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2 Dipartimento di Matematica, Università di Roma “La Sapienza”, Roma, I-00185, Italy

3 Dipartimento di Matematica, Università di Roma Tre, Roma, I-00146, Italy
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Abstract

We study the ordinary differential equation εẍ + ẋ + ε g(x) = εf(ωt), with f and
g analytic and f quasi-periodic in t with frequency vector ω ∈ Rd. We show that
if there exists c0 ∈ R such that g(c0) equals the average of f and the first non-zero
derivative of g at c0 is of odd order n, then, for ε small enough and under very mild
Diophantine conditions on ω, there exists a quasi-periodic solution close to c0, with
the same frequency vector as f . In particular if f is a trigonometric polynomial the
Diophantine condition on ω can be completely removed. This extends results previously
available in the literature for n = 1. We also point out that, if n = 1 and the first
derivative of g at c0 is positive, then the quasi-periodic solution is locally unique and
attractive.

1 Introduction

Consider the ordinary differential equation

εẍ+ ẋ+ ε g(x) = ε f(ωt), (1.1)

where x ∈ R, ε ∈ R, ω ∈ Rd, with d ∈ N, and the functions g : R → R and f : Td → R

are real analytic. From a physical point of view, for ε > 0 the equation describes a one-
dimensional system with mechanical force g, subject to a quasi-periodic forcing f with
frequency vector ω and in the presence of friction — with 1/ε being the damping coefficient.
Without loss of generality we can (and shall) assume ω ·ν 6= 0 ∀ν ∈ Zd∗ := Zd \ {0}; if not,
f can be expressed as a quasi-periodic function with frequency vector ω′ ∈ Rd′ , d′ < d, with
rationally independent components. Equations like (1.1) also describe electric circuits which
are of interest in electronic engineering and theory of circuits; we refer to [18, 2, 16, 8, 3]
for physical motivations and more details.
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We are interested in studying the existence of quasi-periodic solutions to (1.1) with the
same frequency vector as the forcing (response solutions), for small values of ε. Hence the
parameter ε plays the role of a perturbation parameter. As we shall see, the existence of
such solutions relies on two kinds of conditions: a non-degeneracy assumption on f, g and
non-resonance hypothesis on ω. Let us illustrate the conditions. Write

f(ψ) =
∑
ν∈Zd

eiν·ψfν ,

and set N(f) = N if f is a trigonometric polynomial of degree N and N(f) =∞ otherwise.
Define also

αn(ω) := min
{
|ω · ν| : 0 < |ν| ≤ 2n

}
, B(ω) :=

∞∑
n=0

1
2n

log
1

αn(ω)
, (1.2a)

βn(ω) := min
{
|ω · ν| : 0 < |ν| ≤ 2n, |ν| ≤ N(f)

}
, εn(ω) :=

1
2n

log
1

βn(ω)
. (1.2b)

The first hypothesis is a non-degeneracy assumption involving the functions f and g.

Hypothesis 1. There exists a zero c0 of odd order n of the equation g(c0) = f0.

The periodic case d = 1 is much easier and requires no further assumption. It has been
studied in detail [14, 15, 5], with a thorough characterization of the analyticity properties of
the response solution for ε in the complex plane. One could study the analyticity properties
of the quasi-periodic solution for ε in the complex plane also in the quasi-periodic case —
for instance this has been done in [14, 15, 5, 6]. Here we prefer to focus on real ε, both
for simplicity and because it represents the interesting case from a physical point of view:
ε > 0 small corresponds to a system with large damping coefficient γ = 1/ε.

The quasi-periodic case requires a non-resonance assumption on the frequency vector ω.
Under the hypothesis that ω is a Bryuno vector (namely that B(ω) <∞ [4]), the existence
of a quasi-periodic solution with frequency vector ω was proved in [15] for n = 1 and in [11]
for any odd n. The condition on ω for a response solution to exist can be weakened into
the following non-resonance condition.

Hypothesis 2. One has lim
n→∞

εn(ω) = 0.

Such a condition is automatically satisfied either for d = 1 (periodic case) or for d > 1
and f a trigonometric polynomial. If ω is a Bryuno vector, then the sequence {εn(ω)} is
summable, so, for such ω, Hypothesis 2 is obviously satisfied for any f .

Hypothesis 2 was first considered in [5], where it was proved that, under Hypothesis 1
with n = 1, and Hypothesis 2, there exists a response solution which is jointly analytic in
ψ and in ε, for ε in a suitable domain of the complex plane with the boundary tangent to
the imaginary axis at the origin (a larger analyticity domain was obtained afterwards in
[6]). The proof in [5] follows from the existence of an approximate solution by a fixed point
argument. In Section 2 we prove the following variant of the result in [5].
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Theorem 1.1. Assume Hypothesis 1 with n = 1, and Hypothesis 2. There exists ε0 > 0
such that for all |ε| ≤ ε0 there is at least one quasi-periodic solution x0(t) = c0 + u(ωt, ε)
to (1.1), with u(ψ, t) = O(ε) analytic in ψ and C∞ in ε.

Our proof is different with respect to [5]: we show that, by introducing an auxiliary
parameter µ, it is possible to write the solution as a convergent power series in µ with radius
of convergence strictly greater than 1. Moreover, strictly speaking, smoothness at ε = 0
does not follows from [5], since the origin is on the boundary of the domain of analyticity
in the complex ε-plane constructed therein. However, we want to stress that we borrow
from [5] the idea not to estimate all small divisors independently of ε. We refer to Remark
2.9 for a more precise comparison. In fact, the main reason to give explicitly the proof of
Theorem 1.1 is to set up notations in an easier case before dealing with a more degenerate
case (any odd n) and prove a stronger result, namely Theorem 1.4 below, which is the main
result of the present paper.

From the proof it turns out that, for fixed f , the condition to require on ω for a quasi-
periodic solution to exist can weakened. For instance, for the solution to be L∞ it is
sufficient that ∑

ν∈Zd

|fν |
|ω · ν|

<∞. (1.3)

If we look for solutions with more regularity (as it is natural), a bit more has to be required.
For instance, if f is analytic in the complexified torus Tdξ := {x ∈ C : Rex ∈ Td, |Imx| <
ξ}, by looking at the proof of Theorem 1.1 in Section 2, it is easy to realise that the
following possibilities occur. In order to have an analytic response solution, one may replace
Hypothesis 2 with the weaker condition |ω · ν| ≥ Ξ e−ξ

′|ν| for all ν 6= 0 and for some Ξ > 0
and ξ′ ∈ (0, ξ). To have a solution which is at least differentiable we can further enlarge the
set of ω allowed, by requiring that |ω · ν| ≥ Ξ e−ξ|ν||ν|p, provided the exponent p is large
enough; moreover the larger the exponent the smoother is the solution. However Hypothesis
2 has the advantage of being independent of the particular f appearing in (1.1) and hence
can be formulated only in terms of the frequency vector ω. For further comments of this
issue we defer to Section 4.

