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Abstract

We study the problem of existence of response solutions for a real-analytic one-
dimensional system, consisting of a rotator subject to a small quasi-periodic forcing with
Bryuno frequency vector. We prove that at least one response solution always exists, with-
out any assumption on the forcing besides smallness and analyticity. This strengthens the
results available in the literature, where generic non-degeneracy conditions are assumed. The
proof is based on a diagrammatic formalism and relies on renormalisation group techniques,
which exploit the formal analogy with problems of quantum field theory; a crucial role is
played by remarkable identities between classes of diagrams.

1 Introduction

Synchronisation and resonance phenomena are of the greatest relevance in the theory of dynam-
ical systems, and have been extensively investigated since the earlier days of physics and applied
mathematics; see [3] for an overview. Recently, the search for synchronisation has been extended
also to chaotic systems (see for instance [4, 32]). The very idea of synchronisation suggests that
two or more systems adjust given properties of their motion to a common behaviour. For
instance, when subjected to a periodic forcing, one-dimensional dynamical systems typically de-
velop periodic solutions with the same frequency as the forcing term (response solutions); in the
perturbation regime, the solution can be seen as a deformation of some unperturbed trajectory,
which is fixed among all possible ones by a suitable locking of the phase (synchronisation).

In the chaotic case, the situation becomes much more subtle. Moreover, the presence or
absence of dissipation may lead to very different behaviours when perturbing a chaotic system:
very non-intuitive phenomena may take place in volume preserving systems (one can think of
the pathological foliations discussed in [34, 35]), while, for the same model in the presence of
dissipation, a periodic forcing gives rise to strange attractors which can be quite smooth [19].
On the contrary, when considering periodic perturbations of integrable systems, too pathologi-
cal situations are not expected to occur. For both Hamiltonian and dissipative one-dimensional
systems, a response solution is a natural outcome (in the dissipative case, such a solution may
become an attractor and hence plays a fundamental role in the understanding of the dynamics)
and at worst it lacks analyticity in the perturbation parameter. Even taking a quasi-periodic
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perturbation, one can find solutions with the same frequency (vector) as the forcing, indepen-
dently of the presence of dissipation. From a technical point of view, dealing with such solutions
requires solving small divisor problems, similar to those appearing in the context of KAM theory.
However, the problem cannot be considered quite solved for quasi-periodic perturbations, since
a complete analysis is available in the literature only under some non-degeneracy assumptions
on the perturbation. Such assumptions are generically satisfied, but still do not allow us to draw
general conclusions. The aim of this paper is to investigate such non-generic situations, at least
in a simple class of models. More precisely the problem can be described as follows.

Consider the one-dimensional system

β̈ = −εF (ωt, β), F (ωt, β) := ∂βf(ωt, β), (1.1)

where β ∈ T = R/2πZ, f : T
d+1 → R is a real-analytic function, ω ∈ R

d and ε is a real
number, called the perturbation parameter ; hence the forcing function (or perturbation) F is
quasi-periodic in t, with frequency vector ω.

It is well known that, for d = 1 (periodic forcing) and ε small enough, there exist periodic
solutions to (1.1) with the same period as the forcing. In fact the existence of periodic solutions
to (1.1), or to the more general equation

β̈ = −∂βV (β) − εF (ωt, β), (1.2)

with V : R → R real-analytic, can be discussed by relying on Melnikov method [9, 28]. A
possible approach consists in splitting the equations of motion into two separate equations, the
so-called range equation and bifurcation equation. One can solve the first equation in terms of
a free parameter and then fix the latter by solving the second equation (which represents an
implicit function problem). This is usually done by assuming some non-degeneracy condition
involving the perturbation: the time average of the perturbation over the unperturbed motion
is assumed to have a simple zero. As a byproduct, this entails analyticity of the solution. If
no such condition is assumed, a result of the same kind still holds [38, 1, 10], but the scenario
appears slightly more complicated. For instance the existing periodic solutions might no longer
be analytic in the perturbation parameter.

If the forcing is quasi-periodic and ω satisfies some Diophantine condition, one can still
study the problem of existence of quasi-periodic solutions with the same frequency vector ω
as the forcing, for ε small enough. The analysis becomes much more involved, because of the
small divisor problem. However, under the same generic non-degeneracy condition as above, the
analysis can be carried out in a similar way and the bifurcation scenario can be described in a
rather detailed way; see for instance [6]. On the contrary, if no assumption at all is made on the
perturbation, the small divisor problem and the implicit function problem become inevitably
tangled together and new difficulties arise. In this paper we focus on this situation: we study
(1.1) without making any assumption on the forcing function besides analyticity and study the
problem of existence of response solutions, i.e. quasi-periodic solution with frequency vector ω.
Of course, we also make some assumption of strong irrationality on the frequency vector ω, say
we assume some mild Diophantine condition, such as the Bryuno condition (see below). We
shall prove the existence of at least one response solution to (1.1) for ε small enough.
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Note that (1.1) can be seen as the Hamilton equations for the system described by the
Hamiltonian function

