operators, namely

s(s—1
‘Dy‘sa = a|Dy|S + Say’Dy’S_lfH - (z)ayy’Dy’5_2 + O(|Dy|s_3)

and also the fact that 7 commutes with multiplication operators up to a regularizing
rest that enters in the remainder of order O(|Dy|~%/2), we calculate the entries of
the matrix

£4M_M£5:<A4—A5—QC5 B4U+C5+A4Q—QA5>'

Cy —vC5 Dyv —vAg + C4g
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To make the notation uniform, we write 9, = —H|D,|, OyH = |D,|, and HH =
—1I + my (mp denotes the space-average). In the following calculations, remember
that m, k are constants, i.e. they do not depend on (t,x). Denote, in short,

A= y/mMmK.
Position (1,1). Calculate gCs = Ags + (g3az1 + Ags)H|Dy| ™1 + O(|Dy|72). As a
consequence, Ay — A5 — gCs = O(|Dy|_2) if
a5 — agzg — Ags =0, (8.2)
aso + Ags + gsasz1 = 0.
Position (1,2). Calculate
Byv = —T + Maig — v2)H|Dy|"? + M 3 (v2)y — v4 — argva}|Dy| V2 + O(|Dy|73/?),
Aug = gwd; — aragsH|Dy| 7% + O(|Dy[73/?),
gA5 = gwor — 9361147'[’Dy’_1/2 + O(]Dy]_?’/Q).
Therefore Byv 4 Cs + Asg — gAs = O(|D,|~3/?) if
)\(alﬁ — U2> + a3z =0, (84)
M3 (v2)y — va — ar6v2} + azy = 0. (8.5)
Position (2,1). Calculate
vC5 =T + (a31 + )\UQ)H‘Dy‘l/Q + (a32 — v2a31 + A’U4)’Dy‘_1/2 + O(’Dy’_g/Q).
Therefore Cy — vC5 = O(|D,|%/?) if
Aai7 + asq + Avg = 0, (86)
ass — ags + voazr — A\vg = 0. (87)
Position (2,2). Calculate
Dyv = vwd; — a14H]Dy] + (a27 + a14v2)
+ {w(v2)r + a1a(va)y — a14vs + azzvz + ags }H|Dy| ™
+O0(ID,| %),
vAs = vw0; — a14H|Dy| + (a9 + v2a14)
+ (ago — v2(a14)y + voagy — vaar)H|Dy| ™" + O(|Dy|7?),
Cig = Ags + M3 (93)y + 95 — arrgs}H|Dy| ™" + O(|1Dy| ).
Therefore Dyv — vAs 4+ Cyg = O(|Dy|~3/?) if
agr — agy + Ags =0, (8.8)
w(vg)T + (a14v2)y + UQ(a27 — azg) + asg — azp + )\% (gg)y + Ag5s — Aai7g3 = 0. (8.9)

Solution of the symmetrization system. 1' is a system of 8 equations in

the 8 unknowns v, v4, g3, g5, @29, a30, as1, ase. First, we solve (8.4]) and ,
which give
1

A
v2 =g (a16 — a17), az =5 (a16 + a17). (8.10)
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Next, we solve ([8.2)) and (8.8), which give

=gl +an),  g= o (o - o)
a29 = B a5 — azvy), g3 ‘= I\ a15 — az7).
Then we solve (8.5) and (8.7]), which give
1 /3
Uy 1= o (; (v2)y + v2(as1 — Aaig) + a25),
1 3\
as =g ((Aam + agy)va — > (v2)y + a25),
and then (8.3) and (8.9), which give
1
g5 = _ﬁ{w(W)T + (a14v2)y + vo(agr — asy) + ass + A3 (g3)y + gs(as1 — )\a17)},
1
azo = {W(Uz)T + (a14v2)y + vo(agr — asy) + ass + A3 (g3)y — galas1 + )\a17)}-

System — is solved. To be more precise: the system is solved up to a
remainder, say R., which is arbitrarily regularizing and is the sum of a fixed, finite
number of commutators, all of the type [a, H], where a is a multiplication operator
h +— ah by a real-valued function a(7,y).

We have found M, L5 such that Rs := LM — MLs = O(|Dy|~3/?). Let M :=
PMTP, which is invertible by Neumann series. By the equalities L4M = M L5 + R5
and I =P+ F we get

M YLy4+Ry)M = L5 +Rs,  Ls:=PLsP, (8.11)
where the remainder
Rs := M Y{R4M + PRsP + PMFLsP — PL,FMP} (8.12)
has order O(|D,|~3/2) and size O(e).

Both 1 and 1 are real-valued. Therefore, using the complex representation h :=
n + iy € C of the pair (n,v) € R?, n = Re (h), ¥ = Im (h),

Ls=wo; +1iT + (1148y + ia31H|Dy|1/2 + agg9 + ia32|Dy|_1/2 + a30H|Dy|_1. (8.13)
Remark 8.1. By the parity of a;, i < 28, it follows that
azg, 93 €Y; azp,gs = odd(t),odd(x); asz2,v4 € X; agzy,va = even(t),odd(x).

Hence v maps X — X and Y — Y (it preserves the parity), g maps X — Y and
Y — X (it changes the parity), and M maps the product space X xY = {(n,v) : n €
X,¢ € Y} into itself. In complex notation, M : (X +iY) — (X +¢Y"). The operator
Ls maps (X +iY) — (Y +iX) (and this is obvious, because L5 = M~1£4M, and
Li: X XY =>Y xX). O

Lemma 8.2. There is 0 > 2 such that, if u = .+, with ||i]|s, 10 < Ce2T0, 59 > 5,
6 >0, then

lazols + llazolls + [lasills + llaszlls + [lvalls + [lvalls + [lgslls + [lgslls <s € + l[@llsto,
and Rs : Wo — Ry defined in (8.12) satisfies the same estimate (6.12) as R3, with
m=3/2.
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9 Reduction to constant coefficients

We have arrived to L5 + R5, where L5 = PLsP, L5 is defined in (8.11) (and T in
(7.7)). Rename the variables y = z, 7 = t. Consider a transformation A of the form

$) = Zhj(t) eijz N Ah t, :L‘ Zh t T ] z¢(t,:c,j)’

JEZL JEZ

where the amplitude p(¢, z, j) is a symbol of order zero, periodic in (¢, x), the phase
function ¢(t, z, 5) is of the form

o(t,x,j) = ja +|j|"?B(t, ), (9.1)

and (B(t,z) is a periodic function, with |B,(t,z)] < 1/2. A is a periodically-t-
dependent z-Fourier integral operator with non-homogeneous phase function. More-
over, A is also the pseudo-differential operator Op(a) of symbol

a(t,z, j) = p(t, , j)elil?02) (9.2)

in Hérmander class S9
Let

(except for the fact that a in (9.2]) has finite regularity).

wh—t

1
2°
D = wdy + iT + id|Da|"/? 4+ id_1| Dy V2, (9.3)

with A1, A_1 € R. In this section we prove that there exist real constants Ay, A_1
and functions p(t, z, ), B(t, z) such that L54 — AD = O(|D,|~%/?).
Let 7 : R — R be a C"*° function such that

7(€) = {mle|(1+ sEHYV2 Vje| >2/3; 7€) =0 V¢ <1/3, (9.4)

so that Op(7) = T on the periodic functions. The commutator [T, A] is given by
> 1
[7.41= 3 Op(ia) 0 Op(i™"f7) + 0101

where a is defined in ({9.2). Here only terms with n < 5 are relevant for our purpose,
because Op(d%a) = O(|D4|"/?), Op(i™"0¢T) = O(\Dm\%_"), and 2+ 3 —n< -3
for all n > 6. Now, using ([7.8]) and proceeding like in (7.9)),

Op(i~'0e7) = ]D 129 — Vvm 1D, 7321 + O(|Do|7/?),
ING

Op(i ?0¢T) = _Z A DL Y2 1 O(| D),

Op(i~*9¢T) = % D221 + O(|Da|T7/?),

Op(i~49i7) = % D52 1+ O(Da| ),

4
Op(i~397) = 5A DT H 4 O D 1),
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while
pa = {ilj]"/2pBy + a7,
02a = {~|j[pB2 + ilj1"/*(2puBs + PBua) + Pas}e*P,
03a = {—ilj[**pB2 — 3|18 (p2Be + PBux)
+ 1512 (322 Be + 3D2Buew + PBuzz) + O(15°) 1118,
ta = {|jPpBL — ili1*2 (4psB3 + 6982 Bac) + O() ye 7,
5a = {ilj[*/?pB3 + O(|j|*) }elil"*A.
The composition d, A can be computed directly:

O, Ah = Z hi(ijp +ilj|Y%Bap + pa )0,
JEL
Composition formulae for |D,|" A, H|D,|" A are given in Lemma|12.10} In particular,
the composition H|D,|'/2A is

HID| 2 AR =y hjelt,, j)e'?t),

JEZ
) ) Ny 1 O 1 ) 1
e(t,x, §) = —isgn()|i|"*p — i 5 Buop + || 1/2{Z§Sgn(J) - 51%}
1 1
—1) = ; g 3 1—3/2y.
+ ‘]‘ {8 Sgn(]) (2ﬁ$pm + /Bmcp) ¢ 16 xp} + O(‘J‘ )7

the composition |D,|~1/2A is
D712 AR =) " hje(t, x, §)e ),
JEL
clt,, ) = il — |j1 5 sen(§) B -+ O(15172);
the composition H|D,| A is

HID| AR =Y hje(t,, j)eB™9), ety @, §) = —[5| isgn(5) p+ O(4| /%)
JEZ
and the commutator [0y, A] = ;A — Ad; is

[0, Al =" hje(t, z, ), ety x, ) = pu(t, @, §) + i3] Bult, 2)p(t, 2, ).
JEZ
Using the expansions above, the difference £5A4— AD is an operator of phase function

¢ as in (9.1), and amplitude

. . (3 ) O
c(t,z,j) = ijp (5 ABx + a14) + Y FPT® )+ 0117, (9.5)
—_2<k<1

where T() are the linear differential operators
W = Ugl)&c + v(()l) — A1,
TO .= wd, + v%o)&,; + v[()o),
TCD = oS0, + 0870, + 05 —ix
7(=2) .— vé_z)f)m + v(_z)aa; + v(()_z),
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with coeflicients

Ug) = sgn(j)% ; U(()l) := sgn(j)asi + i(‘«fﬁt + % B2+ a145x>, (9.6)
Ug)) : Q Bz + a1, v(()()) < Bra + a315:c + a29> — isgn(j )1)% S (9.7)
vy V= —i%, v = —sgn(y )?1)2 s Z% ast, (9.8)
”((171) = —sgn(j )( BeBrz + a315 ) + l<27 Ba + a32) (9.9)

oD = isn(j) o 6, ﬁ”:§@+mwm Bt Tamfs). (910)

o = ( B2 Bex + a3153) + isgn(j )( - Z%Bg 1g Pawe + 1 3 81Pae (9-11)

- 5 a325z — aso — AI/\;E B:c)
Our goal is to choose A, 3, p such that the amplitude c(t, z, 5) in (9.5)) is of order
O(|j|73/%).
Elimination of the order 1. — ay4 is odd(t),odd(z), therefore it has zero space-

average, and 0 La14, which is the dz-primitive of a4 with zero average, is well-posed.
We fix

Bt 7)== Bo(t) + Bi(t,x), By = —% 0 as, (9.12)

where [y(t) is a periodic function of ¢ only, which will be determined later (see the
next step). We have eliminated the terms of order O(]j|) from (9.5). Since a4 is
odd(t), odd(z), we get B € Y.