Both the method used here — and in [14, 15, 11, 13] — and the method of [5] assure
the uniqueness of the solution only in a suitable space of smooth functions, so in principle
we can neither exclude the existence of other quasi-periodic solutions nor conclude that
the solution we construct is attractive. However, under a slightly stronger non-degeneracy
condition we can obtain more information. Indeed the following result holds — the proof
can be found in [13].

Theorem 1.2. Consider (1.1) with ε > 0. Assume Hypothesis 1 with n = 1 and a :=
g′(c0) > 0. If there is a quasi-periodic solution to (1.1) of the form x0(t) = c0 +O(ε), then
it is a local attractor.

By existence of local attractor we mean that there is a simply connected open set
containing the solution such that all trajectories starting inside that set tend to the solution
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as time goes to infinity. In particular this yields that the quasi-periodic solution is locally
unique. Combining Theorems 1.1 and 1.2 we deduce the following result.

Theorem 1.3. Consider (1.1) with ε > 0 and f a trigonometric polynomial. If Hypothesis
1 holds with n = 1 and a > 0, then for any ω there is a quasi-periodic local attractor with
the same frequency vector as f .

On physical grounds we could expect a result of this kind to hold for any analytic
function f . However Theorem 1.1 requires some Diophantine condition on ω — however
mild it may be. It would be interesting to see whether the Diophantine condition on ω can
be removed completely for f analytic, as in the case of trigonometric polynomials. Another
interesting question is whether results of the kind of Theorems 1.1 to 1.3 could be obtained
when n ≥ 3.

As far as the second question is concerned, the first remark in order is that the assump-
tion that the zero is of odd order cannot be removed: if there is a zero c0 of even order,
then there is no quasi-periodic solution to (1.1) reducing to c0 as ε → 0 (as it has been
shown in [11]). For odd n we shall prove a result analogous to Theorem 1.1.

Theorem 1.4. Assume Hypothesis 1 with n ≥ 3, and Hypothesis 2. There exist ε0 > 0
such that for all |ε| ≤ ε0 there is at least one quasi-periodic solution x0(t) = c0 + u(ωt, ε)
to (1.1), with u(ψ, t) = O(ε) analytic in ψ and C∞ in ε.

If we require for ω to be a Bryuno vector, then the existence of an analytic quasi-periodic
solution of the form c0 +O(ε) for all n odd follows from [11, 12]. The proof of Theorem 1.4
follows the same lines of the proof of Theorem 1.1, after a first step of perturbation theory
in order to modify the linear operator, and with a more careful use of the irrationality of
the frequency vector ω. In Section 3 we shall discuss the case of trigonometric polynomials
(with the proof of a somewhat more technical lemma worked out in Appendix A). We shall
see in Appendix B how to generalise the proof to any analytic f .

As in the case of Theorem 1.1, it is an open problem whether and how far the non-
resonance condition on ω can be weakened so as to yield the same result for any analytic
f . On the contrary, Hypothesis 1 is optimal: if the equation g(c0) = f0 either has no zero
or has a zero c0 of even order, then no response solution of the form c0 + O(ε) exists [11].
It would be worth investigating whether some analogues to Theorems 1.2 and 1.3 could be
obtained for n ≥ 3.

2 Proof of Theorem 1.1

Let us denote by Tdξ the complexified torus, i.e. Tdξ := {x ∈ C : Re(x) ∈ Td, |Im(x)| < ξ}
and by ∆(c0, ρ) the disk of center c0 and radius ρ in the complex plane. By the assumptions
on f and g, for any c0 ∈ R there exist ξ0 > 0 and ρ0 > 0 such that f is analytic in Tdξ0 and
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g is analytic in ∆(c0, ρ0). Then for all ξ < ξ0 and all ρ < ρ0 one has

f(ψ) =
∑
ν∈Zd

eiν·ψfν , |fν | ≤ Φ e−ξ|ν|, (2.1a)

g(x) =
∞∑
p=0

ap(x− c0)p, ap :=
1
p!

dpg
dxp

(c0), |ap| ≤ Γ ρ p, (2.1b)

where Φ is the maximum of f(ψ) for ψ ∈ Tdξ and Γ is the maximum of g(x) for x ∈ ∆(c0, ρ).
Of course both ρ0 and Γ depend on c0.

Hypothesis 1 implies that a := an 6= 0 and ap = 0 for n > 1 and p = 1, . . . , n− 1. Here
we assume both Hypothesis 2 and Hypothesis 1, with n = 1. Let us rewrite (1.1) as

εẍ+ ẋ+ ε a (x− c0) + εG(x) = ε f̃(ωt), (2.2)

where

G(x) := g(x)− g(c0)− a (x− c0) =
∞∑
p=2

ap(x− c0)p, (2.3a)

f̃(ψ) := f(ψ)− f0 =
∑
ν∈Zd

∗

eiν·ψfν , (2.3b)

and introduce the auxiliary parameter µ by modifying (2.2) into

εẍ+ ẋ+ ε a (x− c0) + µ εG(x) = µ ε f̃(ωt). (2.4)

Then we look for a quasi-periodic solution to (2.4) of the form

x(t, ε, µ) = c0 + u(ωt, ε, µ), u(ψ, ε, µ) =
∞∑
k=1

∑
ν∈Zd

µkeiν·ψu
(k)
ν (ε). (2.5)

We shall show that there exists µ0 > 0 such that there exists a solution of the form (2.5),
analytic in µ for |µ| < µ0. Since the original equation is recovered when µ = 1 we need
µ0 > 1. This will be obtained by showing that the coefficients u(k)

ν (ε) are bounded as
|u(k)
ν (ε)| ≤ ABke−ξ

′|ν||ε|αk, for suitable positive constants A,B, ξ′, α.

By inserting (2.5) into (2.4) we obtain a recursive definition for the coefficients u(k)
ν (ε).