H(α, β,A, B) = ω ·A+
1

2
B2 + εf(α, β), (1.3)

where ω ∈ R
d is fixed, (α, β) ∈ T

d × T and (A, B) ∈ R
d × R are conjugate variables, f is an

analytic periodic function of (α, β) and · denotes the standard scalar product in R
d. Indeed,

the corresponding Hamilton equations for the angle variables are closed, and are given by

α̇ = ω, β̈ = −ε∂βf(α, β), (1.4)

that we can rewrite as (1.1). Therefore the problem of existence of response solutions can be
seen as a problem of persistence of lower-dimensional (or resonant) tori, more precisely of d-
dimensional tori for a particular system with d+ 1 degrees of freedom. As usual in the context
of KAM theory, by ‘persisting torus’ we mean an invariant torus for the perturbed system which
is close to an unperturbed invariant torus and reduces to it when the perturbation is switched
off. In the case of (1.3), the d-dimensional invariant tori Tω,β0

= {(α, β,A, B) : A = 0, B =
0,α = α0 + ωt, β = β0,α0 ∈ T

d} of the unperturbed system, i.e. of (1.3) for ε = 0, foliate the
(d + 1)-dimensional invariant torus Tω = ∪β0∈TTω,β0

(note that each Tω,β0
is a submanifold of

Tω); then we say that a d-dimensional invariant torus persists for the perturbed system (ε 6= 0)
if there is a d-dimensional invariant manifold which is close to an unperturbed invariant torus
Tω,β0

of Tω for some β0 (i.e. depends continuously on ε and reduces to Tω,β0
as ε → 0) and is

traversed quasi-periodically with the same frequency vector ω as the unperturbed one.

The existence of d-dimensional tori in systems with d + 1 degrees of freedom, without im-
posing any non-degeneracy condition on the perturbation except analyticity, was first proved by
Cheng [8], for convex unperturbed Hamiltonians and for ω satisfying the standard Diophantine
condition |ω · ν| ≥ γ|ν|−τ for all ν ∈ Z

d \ {0} and for some γ > 0 and τ > d − 1 (here and
henceforth |ν| = |ν|1 = |ν1| + . . . + |νd|, if νi are the components of ν). In the case (1.3) the
unperturbed Hamiltonian is isochronous in all but one angle variables (and we assume on ω the
weaker Bryuno condition), so that Cheng’s paper does not cover our result; we defer further
comments to Section 7.

The method we shall use is based on the analysis and resummation of the perturbation series
through renormalisation group techniques [17, 21, 27, 22, 23, 18] and not on an iteration scheme
à la KAM. The main problems arise from the accumulation of small divisors: from a technical
point of view this is reflected in the leading part of the self-energies (see Section 3 for details).
In the non-degenerate case, the leading part is non-zero, but ‘it has the right sign’, so that
the resummation can be checked to be well-defined. In the ‘weakly non-degenerate’ case (i.e.
when the time average of the perturbation over the unperturbed motion has an odd order zero
– see Hypothesis 2), the leading part can be arbitrarily small but still non-zero and it is much
harder to keep control of its size. This will be obtained by introducing suitable cut-offs and
eventually showing that the cut-offs can be removed. As a byproduct we find that, if the leading
part is formally zero (that is if its formal power series expansion in terms of the perturbation
parameter – which is always well defined order by order; see Appendix H – vanishes), then the
full resonant torus persists and is analytical in the perturbation parameter (see Remark 6.8). If
on the one hand one can argue that this could be expected, on the other hand a rigorous proof
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is not immediate and requires some work. In general, the response solution can only be proved
to be continuous in the perturbation parameter; for further comments see Section 7.

A crucial role in our proof will be played by remarkable identities between classes of diagrams.
By exploiting the analogy of the method with the techniques of quantum field theory, one can
see the solution as the one-point Schwinger function of a suitable Euclidean field theory – this
has been explicitly shown in the case of KAM tori [20]. In the case of classical KAM theorem,
identities between diagrams analogous to those we prove and use follow from the translation
invariance of the whole KAM torus; see [5]. We conjecture that our identities reflect some
suitable Ward identity of the field theory symmetries also in the present case.

2 Results

Consider equation (1.1) and let the solution for the unperturbed system be given by β(t) =
β0. We want to study whether for some value of β0 such a solution can be continued under
perturbation. Define the Bryuno function [7] as

B(ω) :=
∞∑

m=0

1

2m
log

1

αm(ω)
, αm(ω) := inf

0<|ν|≤2m
|ω · ν|. (2.1)

Hypothesis 1. ω satisfies the Bryuno condition B(ω) <∞.

If ω satisfies the standard Diophantine condition |ω · ν| ≥ γ|ν|−τ for all ν ∈ Z
d \ {0} then

it also satisfies Bryuno condition, since αm(ω) ≥ γ 2−mτ .