We seek p under the form

ptag) = S 1™ (e, g),

—3<m<0

with all p(™ bounded in j. Then, by linearity, (9.5) becomes

. ktm m =
c= > jITET®R] 4 0(5]72). (9.13)
—2<k<1
—3<m<0

Elimination of the order 1/2. — To eliminate the term of order 1/2 from ((9.13)),

we have to solve the equation
TORP®] =0 (9.14)

in the unknown p(©. Write p(© as

PO (t,2, ) = exp (f(t, 2,5)), (9.15)

so that (9.14) becomes the equation

ot 4ol —ix =0 (9.16)
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for the unknown f. The coefficients vgl), v(()l) are given in . Equation (9.16]) has
a solution f if and only if

/( (1)(15 xj)—z)\l)d$—0 vteT, jeZ (9.17)
T

We look for fy(t), A1 such that the (crucial) average condition holds. Re-
member that 8 = By + 1, where (1(t, z) has already been determined in and
Bo(t) is still free; B, = (B1). because By depends only on t. Moreover, fT az1dr =0
because a3 is odd in z. Therefore becomes

watﬁo(t) - )\1 + p(t) = 0,
where

1

27 by
plt)i= g [ (wl8)+ 3 (002 + ana(Bi),)do =~ [ abido

((B1)¢ has zero space-average because 0, a4 has zero space-average). We fix

e 1 1
A= — t)dt = ——~ T, dxdt =——0; Y (p— A\ 9.18
vmge [ e0d =~ [ ddedt g=—Z o =0 019
and ((9.17)) is solved. \; is a negative real number, and (3 is a real-valued function
of t, independent on z, j. Then (9.16) has solutions

F(t2,5) = folt) + Filtszg), fr= - sen() 05 (o) —iN) (9,19

3\
where fy does not depend on z and it will be determined in the next step. p(® =
exp(f) solves (9.14)). Since 51 € Y, it follows that p € X, and therefore 5y € Y. Thus
B €Y, namely 5 = (t,z) is a real-valued function, odd(t), even(x), independent of
j. A direct calculation gives

2 1 2w —1
fi= 3)\5'3C asy + isgn(j )3)\8x (2/\a14 +p+ 3/\5} 8ta14).
Remark 9.1. By the parity of a;, ¢ < 34, and 8 € Y, it follows that the coefficients

vﬁf) have the form
(1) g = sgn(jl)a+ib, a€ X, b=even(t),odd(x);
(

”0 Uy D= =sgn(j)a+ib, a=-even(t),odd(z), be X,

Ugo), Ug R +isgn(j)b, a=odd(t),odd(z), beY;

v(()o),vé 2), v(() D= a4+ isgn(j)b, a €Y, b=odd(t),odd(x),
where a, b denote (different) real-valued functions of (¢, x), independent of j. O

By the parity of U(()l) (

see the previous remark), fi has the form
fi=a+isgn(j)b, aecX, b=even(t),odd(z), (9.20)

with a, b real-valued functions of (¢, x), independent of j. In particular, f; is even(t).
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Elimination of the order 0. — The order zero in vanishes if
DipD] 4+ 7O [pO0] = 0. (9.21)
In general, for any function g, one has
TWfexp(f)g) = exp(f) vy g (9.22)
by , and
7 lexp(f)g] = exp(f) (b(o)g + wgs + v%o)gx), b .= wfr + vio)fx + véo). (9.23)

In particular, for g = 1, we get T [p(®)] = exp(f)b®). By variation of constants,

write p(_l) as

P = pWgl = exp(f)g .
Equation ({9.21]) becomes
v{PgD 40 = (9.24)
in the unknown ¢~ Since v%l) is a constant, (9.24]) has a solution ¢ if and only
if
/ bV O (t,z,j)de =0 VteT, je (9.25)
T

Remember that f = fo + f1, where f; has already been determined in ((9.19), and
fo = folt,7) is still at our disposal. Thus b©) = w(fo); + w(f1): + vgo)(fl)x + v(()o).

By (9.20)) and Remark
w(f1)e + vl (fl) + vy O isgn(j)b, a €y, = odd(¢t)odd(x),

for some a, b real-valued functions of (¢, x), independent of j. Therefore

/T< (fl)t+v1 (f1)z —HJO )dxzodd(t)

is a real-valued function of ¢ only, independent of x, j, with zero mean (because it

is odd). We fix

o= =gez 0 [ (@ + o)+ 0l?) d},

2nw

and (9.25) is satisfied. fy is a real-valued even function of ¢ only, independent of
x,j. A direct calculation gives

Jo= —ﬁ 3[1{ /T (azg - %014%1)@‘}

Remark 9.2. f and b are of the form

f=a+isgn(j)b, a€ X, b=even(t),odd(x), (9.26)
b = a+isgn(j)b, a€Y, b=odd(t),odd(z), (9.27)
where a,b denote (different) real-valued functions of (¢, z), independent of j. O]
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We choose

_ . -1 . -1 . -1 2 _
g0t g) =g Vi) + o (ad), g = - orsen() 91 00), (9.28)
where g(()_l)(t, j) will be determined at the next step. (9.24]) is satisfied. gg_l) is of

the form
gg_l) = sgn(jla +1ib, a=odd(t),odd(z), bE€Y, (9.29)

for some a, b real-valued functions of (¢, ), independent of j.

Elimination of lower orders. — Once the first two steps in p are done (i.e.
elimination of orders 1/2 and 0), the algorithm proceeds in a similar way. For the
sake of completeness (and to obtain A_j), we write the calculations for the order
—1/2 in details, then lower orders will be similar.

Elimination of the order —1/2. — We have to solve
TP+ 7O D] 4+ 7ED RO = 0 (9.30)
(=1)

in the unknown p(~2) (and also gy  is still free). By variation of constants, write

p? = exp(f)g~?). By (0:22) and (9:23),

T“)[ 2] = exp(f) 0} g2,
[p( 1 = exp(f) {b =1 +wg( )—l—vgo)gé 1)}.

Recall that ¢ = g((fl) + g%fl). Let
B = exp(—f) (T(o> pD] + T(—1>[p(0>]) =b0g\™ 4 w(gi™)e + D, (9.31)
where
P = 00017 4 w(g ™)+ o1 (9 + exp(=) TV,

Thus becomes
v{Pg2 4 pD =, (9.32)
If
/ VUt z,j)de=0 VteT, jel, (9.33)
T

then (9.32) has a solution ¢(=2). By (9.31)) and (9.25), the average condition (9.33))

becomes

2m(g§ et ) + /T (2, 5) da = 0. (9.34)
If
/ rCO(E, x, §) dedt = 0, (9.35)
’]I‘Q

then we can choose géfl) such that (9.34) is satisfied. By (9.29)), (9.27) and Remark
one proves that (=1 has the form

P = sgn(j)a +1ib —iA_1, a=even(t),odd(z), be X, (9.36)
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for some a, b real-valued functions of (¢, ), independent of j. We fix
1
Alq = b(t, x) dxdt 9.37
1 (27_‘_)2/’]1‘2 (,.T) Tat, ( )

where b in (9.37)) is the function b in (9.36]), so that (9.35] is satisfied. Note that

A_1 is a real number. Then we fix

_ 1 . |
g " =—5—0, 1(/7“( D(t, @) dx),
T

2mw

and (9.34) is satisfied. By (9.36]) it follows that gé_l) is a purely imaginary, odd
function of ¢, independent of x, j, and therefore

¢V =sgn(j)a+ib, a=odd(t),odd(z), be, (9.38)
for some a, b real-valued functions of (¢, x), independent of j. Thus (9.33) is satisfied.

We choose

_ - . - . - N2 a1 (-
9 =95 V)t oy g, g = sen() gy 00N, (9.39)

where g(()_Q) is free (it will be fixed in the next step), so that (9.32) is satisfied. b(—1)
is of the form
b~V =sgn(j)a +ib, a=even(t),odd(x), be X,

therefore gg_Q) is of the form

95_2) =a+isgn(j)b, a€ X, b=even(t),odd(z),

where a, b denote (different) real-valued functions of (¢, x), independent of j.

Elimination of the order —1. — We proceed similarly as in the previous step,
with TCDpED] + T2 [pO)] instead of TCD[pO)]; ¢(=3) instead of ¢(—2); ete.
There is no need of leaving gé_?’) (t,j) free, as this is the last step: so we fix

gé_?’) (t,7) := 0, and g(=3) := g§_3). Regarding parities, we obtain coefficients of

the form
P2 pD = o fisgn(j)b, a€Y, b=odd(t),odd(z),
g =a+ isgn(j)b, a€ X, b=even(t),odd(z),
¢ =sgn(j)a+ib, a=odd(t),odd(z), beY,

where a, b denote (different) real-valued functions of (¢, z), independent of 7j.

We have found A, D such that R := L34 — AD = O(|D,|7/?). Let A := PAP,
which is invertible by the same argument as for the first transformation B. By the
equalities L54 = AD +Rg and [ =P+ F we get

AN L5+ Rs)A=D+Rg, D:=PDP=PD=DP, (9.40)
where the remainder
Re := A"YRs5A + PR¢P — PLsFAP} (9.41)
has order O(|D,|~3/2) and size O(¢). More precisely,

Lemma 9.3. There exist constants o,C > 0 such that, if u = U+, with || sy40 <
Ce?t9, 50 >5,8 >0, then Rg : Wa — Ry defined in (9.41)) satisfies, for all s > s,

1R6|Dal*hlls < ellBlls + 1501l so- (9.42)
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10 Inversion of the restricted linearized operator

Recall that our goal is the restricted inversion problem in Remark The diagonal
operator D := DP : Wy — Rs, where D is defined in (9.3, has purely imaginary
eigenvalues

Dle cos(jx)] = i(wl + ;) et

(i = A3(j + Y24 MG+ A e R,

cos(ja), (10.1)

with [ € Z, j > 2, where we denote A3 := /m. Let v = &6 > 0, 7 := 3/2, and
assume that w satisfies the first-order Melnikov non-resonance condition

wl + 1] > % Viez, j>2, (10.2)
J
where 7 = 3/2. Then D has inverse
D n(t, x) = Z hljiem cos(jz) DRy = W,y
et 7 Wl + 1)

of order O(|D,|*/?) and size 1/v, namely
1Dl =D hlls < 57 [IR]ls, (10.3)

because |wl + j;]j3/2 > v for all € Z, j > 2.
By (10.3) and (9.42)), writing explicitly the constant C(s), we have

IR6D ™" hlls = [(Re| Da**) (| Da| */*D 1)
< Cls)y™ (elllls + lalls+ollPllso)

1 1y~
< SlRlls + C(s)vHlallsro 1 Pllso.
where the last inequality holds for e sufficiently small, namely C(s)e'/6 < 1/2.

Therefore, by tame Neumann series (see e.g. Lemma B.2 in [7], Appendix B),
(Ir, + R¢D™!) is invertible on H® N Ry, where I, is the identity map of Ry, and

(TR, + ReD™) = hlls < 2[lAlls +4C ()Y |l so 1 llso -
As a consequence, D + R = (Ir, + ReD~')D : Wy — Ry is invertible, with
1D +Re) " hlls <s v~ (Iallstr + 77 llsr+ollhllso)- (10.4)

In sections we have conjugated the restricted operator £3 + R (see Remark
to D + R, o
L2+ R =3 (D+Re)P, ", (105)
®) ;= ZBAPSMA, ®,:= ZBAQSMA. '
All these operators have been estimated in the previous sections (they are all bounded,
except S, which is of order 1/2). Thus, by composition, we obtain the following re-
sult.
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Theorem 10.1 (Inversion of the restricted linearized operator). There are o,C > 0
with the following property. Let u = e + 4, with & € H*Y7, ||i]sro < Ce>F°,
5<s9<s,d>0,c<eos) for some eyg(s) depending on s. Assume that the first
Melnikov conditions hold. Then the operator /J% + R : Wo — Ry is invertible,
with

1023 +R) " hlls <s v (1lls2 + 7 @l s+ollPllso)- (10.6)

By Theorem and Lemmata and we deduce (with a larger o if nec-
essary)

Corollary 10.2 (Inversion of the linearized operator). Assume the hypotheses of
Theorem m Then the linearized operator F'(u) : X x Y — Y x X is invertible,
with

1" ()~ hlls <s e 2([Pllss2 + v @l stoll 2]l s)-

For w,w, h depending on the parameters (g, §), using Corollary we prove a
tame estimate for F'(u)~! also in Lipschitz norms (3.1)) (with a larger o > 6).

Lemma 10.3 (Inversion in Lipschitz norms). Let 5 < so < s, u = u. + @, where U,
is defined in (4.27)) and @ = u(e, ) is defined for parameters € € (0,eq), £ € G, with

g0 =¢co(s) <1,G C[1,2]. Let ||uH£;§r(§ < Ce*, 5> 0. Let w be given by ([4.26).
Assume that (10.2)) hold for all £ € G. Then
_ i Li — Li ip(e
|/ (u) RO <, e (RIS + e 2l 2B 5P E), (10.7)

Proof. Denote A; the linearized operator F'(u) when u = u; := u(&;), w = w(&;),
i = 1,2, and denote h; := h(&;). Thus

AT hy — AS hg = ATV Ry — ho] + AT (Ag — Ap) AT ho.
Al_l, Ay 1 satisfy . The difference A9 — A; is

(Az = A)h = {222 (€2 — €0) + @3(&” — &)}l

+ / N"(ul + 19(UQ — ul))[uQ — Ui, h] dﬁ,

0

where N (u) is the nonlinear part of F(u). Since Haaugip@

[[(A2 = Av)hlls
&2 — &1

<s &, we get

~nli ~ i ~
<s ellhllsrz + (lallefs + @l g2 Gl 12l so+2

_ L
<s ellbllss2 +e @ ||Sf;>||h||30+z

— Li
< ellBllsrz + e @l 1Al

and the thesis follows by composition. O

10.1 Dependence of the eigenvalues on the parameters

The constants A3, A1, A_; in the formula for the eigenvalues f; in (10.1) depend
on the point u = (n,v) where the linearization F’(u) takes place, and on w. In
particular, A3 depends only on u by formula (6.4]), namely
27
1

1 2w —3/2
N = Na(u) = Vim = o 0 (— 0 VI+n2 dx) dt. (10.8)

21
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A1 depends on u,w by the following formula (which is obtained using ((9.18) and
going back with the changes of variable A, B of section |§| in the integral)

where V' is defined in , a, 8 are defined in section |§| and satisfy . To write
an explicit formula for A_; is possible, but more involved and not necessary for
our purposes. Anyway, A_1 is the space-time-average of a polynomial function of
a4, a9, 031, a3z (and their derivatives), w,w ™", A3, )\gl with real coefficients. Hence
this is a polynomial function of ar,...,a13 (and their derivatives), w,w™!, A3, /\g1
and, going back with the changes of variable A, B of section [f] in the integral, one
obtains for A_j a similar result as for A1. Thus we have:

Lemma 10.4. A3(u), \1(u,w), \_1(u,w) are C? functions of (u,w) in the domain
ulloy < 8, w € [0, 3@], where o9 > 0 is a universal constant and § > 0 depends
only on kK.