By defining
D(ε, s) := −εs2 + is+ ε a, (2.6)

one has, formally,

D(ε,ω · ν)u(1)
ν (ε) = ε fν (2.7a)

D(ε,ω · ν)u(k)
ν (ε) = −ε

∞∑
p=2

ap
∑

k1,...,kp≥1
k1+...+kp=k−1

∑
ν1,...,νp∈Zd

ν1+...+νp=ν

u
(k1)
ν1 (ε) . . . u(kp)

νp (ε), k ≥ 2, (2.7b)
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for ν 6= 0, and

a u
(k)
0 (ε) = −

∞∑
p=2

ap
∑

k1,...,kp≥1
k1+...+kp=k−1

∑
ν1,...,νp∈Zd

ν1+...+νp=0

u
(k1)
ν1 (ε) . . . u(kp)

νp (ε), k ≥ 1. (2.8)

Here and henceforth the sums over the empty set are meant as zero.

Remark 2.1. For k = 1 (2.8) yields u(1)
0 = 0. For k = 2 one has u(2)

ν = 0 ∀ν ∈ Zd.

By iterating the definition one obtains an explicit expression for the coefficients u(k)
ν ,

which can be represented in terms of trees.
A rooted tree θ is a graph with no cycle, such that all the lines are oriented toward a

unique point (root) which has only one incident line (root line). All the points in θ except
the root are called nodes. The orientation of the lines in θ induces a partial ordering relation
(�) between the nodes. Given two nodes v and w, we shall write w ≺ v every time v is
along the path (of lines) which connects w to the root; we shall write w ≺ ` if w � v, where
v is the unique node that the line ` exits. For any node v denote by pv the number of lines
entering v.

Given a rooted tree θ we denote by N(θ) the set of nodes, by E(θ) the set of end nodes,
i.e. nodes v with pv = 0, by V (θ) the set of internal nodes, i.e. nodes v with pv ≥ 1, and
by L(θ) the set of lines; by definition N(θ) = E(θ)q V (θ).

We associate with each end node v ∈ E(θ) a mode label νv ∈ Zd∗ and with each internal
node a degree label dv ∈ {0, 1}. With each line ` ∈ L(θ) we associate a momentum ν` ∈ Zd
with the constraint

ν` =
∑

w∈E(θ)
w≺`

νw. (2.9)

We add the two following further constraints: (1) pv ≥ 2 ∀v ∈ V (θ) and (2) if dv = 0 then
the line ` exiting v has ν` = 0. We shall write V (θ) = V0(θ) q V1(θ), where V0(θ) := {v ∈
V (θ) : dv = 0}. For any discrete set A we denote by |A| its cardinality. Define the degree
and the order of θ as d(θ) := |E(θ)|+ |V1(θ)| and k(θ) := |N(θ)|, respectively.

We call equivalent two labelled rooted trees which can be transformed into each other
by continuously deforming the lines in such a way that they do not cross each other. In the
following we shall consider only inequivalent labelled rooted trees, and we shall call them
trees tout court, for simplicity.

We associate with each node v ∈ N(θ) a node factor

Fv :=

{
−εdv apv , v ∈ V (θ),
ε fνv , v ∈ E(θ),

(2.10)
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and with each line ` ∈ L(θ) a propagator

G` :=

{
1/D(ε,ω · ν`), ν` 6= 0,
1/a, ν` = 0.

(2.11)

Then, by defining

V (θ, ε) :=

( ∏
v∈N(θ)

Fv

)( ∏
`∈L(θ)

G`

)
(2.12)

one has
u

(k)
ν (ε) =

∑
θ∈Tk,ν

V (θ, ε), ν ∈ Zd, (2.13)

where Tk,ν is the set of trees of order k and momentum ν associated with the root line.
The tree expansion (2.13) for the coefficients u(k)

ν (ε) can be easily checked by induction on
the order k; see for instance [11, 13, 14] for details.

Lemma 2.2. One has |D(ε, s)| ≥ max{|aε|, |s|} for ε small enough and all s ∈ R.

Proof. One has |D(ε, s)| ≥ |ImD(ε, s)| and |D(ε, s)| ≥ |D(ε, 0)| for ε small enough.

Lemma 2.3. For any tree θ one has |E(θ)| ≥ |V (θ)|+ 1.

Proof. By induction on the order of the tree.

Remark 2.4. Equality |E(θ)| = |V (θ)| + 1 holds when |N(θ)| = 2p + 1, with p ≥ 1, and
pv = 2 for all v ∈ V (θ).

Corollary 2.5. For any tree θ one has |E(θ)| ≥ 1
2

(k(θ) + 1).

Lemma 2.6. For any k ≥ 1, any ν ∈ Zd and any tree θ ∈ Tk,ν one has

|V (θ, ε)| ≤ Bk|ε|(k+1)/2
∏

v∈E(θ)

e−3ξ|νv |/4

where ξ is as in (1.2a), with B a positive constant depending on Φ, Γ and ρ.

Proof. One bounds (2.12) as

|V (θ, ε)| ≤ |ε|d(θ)
( ∏
v∈V (θ)

|apv |

)( ∏
v∈E(θ)

|fνv |
|ω · νv|

)( ∏
v∈V0(θ)

1
|a|

)( ∏
v∈V1(θ)

1
|aε|

)
,

where we have used the bound |D(ε, s)| ≥ |s| for the propagators of the lines exiting the
end nodes and the bound |D(ε, s)| ≥ |aε| for the propagators of the lines exiting the nodes
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in V1(θ). For each end node we bound fνv as in (1.2): then we extract a factor e−3ξ|νv |/4

and use Hypothesis 2 to bound e−ξ|ν|/4|ω · ν|−1 ≤ C0, for a suitable constant C0, for all ν
such that fν 6= 0. Moreover, by Corollary 2.5,

d(θ)− |V1(θ)| = |E(θ)| ≥ k(θ) + 1
2

,

so that we obtain

|V (θ, ε)| ≤ Γ|V (θ)|ρ|N(θ)|(C0Φ)|E(θ)|a−|V (θ)|

( ∏
v∈E(θ)

e−3ξ|νv |/4

)
|ε|(k(θ)+1)/2.

Therefore, by bounding max{|E(θ)|, |V (θ)|} ≤ k(θ), the assertion follows.

Lemma 2.7. For any k ≥ 1 and ν ∈ Zd one has∣∣∣u(k)
ν (ε)

∣∣∣ ≤ Cke−ξ|ν|/2|ε|(k+1)/2,

where ξ is as in (1.2), with C a positive constant depending on Φ, Γ, ξ and ρ.