Write
f(α, β) =

∑

ν∈Zd

fν(β)eiν·α, F (α, β) =
∑

ν∈Zd

Fν(β)eiν·α. (2.2)

Hypothesis 2. β∗0 is a zero of order n for F0(β), with n odd, and ε∂n
βF0(β∗0) < 0.

Eventually we shall want to get rid of Hypothesis 2: however, we shall first assume it to
simplify the analysis, and at the end we shall show how to remove it.

We look for a solution to (1.1) of the form β(t) = β0 + b(t), with

b(t) =
∑

ν∈Zd
∗

eiν·ωtbν, (2.3)

where Z
d
∗ := Z

d \ {0}. In Fourier space (1.1) becomes

(ω · ν)2bν = ε[F (ωt, β)]ν, ν 6= 0, (2.4a)

0 = [F (ωt, β)]0, (2.4b)

where

[F (ψ, β)]ν =
∑

r≥0

∑

ν0+...+νr=ν

ν0∈Zd

νi∈Zd
∗, i=1,...,r

1

r!
∂r

βFν0
(β0)

r∏

i=1

bνi
.

Our first result will be the following.
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Theorem 2.1. Consider the equation (1.1) and assume Hypotheses 1 and 2. If ε is small
enough, there exists at least one quasi-periodic solution β(t) to (1.1) with frequency vector ω,
such that β(t) → β∗0 as ε→ 0.

The proof will be carried out through Sections 3 to 5. First, after introducing the basic
notations in Section 3, we shall show in Section 4 that, under the assumption that further
conditions are satisfied (see below), for ε small enough and arbitrary β0 there exists a solution

β(t) = β0 + b(t; ε, β0), (2.5)

to (2.4a), depending on ε, β0, with b(t) = b(t; ε, β0) a zero-average function. For such a solution
define G(ε, β0) := [F (ωt, β(t))]0, and consider the implicit function equation

G(ε, β0) = 0. (2.6)

Then we shall prove in Section 5 that one can fix β0 = β0(ε) in such a way that (2.6) holds and
the conditions mentioned above are also satisfied. Hence for such β0(ε) the function (2.5) is a
solution of the whole system (2.4).

The conditions which are first assumed to be satisfied and then a posteriori checked can
be illustrated as follows. The resummation procedure turns out to be well-defined if the small
divisors of the resummed series can be bounded proportionally to the small divisors of the
formal series. However, it is not obvious at all that this is possible, because the latter are
of the form (ω · ν)−2, with ν ∈ Z

d
∗, whereas the small divisors of the resummed series are

((ω ·ν)2 −Mn(ω ·ν; ε, β0))
−1, for suitable functions Mn (see Section 3). In the non-degenerate

case one can fix β0 in such a way that Mn(x; ε, β0) = a ε+O(ε2), with aε < 0, so that ((ω ·ν)2−
Mn(ω ·ν; ε, β0))

−1 ∼ (ω ·ν)−2. If the non-degeneracy assumption is removed, the latter property
is much more difficult to check. So we introduce some cut-offs in order to make the property
automatically satisfied: essentially we replace Mn(x; ε, β0) with Mn(x; ε, β0) ξn(M(0; ε, β0)),
for suitable ‘cut-off functions’ ξn. However, the introduction of the cut-offs changes the series,
in such a way that if on the one hand the modified series can be proved to be convergent, on
the other hand in principle it no longer solves the equations of motion. This turns ot to be the
case only if one can prove that the cut-offs can be removed (that is if one can replace the cut-off
functions ξn with 1). So, the last part of the proof consists in showing that, by suitably choosing
the value β0, this occurs and hence the series with the cut-offs reduces to the solution.

Next, we shall see how to remove Hypothesis 2 in order to prove the existence of a response
solution without any assumption on the forcing function, so as to obtain the following result,
which is the main result of the paper.

Theorem 2.2. Consider the equation (1.1) and assume Hypothesis 1. There exists ε0 > 0 such
that for all ε with |ε| < ε0 there is at least one quasi-periodic solution to (1.1) with frequency
vector ω. Such a solution depends continuously on ε.

If F0(β) does not identically vanish, then Theorem 2.2 follows immediately from Theorem
2.1. Indeed, the function f0(β) is analytic and periodic, hence, if it is not identically constant,
it has at least one maximum point β′0 and one minimum point β′′0 , where ∂n′+1

β f0(β
′
0) < 0 and

∂n′′+1
β f0(β

′′
0 ) > 0, for some n′ and n′′ both odd. Let ε be fixed small enough, say |ε| < ε0 for a
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suitable ε0: choose β∗0 = β′0 if ε > 0 and β∗0 = β′′0 if ε < 0. Then Hypothesis 2 is satisfied, and
we can apply Theorem 2.1 to deduce the existence of a quasi-periodic solution with frequency
vector ω. However, the function f0(β) can be identically constant and hence F0(β) can vanish
identically, so that some further work will be needed to prove Theorem 2.2: this will be performed
in Section 6.