As a consequence, if ui,us are in the ball ||uills, < 0, i = 1,2, then |Ag(u1) —

Aie(u2)| < Cllur — uz2lloy, k= 3,1,—1, where C > 0 depends only on k.

The number o in Lemma([l0.4] can be explicitly computed by counting how many
derivatives of u are involved in the transformation procedure of sections

For (u,w) depending on the parameters (g, &), we deduce the following expansion
for )\3, )\1, )\_12

Lemma 10.5. Let u = u.+1u, where . is defined in (4.27)) and . = u(e,§) is defined
for parameters € € (0,e¢), £ € G, with g < 1, G C [1,2]. Let HfLHI;ép(E) < Ce*td,
0 > 0. Let w be given by (4.26)). Then A3, A1, A_1 depend on & in a Lipschitz way,
with

3 : . .
A3 =1— Eé-?g +r3,  |raMPE) < el A HPE) 4 A |HPE) < g2 (10.10)

where rg := A3 — 1+ %625.

Proof. By ([#.27),[&.5), n = ev/€ cos(t) cos(z) + O(e?). Therefore the inequality for
r3 follows easily from formula . By Lemma A1, A_1 are functions of (u,w)
of class C2. Since u = e\/Evg + O(g?) (vg is defined in ([(L.5)) and w = © + O(e?),
one has

IXi(u, w) — Xi(e/Evo, @)|PE) < Ce?, i=1,-1

by the mean value theorem and standard analysis for composition of functions. Thus
the inequalities for A\, A1 in (10.10)) hold if
Ni(ev/Evg,@) = 0(e?), i=1,-1. (10.11)

To prove (10.11)), let u = e/E vy, w = @. By (3.3), V = ey/Ewsin(t)sin(z) + O(?).
By (6.7), a, 8 = O(g?). Therefore, by (10.9), we get (10.11)) for A;.
To prove (|10.11)) for A_1, we compute the order € of almost all the coefficients in

sections 59} namely: a, ¢, B,V in section[5} 3, «, aq, ..., a9 in section[6} ass, asr, ass
. ion [ . . 4 . M) (with
in section |7} ago,...,as2,va,v4, g3, g5 in section 8 and, in section 9, 5, vy’ (wit
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k=1,0,—1,—-2; m =2, 1,()), ( ), pt=1) ), f, 0O b1 (=D 6(=2) “and finally
(=1 which gives A_; by (9.37] . All these coefﬁ01ents are functions of the form

co+ claﬂw(t, z) 4+ O(e?),

where c¢g, ¢; are real constants, and ¢ = cos(t) cos(z), or 1 = cos(t)sin(x), or ¢ =
sin(t) cos(x), or ¢ = sin(t) sin(z). We calculate that the term of order O(1) in A_;
is zero, while its term of order O(e) is automatically zero because 1 has zero mean.

The proof of (10.11)) is complete. O
By (10.10) we deduce that the eigenvalues p; in (10.1)) satisfy
i — G+ )2 < CE2FP2. (10.12)

11 Nash-Moser iteration and measure of parameter set

Consider the finite-dimensional subspaces E,, := {u : u = II,u}, n > 0, where
X’n n 3 _ 71/ ].
N, =N} = (No)¥, x:= 3 No:i=e =g /P pg:=— >0, (11.1)
P1
and II,, are the projectors (Fourier truncation)
ILyu(t,x) := Z alje““ﬂ'f) where u(t, x) Z e’ ilt+jz),
[U]4+]7|<Nn l,jEZL

We denote IT- := I —II,,. The classical smoothing properties also hold for the
Lipschitz norms (3.1): for all o, 8,5 > 0,

Li i Li
T[54 < N ful|EP©; ([ Tul|EPE) < NP uf 1P, (11.2)

Define the following constants:
0= = ag =6+ o, a1 = p1 = 9o,

2 ) (11.3)
k1 =3(c+4+2p)+1, B1:3+0+a1+§/i1+4p1.

All these constants depend only on o, where o > 6 is the loss of regularity in ((10.7]).

Theorem 11.1 (Nash-Moser iteration). Let so > 5. There exists g > 0 such that,
if € € (0,e9], then, for all n > 0:

(P1),, (Convergent sequence). There ezists a function u, = e + Uy, : G, C [1,2] —

En, €= un(§) = (m(§),¥n()), where . is defined in (4.27), and ug := e,
ug = 0, such that

lun 1525 < Cre, N |50E) < Cue?*. (11.4)

so+o so+o

The function u, has parity u, € X X Y. The sets G, are defined inductively
by.’ g() = [1, 2],

Gyt = {g €Gn 1t |wl+ pj(un)| > % Viez, j> 2}, (11.5)
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where pj(un) = pi(&, un(§)) are defined in (10.1)). The difference hy, := up —
Up—1 = Up — Up—1, n > 1 (with hg :=0) is defined on G,, and

1“9 < CLeHON0 = Ce2HiHix, e
HF( )HLlp (e) < C €4N ] C 2,_:4-i->< ’

(P2), (High norms). ||unH£J$3_Bz < CyNF' and ||F(un)||§;3_;) < O Nft.

(P3),, (Measure). For all n >0, the Lebesque measure of the set G, \ Gny1 satisfies
G\ Grp1| < Cue/1827m, (11.7)

In sections [11.2) we prove Theorem

11.1 Proof of the nonlinear iteration

In this section we prove (P1,2), by induction. The proof of (P3), is in section
11.2 To shorten the notation, in this section we use the following abbreviations:

s = || |5P©)) Fy o= Fun), Lo o= F'(un), s1 = s0 + B1.

Proof of (P1,2)g. ug = u. € Ep if Ny > 5, i.e. for e sufficiently small. By
Lemma [4.6] the bounds (11.4), (11.6) hold. To satisfy also (P2)o, take Cy = C.(s1)
large enough.

Assume that (731 2),, hold for some n >0, and prove (P1,2),4+1. By (11.4) and
Corollary -, "(uy,) is invertible for all £ € G, 11, and the inverse satlsﬁes | ,
(10.7). For & € G,,+1 we define

Ung1 := Up + Pngt,  Pnsr = =1 F (un) "L (uy). (11.8)
Let
Qun, h) := F(uy, +h) — Fup) — F'(up)h, Qn = Q(un, hni1). (11.9)
By the definitions ,, and splitting 1,41 = I — I+ 1

F(un-i-l) = F(un) + F/(un)hn-l-l + Qn = Rn + Qm
Ry i= F(un) ey F (un) 7 F (up).

Estimate of Q. For all h € E, 1, by (11.2) with o = 2,

(11.10)

|Q(tn, h)|s <s ’h’s+2’h’80+2+’un’s+2’h’so+2>
1Q(tn, h)lsy <so Npralhl2-

By the definition (11.8) of h,11, (10.7) and (11.2) with o = o, a = 6,
[hntils; <s, e? g+1(’Fn‘S1 + 5_2‘ﬁn’51’Fn‘80)a
’hn+1|30 §50 5_2N7?+1|Fn|50'
Then @, in ((11.9)) satisfies
Qnlsr <si € NTHO Fulso (1Fulsy + €2 tinls, | Fulso),
‘QW‘SO —50 _4N131‘F ’

(11.11)

(11.12)

(11.13)
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Estimate of R,,. The linearized operator L,, = F’(u,) satisfies

|th’s <s ’h|s+2 + |an|s+2|h|50+2a |th‘50 SSO |h|80+2 Vh. (11-14)

Then, by (11.2) with 5 = 1 —2 — ¢ and ((10.7)),

1 — — —
’Rn|80 SSO |Hn+1Ln1Fn|80+2 SSO anlyLann|80+2+6

<oy € 2N, OBl sy + € 2itnlsy [ Falso)- (11.15)

For the high norm, since H#_H =1 —1Il,41, we split R, = F,, — Lan_HLgan. By
(11.14) and (11.2) with a =240, a = 2,

|Lan+1L;1Fn‘S1 S |Hn+1L;1Fn|81+2 + |f‘n‘81+2’Hn+1L;1Fn’80+2
<or NoTT 1Ly Falsy—o + Niltinls, N3 1| Ly Flsg
<s N21T672(|Fn‘81—0+6 + 572‘7:‘71’51 | Falso)
+ Ny ||, 6 72 Falsg 42
<s1 € 2 NLET (1 Fulsy + €72l sy | Falso)- (11.16)

In the last inequality we have used the interpolation estimate

mn|81|Fn|30+2 < ‘ﬂn’51+2|Fn|80 + |an|80+2|Fn|51

and then (11.2)) with « = 2 for 4,, € E,.
Estimate of Fi, 1. Since Fj, 11 = Ry, + Qn, by (11.16)),(11.13)),

|Frttls; <s 8_2N5ﬁ{1 + 5_2N2+1’Fn|80}(|Fn|51 + 5_2|ﬂn‘31 |Fn|50)
<s 5_2Ngif(|Fn|51 +5_2|ﬂn‘51|Fn|50)' (11.17)

Note that e 2N? | F,|s, < 1 for e sufficiently small, because a; > 6x. Also, by

[T.15), (TT.13),
|Frt1lso <sy E_ZNJ-E{+2+U(|FTL’81 + 5_2|an|81 | Flso) + 5_4N$3-1’Fn|go- (11.18)

Estimate of iin11. By (11.12)), and using that @,11 = U + hnt1, € 2 Fals < 1,
we get
|tnt1lsy, <sy g2 1 (|tnlsy + [Flsy)- (11.19)

Let By, := |iin|s, + |Fnls,. From (I1.17),(11.19), using that e 2| F,|s, < 1, we get

Bpi1 < Ce2NZHB, < ONZHT' B, Vn >0,

for some C' = C(s1) independent of n, because e~2 = N;** < N274. Hence, by
induction, B, < C'NJt for all n > 0, for some C’, because k1 > 3(c + 4 + 2p1).

Thus (P2)p+1 is proved.
Proof of (P1)1. Using ([L18), (TT0), (P2)n.

|Fpstlsy < C1{e 2N, IPHOCNS + 74NE (Ot N2, (11.20)

for some C7 = C4(s1). The right-hand side term of (11.20]) is < C*g4N;f11 if

201 0N, PITPHotoaNm <1 2010 NS N2 <1 wn > 0. (11.21)
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Recalling ((11.1)),(11.3), the inequalities in (11.21]) hold taking e small enough. This
gives |Fpq1ls, < Cye*N, 1. The bound (11.6) for hyq1 follows by (11.2) (with

a = o), (11.12)), and the bound ([11.6) for F,, using (11.3), and taking ¢ small

enough.

Finally, using ((11.6)), the bound (11.4)) for 4,41 holds because t,+1 = h1+...+
hpt1 and Y72 N 0 < 1 for € small. The proof of (P1,2), is concluded.