Proof. The coefficients u(k)
ν are defined by (2.13): we have to use the bounds of Lemma 2.6

and sum over all trees in Tk,ν . The sum over the Fourier labels {νv}v∈E(θ) is performed
thanks to the factors e−3ξ|νv |/4 associated with the end nodes that we have not used to
control the denominators |ω ·νv| — see the proof of Lemma 2.6 — and produces an overall
factor C |E(θ)|

1 e−ξ|ν|/2, for some positive constant C1. The sum over the other labels produces
a factor C |N(θ)|

2 , with C2 a suitable positive constant. Then the assertion follows by taking
C = BC1C2.

Remark 2.8. The main idea in the proof is to bound in a different way the propagators,
depending on whether or not the lines exit end nodes. Eventually the propagators of the
lines exiting the end nodes have a “gain” factor ε with respect to the propagators of the
other lines: together with the fact that each internal node has at least two entering lines —
so that the number of “bad” propagators turns out to be less than the number of “good”
propagators —, this leads to bound the product of the propagators of any tree of order k
proportionally to |ε|−k/2. Note that a similar feature has been exploited in [10] in a rather
different context, i.e. the problem of synchronisation in chaotic systems. As in that case
— and as in [5] — no small divisor problem arises: of course this makes easier to study the
convergence of the series.

Remark 2.9. The crucial property described in Remark 2.8, which allows to require only
Hypothesis 2 on ω, has been already pointed out and used in [5]: in our proof we simply
adapted that idea to our formalism. Smoothness in ε at ε = 0 is not discussed in [5], but
very likely could be derived also with the method used therein.
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The function (2.5), with the coefficients given by (2.13), solves (2.4) order by order.
Since the series converges uniformly, then it is also a solution tout court of (2.4) — and
hence of (2.2) for µ = 1. Analyticity in ψ ∈ Tdξ′ for any ξ′ < ξ/2 follows from the bound on
the Fourier coefficients given by Lemma 2.7. To prove smoothness in ε one can reason as
follows. Each value V (θ, ε) is a polynomial in ε with coefficients depending on ε through
the propagators. If one computes the n-th derivative of V (θ, ε) with respect to ε, one can
bound it in a different way depending on whether one has or not (k(θ) + 1)/2 ≤ n. If
(k(θ) + 1)/2 ≤ n, then all the propagators and their derivatives are bounded by using the
inequality |D(ε, s)| ≥ |s| of Lemma 2.2. If (k(θ) + 1)/2 > n one can reason as done above
to arrive at the bounds in Lemma 2.7: one obtains the same bounds, up to a multiplicative
constant A depending on n only, and with a power of ε decreased by n, so that the sum
over k(θ) can still be performed.

3 Proof of Theorem 1.4

Assume Hypothesis 2 and Hypothesis 1 with n ≥ 3. We look for a solution x(t) to (1.1) of
the form

x(t) = c0 + ε x1(t) + ξ(t), (3.1)

where ε x1(t) it the solution to the first-order truncation of (1.1), i.e.

εẍ1 + ẋ1 = f̃(ωt),

with f̃ as in (2.3). An easy computation gives x1(t) = ζ + u[1](ωt, ε), where

u[1](ψ, ε) :=
∑
ν∈Zd

∗

eiν·ψu
[1]
ν (ε), u

[1]
ν (ε) :=

fν
iω · ν(1 + iεω · ν)

, (3.2)

and ζ is a real parameter that will be fixed later on. Note that Hypothesis 2 guarantees
that the function (3.2) is well-defined for any analytic f . Therefore the problem is reduced
to finding a zero-average quasi-periodic solution ξ(t) to the equation

εξ̈ + ξ̇ + ε G̃(ε x1(t) + ξ) = 0, G̃(x) :=
∞∑
p=n

apx
p, (3.3)

which can be rewritten as

εξ̈ + ξ̇ + b εn ξ + µ ε Ĝ(µεx1(t), ξ) = 0, (3.4)

where µ = 1 and

b :=
∞∑
p=n

p ap ε
p−n
[(
x1(t)

)p−1]
0
, (3.5a)

Ĝ(x, ξ) :=
∞∑
p=n

ap

p∑
s=0

(
p
s

)
ξs
(
xp−s − δs,1

[
xp−s

]
0

)
, (3.5b)
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with [·]0 denoting — here and henceforth — the average on Td.

Remark 3.1. By setting b0 := n an [(x1(t))n−1]0, one has b0 6= 0, because an = a 6= 0 and
n is odd, and hence b = b0(1 +O(ε)) does not vanish for ε small enough.

As in Section 2 we first ignore the constraint µ = 1 and treat it as a parameter: we shall
look for a solution which can be written as a power series in µ, with coefficients which still
admit a tree expansion.

Let us assume here that f is a trigonometric polynomial of degree N , i.e. that fν = 0
for all ν ∈ Zd such that |ν| > N . In such a case it is more convenient to redefine Φ =
max{|fν | : |ν| ≤ N}. We shall see in Appendix B how to extend the proof to the case of f
analytic. Define

α = min{|ω · ν| : 0 < |ν| ≤ (n + 1)N}. (3.6)

One has α > 0 by the assumption of irrationality on ω.
With respect to Section 2 we modify the tree expansion as follows. Rooted trees and

the sets N(θ), E(θ), V (θ) and L(θ) are defined as previously. If pv denotes the number
of lines entering v ∈ V (θ) we impose the constraint pv ≥ n. We associate with each end
node v a mode label νv ∈ Zd and with each line a momentum ν` ∈ Zd, still satisfying
(2.9) and with the further constraint that ν` 6= 0 if ` exits an internal node. We split
E(θ) = E0(θ) q E1(θ), with E0(θ) := {v ∈ E(θ) : νv = 0}. The order of θ is still
defined as k(θ) = |N(θ)|. Let us define also L0(θ) := {` ∈ L(θ) : |ω · ν`| < α/2} and
V0(θ) := {v ∈ V (θ) : the line ` exiting v belongs to L0(θ)}, and set V1(θ) := V (θ) \ V0(θ).

We call excluded a node v such that pv−1 lines entering v exit end nodes, and the other
line entering v exits an internal node and has the same momentum as the line exiting v.
Let Tk,ν be the set of inequivalent labelled rooted trees, which do not contain any excluded
nodes, of order k and momentum ν associated with the root line. In the following we shall
call simply trees the elements of Tk,ν .