Note that, except the very special case discussed in Section 6, the response solution is not
expected to be analytic in ε. In some cases smoothness in ε or some fractional power of ε
can be obtained (see Section 7), but in general the solution is only proved to be continuous in
ε. Moreover, generically β0 has to be chosen suitably as a function of ε, whereas it remains
arbitrary in the “completely degenerate case” in Section 6.

3 Diagrammatic rules and multiscale analysis

We want to study whether it is possible to express the function b(t; ε, β0) appearing in (2.5) as
a convergent series. Let us start by writing formally

b(t; ε, β0) =
∑

k≥1

εkb(k)(t;β0) =
∑

k≥1

εk
∑

ν∈Zd
∗

eiν·ωtb
(k)
ν (β0). (3.1)

If we define recursively for k ≥ 1 and ν 6= 0

b
(k)
ν (β0) =

1

(ω · ν)2
[F (ωt, β)]

(k−1)
ν , (3.2)

where [F (ωt, β)]
(0)
ν = Fν(β0) and, for k ≥ 1 and ν ∈ Z

d,

[F (ωt, β)]
(k)
ν =

∑

s≥1

∑

ν0+...+νs=ν

ν0∈Zd

νi∈Zd
∗, i=1,...,s

1

s!
∂s

βFν0
(β0)

∑

k1+...+ks=k,
ki≥1

s∏

i=1

b
(ki)
νi

(β0), (3.3)

the series (3.1) turns out to be a formal solution of (2.4a) only: the coefficients b
(k)
ν (β0) are well

defined for all k ≥ 1 and all ν ∈ Z
d
∗ – see Appendix H – and solve (2.4a) order by order – as is

straightforward to check.

Write also (recall (2.6)), again formally,

G(ε, β0) =
∑

k≥0

εkG(k)(β0), (3.4)

with G(0)(β0) = F0(β0) and, for k ≥ 1

G(k)(β0) =
∑

s≥1

∑

ν0+...+νs=0

ν0∈Zd

νi∈Zd
∗, i=1,...,s

1

s!
∂s

βFν0
(β0)

∑

k1+...+ks=k,
ki≥1

s∏

i=1

b
(ki)
νi

(β0). (3.5)
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Of course, Hypothesis 1 yields that the formal series (3.4) is well-defined too.

Unfortunately the power series (3.1) and (3.4) may be not convergent (as far as we know).
However we shall see how to construct two series (convergent if β0 is suitably chosen) whose
formal expansion coincide with (3.1) and (3.4). As we shall see, this leads to express the response
solution as a series of contributions each of which can be graphically represented as a suitable
diagram.

A graph is a set of points and lines connecting them. A tree θ is a graph with no cycle,
such that all the lines are oriented toward a single point (root) which has only one incident line
ℓθ (root line). All the points in a tree except the root are called nodes. The orientation of the
lines in a tree induces a partial ordering relation (�) between the nodes and the lines: we can
imagine that each line carries an arrow pointing toward the root. Given two nodes v and w, we
shall write w ≺ v every time v is along the path (of lines) which connects w to the root.

We denote by N(θ) and L(θ) the sets of nodes and lines in θ respectively. Since a line
ℓ ∈ L(θ) is uniquely identified by the node v which it leaves, we may write ℓ = ℓv. We write
ℓw ≺ ℓv if w ≺ v, and w ≺ ℓ = ℓv if w � v; if ℓ and ℓ′ are two comparable lines, i.e. ℓ′ ≺ ℓ, we
denote by P(ℓ, ℓ′) the (unique) path of lines connecting ℓ′ to ℓ, with ℓ and ℓ′ not included (in
particular P(ℓ, ℓ′) = ∅ if ℓ′ enters the node ℓ exits).

With each node v ∈ N(θ) we associate a mode label νv ∈ Z
d and we denote by sv the

number of lines entering v. With each line ℓ we associate a momentum νℓ ∈ Z
d
∗, except for the

root line which can have either zero momentum or not, i.e. νℓθ
∈ Z

d. Finally, we associate
with each line ℓ also a scale label such that nℓ = −1 if νℓ = 0, while nℓ ∈ Z+ if νℓ 6= 0 (so far
there is no relation between non-zero momenta and scale labels: a constraint will appear later
on, see Remark 3.7). Note that one can have nℓ = −1 only if ℓ is the root line of θ. We force
the following conservation law

νℓ =
∑

w∈N(θ)
w≺ℓ

νw. (3.6)

In the following we shall call trees tout court the trees with labels, and we shall use the term
unlabelled tree for the trees without labels. We shall say that two trees are equivalent if they
can be transformed into each other by continuously deforming the lines in such a way that these
do not cross each other and also labels match. This provides an equivalence relation on the set
of the trees. From now on we shall call trees such equivalence classes.