11.2 Measure estimates

In this section we prove (P3), for all n > 0. Let us estimate [1,2] \ G; first. For
l€Z,j>2, define
A ={6€1,2] s |wl+ pi| <vj7 7}
where v := %6 and the eigenvalues pj = pi(ug). If Ay # 0, then there exists
¢ € [1,2] for which
w wj)” w w)”

(where p1;,w depend on &). By the inequality |w™! —@~1| < Ce?, and using (10.12)),
we deduce that pjw™" = (j 4 £5°)20~ " + 0(£2§3/?), and

(4 +rg*)'

g

: :311/2 ) 2
AR e 20 + OB 2L (11.22)
w wy”

— << —
w T

because w > w/2 for ¢ sufficiently small. Note that all the terms in the inequality
(11.22)) are independent of £. As a consequence, for each fixed j > 2,

H{leZ: Ay # 0} < Ce25%/2 42 (11.23)

for € sufficiently small, simply because the number of integers in an interval (a, b) is
<b—a+1.
Now we study the variation of the eigenvalues with respect to the parameter &.
By (I122),
(j + wj*)'?
e

[ = + 023+ O(vi™). (11.24)

Let fi;(§) := wl + pj, where the dependence on ¢ of the eigenvalue is put into

evidence. Replacing [ by (11.24]), and using ((10.1f), (10.10)),
&) = f5l&) _ (g, 4 &" —éf/2>l

S—& A §—&
3 o, m3(&) —r3(&)y, :311/2
(gt e ) U
M(&2) = M(&) a2 | A1(&) —A-1(&) —1p0
TTe-a T ema
= (= £ =2 10(0)) G+ 5+ O(EH)

Now —% — % is nonzero for all k > 0 (using (4.24)), one can check that |1—36 + %| >2
for all k > 0). Hence

1115(&) — fiy(&)] > 2 P|& — &] Vi>C, (11.25)

where C| ¢ > 0 are constants depending only on k.
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Remark 11.2. For 2 < j < C one could impose a finite list of inequalities for x,
and obtain, as a consequence, that holds for all j > 2. However, there is
no need of doing in that way: using the cut-off below, the low frequencies
j < C have not to be studied if ¢ is small enough. O

By (11.25), the measure of the set A;; is

2y 1 Oy
JT 820j3/2 B jT+(3/2) ’

|A;| < (11.26)

We impose a Diophantine condition on the surface tension coefficient x: we assume

, namely
B+ (G + k52 = VTF R+ VG + Rj%) > Jl VieZ, j>2,
for some constant v, € (0,1/2), where we fix 7. = 3/2. By (2.6), if A;; # 0, then
e e o R N e e i

for some C' > 1, whence Ce2j%/2 > ~,j ™ — 47 > ~7,j /2 if v < 7,/2 (ie. €
small enough) and 7 > 7, (we have fixed 7 = 7. = 3/2). Thus we have found the

following “cut-off”: 4;; can be nonempty only for

1
. Ve >r*+(3/2) —a 2 2
> (L —C - = 11.27
J (2(152 0F L T IE2) 3 (11.27)

Thus, by (T1.23), (I1.26),

U Ayl 3 (2242 Cre (11.28)
17| = € §TG/2) :
1€2Z, j>2 j>Coe—a
1 i 1
<0y X PR ) e
j>Coe— 7>Coe—

< Cy(e®) T 4 Cye (e ) T2 < CEVB,

We have proved that [1,2] \ G; has Lebesgue measure < Ce'/®, which is (I1.7) for
n =0.

Remark 11.3. The condition allows to get a positive measure estimates even
if v = %% > . The advantage of imposing is that, regarding size, D™'R =
O(ey™') = O(/%) < 1, so that D + R can be inverted simply by Neumann series.

Without , in the sum the cut-off j > Ce~2/3 disappears, and the
second sum becomes < Cye~2. Therefore, to get a parameter set of asymptotically
full measure, it should be v = 0(¢?) as ¢ — 0. But then DR = O(y )R is small
only if R = o(vy). This means that one has to expand R = eR + £2Ro + o(e?),
to calculate the precise formula of Rq,Ra, to invert D 4+ eR; + 2Ry in a non-
perturbative way, and then to invert D + R as a perturbation of D + eR + €>Ro.
This means, in fact, that one has to calculate the normal form of order 2. ]
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Remark 11.4. We could also fix v to be independent of €, taking a larger value of 7.
However, the larger is 7, the larger is the number of steps we have to make in Section
9] to reach a sufficiently regularizing remainder R (it should be R = O(|D,|™") to
obtain RD~! bounded in Section . Hence it is convenient to keep 7 as lowest as
possible, but still sufficiently large to get a positive measure set of parameters. [J

Now we prove ) for n > 1. Let J,, := e~ 1/1847 Let AnH ={£€g,:
lwl + pj(un)| < vj T} For j > J, we follow exactly the same argurnent above, and
we find

U 47 < SO

l€Z,j>Jn 7>Jn

< Cv Z 5 + Cye™?2 Z

j>Jn ]>Jn
< C’an_l/2 + Cye 22 < e/,

For j < J, we use Lemma (11.6]), the Lipschitz estimate
. . 1.n .,
|1 (un) = pj(un—1)| < Cllupn — unfl||oo‘73/2 = C||hanro]3/2 < CePtitox ]3/2
and the triangular inequality to deduce that, if £ € G,,, then

- 1.n .,
Wi + 1 (un)| > wl + 1 (un—1)| = |t (un) = g1 (p—1)| > 75" — Ce>ToTsx" j3/2,

On the other hand, if £ € An+1 then |wl + pj(uyn)| <577, and therefore f;(§) :=

wl + 15 (uy) is in a region of Lebesgue measure < Ce2H0+(1/9x" j3/2  Thus we follow
the same argument as above, but with Ce2to+(1/9x" j3/2 mstead of 2vj~7. We get

1
ce253/2

U An-l—l‘ < Z(ngjS/Q+2)052+6+gxnj3/2

leZ, j<Jn J<Jn

1.n 1.n
§C€2+6+9X J2/2+C€5+9X Jnv

which is < Cel/1827" because 2+ 5 + sx — 3H > L and 6+ $x — 1 > L. (P3),

is proved. O

Proof of Theorem concluded. Theorem [I1.1] implies that the sequence
up, is well-defined for £ € Goo 1= Ny>0 Gy C [1,2]. By , the set G has positive
Lebesgue measure |Goo| > 1 — Ce'/18 asymptotically full [Goo| — 1 as € — 0. By
(11.6)), un is a Cauchy sequence in || ||s,+o, and therefore it converges to a limit us
in H*(T?). By (L1.6), for all { € G, oo is a solution of F(ue,w) = 0, with
[too — Uelso4o < Ce>°, where w = w(€) is given by (£26). Renaming u := uno,
G. := Goo, the proof of Theorem is complete. O

Proof of Lemma Let k9 > 0, 7. > 1. Let v, € (0,1/2),l € Z, j > 2, and
define

J+ kg3
Vi+tr

Arj () = {n € [0, ro] : [ fi(r)] < ] } fii(k) =1+

*
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If Aj;(7) # 0, then ||| < C5%2 for some constant C' > 0 depending on g and
independent of 7y,7.,1,j. Therefore for each j there are at most Cj3/2 indices I
such that Aj;(vs) # 0. Moreover the derivative of f;;(x) with respect to x is

fl]( ) J J Z J J Z Cj3/2
2¢/7 + K531+ K)3/2 7 24/5 + ko3 (1 + Ko)3/2

for some ¢ > 0 (depending on kg and independent of 7y, 7, [, 7). Hence the Lebesgue
measure of Ay;(7yx) is

27, 1 Cs

A ()] < 3 ¢z T G

for some C' > 0. Since 7, > 1,

U Al] ’Y*

€7, §>2

Cv 30
—ij < Oy

for some C' depending on kg, 7. As a consequence, the set K(7x) := {x € [0, ko] :
| fij(k)] > 7.j~ 7} has Lebesgue measure IK(v)| > ko — C7x. Therefore K =
Us.€(0,1/2) K(7«) has full measure |K| = . Finally note that K C K C [0, xo]. The
proof of Lemma [2.3]is complete. O

12 Pseudo-differential operators in the class S1 12.1/2

In this section we prove some results on pseudo-differential operators in the class
S? /2,1/2 O the 1-dimensional torus that are used in our existence proof for the water
waves problem. These results also hold for a more general class of Fourier integral
operators. In Sections[12.1H12.3|we prove the invertibility, composition formulae and
tame estimates for operators depending on the space variable x € T only, then in
section we explain how to include the dependence on the time variable t € T.

12.1 Invertibility

We consider Fourier integral operators that change e*** into €'(*:F) for some phase
function ¢. Namely, let L > 0 and let f: R — R be a C* function with

f0)=0,  |If'll= < L, (12.1)

so that |£(€) — f(n)| < LI¢ — | and |f(€)] < LI¢| for all &7 € R. Let f(z) be a
real-valued periodic function and let

o(x,8) :=Ex+ f(§)PB(z), =z,§eR

Denote ‘ A
we(z) == P8, ee(z) =% x, €€R.

When £ = k is an integer, both e and wy, are 2m-periodic functions of x. We define
the operator A by setting Aes = w¢ for £ € R. Thus

4@m=4m0ww&,mmzémoaw% (12.2)
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for functions g : R — C, where g is the Fourier transform of g on the real line, and,
on the torus,
Aufe) =) g wp(r), ulz) = iy ex() (12.3)
keZ keZ
for periodic functions u : T — C, where 4y are the Fourier coefficients of w.
Adjoint operators. Quantitative estimates for A and its inverse are the goal of

this section. To obtain these bounds, we shall study A*A and AA*.
Consider the scalar product of L?(T) and that one of L?(R),

(u, v) £2(r) Z/EU(fv)v(w)dx, (9:h) L2(r) Z/Rg(w)h(w)dw,

where u,v € L*(T) and g, h € L*(R). Denote A%, A% the adjoint of A with respect
to the scalar product of L?(T) and L?(R) respectively, namely

Atu(z) = Z(u, wi) 2y ex(r), = €T,
kEZ
and

As(@) = [ (@00 celo)de, a R

Hence

Ap Au(x) =Y " (Au,wp)roery ex(x) = > (wy, wp) roery i ex() |

keZ k,jEZL

namely the operator M := A}, A is represented by the matrix (M ,i) kjez With respect
to the exponentials basis {ey }rez, where

M = (wj, wg) 2y, k.j €L (12.4)
On the other hand,
AAsu(e) =) (u,w) 2(m) wi(z) (12.5)
kEZ

We shall see that, to prove the invertibility of AAT, instead of writing a matrix
representation like M above, it is convenient to study

A gla) = [ (g we)rage welo) de, 2 € R (126)

and pass from the real line to the torus in a further step.
Let us begin with estimates on A} A. Notation: Sobolev norms on the torus are
denoted by
ulls = lullg=(my,  llullo = llullpzer);

other norms are indicated explicitly.

Lemma 12.1 (Estimates for A} A). There exist universal constants C,0 > 0, with
CH < 1/4, with the following properties.
(i) If L||B||3 < 8, then M = A+A : L*(T) — L?(T) is bounded and invertible,
with
I(M = Dullo + (M~ = Dullo < CL||Bls]|ullo- (12.7)
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As a consequence, for § is small enough,
1Mullo < 2[|ullo, 1M ullo < 2ullo-

(ii) Let s > 1. If L||B|ls < & and B € H5"2(T), then both M and M~ are bounded
and invertible from H®(T) onto H*(T), with

I(M — Dulls + [|(M™F = Dulls < CL||Blls|lulls + C)LIBls+2lluls  (128)

where C' is the universal constant of part (i), and C(s) > 0 depends only on s. As
a consequence,

IMuls, [IM™ ulls < 2lulls + C(s) LIIBls2llully (12.9)

Proof. (i) Fix a universal constant dp > 0 such that if ||u||3 < d¢, then |[v| g~ < 1/2
and |lull2 < 1. Thus we can assume that L||5'||~ < 1/2 and L||5]|2 < 1.
Using the notation (12.4)), on the diagonal j = k, one has

M = (wp, wg) g2(py = 2

because wy = wk_l. For j # k,

. 27" . . -
M) = /0 w@P@) gy W= —k, p(x) = w B(z).