We associate with each node v ∈ N(θ) a node factor

Fv :=


−ε apv , v ∈ V (θ),
ε fν , v ∈ E1(θ)
ε ζ, v ∈ E0(θ),

(3.7)

where ζ ∈ R is the parameter introduced before (3.2), and with each line ` ∈ L(θ) a
propagator

G` :=


GE(ε,ω · ν`), ν` 6= 0 and ` exits an end node,
GV (ε,ω · ν`), ν` 6= 0 and ` exits an internal node,
1, ν` = 0,

(3.8)

with
GE(ε, s) :=

1
is(1 + iεs)

, GV (ε, s) :=
1

is(1 + iεs) + b εn
, (3.9)
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where b ∈ R+ is defined in (3.5a) — and hence is a function of ζ.
Setting

V (θ, ε) :=

( ∏
v∈N(θ)

Fv

)( ∏
`∈L(θ)

G`

)
(3.10)

and
u

[k]
ν (ε) :=

∑
θ∈Tk,ν

V (θ, ε), ν 6= 0, k ≥ 2, (3.11)

we define (formally) the series

ξ(ψ, ε, µ) :=
∞∑
k=2

µk
∑
ν∈Zd

∗

eiν·ψu
[k]
ν (ε). (3.12)

and set u(ψ, ε, µ) = µε
(
ζ + u[1](ψ, ε)

)
+ ξ(ψ, ε, µ).

Remark 3.2. The constraint pv ≥ n implies u[k]
ν (ε) = 0 ∀ν ∈ Zd∗ and 2 ≤ k ≤ n.

Remark 3.3. The coefficients (3.10) depend on ζ, which so far is still a free parameter.

The definition (3.12) is formal not only in the sense that it may fail to converge. In fact
the very definition of the coefficients u[k]

ν (ε) involves quantities — the propagators — for
which we have not yet any estimate. The latter problem is easily solved as follows. Define

DV (ε, s) :=
1

GV (ε, s)
= is (1 + iεs) + b εn. (3.13)

Lemma 3.4. There exist ε1 > 0 such that |DN (ε, s)| ≥ max{|s|, |bεn|} for all s ∈ R and
|ε| < ε1.

Proof. Reason as in the proof of Lemma 2.2.

Thanks to Lemma 3.4 we deduce that the coefficients (3.11) are well defined for all
k ≥ 2 and all ν ∈ Zd∗. Now we want to find conditions for the series (3.12) to converge. We
shall prove that, for any ζ ∈ R, under the assumption that ε is small enough, depending
on ζ, the series (3.12) converges to a well-defined function analytic in ψ and C∞ in ε, with
a radius of convergence µ0 > 1: this will allow us to take µ = 1 in (3.4). Moreover we shall
show that, for any fixed ζ ∈ R, the coefficients u[k]

ν (ε) admit uniform bounds for |ζ| ≤ ζ.

Lemma 3.5. For any tree θ one has |E(θ)| ≥ (n− 1) |V (θ)|+ 1.

Proof. The bound is proved by induction by using that pv ≥ n ∀v ∈ V (θ).

Corollary 3.6. For any tree θ one has n |E(θ)| ≥ (n− 1) k(θ) + 1.

11



Lemma 3.7. For any tree θ one has n |V0(θ)| ≤ |E(θ)| − 2.

The proof of Lemma 3.7 is in Appendix A.

Lemma 3.8. For any k ≥ 1 and ν ∈ Zd∗ and any tree θ ∈ Tk,ν one has

|V (θ, ε)| ≤ Bk|ζ||E0(θ)||b|−|V0(θ)||ε|1+n−1

n2 k,

with B a positive constant depending on Φ, Γ, ρ and α.

Proof. One bounds (3.10) as

|V (θ, ε)| ≤ |ε|k(θ)|ζ||E0(θ)|

( ∏
v∈V (θ)

|apv |

)( ∏
v∈E1(θ)

|fνv |
|ω · νv|

)( ∏
v∈V0(θ)

1
|bεn|

)( ∏
v∈V1(θ)

2
α

)
,

where, by relying on Lemma 3.4, we have used the bound |D(ε, s)| ≥ |s| for the propagators
of the lines exiting either the nodes v ∈ E1(θ) or the nodes v ∈ V1(θ) and the bound
|D(ε, s)| ≥ |bεn| for the propagators of the lines exiting the nodes in V0(θ). For each end
node we bound |fνv | |ω · νv|−1 ≤ 2Φ/α. Then

|V (θ, ε)| ≤ |ε|k(θ)−n|V0(θ)|Γ|V (θ)|ρ|N(θ)||ζ||E0(θ)|Φ|E1(θ)||b|−|V0(θ)|(2/α)|V1(θ)|+|E1(θ)|,

where we can bound, by using Lemma 3.7 and Corollary 3.6,

k(θ)− n|V0(θ)| = |E(θ)|+ |V (θ)| − n|V0(θ)| ≥ |E(θ)| − (n− 1)|V0(θ)|,

≥ |E(θ)| − (n− 1)
E(θ)− 2

n
= 2− 2

n
+
|E(θ)|

n
≥ 1 +

n− 1
n2

k(θ),

so that, by using that max{|V (θ)|, |E(θ)|} ≤ |N(θ)| = k(θ), the assertion follows.

Remark 3.9. The bounds in Lemma 3.8 depend on ζ. However, for any given ζ > 0,
there exists b > 0 such that |b| ≥ b (by continuity), and hence for |ζ| ≤ ζ we can obtain
uniform bounds

|V (θ, ε)| ≤ Bkζk∗ b
−k/n
∗ |ε|1+n−1

n2 k,

where ζ∗ = max{1, ζ} and b∗ = min{1, b}.

Lemma 3.10. For any k ≥ 1 and ν ∈ Zd∗ one has∣∣∣u[k]
ν (ε)

∣∣∣ ≤ Ck|ε|1+n−1

n2 k,

with C a positive constant depending on Φ, Γ, ρ, ζ∗, b∗, N and α.
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Proof. Reason as in the proof of Lemma 2.7 and use Remark 3.9. Now the sum over the
mode labels can be bounded by (2N + 1)dk.

We have proved that the series (3.12) converges to a well-defined function for |µ| < µ0,
with µ0 > 1, provided (1) |ζ| ≤ ζ for some ζ > 0 and (2) ε is small enough. Moreover, by
construction, the function is periodic and analytic in ψ and C∞ in both ε and ζ (this can
be seen as in Section 2). In the remaining part of this section we shall prove that ζ can be
fixed in such a way that |ζ| ≤ ζ and the function ξ(ωt, ε, µ) solves the equation (3.4) for
|µ| < µ0 — and hence in particular ξ(ωt, ε, 1) solves the equation (3.3).