Given a tree θ we call order of θ the number k(θ) = |N(θ)| = |L(θ)| (for any finite set S we
denote by |S| its cardinality) and total momentum of θ the momentum associated with ℓθ. We
shall denote by Θk,ν the set of trees with order k and total momentum ν. A subset T ⊂ θ is
a subgraph of θ if it is formed by set of nodes N(T ) ⊆ N(θ) and lines L(T ) ⊆ L(θ) connecting
them (possibly including the root line, and in such a case we say that the root is included in T )
in such a way that N(T ) ∪ L(T ) is connected. If T is a subgraph of θ we call order of T the
number k(T ) = |N(T )|. We say that a line enters T if it connects a node v /∈ N(T ) to a node
w ∈ N(T ), and we say that a line exits T if it connects a node v ∈ N(T ) to a node w /∈ N(T )
or to the root (which is not included in T in this case). Of course, if a line ℓ enters or exits T ,
then ℓ /∈ L(T ).
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Remark 3.1. One has
∑

v∈N(θ)

sv = k(θ) − 1.

A cluster T on scale n is a maximal subgraph of a tree θ such that all the lines have scales
n′ ≤ n and there is at least a line with scale n. The lines entering the cluster T and the line
coming out from it (unique if existing at all) are called the external lines of T .

A self-energy cluster is a cluster T such that (i) T has only one entering line ℓ′T and one
exiting line ℓT , (ii) one has νℓT

= νℓ′
T

and hence
∑

v∈N(T ) νv = 0.

For any self-energy cluster T , set PT = P(ℓT , ℓ
′
T ). More generally, if T is a subgraph of θ

with only one entering line ℓ′ and one exiting line ℓ, we can set PT = P(ℓ, ℓ′). We shall say that
a self-energy cluster is on scale −1, if N(T ) = {v} with of course νv = 0 (so that PT = ∅).

A left-fake cluster T on scale n is a connected subgraph of a tree θ with only one entering
line ℓ′T and one exiting line ℓT such that (i) all the lines in T have scale ≤ n and there is in T at
least a line on scale n, (ii) ℓ′T is on scale n+ 1 and ℓT is on scale n, and (iii) one has νℓT

= νℓ′
T
.

Analogously a right-fake cluster T on scale n is a connected subgraph of a tree θ with only one
entering line ℓ′T and one exiting line ℓT such that (i) all the lines in T have scale ≤ n and there
is in T at least a line on scale n, (ii) ℓ′T is on scale n and ℓT is on scale n + 1, and (iii) one
has νℓT

= νℓ′
T
. Roughly speaking, a left-fake (respectively right-fake) cluster T fails to be a

self-energy cluster only because the exiting (respectively the entering) line is on scale equal to
the scale of T ; note that left- and right-fake clusters are not even clusters.

Remark 3.2. Given a self-energy cluster T , the momenta of the lines in PT depend on νℓ′
T

because of the conservation law (3.6). More precisely, for all ℓ ∈ PT one has νℓ = ν0
ℓ +νℓ′

T
with

ν0
ℓ =

∑
w∈N(T ),w≺ℓ νw, while all the other labels in T do not depend on νℓ′

T
. Clearly, this holds

also for left-fake and right-fake clusters.

We say that two self-energy clusters T1, T2 have the same structure if setting νℓ′
T1

= νℓ′
T2

= 0

one has T1 = T2. Of course this provides an equivalence relation on the set of all self-energy
clusters. The same consideration apply for left-fake and right-fake clusters. From now on we
shall call self-energy, left-fake and right-fake clusters tout court such equivalence classes.

A renormalised tree is a tree in which no self-energy clusters appear; analogously a renor-
malised subgraph is a subgraph of a tree θ which does not contains any self-energy cluster.
Denote by ΘR

k,ν the set of renormalised trees with order k and total momentum ν, by Rn the set
of renormalised self-energy clusters on scale n, and by LFn and RFn the sets of (renormalised)
left-fake and right-fake clusters on scale n respectively.

For any θ ∈ ΘR
k,ν we associate with each node v ∈ N(θ) a node factor

Fv(β0) :=
1

sv!
∂sv

β Fνv(β0). (3.7)

We associate with each line ℓ ∈ L(θ) with nℓ ≥ 0, a dressed propagator Gnℓ
(ω · νℓ; ε, β0) (prop-

agator tout court in the following) defined recursively as follows.