By ([12.1)), |p/(z)| < L|B'(z)| < 1/2 for all z, and ||p||s < L||B]|s for every s > 0. In
particular, |[p[|2 < 1. By Lemma[13.6]

j Cla)L ﬁ a+1
| M| < C@)L]Plas “2 _‘j’[ =y (12.10)

Split M = I + R, where [ is the identity map and R = M,g for k # j and Ri =0.
By Holder’s inequality and (12.10)) applied with o = 2,

1Ralf = 37 |3 afas| < 37 (30 gl )

k  j#k k g#k
CLBls iyl \?
<E( T woa)
CLBIE \ (-~ _lisP
DNON = DI =r)
=C2L2\|BII§CQZ(ZW)IWI2
J o k#j

< C2 L2 CF 18113 lull§ (12.11)

where Co = 37, |k|™ 2 < co. Thus ||[Rullp < COLHBHg; ||ul|o for some universal
constant Cp > 0. Th1s is the desired estimate ) for R= M — I. By Neumann
series, if CoL||B||3 < 1/2, then M : L*(T) — L2(T) is invertible, with

o0
I = Dullo < " IR ullo < 2Co L1813 lfullo.

n=1
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(ii) For s > 1, k € Z, split Zy, := Z \ {k} into two components,

Zn=AUB, A={jcZ: (k) <20)"}, B=27;\A4,

and write
[Ral < 37| " M| ()% < 2(Sa+ ).
k  j#k
where
Z(Zuwnuﬂ )’

JEA
and similarly Sg. For S4 we use estimate (12.10) with o = 2,

sa < 3 (X g l26r)’

JEA

then repeat the same calculations as (12.11]) with |4;{(j)® instead of |u;|, whence
Sa < (CL|Blls]ulls)?

where C' is a universal constant. The estimate for Sp is similar, applying (12.10))
with & = s 4+ 1 and noticing that (k) < ¢4k — j| for j € B, we obtain

5+1L||/B||S 2 s -|s 2
sB<Z(Z e el = 1)

JjEB

Z(ZL”B”S“\ w10) )’
go@z(zw‘ o) )

2
k  jeB il
C(s)L?| Bl 2llulF. (12.12)

This yields
|Rulls < C1L||B|[3|lulls + C(s) Ll Blls+2llully, [[Rulli < CLL||B]|3|ullx

where (' is a universal constant and C(s) depends on s. Hence Mu € H*(T) for all
u € H*(T) together with the estimate for M — I given by (|12.8]). Now, by induction,

IR ulls < (CLLIIBl3)" lulls + n(C1LIIBl13)" T C() LI Bl ss2llulls  ¥n =1,
and the desired estimate (12.8)) for M~ — I follows from Neumann series. O

As an immediate corollary of the operator norm estimate for ATA, we have a
bound for A:

Lemma 12.2 (L%-bound for A). Let § be the universal constant of Lemma 1 If
L||B|l3 < 8, then both A and A% : L*(T) — L*(T) are bounded, with

1Aullo < 2[lullo, [ Afullo < 2fule  Yu € L*(T).
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Now we consider an operator F with the same phase ¢(x, ) as A and, in addition,
an amplitude a(z, ), namely

Eee v qe, Q£(£L’) = a(x,f)wg(x),

where a(z,&) is a 2m-periodic function of = for every £ € R (or, at least, for every
&=k eZ). If u(x) is a periodic function with Fourier coefficients g, then

Bu(z) =) dkgr(z) = Y dra(z, k)wi ().

kEZ kEZ

Analogous definition for functions g on the real line.

Remark 12.3. The adjoint operator £} of E with respect to the L?-scalar product
on the torus is

Eﬁ'fu(x) = Z(uv Qk)LQ(T) Gk(CL‘), T E Ta
keZ
therefore

B} Bu(z) =Y (Bu, ) z2my ex(®) = Y (5, @) z2(m) 15 ex()
kez kjer

namely the operator G := ET E is represented by the matrix (Gi)k,jez with respect
to the exponentials basis {ey }rez, where

G{C = (qj,qk)Lg(T) , k,j€Z. ]

Lemma 12.4 (L?-bound with amplitude). Let § be the universal constant of Lemma
and let L||B||s < 6. Let

o, KeR, o>1 71,K2>0.
If a(-, k) € H°(T) for all k € Z, with
lla(-, k)]s < K(k)" Vke€Z,
then E : H™(T) — L?(T) is bounded, with
|Bullo < 2C, K ull, ¥u € HT(T),
where Co =3 ;7 (j) 77 < 0.

Proof. Develop a(z, k) in Fourier series in z, a(x, k) = 3,7 a;(k) ej(z), with [a;(k)|(7)7
< K(k)T. Write Eu as

Bu(w) =Y i (Y (k) e5(2) Jwp (@) = 3 (AFju) @) e (x) (12.13)
k J

j
where Fj is the Fourier multiplier Fj : e — a;(k) ey, satisfying
. . . K2<k>27 K2
1Ejulld = D lax?la;(k)* < Yl = ge— = g5 llull?-
- k () ()
Remembering ||Aullo < 2[jullp (see Lemma [12.2)), we obtain

1Bullo < Y I(AFjw)ejllo < Y I AFullo <2 | Fyullo < 2KCoull;
i i i

where Co = > (7) 7. O
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Now go back to the study of A : e — wg.

Lemma 12.5 (Sobolev bounds). Let L||B||s < 0, where § < 1/2 is the universal
constant of the previous lemmas. Let o > 1 be an integer. If 3 € H* 2(T), then A
and Ay - H*(T) — H*(T) are bounded, with

| Aulla + 45 ulla < C(@) (lltlla + LIBllasallull )

for some constant C(a) > 0.

Proof. Let us prove the estimate for A first. Since we already proved that || Au|g <
2|ullo < 2||lul|la and since ||Aull, < C(a)(||Aullo + ||0%Aullo), it is sufficient to
estimate the L2-norm of 92 Au.

The derivatives of wy(z) = '@ satisfy 9% (k) = P, (z, k) e'¢(®F) with

Z Y CW) (@ ¢) (k) (95 (w, k), (12.14)

n=1 ZIESan
where v = (v1,...,n) € Sqp means 1 < vy < ... <y, and v + ... + v, = a.
Therefore
0% Au(z ZukP (z, k) w(z Z Z C(v
kEZ n=1 Vesan
where

) = Zﬂk aV(x7 k) wk(x)7 ay(z, k) = (azyl¢)<mv k) T (a;"(ﬁ)(.%’, k).

keZ
Write ¢ as
_ )
Since v; > 1, one may write ||0%¢(-, k)||2 < |k| |P/||ly;+1 (B’ = Ozh). Therefore
law (-, k)2 < (K" CPHIR oyt - 17 o1

where C is the algebra constant of H?(T) so that ||uv|s < C|lull2]|v]|2. By Lemma

(here o = 2)
1Esullo < C(e) 17 vy 17 v, lulln

for some constant C'(«) depending on «. By interpolation in Sobolev class, since
1<n<aq,

I o < 2015 IR N0 Y s el < 2 fll§ flull 57,
with 99,9; € [0,1],7i=1,...,n, and

VZ‘+1:219@'+(04+1)(1—792‘), n:1ﬁ0+0é(1—190).
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Hence

n

V1+... 4+, (P14...49n) 9, —9
LT I8 il < 280 40 a0 a7
i=1

Since v + ...+ v, = «,
Yo+ +...+0=n, (i+...4+9)=Mn-=1)+1-"13),

and

n

_ 1-9 B,
TR laliulla < 271705~ (1R N2 lella) ™ (1R ot lull) ™
=1

< 2R (Ul + D o el ).
By assumption, L||3||s < § < 1, and, by ([12.1)), |f(£)| < L[¢| for all &, therefore
1B lle = 11+ F(R)E™' B2 <1+ L|IBlls <2, [P lasr < 1+ Ll|Bllase,
and
|Bullo < C@)(llulla + (1 + LlBllas2)lull ) < C(a) (llulla + LiBllareliullr)-

Taking the sum over n = 1,...,a, v € Sy, gives the desired estimate for the
L?-norm of 9% Au, which completes the proof of the estimate for A.

Now we prove the same estimate for A;. Remember that

Azu(r) =3 ( /T u(y) ) dy) e

kEZ

Write —¢(y, k) as

—o(y, k) = (=k)(y +p(y, k), ply,k) = f(kk) B(y)-

Using Lemma together with the notations introduced in its proof, with w = —k,

o (Azu)(w) = ( /T u(y) e~ 40 dy) (k)" et

kEZ

-3 (o o [ Qulm e b ay) iy
_Z /Qa ey k dy)

keZ
"L (@) Q. pye o ay)e
=" E; (02u)(x)

n=0
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where E is the L?(T)-adjoint operator of the F10 E,, having phase ¢ and amplitude
Qn,

Ev(z) = Z O @ (z, k) PR

keZ
1
o— ("’L) — V1 Va
an(z, k) == Q™ (x, k) O ; CW) (0" h)(x, k) ... (0"h)(z, k),
and v € V,, means
v=(V1,...,Vq) €LY, v;>1, v1+...+Vy=2a—n.

Here, as above, W' (z,k) = 1+ f(k)k~18'(x) so 1/h' — 1 = F(B') for some smooth
function F' vanishing at the origin and hence ||1/h||s < 2, provided that ||5]3 is
small enough. Then, with similar calculations as above, one proves that

lan(- B)llz < C(@) Y I gt - 12 Nl -

vEVa,n

Therefore, by Lemma the operator norm ||Eyljo,0 := sup{||Enullo : [Jullo = 1}

satisfies

1Ealloo < C(@) D7 W lysa- - 1B lvosr

Veva,n
Since [|E% [lo.0 = ([ Enllo.0,
1E; d3ullo < C(@) D MW o (17 lvara llull
Veva,n

and we conclude the proof using the interpolation like above and summing for n =

0,...,q. O

We have proved that AT A is invertible, therefore A7 is surjective and A is injec-
tive. To prove that A is invertible, we need the invertibility of AAT.. We prove it by
studying AAg.

Recall that we consider a phase function ¢(z,&) = x€ + f(£)B(x) where () is
a smooth real-valued periodic function and f is a C*° function such that f(0) =0
and || f||L~ < 4o00. Hereafter, we make a further assumption.

Assumption 12.6. Assume that f: R — R is a C'°° function such that
fO=0 Vi <1/4  fIO=E" V[l =1,
where 0 < r < 1 is a real number.
We shall apply the following results with r = 1/2.

Lemma 12.7. Assume that [ satisfies the above assumption. There exist constants
C1,01 > 0, with C101 < 1/4, such that, if ||B||3 < 61, then AA% : L3(T) — L3(T) is

inwvertible, with operator norm
|AATullo < 2[fullo,  [I(AAT) ™ ullo < 2ullo-
More precisely,

\ 1
I(AAT = Dullo < Ci|Bllsllullo < 7 llullo-
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Proof. The proof is split in several steps.

STEP 1. Observe the following fact. Let 3 € H™1(T) for some integer m > 2,
with L||f'||fee < ¢ and ||B]|m+1 < K, K > 0. Then, for every ¢ € C§°(R),

C, K)

VEeR 12.1
vigm € 1)

(G w0a] = | [ v e 00 ay] < T

for some constant C(1), K') which depends on ||[¢||yym.cc and K. Indeed, integrating

by parts gives
[owe w9 ay = [0 Loy ay
i

where .

G
)

To gain a factor £™ at the denominator, integrate by parts m times.

L = 0y(vyp), v= (1 +

STEP 2. To prove the invertibility of AATL, it is convenient to study AAp and
pass from the real line to the torus in a further step. AA} is given by (12.6)), namely

AA g(x) = / ( / 9ly) 70O dy) ) e, (12.16)
R R

For g € C°(R) and 8 € H3(T), with L||'||z~ < 1/2, the integral is finite by
. Now we want to change the integration variable &: this is the reason for
which we consider real frequencies ¢ € R and not only integers k € Z.

Fix dp small enough so that |cf’(£)] < 1/4 for all £ € R, provided that |c| < dp.
For each |c| < &y, the map

§= (& 0) =8+ cf(§)

is a diffeomorphism of R because 3/4 < J¢y(€,¢) < 5/4, and v is C* in both the
variables (&, ¢). Therefore, by the implicit function theorem, the inverse map u(?, ¢),

E=pl ) & I=v(0),
satisfies 4/5 < Jyu (9, c) < 4/3 and is C*° in both (¥, ¢). Let
h(¥,c) := u(¥,c) — 9.

Thus h € C, |0yh(¥,c)| < 1/3 for all ¥ € R, |c| < dp,

h(9,¢) +cf(&) =0, Oyh(9,c) = ~7 if/;é;zf) where £ =¥ + h(0,¢),
_1® OO 1O
PO e PO T HaepR Tt ep @

Then one proves by induction that, for any m > 2, 95'0.h(V, c) is a linear combina-
tion of terms

+Cf Nan]
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with the property that the largest exponent maxi<;<,n; is greater or equal to 2.
As a result,
[09ch (- )l oo (r,a9) < C

. (12.17)
||a19 8Ch('7 c)||L1(R7d19) < 07 m = 2)3)47

for all |¢| < g, where the constant C' > 0 depends only on f. Now let

By = M2 o g ) = 80)

and let ¥ be the new frequency variable,

The order of integration in (|12.16]) cannot be changed because the double integral
does not converge absolutely. We overcome this problem as usual, fixing ¢ € C3°(R)
with 9(0) = 1 and noting that

AAR g(x) :iii%la(x), I.(z) = /]R¢(5§)</H§g(y) o~ 19(y:€) dy) ¢i9(8) ge

by the dominated convergence theorem. It is found that

At glo) = |

A </Rg(y) e~ (1 + gz, y,9)) dy> o7 g9

with ~
Q(l‘a Y, 19) = aﬁh(’lga ﬁ(l‘a y))

Namely AAp is the sum (I + Q) of the identity map and the pseudo-differential
operator @ of compound symbol ¢(zx,y, ).