We can write (3.4) in Fourier space, if we expand (formally)

ξ(t) =
∑
ν∈Zd

∗

eiν·ωtξν ,

so as to obtain

(iω · ν(1 + iεω · ν) + b εn) ξν = −
[
µ ε Ĝ(µ ε x1(t), ξ)

]
ν
, ν 6= 0, (3.14a)

0 = −
[
µ ε Ĝ(µ ε x1(t), ξ)

]
0
, (3.14b)

where [A]ν means that we expand the function A in Fourier series in ψ and keep the Fourier
coefficient with label ν. If we expand further (again formally) ξν as a Taylor series in µ,
by writing

ξν =
∞∑
k=2

µkξ
[k]
ν ,

we can write (3.14a) order by order,

(iω · ν(1 + iεω · ν) + b εn) ξ[k]ν = −
[
ε Ĝ(µ ε x1(t), ξ)

][k−1]

ν
, ν 6= 0, k ≥ 2, (3.15)

where [A][k]ν means that we expand the function [A]ν in powers of µ and keep the Taylor
coefficient to order k.

Lemma 3.11. For any ζ ∈ R the coefficients ξ[k]ν = u
[k]
ν (ε) solve (3.15).

Proof. Expand the right hand side of (3.15) in powers of εx1 and ξ, and write ε x1 accord-
ing to (3.1), with the coefficients u[1]

ν (ε) as in (3.2), and ξ according to (3.12), with the
coefficients u[k]

ν (ε) as in (3.11). Then (3.15) reduces to (3.11) itself.

Therefore, for any ζ ∈ R, the function (3.12) formally solves (3.14a). If |ζ| ≤ ζ and
ε is small enough then the series (3.12) converges uniformly and therefore solves (3.14a).
Moreover the function Ĝ(µ ε x1(t), ξ) is well defined and hence it makes sense to consider
its average. So we are left with the equation (3.14b): we shall show that it is possible to
fix ζ in such a way that such an equation is satisfied.
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Consider the implicit function problem

F2(ζ, ε) :=
1
εn
[
ε Ĝ(µ ε x1(t), ξ)

]
0

= 0. (3.16)

If we are able to find a solution to (3.16) then (3.14b) is also satisfied.

Lemma 3.12. Let ε be small enough. There is ζ > 0 such that there exists a unique real
solution ζ = ζ(ε) to (3.16), with |ζ(ε)| < ζ. Moreover ζ(ε) is C∞ in ε.

Proof. One has

F2(ζ, ε) = F 2(ζ) + F3(ζ, ε), F 2(ζ) :=
[ (
ζ + u[1](ωt, ε)

)n ]
0
,

where F3(ζ, ε) is a function which goes to zero when ε goes to zero. The function F 2(ζ) is
a polynomial of order n in ζ. The equation F 2(ζ) = 0 admits a unique real root ζ0 — see
Lemma 2.4 in [12]. Since dF 2(ζ)/dζ = n

[ (
ζ + u[1](ωt, ε)

)n−1 ]
0

= b0/a, the root is simple.
Therefore, by the implicit function theorem, for ε small enough there is a unique ζ(ε) such
that ζ(0) = ζ0 and F2(ζ(ε), ε) = 0.

In particular, as the proof of Lemma 3.12 shows, one can take ζ = 2ζ0, where ζ0 is
the root of F 2(ζ) = 0. The proof of Theorem 1.4 is complete, in the case of trigonometric
polynomials f .

4 Comments

By looking at the proofs of Theorems 1.1 and 1.4 given in Sections 2 and 3, respectively,
we see that, in both cases, Hypothesis 2 ensures that the first order is well-defined. Indeed
we used Hypothesis 2 to bound the propagators of the lines ` exiting the end nodes as
|ω · ν`|−1, i.e. to control D(ε,ω · ν) in (2.7a) and the denominators iω · ν(1 + iεω · ν)
in (3.3). Therefore we can rephrase the two theorems by saying that the condition for a
quasi-periodic solution to exist is the same condition for the first order to be well-defined.

We note also that, under Hypothesis 2, the formal expansion in powers of ε is well
defined to all orders. This can be easily checked, for instance, by looking for a solution
to (1.1) in the form of a formal power series in ε: one finds a recursive definition for the
coefficients of the series and writes down a tree expansion for such coefficients. Then one
shows that the coefficients are well defined to all orders under the only Hypothesis 2 — see
[7] for more details in a similar case. In our case, the existence of the formal power series is
enough to conclude about the existence of a solution: Theorems 1.1 and 1.4 imply that the
conditions for the existence of a solution are the same conditions required for the existence
of a formal solution, i.e. a solution in the form of a formal power series in ε. This is a quite
non-general feature. Usually, one cannot infer that a solution to an ordinary differential
equation exists simply from the fact that a formal solution exists: a classical example are
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elliptic lower-dimensional tori (see however [17] and references quoted therein for germs of
vector fields in a neighborhood of a fixed point with hyperbolic linear part).

From the perspective outlined above it is not clear whether the theorems could be
generalised to any vector ω ∈ Rd for any analytic forcing f : for the first order or the formal
expansion to be well defined, some Diophantine condition on ω seems necessary. On the
other hand, for instance when n = 1 and a > 0, from a physical point of view one expects
for a local attractor to exist, and it is not unlikely that a synchronisation phenomenon
occurs. Of course it could also happen that the conjugation exists but is not smooth (think
of Denjoy’s theorem for diffeomorphisms of the circle [9, 1]): in that case it would not
possible to construct it with the techniques used here.

We conclude with two technical comments.

1. The smallness assumptions of both Theorems 1.1 and 1.4 can be weakened. Indeed,
by looking at the proofs of the Theorems — in particular the bounds on V (θ, ε) given
in the proofs of Lemmas 2.6 and 3.8 —, one sees that the parameter that must be
small is εΦ. Therefore a large forcing is still allowed as far as εΦ remains small.

2. A property like Lemma 3.7 — or Lemma B.5 in the case of analytic forcing — can
be found to hold also for the case n = 1 (for a suitably defined set V0(θ) — or L0(θ)
in Appendix B). The argument of Section 2 shows that this is not necessary to prove
the existence of a quasi-periodic solution. However, a property of this kind can be
used to enlarge, with respect to the results found in [5], the domain of analyticity for
ε in the complex plane; see [6] for results in that direction.