Introduce first a partition of unity. The idea is to have at disposal some labels (that we called
scales) characterising the sizes of the small divisors (ω ·ν)2. Roughly we would like to associate
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with a line ℓ a scale label n if ω ·νℓ ≈ αn(ω); to be more precise, since the sequence {αn(ω)}n≥0

is only non-increasing, for the scales to be uniquely defined one should take a decreasing subse-
quence {αmn(ω)}n≥0 and say that ℓ has scale n if ω ·νℓ is of order αmn(ω). It would be tempting
to use a sharp partition through step functions with supports [αmn(ω), αmn−1

(ω)), in order to
associate with a line ℓ a scale n if |ω · νℓ| ∈ [αmn(ω), αmn−1

(ω)). However, it turns out to be
more convenient using a smooth partition through compact support functions Ψn (because we
have to take derivatives of quantities involving such functions). Therefore we shall proceed as
follows. Given a decreasing sequence ρn, n = 0, 1, . . ., of positive numbers with ρn+1 ≤ ρn/2, let
χ : R → R be a C∞ function, non-increasing for x ≥ 0 and non-decreasing for x < 0, such that

χ(x) =

{
1, |x| ≤ 1/2,

0, |x| ≥ 1,
(3.8)

and set χn(x) = χ(x/ρn) for n ≥ 0 and χ−1(x) = 1. Set also Ψn(x) = χn−1(x) − χn(x) for
n ≥ −1; see Figure 1.

xρ0
ρ0

2
ρ1

ρ1

2

ρ2

2

Ψ2(x) Ψ1(x) Ψ0(x)

Figure 1: Some of the C∞ functions Ψn(x) partitioning the unity in R \ {0}.

Remark 3.3. For all x 6= 0 one has
∑∞

n=0 Ψn(x) = 1, and more generally, if ψn(x) = 1−χn(x),
for all x 6= 0 and all p ≥ 0 one has ψp(x) +

∑
n≥p+1 Ψn(x) = 1.

Next, we introduce the sequences {mn, pn}n≥0, with m0 = 0 and, for all n ≥ 0, mn+1 =
mn + pn + 1, where pn := max{q ∈ Z+ : αmn(ω) < 2αmn+q(ω)}, with αm(ω) defined in (2.1).
The subsequence {αmn(ω)}n≥0 of {αm(ω)}m≥0 is decreasing. A convenient partition of unity is
then obtained by choosing ρn = αmn(ω)/8 (the factor 8 could be replaced by any number ≥ 8,
as the proof of the forthcoming Lemma 4.1 shows; see in particular Remark 4.3 below).

Define, for n ≥ 0,

Gn(x; ε, β0) := Ψn(x)
(
x2 −Mn−1(x; ε, β0)

)−1
, (3.9a)

Mn−1(x; ε, β0) :=

n−1∑

q=−1

χq(x)Mq(x; ε, β0), Mq(x; ε, β0) :=
∑

T∈Rq

εk(T )
V T (x; ε, β0), (3.9b)

V T (x; ε, β0) :=

(
∏

v∈N(T )

Fv(β0)

)(
∏

ℓ∈L(T )

Gnℓ
(ω · νℓ; ε, β0)

)
, (3.9c)
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where V T (x; ε, β0) is the renormalised value of T at fixed momentum νℓ′
T

such that x = ω ·νℓ′
T
.

Here and henceforth, the sums and the products over empty sets have to be considered as zero
and 1 respectively. Note that V T depends on ε because the propagators do, and on x = ω · νℓ′

T

only through the propagators associated with the lines ℓ ∈ PT (see Remark 3.2).

Set M = {Mn(x; ε, β0)}n≥−1. We call self-energies the quantities Mn(x; ε, β0).

Remark 3.4. One has |R−1| = 1 , so that M−1(x; ε, β0) = M−1(x; ε, β0) = ε∂β0
F0(β0).

Therefore the propagators Gn and the self-energies Mn are uniquely defined for n ≥ 0.

Remark 3.5. One has ∂β0
Gn(x; ε, β0) = Gn(x; ε, β0)(x

2 −Mn−1(x; ε, β0))
−1∂β0

Mn−1(x; ε, β0).

Set also G−1(0; ε, β0) = 1 (so that we can associate a propagator also with the root line of
θ ∈ ΘR

k,0). For any subgraph S of any θ ∈ ΘR
k,ν define the renormalised value of S as

V (S; ε, β0) :=

(
∏

v∈N(S)

Fv(β0)

)(
∏

ℓ∈L(S)

Gnℓ
(ω · νℓ; ε, β0)

)
. (3.10)

Finally set

b
[k]
ν (ε, β0) :=

∑

θ∈ΘR
k,ν

V (θ; ε, β0), G[k](ε, β0) :=
∑

θ∈ΘR
k+1,0

V (θ; ε, β0), (3.11)

and define formally

bR(t; ε, β0) :=
∑

k≥1

εk
∑

ν∈Zd
∗

eiν·ωtb
[k]
ν (ε, β0), (3.12a)

GR(ε, β0) :=
∑

k≥0

εkG[k](ε, β0). (3.12b)

The series (3.12) will be called the resummed series. The term “resummed” comes from the fact
that if we formally expand (3.12) in powers of ε, we obtain (3.1) and (3.4), as is easy to check.

Remark 3.6. If T is a renormalised left-fake (respectively right-fake) cluster, we can (and
shall) write V (T ; ε, β0) = V T (ω · νℓ′

T
; ε, β0) since the propagators of the lines in PT depend on

ω · νℓ′
T
. In particular one has

∑

T∈LFn

εk(T )
V T (x; ε, β0) =

∑

T∈RFn

εk(T )
V T (x; ε, β0) = Mn(x; ε, β0).