STEP 3. First order Taylor’s formula in the y variable at y = x gives

q(z,y,9) = qo(x,9) + q1(z,y,9),
QO(:C> 19) = Q(xa z, Q9) = (819h)(797 ﬁ/(l‘)),

1
r(o.99) = [ @)+ sty = 2).9) ds (3= o).
Split @ = Qo + @1 accordingly. Since go(x, ) does not depend on y,
Quota) = [ 0) anla,0) e v,

qo(z, ) is 2m-periodic in z, for every ¢ € R, because '(z) is periodic. By (12.17)),

lq0(z, D) < ClB'(2)],  [0xgqo(x, V)| < C|8" ()],

whence

lgo(-, 9|l < C|Bll2 VI €R (12.19)

for some constant C' > 0 (where, remember, || - ||, is the H™(T) norm).
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We next study 1. If the order of integration in )1 can be changed, then an
integration by parts in the 1} variable gives

1
Qo) = =i [ [ [ o)+ sty =2).0) 7 g(y) av dy .
Since ) )
’aﬂzCJ(x’ 2, 19)| = |(819190h)(19a ﬁ($, Z))| |8ZB($7 Z)’ )

by (IZT7),
109-q(x, 2, )|l 1 (R ,a9) < ClIB" | Lo (12.20)

for all z,z in R. Therefore the triple integral converges absolutely (¢ € C3°(R)
by assumption), and one can prove that the order of integration can actually be
changed (introduce a cut-off function v (e1), with ¢(0) = 1, ¥ € C§°(R), and pass
to the limit as € — 0 like above). Denote

1
a(z,y,9) = i/o (09.9) (1:, x+ s(y — x), 29) ds,

so that
Q19(x) = /]R2 a(z,y,9) g(y) e0(@—y) dy do .

By , for all = one has
@uola)| < [ lowI( [ lato.y )l d0)dy < Clalallolm. (1220

Denote T'g(z) := zg(z). The commutator [T, Q1] = T'Q1 — Q1T is the same integral
as @1 with an additional factor (z —y),

7.Qulg(e) = | | ale..9) (@ =) g(y) dy o

Integrating by parts in 1 again,
(7. Qulg(o) =i | ata,y.0) e g(y) dya,

and Oyg.q(x, z,9) satisfies the same estimate (12.20) as dy.q. Note that no other
derivatives in y are involved in this argument, therefore S does not increase its
derivation order. Repeat the same integration by parts twice: write

P=z—y)+y=@-y’+2@-yy+y>,

so that
22Qug(x) = / (#(830) g +2i(990)(Tg) + a(T?g) ) ) dy i
R
Every 0j'a(z,y,?9), m = 0,1,2, satisfies an estimate like (12.20]), namely

195" a(z, y, M1 wasy < ClIBlls, m=0,1,2,
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for some constant C' > 0. Now assume that g(y) = 0 for all |y| > 27. Then, by
Holder’s inequality,

/R y™g(y)|dy < Cllgll iz V¥m =0,1,2.

Thus we have |[22Q1g(z)| < C||8]|3 9]l 2 () and, using also ([12.21)),

Cl1Bll3 H9HL2(R)

Hence, provided that g(y) = 0 for all |y| > 27, both Q19 and TQ1g are in L?(T),
with

1Q19ll2@) + 1T @19l 2y < 21(1+2%)2Qug() 2@y < ClIB 9l L2my - (12:22)

STEP 4. Let P be the “periodization” map defined in the Appendix. We observe
that
P(AAR ) = AAT(PY) Vi € C§°(R). (12.23)

To prove ([12.23), fix ¢ € C§°(R) and calculate
P(AAR ¢)(x) = Y (AARY)(x + 2m))
JEZ
> [ e v + 2mi)
_ , 2mj¢ g
5 [ e wlo) €255 g
because ¢(z + 27j,€) = ¢(x, &) + 2mj€. For each fixed z € R, by (12.15), the map
E—g() = (¢7w§)L2(R) we () satisfies
A+ 1P g +1d'©)) <C VEER,

for some constant C'. Then, by Lemma and (|13.19)),

3 /R 9(€) e dg = 3 g(k)

JET keZ

= Z(lbvwk)L?(R) w(z)

keZ

= Z('P’Lﬂ, ’wk)LE(’]I‘) U}k(x)

keZ
= AAr (PY)(x).
STEP 5. From the two previous steps, since PS = I on L?(T),

AAL = AATPS =PAALS =PI+ Qo+ Q)S=1+PQS+PQiS.
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For u € C*(T), by Lemma [13.8]

P QoSu(x) = Z(QoSu)(az + 27k)

keZ

=3 [ S mle, &) dg

keZ
-13417 < ik
= (Su)(k) qo(x, k) e
keZ
-13.15 N
— Z Uk qo (.’I}, k)
keZ

It is possible to use (13.17)) here because |qo(x,&)| + |O¢qo(x, )| < C for all z, €, for
some C' > 0, and Su(&) rapidly decreases as Su is compactly supported. Therefore

ezkx )

|P Qo Sullo < CBl2 [|ullo

by (12.19) and Lemma [13.1{(i7), and, by density, this holds for all u € L?(T).
By Lemma and ((12.22]),

IP QiSullo < [|@18ul|r2®) + [[TQ1Sul r2®) < ClIBlls [|SullL2®) < ClIBlls [lullo
for some constant C' > 0. We have proved that
AAr =1+ B, ||Bullo < C|Bllsllullo,

where B := P QoS +P Q1 S. Therefore, by Neumann series, AA% : L?(T) — L*(T)
is invertible, with operator norm < 2, for ||3||3 < d1, for some constant J;. O

Collecting the previous estimates, and taking the worst ||| among all, we have
the following

Lemma 12.8. There exist universal constants C,81 > 0 such that, if f € H3(T),
1Blls < 61, then A, A% : L*(T) — L*(T) are invertible operators, with

1Aullo + ([ A~ ullo + [[ AT ullo + [I(AF)  ullo < C'llulo-

If, in addition, B € H*"*(T), o > 1 integer, then A, A% : H*(T) — H(T) are
invertible, with

lAulla + A ulla + [|AT ulla + [[(A7) " ulla < C(a) (IIUHa + [18llat2 HUIll),

where C(a) > 0 is a constant that depends only on «.

Proof. Both AA% and A% A are invertible on L%(T), therefore A and A* are also
invertible. The estimates for A~! and (A% )~! come from the equalities

AT = (ApA) AL, (AT = A(ApA) T O
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12.2 With amplitude

Now let E be the operator with phase ¢(z, k) and amplitude a(x, k), namely

Eu(x) = Z Uy a(z, k:)ew(x’k) ,
kEZ

where a(z, k) is 2m-periodic in x, and ¢ is like above. We are interested to the case
when the amplitude is of order zero in k and is a perturbation of 1,

a(xz, k) =1+b(z, k).
Denote |b|s := supgcz ||b(, k) |-

Lemma 12.9. There exist a universal constant 6 > 0 with the following properties.
Let B € H3(T) and b(-, k) € H3(T) for all k € Z. If

18113 + [bls < 8,
then E and Ef are invertible from L*(T) onto itself, with
[Bullo + [|1E~ ullo + 1B ullo + |(BR) " ullo < C o,
where C' > 0 is a universal constant.

If, in addition, o > 1 is an integer, B € H* 2(T) and b(-, k) € H**2(T) for all
k € 7Z, then

|Bulla+ 1B ulla + B3 ulla + 1(B2) ™ ulla
< C(a) (Jlulla+ (Blarz + 1Bllas2)ulr)
where C(a)) > 0 depends only on «.

Proof. STEP 1. Let B be the operator with amplitude b and phase ¢, so that
E = A+ B. By Lemma |Bullo < C|blz|lullo, therefore, using Lemma [12.8]

|A~" Bullo < Clbl2lullo

for some universal constant C' > 0, provided that ¢ is small enough. Then E =
A(I + A71B) is invertible in L?(T) by Neumann series. Analogous proof for E*.

STEP 2. The matrix L := EpF is given by Remark and it is
E*'E=A"A+ A*"B+ B*A+ B*B.

On the diagonal,
LY = / 11+ b(x, k)|* dz >
T

N | =

if |b(z, k)] <1/2 for all z € T, k € Z. Off-diagonal,

L;‘? = M]k + /T (b(:n, k) +b(x,5) + b(z, j) b(x, k)) @ =o@hr)] gg.
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where the matrix M]lg is defined in (12.4]). Using (12.10) for the first term and
Lemma for the other three terms,

Cla, K)

241 < GO (bla + Do),k (12.2)

for |||l < K and |b|; < K. Let D be the Fourier multiplier e, — L¥ey and R the
off-diagonal part R =L — D. For a« =2 in ,
1D~ Rull < C(K) (|Blls + [bl2) l[ullo,
therefore L is invertible in L?(T) if
1B]ls +[b]2 < 0 (12.25)

for some universal § > 0 (for example, fix K =1 first, then fix § sufficiently small).
For s > 1 integer, if (|12.25)) holds,

[Rulls < Cllulls + C()([|Blls+2 + [bls+1)ull

by (12.24) and usual calculations for off-diagonal matrices. This gives the tame
estimate for L, and, by Neumann series, also for L™!, namely: if (12.25)) holds, then

1Bt Bulls + |(Br B)ulls < Cllulls + C(s) (18]l s+2 + [bls+1) [l (12.26)

where C' > 0 is a universal constant and C(s) > 0 depends on s.

STEP 3. Bu(zx) is given by (12.13) where F} is the Fourier multiplier Fje, =
b;(k) er. Integrating by parts, for j # 0,

y 1 g m
1= sy evrin] = k| [ gy o] < 1o
T 7™ 1 Jr Fiks

for all k € Z. Hence

blm )
IFjulla < 3% lulla, ¥ €2 (12.27)

Now use the tame product rule in Sobolev spaces ||[uv||o < K ||u]|po||v]|a+EK]||v| L ]|v]
together with the Sobolev embedding H*(T) C L*°(T) to deduce,

1Bulla <) (AFju) ejlla < C(@) Y [|AFjullo + | AFjull1 (5)*.
JEZ JEZ

Thus, applying Lemma and using (|12.27)) with either m =2 or m = a + 3,

1Bulla < C(@) > (IEsulla + 1Blas2l Fyully) + | Eull ()

jez
< C’(a)z <||UHa + 11 Bllarellull1 ) <b’>2 + [|ufl1 |b<|oz>+2
jez

< C(a) (Iulla + I1Bllaslluls ) [blz + ulls la-
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if (12.25)) holds. The sum with the analogous estimate for A gives

|Bulla < Clas K) (lulla + (Blasa + 1Blar2) el

for ||5]|s < K, |b]2 < K. For Ef, note that

Eru = Z FrAr(e—ju)
JEL

and repeat the same argument. O

12.3 Composition formula

Consider the periodic FIO of amplitude a and phase function ¢,

Au(x) = Z Uy a(z, k) eio@k) d(x, k) = kx + f(k)B(x), (12.28)
keZ

where f(k) = |k|*/? for all k € Z.

Lemma 12.10. Let A be the operator (12.28]), with || 5|1« < 1/4 and ||B||2 < 1/2.
Let

r,m,s0 €ER, m=>0, so>1/2, NeN, N>2(m+r+1)+sp.

Then

N-1

|Dz|" Au = Z Byu + Ryu,

a=0

where
Bante) = (1) 30 I (sgm ) i e 02 a9
o
kezZ*

namely

Bow = Fa| Dol *Hou,  Fav(z) = (;) S b e 92 {a(a, k)T
keZ
and (") = w
For every s > sqg, the remainder satisfies

|RNID: " ully < C5){ Kagmrssgry Nulls + Kosnimez ullsg ps - (12:29)
where Ky = lall, + lallul|Bllusr for u >0 and ||all, = supyez, |a(-, k)],
Moreover,
N-—1
H|D.|"Au= "> BoHu+ Ryu,
a=0

where Ry satisfies the same estimate (12.29) as Ry .

Remark 12.11. In particular, Bou = A|D,|"u. By is of order r — (a/2). O
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Proof. Denote by (2;(k))jez the Fourier coefficients of the periodic function = +—
a(z, k) e FBE) and consider a C* function g: R — R such that g(&) = |£|" for all
€] > 2/3, and ¢(&) = 0 for |£] < 1/3. If 1y are the Fourier coefficients of a periodic
function u(x), then

D, Au(z) = Y g 5(k) g(k + j) 'R, (12.30)
k,jeZ
Taylor’s formula gives, for some t € [0,1],

N-1

. 1 . . . 1 Ny
glk+j) = z% S0 Frnkg), (k) = 55 ™ k1) 7
Accordingly, (12.30)) is split into |D,|"Au = Zf;ol Bau + Ryu. Hence
Z i ZJ )(k)ja 61(k+])z
7]62
= Z g(a) zkx(z (kj) (Z])a zgz)
zo‘od :
kEZ JEZ
= Z o rr=1) . (r—a+ 1) [k (sgnk)® @ ke of{a(z, k:)eif(k)ﬁ(x)}
kez ' '
=) ( )|k|7" @ (—isgn k)™ dy, e 0% {a(x, k)T WAL
keZ*

Since |k|"™ (—isgn k) 4y is the k-th Fourier coefficient of |D,|"~*H%u(x), one can
also write
Bou = Fo|Dy|""“H,

with F,, defined in the statement of the Lemma. B, has order r — /2 since, as
power of k, the maximum order of 95 {a(, k)eif(k)ﬁ(z)} is |k|*/2.