A Proof of Lemma 3.7

The proof is by induction on the order of the tree. First of all note that k(θ) ≥ n + 1
by construction (see Remark 3.2). If k(θ) = n + 1, then the root line has momentum
ν = ν1 + . . . + νn, where ν1, . . . ,νn are the mode labels of the n end nodes of θ, so that
|ν| ≤ nN and hence |ω · ν| ≥ α > α/2. Therefore |V0(θ)| = 0 in such a case and the bound
holds.

If k(θ) ≥ n + 2, call `0 the root line of θ and v0 the node which `0 exits. Let r
be the number of end nodes whose exiting lines enter v0 and set s = pv0 − r : there
will be s trees θ1, . . . , θs such that the respective root lines `1, . . . , `s enter v0. Note that
|E(θ)| = |E(θ1)| + . . . + |E(θs)| + r. If s = 0 the bound holds: indeed if k(θ) = n + 2,
then |E(θ)| = n + 1 and |V0(θ)| = 0, because the momentum ν of the root line is such
that |ν| ≤ (n + 1)N and hence |ω · ν| ≥ α, while if k(θ) ≥ n + 3, then |E(θ)| ≥ n + 2 and
|V0(θ)| ≤ 1. Therefore in the following we assume s ≥ 1.

If `0 /∈ L0(θ), then |V0(θ)| = |V0(θ1)|+. . .+|V0(θs)|, so that, by the inductive hypothesis,

|V0(θ)| ≤
s∑

k=1

|E(θk)| − 2
n

=
|E(θ)| − r − 2s

n
≤ |E(θ)| − 2

n
,

15



and the bound follows.
If `0 ∈ L0(θ), then |V0(θ)| = 1 + |V0(θ1)| + . . . + |V0(θs)| and, again by the inductive

hypothesis,

|V0(θ)| ≤ 1 +
s∑

k=1

|E(θk)| − 2
n

=
|E(θ)| − 2

n
+

[
1− r + 2 (s− 1)

n

]
.

If s + r ≥ n + 1, then r + 2 (s − 1) ≥ n + (s − 1) ≥ n. If s + r = n and s ≥ 2, then
r + 2 (s − 1) ≥ n + (s − 2) ≥ n. Thus in both cases the last term in square brackets is
non-positive and the bound follows.

If s+ r = n and s = 1, then the line `1 must be in L1(θ). This can be seen by reductio
ad absurdum. Suppose that `1 ∈ L0(θ). Then |ω · ν`1 | < α/2. Moreover |ω · ν`0 | < α/2
because `0 ∈ L0(θ) by hypothesis. On the other hand one has ν`0 = ν`1 + ν1 + . . . + νr,
where r = n− 1 and ν1, . . . ,νr are the mode labels of the r end nodes whose exiting lines
enter v0. Therefore, if we use that |ν1+. . .+νr| ≤ (n−1)N and ν1+. . .+νr 6= 0 (otherwise
v0 would be an excluded node), we obtain

α > |ω · ν`0 |+ |ω · ν`1 | ≥ |ω · (ν`0 − ν`1)| = |ω · (ν1 + . . .+ νr)| ≥ α,

so arriving at a contradiction. Let v1 be the node which `1 exits: there will be r′ end nodes
whose exiting lines enter v1 and s′ trees θ′1, . . . , θ

′
s′ whose root lines `′1, . . . , `

′
s enter v1. One

has |E(θ)| = |E(θ′1)|+ . . .+ |E(θ′s′)|+r+r′ and |V0(θ)| = 1+ |V0(θ′1)|+ . . .+ |V0(θ′s′)|, where
s = 1, r = n− 1 and r′ + s′ ≥ n. By the inductive hypothesis one has

|V0(θ)| ≤ 1 +
s′∑

k′=1

|E(θ′k′)| − 2
n

=
|E(θ)| − 2

n
+

[
1− r + r′ + 2s′ − 2

n

]
,

where r+ r′+ 2s′−2 ≥ 2n+s′−3 ≥ n+ (n−3) ≥ n, so that the last term in square bracket
is non-positive. Therefore the bound follows once more.

B Proof of Theorem 1.4 for analytic forcing

In the analytic case the trees are constructed as in Section 3: in particular the definition of
the coefficients (3.11) of the series (3.12) is the same. The only difference is how to bound
the values of the trees in (3.11).

First of all we need some notations. We shall not introduce the sets V0(θ) and V1(θ) of
Section 3. Instead, we shall proceed as follows. For any node v ∈ V (θ) define E(θ, v) :=
{w ∈ E(θ) : the line exiting w enters v}, rv := |E(θ, v)|, sv := pv − rv and

µv :=
∑

w∈E(θ,v)

νw, µv := |µv|.
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Set V0(θ) := {v ∈ V (θ) : sv = 0} and V1(θ) := {v ∈ V (θ) : sv = 1}. If v ∈ V0(θ) we call `v
the line exiting v, while if v ∈ V1(θ) we call `v the line exiting v and `′v the line entering v
which does not exits an end node.

Remark B.1. By Hypothesis 2 there exists C0 > 0 such that C0|ω ·ν| ≥ e−ξ|ν|/8 ∀ν ∈ Zd∗.

Lemma B.2. If v ∈ V0(θ) one has C0|ω · ν`v | ≥ e−ξµv/8.

Proof. For v ∈ V0(θ) one has ν`v = µv, so that the bound follows from Remark B.1.

Lemma B.3. If v ∈ V1(θ) one has C0 max{|ω · ν`v |, |ω · ν`′v |} ≥ e−ξµv/8/2.

Proof. By contradiction: if the bound does not hold then

e−ξµv/8 > C0|ω · ν`v |+ C0|ω · ν`′v | ≥ C0|ω · (ν`v − ν`′v)| = C0|ω · µv| ≥ e−ξµv/8, (B.1)

where we have used that µv 6= 0, otherwise v would be an excluded node.

Define L1(θ, v) := {`v} for v ∈ V0(θ) and L1(θ, v) := {` ∈ {`v, `′v} : C0|ω · ν`| ≥
e−ξµv/8/2} for v ∈ V1(θ). By Lemmas B.2 and B.3 one has L1(θ, v) 6= ∅ for all v ∈
V0(θ) ∪ V1(θ). Set also L1(θ) := {` ∈ L(θ) : ∃v ∈ V0(θ) ∪ V1(θ) such that ` ∈ L1(θ, v)},
Lint(θ) := {` ∈ L(θ) : ` exits a node v ∈ V (θ)} and L0(θ) := Lint(θ) \ L1(θ).