Remark 3.7. Given a renormalised tree θ such that V (θ; ε, β0) 6= 0, for any line ℓ ∈ L(θ)
(except possibly the root line) one has Ψnℓ

(ω · νℓ) 6= 0, and hence

αmnℓ
(ω)

16
< |ω · νℓ| <

αmnℓ−1
(ω)

8
, (3.13)

where αm−1
(ω) has to be interpreted as +∞. The same considerations apply to any subgraph

of θ and to renormalised self-energy clusters. Moreover, by the definition of {αmn(ω)}n≥0, the
number of scales which can be associated with a line ℓ in such a way that the propagator does
not vanishes is at most 2; see Figure 1.
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4 Bounds and convergence of the resummed series: part 1

The key bounds on renormalised graphs are based on the idea of Siegel [36], in the version
exploited by Pöschel [31] and Eliasson [13]. The first step is to obtain a bound on the number
of lines on a given scale in a renormalised tree or self-energy cluster.

For θ ∈ ΘR
k,ν, let Nn(θ) be the number of lines on scale ≥ n in θ, and set

K(θ) :=
∑

v∈N(θ)

|νv|. (4.1)

More generally, for any renormalised subgraph T of any tree θ call Nn(T ) the number of lines
on scale ≥ n in T , and set

K(T ) :=
∑

v∈N(T )

|νv|. (4.2)

Lemma 4.1. For any θ∈ΘR
k,ν such that V (θ; ε, β0) 6= 0 one has Nn(θ)≤ 2−(mn−2)K(θ) for all

n ≥ 0.

The proof is given in Appendix A.

Lemma 4.2. For any T ∈Rn such that V T (x; ε, β0) 6= 0, one has K(T )≥ 2mn−1 and Np(T )≤
2−(mp−2)K(T ) for all 0 ≤ p ≤ n.

The proof is given in Appendix B.

Remark 4.3. By looking carefully at the proofs of the two lemmas above, one realises that if
(3.13) is replaced with

αmnℓ
(ω)

32
< |ω · νℓ| <

αmnℓ−1
(ω)

4
, (4.3)

the same bounds on Nn(θ) and Np(T ) as in Lemmas 4.1 and 4.2 still holds. This will be used
later – see Remark 4.9 below.

To prove that the resummed series (3.12) converges, we first make the assumption that the
propagators Gnℓ

(x; ε, β0) are bounded essentially as 1/x2: we shall see that in that case the
convergence of the series can be routinely checked. Then, in Section 5, we shall check that the
assumption is justified.

Definition 4.4. We shall say that M satisfies property 1 if for all n ≥ −1 one has

Ψn+1(x)|x
2 −Mn(x; ε, β0)| ≥ Ψn+1(x)x

2/2.

Lemma 4.5. Assume M to satisfy property 1. Then the series (3.12), with the coefficients
given in (3.11) , converge for ε small enough.

The proof is given in Appendix C.

Lemma 4.6. Assume M to satisfy property 1. Then for ε small enough the function bR(t; ε, β0)
in (3.12), with the coefficients given in (3.11), solves the equation (2.4a).

11



The proof is given in Appendix D.

Definition 4.7. We shall say that M satisfies property 1-p if for −1 ≤ n < p one has

Ψn+1(x)|x
2 −Mn(x; ε, β0)| ≥ Ψn+1(x)x

2/2.

Note that property 1 is equivalent to assuming property 1-p for all p ≥ 0. The reason to
introduce the last definition is that – as the following Lemma 4.8 will yield – if one assumes
property 1-p (i.e. that the inequalities Ψn+1(x)|x

2 −Mn(x; ε, β0)| ≥ Ψn+1(x)x
2/2 hold for all

n < p) then the propagators can be controlled for all scales ≤ p and hence the self-energies
Mp can be easily bounded by using the Lemma 4.2. This will be exploited later on to prove
iteratively that property 1-p holds for all p ≥ 0 and hence property 1 holds too.

Lemma 4.8. Assume M to satisfy property 1-p. Then for any 0 ≤ n ≤ p the self-energies are
well defined and one has

|Mn(x; ε, β0)| ≤ ε2K1e
−K22mn

, (4.4a)

|∂j
xMn(x; ε, β0)| ≤ ε2Cje

−Cj2mn
, j = 1, 2, (4.4b)

for suitable constants K1,K2, C1, C2, C1 and C2.

The proof is in Appendix E.

Remark 4.9. One can write

Mn(x; ε, β0) = Mn(0; ε, β0) + x ∂xMn(0; ε, β0) + x2

∫ 1

0
dτ (1 − τ) ∂2

xMn(τx; ε, β0).