It remains to estimate the remainder

Ryu(x Z uy 2j(k) rn(k, 7) elk+i)z,
k.jez

For N > r, the N-th derivative of g satisfies |g?")(€)| < C, n(€)"™N < C,. v for all
¢ in R. In particular, for |j| < 3|k| and ¢ € [0, 1], we have |k +tj| >  |k| and hence

. N L1
v (ks )| < Conv (k)" N51Y viil < 5 [k, (12.31)

and, in general,
rn(k,5)| < Crn 51N Vi€ Z. (12.32)

We split Ry into 2 components, Ry = Rq1 + Ra, R1 for low frequencies and Ro
for high frequencies:

Rou(x) = Y g 2;(k)rn(k, j) ! "7,

l31<5 k|
Rou(x) = Y iy 2;(k)ry(k, j) e’ FH)7,
131> 31kl
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Let us analyze the coefficients 2;(k). First of all, for j # 0, a > 0,

12 (k)| < == [la(-, k) /BP0 .

(6%
Now, for a € N,

02 (al, k)T P} = 5§ Cay, az) (95 0) (. k) Pay (2, k),

al1tas=«

where P, is defined, as usual, by 9¢ (e¥/(F)8@)) = ¢if(k)8(z) p, (z, k). Hence it follows

from the estimate (13.9)) in the Appendix and an interpolation argument that,

Ca| k|a/2
]

125 (k)| < (lalla + llallolBla) Vi # 0, (12.33)

where [|a|q := supez [|a(, k)||a. For |j| > %|k|, this estimate can be improved:

2(k) = /Ta(y’ k) e/ RBW) =13y gy — /Tu(y)eiw(yﬂ?(y)) dy,

with
w=—j, ply)= —f(jk) By), uly) =aly,k).
Therefore, applying the non-stationary phase argument of Lemma
501 < = (lalla+ 18lasalals) Vil > 5 (12:34)

provided that ||5||2 < 1/2 and |B]; < 1/4.

e Estimate for R1. — We study the composition R|D,|™, which is the pseudo-
differential operator with symbol

pr(a,k) = Y k™ 2(R) r (K, 5) €7
l71< %kl

By (12.31)) and (12.33)), for any a € N,
o1 (k)5 = D kP (25 (k) [rav (R, ) (5)
1< 5|k
< ST ) HmErNE /D) ()20t N=0) (|lg|,, + [|al|o|Bla)”.
l71< 51kl

Now, assume that
so+N—a>0. (12.35)

Then
Z <j>2(so—|—N—a) < C<k,>2(so+N—a)+1
i< 51kl

because (j) < (k) and the number of terms in the sum is < C|k|. Hence

o1 k)12, < C ()20t NHe 20Nt (|lq ] + lalo|Bla) .

S0 —
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The exponent of (k) is <0 if a > 2(m + r + so) + 1. Hence fix « to be the integer
ap:=minfa e N: a>2(m+r+sy) +1} =2(m+r+s9) +1+3d, 0<d <1
By assumption,

N>2m+r+1)+s9>2(m+r+so)+1+3d — so=ag— so,

therefore sg + N — ag > 0, and (12.38)) is satisfied. We get [|p1(-, k)]s, < C([lallao +

Ha||0|ﬁ’ozo) so, by Lemmam
[R1|Dz|"ulls < C(s) (llalla + llallolBlag) llulls

for all so > 1/2, and s > 0. Moreover, |Bla, < C||B]lag+1, and ag < 2(m+r+sg) +2.
Therefore

[RAIDa™ulls < C(s) (Iallagmtrssory + lallolBllagn rssoyss) lulls:  (12:36)

e Estimate for Re. — Now we study the composition Rq|D,|™, which is the
pseudo-differential operator with symbol

pa(a, k) = Y k™ 25(k) riv (K, 5) €7

13> 3 IK]
By (12.32)) and (|12.34]), for any a € N,

o2 R)IE = D kPP 125 (R) 2 [ (R, ) ()
131> 5 ||

m /:\2(s —a 2
< 0 CEP" G (|falla + [1Bllatallall)

131> 5 ||

m+s —a 2
< ClEPIHHN=OH ([lal|o + (| Bllactrllallr)

because

+oo
Z <j>2(s+N—a) < Cﬁ t2(s+N—o¢) dt < C‘k’2(5+N_a)+1
P

131> |k|

for 2(s + N — @) + 1 < 0, namely for o > s+ N + 3.
The exponent of |k is <0 for @ > s+ N +m+ 3. Fix a; :=min{fn e N: n >
s+ N +m+1}. Thus

o2, B)lls < C(llallay + 1Bllar+1llall1).
By Lemma [133]
IR2| D[ ulls < C(s) (llallay + 18llas+1llallr) [lells

for all s > 1/2, and s > sg. Moreover, since a1 < s+ N + m + 2,

[R2|Dz[™ulls < C(s) (Ha||s+N+m+2 + HﬁHS-i-N-i-m-i-SHa”l) ]l s0- (12.37)
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e Estimate for Ry. — The sum of (12.36)) and (12.37) gives

1B 1 D2 ulls < C){ (lallamsrssorn) + lallolBllagnsrssoyss ) lull
+ (llallssxmez + 18llsex+meslally) lulo }

which is (T2.29).
For |D|"H, the Fourier multiplier is g(§) = —isgn(&)|£|" instead of g(§) = [¢]".

Therefore there is an additional factor (—isgn(k)) in the formula for B,. The

estimates for the remainder are the same as above. O

12.4 With dependence on time

Assume that the operator A in ((12.3) depends on time, namely the phase space is
o(t,x,k) = kx + |k['/25(t, z),

where [ is periodic in the time variable ¢ € T. Then the inequality of the previous
sections also hold (with minor changes) in spaces H*(T?). For example:

Lemma 12.12. If ||5]|l4 < 6 (where § € (0,1) is a universal constant), then for all
mtegers s

[AR]ls < Cllalls ¥s =0,1;  [|Ahlls < C(s)([[Blls + [1Blls+sllpll) s > 2,
(12.38)
for all h = h(t,z), where || ||s is the norm of H*(T?).

Proof. We have already proved that, without dependence on time (i.e. h = h(z),
B = B(x)),

[AR[| Lz < CllhliLz,  [[ARIIE; < C(s) (1Bl s + 181l a2 1Al 222) (12.39)

provided ||8|| g3 < d. Now let h, 8 depend also on tlme For each fixed ¢, [|8(t)|| gz <
18]l e r3 < HB||H1H3 < ||Blla < 6, and then ) holds at each t. Therefore

1ARI T2 2 —/IIA Idet</C2llh M7zdt = C2||hl72 s,

i.e. ||[Ahllo < C||hllp. Similarly, for s > 1, using HBHLgOHi” < CHBHHtlHi“v

ARz, = [ IA@ROI, d

< C(s) / QIR s + 1B v 1) } it
I g, + 1812 gz 1B )

whence

[AR| 2y < C(s)([[lls + 1B]ls+3llRll1)- (12.40)

The norm ||u||s of H*(T?) is equivalent to the norm lull L2z + llullgyrz. Then it
remains to prove that also

[ARl 52 < C(s)(Ihlls + 1815+l hll1)- (12.41)

69



The time derivative of Ah is 8;(Ah) = A(hy) + B A(i|Dy|"/2h).
e For s = 1, using the inequalities ||u||zeo(r2y < Cllufl2 and [|Aullo < C|lullo, we
have
10:(AR)[lo < | Ahello + 11 5:AGID|?R) o
< C(lIhello + [1Bell oo r2) I AGI D2 /2 R) o)
< O(Iklly + [1Bell2l Dal hll0) < CIAIL + 118113 1All)

(we have rudely worsened ||A||; /2 < ||k]|1). Therefore (12.41)) holds for s = 1, and, as
a consequence, (12.38)) holds for s = 1, namely ||Ah|1 < C||h||1 (because ||5]|4 < 1).
e For s = 2, we use the product estimate ||uv|1 < C||ul|1]||v]]2 to deduce that
100 AR) I3 12 < 10:(AR) |1 < || Abely + | B AI Do A2

< C([lhelly + 1Bell2ll AIDL Y2 R]l1)
< C(|Ihll2 + 18Il Dzl All1) < Cllhll2-

Therefore (|12.41]) holds for s = 2, and, as a consequence, (|12.38)) holds for s = 2.
e Now assume that (|12.41]) holds for some s > 2; we prove it for s+ 1. The sum

of (12.40) and (|12.41]) implies that ([12.38]) holds at that s. We estimate
100 (ARl sz < 1 AR 2 + 1B AGID 2B gy 12

By (12.41), [|Ahel| sz < C(s)(llhells + I Bllstsllhell1) < C(s)(Alls1 + [1Blls+sl2ll2)
and, by interpolation, this is < C(s)(||hl|s+1 + ||B||s+4l|R][1) because ||B|l4 < 1. For

the other term, we use the product estimate ||uv|s < 0(18)(”U||3HU||2 + JJull2]|v]|s)
and at s to deduce that

18:A( D2 1) s 2 < IBA(DL] 1)

< C() Bl AUDL 1) 12 + 1Bell2 | A(D2 2R )

< C(s)IBlls+1llnlls + IBs1llBlslBll2 + 813l Rl + 118131815 +3l2ll2)
which is < C(s)(||h]|s+1 + ||Blls+4llh]|1) by interpolation. Hence holds for

s+ 1.

By induction, we have proved (12.41)) for all s > 1. The sum of (12.40) and
(12.41)) gives the thesis. ]

To prove a time-dependent version of Lemma [I2.10] note that the time derivative
of the operator Ry|D,|™ in (12.29) is

A (RN|Dg|™h) = Ry|Dy|™hy + iRy | Dy |1/,

namely Ry|D,|™ satisfies the same formula for the time-derivative as the operator
A of Lemma [12.12

Also note that all these proofs can be easily adapted to include the amplitude
function a(t, x, k).

13 Appendix.

In this appendix we gather some classical facts that are used in the proof.
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13.1 Classical tame estimates for pseudo-differential operators on
the torus

Let '
T) = Zﬁk a(z,k)e*  zeR, (13.1)
kEZ

a(z, k) periodic in z, for all k € Z.

Lemma 13.1 (Bounded or regularizing pseudo-differential operators on the torus).
1) Let s,o,7, K be real numbers with s,0, K >0 and 7 > 1/2. Assume that

la(-, k) |lsro (B)—° < K VkeZ, (13.2)
la(-, k)|, (k) < K VK € Z. (13.3)

Then A in ([13.1]) maps H*(T) into H5T°(T), with
[Aulls+o < CK|lulls  Vu € H*(T),

where C' > 0 depends on s+ o and 7. 2) The same conclusion holds if (13.2)) is

replaced by
||a( 7k)HS+O'+’T <k>7s < K VkeZ. (13.4)

Proof. Develop a(z, k) in Fourier series, a(z, k) = ;o7 a;(k) €Y% g0 that
= g i (k) €.
n,k

One has
<n>2(s+a) < 01(<TL _ k>2(s+a) + <k>2(s+a))_

Therefore ||Aul?,, < C; (S1 + S2) where
s 2 2(s+0)
S1i= 30 (D ikl lan-k(R)]) (n — )2+,
n k
~ ~ 2 2(s+0)
So 1= 3 (3 lanllan-(k)]) (k)20

n k

By Holder’s inequality, (13.2) implies that

1. 30 (3l 109 097 (3 ) ()
k
< G 3 a0 ol Rl

< 02K2\|u||§

Where Cy =3 (7)727 is finite because 7 > 1/2. Similarly, one estimates Sy using
and one obtains that ||Aul|2,, < 2C1C2K?||u?.

To prove part 2) of the lemma, it is sufficient to replace (k)™ with (n — k)™ when
Holder’s inequality is applied to estimate S;. ]
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We now consider paradifferential operators, which are pseudo-differential opera-
tors with spectrally localized symbols a(z, k) (see [14]). Namely, develop a(z, k) in
Fourier series, a(z, k) = ;.7 a;(k) e“%. We shall consider low (resp. high) frequen-
cies symbols such that a;(k) = 0 for |j| > C|k| (resp. |j| < C|k|).

Lemma 13.2 (Low frequencies symbol). Let A be the pseudo-differential operator

Au(w) =" e alw, k) e*, a(e,k) = D a;(k) €,

kez l71<Clk|

where the symbol a is Fourier supported on {j € Z : |j| < C|k|} for some constant
C. Then
[Aulls < C(s) llallsollulls, llallso = sup la(s B)lso5

for all so > 1/2, and s > 0.