Lemma B.4. For any tree θ one has n |L0(θ)| ≤ |E(θ)| − 2.

Proof. One proceeds by induction on V (θ). If |V (θ)| = 1 then V (θ) = V0(θ) and hence
|L0(θ)| = 0, while |E(θ)| − 2 > 0, so that the bound holds. If |V (θ)| ≥ 2 the root line `0 of
θ exits a node v0 ∈ V (θ) with sv0 + rv0 ≥ n and sv0 ≥ 1. Call θ1, . . . , θsv0

the trees whose
respective root lines `1, . . . , `sv0

enter v0: one has |E(θ)| = |E(θ1)| + . . . + |E(θsv0
)| + rv0 .

If `0 /∈ L0(θ) then |L0(θ)| = |L0(θ1)| + . . . + |L0(θsv0
)| and the bound follows from the

inductive hypothesis.
If `0 ∈ L0(θ) then one has |L0(θ)| = 1 + |L0(θ1)|+ . . .+ |L0(θsv0

)|, so that, again by the
inductive hypothesis,

|L0(θ) ≤ |E(θ)| − 2
n

+

[
1− rv0 + 2 (sv0 − 1)

n

]
,

so that, if either rv0 + sv0 ≥ n + 1 or rv0 + sv0 = n and sv0 ≥ 2, the bound follows.
If rv0 + sv0 = n and sv0 = 1, then v0 ∈ V1(θ) and, since C0|ω · ν`0 | < e−ξµv0/8/2

(because ` ∈ L0(θ)), then C0|ω · ν`1 | ≥ e−ξµv0/8/2 by Lemma B.3. Therefore `1 /∈ L0(θ).
If v1 is the line which `1 exits, call θ′1, . . . , θ

′
sv1

the trees whose root lines enter v1: one has
|L0(θ)| = 1 + |L(θ′1)|+ . . .+ |L0(θ′sv1

)| and hence, by the inductive hypothesis,

|L0(θ)| ≤ 1 +
|E(θ)| − rv0 − rv1 − 2sv1

n
≤ |E(θ)| − 2

n
+

[
1− rv0 + rv1 + 2 (sv1 − 1)

n

]
,

where rv0 + rv1 + 2sv1 − 2 ≥ n, so that the bound follows in this case too.

17



Lemma B.5. For any k ≥ 1 and ν ∈ Zd∗ and any tree θ ∈ Tk,ν one has

|V (θ, ε)| ≤ Bk|ζ||E0(θ)||b|−|L0(θ)||ε|1+n−1

n2 k
∏

v∈E1(θ)

e−5ξ|νv |/8,

where ξ is as in (1.2), and B is a positive constant depending on Φ, Γ and ρ.

Proof. One bounds (3.10) as

|V (θ, ε)| ≤ |ε|k(θ)|ζ||E0(θ)|

( ∏
v∈V (θ)

|apv |

)( ∏
v∈E1(θ)

|fνv |

)( ∏
`∈L(θ)

|G`|

)
.

We deal with the propagators as follows. If ` exits a node v ∈ V0(θ), then we have

|G`|
∏

w∈E1(θ,v)

|fνw | |G`w | ≤
1

|ω · ν`|
∏

w∈E1(θ,v)

|fνw |
|ω · νw|

≤ C0(ΦC0)|E1(θ,v)|
∏

w∈E1(θ,v)

e−3ξ|νw|/4,

where `w is the line exiting the end node w and we have defined E1(θ, v) := {w ∈ E(θ, v) :
νw 6= 0}. For the lines in L1(θ) which do not exit nodes v ∈ V0(θ) we distinguish three cases:
given a node v ∈ V1(θ) and denoting by v′ the node `′v exits, (1) if one has `v ∈ L1(θ, v)
and either `′v /∈ L1(θ, v) or `′v ∈ L1(θ, v′), we proceed as for the nodes v ∈ V0(θ), so as to
obtain

|G`v |
∏

w∈E1(θ,v)

|fνw | |G`w | ≤ C0(ΦC0)|E1(θ,v)|
∏

w∈E1(θ,v)

e−3ξ|νw|/4;

(2) if L1(θ, v) = {`′v} and `v′ /∈ L1(θ, v′), we bound∣∣G`′v ∣∣ ∏
w∈E1(θ,v)

|fνw | |G`w | ≤ C0(ΦC0)|E1(θ,v)|
∏

w∈E1(θ,v)

e−3ξ|νw|/4;

(3) if both lines `v, `′v belong to L1(θ, v) and `′v /∈ L1(θ, v′), we bound∣∣G`vG`′v ∣∣ ∏
w∈E1(θ,v)

|fνw |
|ω · νw|

≤ C2
0 (ΦC0)|E1(θ,v)|

∏
w∈E1(θ,v)

e−5ξ|νw|/8.

For all the other propagators we bound (1) |G`| ≤ 1 if ` exits an end node v with νv = 0,
(2) |G`| ≤ |ω · ν`|−1 if ` exits an end node v with νv 6= 0 and has not been already used
in the bounds above for the lines ` ∈ L1(θ), and (3) |G`| ≤ |bεn|−1 if ` ∈ L0(θ). Then we
obtain

|V (θ, ε)| ≤ |ε|k(θ)−n|L0(θ)|Γ|V (θ)|ρ|N(θ)||ζ||E0(θ)|C
|L1(θ)|
0 (C0Φ)|E1(θ)||b|−|L0(θ)|e−5ξ|ν|/8,

where we can bound, by using Corollary 3.6 and Lemma B.5,

k(θ)− n|L0(θ)| = |E(θ)|+ |V (θ)| − n|L0(θ)| ≥ |E(θ)| − (n− 1)|L0(θ)| ≥ 1 +
n− 1
n2

k(θ),

so that the assertion follows.

Fix ζ and b, and define ζ∗ and b∗ as in Section 3.
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Lemma B.6. For any k ≥ 1 and ν ∈ Zd one has∣∣∣u(k)
ν (ε)

∣∣∣ ≤ Cke−ξ|ν|/2|ε|1+n−1

n2 k,

where ξ is as in (1.2), and C is a positive constant depending on Φ, Γ, ρ, ξ, ζ∗ and b∗.

Proof. Reason as in the proof of Lemma 2.7.

From this point onward the proof proceeds as in the case of a trigonometric polynomial,
so we skip the details.
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