Proof. Notice that holds with 7 = sp > 1/2 and ¢ = 0. Also, for s = 0,
holds with 7 = sy > 1/2 and ¢ = 0; which in turn implies that holds
for any s > 0 since |la(-,k)||s+so < K(8)|a(-, k)]s, (k)* in view of the spectral
localization. O

Lemma 13.3 (High frequencies symbol). Let A be the pseudo-differential operator

Au(z) = Zﬁk a(z, k) e, a(x k) = Z a; (k) €%,

keZ l71>C|k|

where the symbol a is Fourier supported on {j € Z : |j| > C|k|} for some constant
C. Then

[Aulls < C(s) llallsllullsg, llalls := sup [la(-, k)]s,
keZ
for all sy > 1/2, and s > sg.

Proof. Notice that (13.2) and (13.3]) hold with (7,0, s) replaced by (sg,s — s, S0)-
To see this, notice that the assumption that a is Fourier supported on {j € Z : |j| >

C|k|} implies that [ja(-, k)||s, (k)*27°" < K(s1, s2)|a(-, k)]s, for so > s7. O

We also recall the following estimates for the Hilbert transform (see [33] or
Lemma B.5 in [7]).

Lemma 13.4. 1) Let s,mi,mz in N with s > 2, mi,mg > 0, m = my + ma. Let
f € HT™(T). Then [f,Hlu = fHu— H(fu) satisfies

05 [, HIogul|, < C () (lullsll fllm2 + llull2ll fllmes)-

2) There ezists a universal constant § in (0,1) with the following property. Let
s,m1,mg in N and set m = my + ma, B € WsHMHLX(T R) with |B|; < 6. Let
Bh(z) = h(z + p(z)) for h € H*(T). Then

07 (B~ HEB — H) ;| < C(s)(|Blm-+1 llulls + [Bls+m-+1][ullo).
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13.2 Interpolation estimates
Recall the interpolation inequality: if s; < s < s9, then
|f|s < C(Slas2>|f|;\1|f|;;>\a S:)‘Sl+(1_)\)827 A€ [0’ 1]) (135)

where | |5 is either the C*-norm the H*®-norm (or other norms of a scale with inter-
polation). As a consequence, one has the following

Lemma 13.5 (Interpolation). Let n > 1 be an integer, let § > 0, and let vy, ..., vy
be real numbers with

n
vi>6 Vi=1,...,n, Zl/j:a.

Then .
LT 1f1s; < C@IF13 7 f la—snss- (13.6)
=1

Proof. Since Z?Zl vj = a, and each v; is > 1,

l/j:a—nga—é(n—l).
i#]

So vj € [0,a—dn+4]. Apply (13.5) with sy =1, s = v}, s2 = a —dn+ 0, and define
29j € [0,1] by
I/j=(519j+(04—(5n+5)(1—79j), i=1....n

Since v1 + ...+ v, = a, we find
(Zﬁ) (o —dén)=n(a—dn+06) —a=(a—odn)(n—1).
If a —dn #0, then Y30 J; =n—1and 37 (1 —9;) = 1. Thus, using (13.5)),

H\f\V] < Cla H!f!a’!f\a i s = Cla)] £ =79 =G0
(a)‘f|5 |f|a—§n+6~

If, instead, o — 6n = 0, then v; = ¢ for all j, and the conclusion still holds. O

The previous lemma, which has an interest per se, can be used to estimate the
exponentials. Let v(x) be a function. The derivatives of e are

09 (" ™) = Po(x) "™,
where P, (z) satisfies Py(z) = 1 and P11(x) = 0,Pa(x) + Py(z)0zv(z). Thus, by

induction,

Z S O (@) (@) (@),  az1, (137

n=1 ZIGSan
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where v = (v1,...,v,) € Sa,n means v; > 1 and v1 + -+ + v, = a. The previous
lemma implies that

(0 0)() -+ () (@)] < T Il < C@)l0f ™ olamnr.
j=1

Then use ((13.5) with s; =1, s = a+1—n, s = a, namely |v]|q41-n < C(a)|v[%_”]v|g
with p defined by
at+l—n=(1-p +ay,

which is p = (e —n)/(a —1). Since n — p = (1 — u), we get

_ _ 1— _
T olat1-n < Cl@)li ™ ol ol = Cla)lvl;™"|vls

< Cla)(lvlf) " Juls
< Cla) (vl + [vla).

As a consequence,

|[Po(2)] < C(@)(|v]i + [vla)- (13.8)
In the case v(z) = i|k|'/28(z), this gives

|Pa()] < Cla)(KI*2|BI5 + [K[/?|8]a)- (13.9)

13.3 Non-stationary phase

The following lemma is the classical fast oscillation estimate, based on repeated
integrations by parts on the torus, in a tame version.

Lemma 13.6 (Non-stationary phase). Let p € H?(T,R),

Iplls < K, [p(z)] <5 VeeR, (13.10)

DN |

for some constant K > 0. Let w be an integer, w # 0, and let « > 1 be an integer.
Ifpe HYY(T), u € H*(T), then

/u(ﬂc) @@ HP@) gy = (z>a/Qa(x) @@ HP@) gy
T T

w

where Qo € L*(T),

1Qallo < Clov, K) (lulla + llpllasr llull1),

and C(a, K) is a positive constant that depends only on « and K. If u=1, then

1Qallo < C(a; K)llpllata -

If p = p(z,w) and u = u(x,w) depend on w, the estimate still holds if K > ||p(-,w)||2
and |0zp(z,w)| < 1/2.
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Proof. Put h(x) := z + p(x). By induction, integrating by parts « times gives

/Tu(m) o Wh(@) gy — (Z))Q/EQ(X(:E) piwh(x)

where, for a > 1, @, is of the form

Qa h, e Y C(W)(07°u) (9 h) .. (0 D), (13.11)
VESy
where v = (v, 1, ...,Vs) € Sq means
0<py<a 1<1<...<v,, WH+r+...+v,=2a. (13.12)

Formula (13.11]) is proved by induction starting from Qn, = 0:(Qa—1/h'). If we
organize the sum in (|13.11)) according to the number of indices among v, ..., v,
that are equal to 1, we obtain

Qo = Z h, — Y C(u)(9"u)(9"p)... (0" p), (13.13)

METan
where p = (po, 11, - - - pin) € Ta,n means
O<pwp<a—-mn, 2<pu <...<fn, Mo+p1+...+ pn=a+n.

To estimate the products in (13.13)), we distinguish three cases.
Case 1: n =0. Then po = a and |[(O*u)(0"*1p) ... (0""p)llo = [|0%ullo < ||ulqa -
Case 2: n > 1 and po = 0. Then

1@ 0u)(@1p) ... 0 p)lo < l[ullze |0 pllze ... [0l 0l
< O™ Yl 1pl 1 - - 12l g s+1 120 o

where C'is the universal constant of the embedding ||u||z~ < C|lu|l;. Now it follows
from Lemma applied with § = 2 and |- | replaced with the Sobolev norms || - ||5
(which satisfies the interpolation estimate (13.5))) that

(7 e ey e o{ ] 2 il [ T

Case 3: n,ug > 1. For any ¢« > 1, one has 2 < u; < u, < a, because
2=+ pn <pr+...+pn=a+n—p<a+n-—1
Therefore u; + 1 < a+ 1 for all 4 > 1, and one can write
1(0°u) (8" p) ... (0""p)llo
< [[0"ullol|0" pllze - . |07l Lo~

< C)[ullollpll i+ - NPl 1

9 9 9 19 +... 4+,
< C(n)lul| 2 |[ul|i70 |p|grt+0n |p| g o)

where g, 91, ...,9, € [0,1] are defined by

i +1=20;+@+1)(1-9;) Vi=1,...,n,
po = 199 + a(1 — vy).
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Taking the sum gives Jg + 1 + ... + 9, = n because ug + p1 + ... + pp = a + n.
One deduces that

| 20| 570 [ g2t+ 0 ||y {20

a+1
— — 9
<zl (pllzlulla) =0 (lplasrllull) ™

which in turn is smaller than

-1
Iplls ™" (pll2llulla + [[plla+1llull)

because a' b’ < (1 —¥)a+9b < a+ b for all a,b >0, 9 € [0,1].
Since ||1/h/|| L~ < 2, collecting all the above cases gives

1Qallo < Cle, K)([lulla + lIpllatallulr)

for some constant C'(a, K) > 0, because |p|l2 < ||Bll2 < K. Note that all the

calculations above are not affected by a possible dependence of p on w.
When v = 1, only the case 2 gives a nonzero contribution to the sum. O

13.4 L?(T) as a subspace of L?(R)

For the sake of completeness, we recall here how to define an isomorphism of L?(T)
onto a subspace of L?(R), transforming Fourier series >, ., into Fourier integrals

Jg d€.

Consider a C*° function p : R — R with compact support such that

(i) 0<p(x) <1 VzeR, (7i7) p(x) =0 V|z| > 371/2,
(i) p(x)>1/2 Vze[—m, 7], (i) p(x) =1 V]|z| <7/2,
(v) Zp(m +27k)=1 VzeR

keZ

Let S be the multiplication operator (Su)(x) := p(z)u(z), u € L*(T), and X its
range,

X :={Su:uc L*(T)} c L*(R).
The following properties of S follow directly from the properties of p.
Lemma 13.7 (The isomorphism S). The map S : L*(T) — X is bijective, and

1
3 ullp2ery < [Sull 2wy < 2lullgeery  Vu € L*(T).
If u,v € L*(T), then
(’LL,U)LQ(T) == (Su7’l))L2(R) (1314)
the integral (Su,v) 2Ry ts well-defined because Su has compact support). In par-
(R)

ticular, for v = ey,

—_

Up = (u,ek)Lz(T) = (Su, Ek)LZ(R) = (Su)(k‘) Vk € 7. (13.15)
Therefore
S ) = Y Eub e - Su@ = [ Gu@e@d 1310
keZ R
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We also recall the following version of the Poisson summation formula.

Lemma 13.8 (Poisson summation formula). Let g : R — C of class C!, with

A+g@Ol+ g <C VeeR,

for some constant C > 0. Then for every x € R the following two convergent

numerical series coincide:
= Zg(aﬁ +27k) = Zg(kz) etk
keZ keZ

At x = 0 this is the Poisson summation formula ), , g(2k) = >, g(k). More-

over,
Z/ 2T (&) de = g(k) (13.17)

keZ keZ

We next show that the operator P admits a unique continuous extension to the
space of functions g such that (14 |z[2)'/2g(2) € L2(R) (which is equivalent to g = h
for some h € H'(R)).

Lemma 13.9. Let g € L*(R) with Tg € L*(R), where (Tg)(x) := xg(z). Then the
sequence {§(k)}rez is in (2(Z), the series u(z) := Y .5 G(k) € belongs to L*(T),
with

lullz2(ry < 2(llgllL2r) + 1Tl L2(w))-

If, in addition, g satisfies the hypotheses of the previous lemma, then u(z) = Pg(x)
for every x, whence

1Pgll2emy < 2(|gllz2@) + 179l 2 (w))-
Proof. [[ull2ap) = Yen |3(k)|?. For every € € R,
90 < (19(6)] + lak) — a(&))* < 2(19(&) 2 + (k) — g(€)[?).

Let Iy := [k —1/2,k +1/2]. Then

9(k)|* =

rmmﬁﬁsz/WmOF%+2 3(k) — GO de .
I I

Iy

By Holder’s inequality,

2
|dt‘ dg

/Wmm aoFds < |
Iy,

Sﬂ /ﬁawﬂﬁ\k—a%

<[ ([ wora)a= [ e
Therefore

G F<2§j/ )2 +15(©)) de

keZ keZ

—2/@@P+mm%@—mm@®+MW§®» 0
R
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Remark 13.10. Denote by A is the Fourier multiplier with symbol (£)° = (1 +
£]2)%/2. Clearly

APf(z) =PAsf(z) = Zf(k)<k>sezkx

keZ

for all test function f € C§°(R), namely AP = PAs. The previous lemma thus
implies that
IPallesry < 2091l 5s @) + 1T Asgll r2(m))-

Now one has TA; = AT + sA;_50;, as can be checked directly using the Fourier
transform, so that

IPgllesry < C(8)gllms ) + 1Tl s (w)) (13.18)

where C(s) = 2(1 + |s]).
Note that, for s integer, 95T = TO + s0571, and this is useful to calculate
I Tgll s () using [|05Tgll L2 (w)- O

Observe that PS = I because, for u periodic,

PSu(x) = Z(Su)(a; + 27k) = Z p(x + 2rk)u(z) = u(z).

keZ keZ
Moreover,
(Y, )2y = (PY,v)r2ry V¥ € C*(R), v € L*(T). (13.19)
Indeed,
(. 0)see) = [ @) (o ™) do = S b0,
R keZ keZ
and also

(PY,v)2(ry = /11‘ (Z@(k;) e’ikw> (Zﬁfje—zjz) do — Z@(lﬂ)a

kEZ JEZ kEZ
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