Then one checks, by relying on Remark 4.3, that ∂j
xMn(τx; ε, β0) admits the same bounds as

in Lemma 4.8, for j = 0, 1, 2 and τ ∈ [0, 1]. This implies that

|Mn(x; ε, β0) −Mn(0; ε, β0) − x ∂xMn(0; ε, β0)| ≤ Cεx2.

Lemma 4.10. Assume M to satisfy property 1-p. Then one has Mn(x; ε, β0) = Mn(0; ε, β0)+
O(εx2) for all 0 ≤ n ≤ p.

Proof. We shall prove that Mn(x; ε, β0) = Mn(−x; ε, β0), by induction on n ≥ −1. For
n = −1 the identity is obvious since M−1 does not depend on x. Assume now Mq(x; ε, β0) =
Mq(−x; ε, β0) for all q < n. This implies Gq(x; ε, β0) = Gq(−x; ε, β0) for q ≤ n. Let T ∈ Rn and
consider the self-energy cluster T1 obtained from T by taking ℓT as the entering line and ℓ′T as
the exiting line (i.e. ℓ′T1

= ℓT and ℓT1
= ℓ′T ) and by taking νℓ′

T1

= −νℓ′
T
. Hence the momenta of

the lines belonging to PT change signs, while all the other momenta do not change: therefore all
propagators are left unchanged. Hence Mn(x; ε, β0) = Mn(−x; ε, β0), so that ∂xMn(0; ε, β0) = 0
for all n ≤ p, and, by Lemma 4.8, this is enough to prove the assertion.

Lemma 4.11. Assume M to satisfy property 1. Then the function GR(ε, β0) and the self-
energies Mn(x; ε, β0) are C∞ in both ε and β0.
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Proof. It follows from the explicit expressions for GR(ε, β0) and Mn(x; ε, β0).

Define formally
M∞(x; ε, β0) = lim

n→∞
Mn(x; ε, β0), (4.5)

and note that if M satisfies property 1, then M∞(x; ε, β0) is well defined and moreover it is C∞

in both ε and β0. The following result plays a crucial role; the proof is deferred to Appendix F.

Lemma 4.12. Assume M to satisfy property 1. Then one has ε∂β0
GR(ε, β0) = M∞(0; ε, β0).

Remark 4.13. If we take the formal power expansions of both GR(ε, β0) and M∞(0; ε, β0), we
obtain tree expansions where self-energy clusters are allowed; see Section 6 for further details.
Then the identity ε∂β0

GR(ε, β0) = M∞(0; ε, β0) is easily found to be satisfied to any perturba-
tion order. However, without any resummation procedure, we are no longer able to prove the
convergence of the series, so that the identity becomes a meaningless “∞ = ∞”.

Remark 4.14. The identity ε∂β0
GR(ε, β0) = M∞(0; ε, β0), in Lemma 4.12, can be seen as

an identity between classes of diagrams. In turn, in light of a possible quantum field formula-
tion of the problem, this can be thought as a consequence of some deep Ward identity of the
corresponding field theory. Ward identities play a crucial role in quantum field theory. The
analogy between KAM theory and quantum field theory has been widely stressed in the litera-
ture [20, 5, 12]; in particular the cancellations which assure the convergence of the perturbation
series for maximal KAM tori are deeply related to a Ward identity, as shown in [5], which can
be seen as a remarkable identity between classes of graphs. In the case studied in this paper,
we have a similar situation, made fiddlier by the fact that we have to deal with nonconvergent
series to be resummed, and it is well known that identities which are trivial on a formal level
can turn out to be difficult to prove rigorously [30]. However, we expect a Ward identity to hold
also in our case, so as to imply that ε∂β0

GR(ε, β0) = M∞(0; ε, β0). It would be interesting to
confirm the expectation and to determine the Ward identity explicitly.

Given x0 ∈ R and an interval (a, b) ⊂ R such that x0 ∈ (a, b), we call half-neighbourhood of
x0 each of the two intervals (a, x0) and (x0, b).

Lemma 4.15. Assume M to satisfy property 1. Then the implicit function equation GR(ε, β0) =
0 admits a solution β0 = β0(ε), such that β0(0) = β∗0 . Moreover in a suitable half-neighbourhood
of ε = 0, one has ε∂β0

GR(ε, β0(ε)) ≤ 0.

Proof. Property 1 allows us to write GR(ε, β0) = F0(β0) + O(ε), so that by Hypothesis 2 one
has ∂n

β0
GR(0, β∗0 ) 6= 0. Then there exist two half-neighbourhood V−, V+ of β0 = β∗0 such that

GR(0, β0) > 0 for β0 ∈ V+ and GR(0, β0) < 0 for β0 ∈ V−. Hence, by continuity, for all β0 ∈ V+

there exists a neighbourhood U+(β0) of ε = 0 such that GR(ε, β0) > 0 for all ε ∈ U+(β0) and,
for the same reason, for all β0 ∈ V− there exists a neighbourhood U−(β0) of ε = 0 such that
GR(ε, β0) < 0 for all ε ∈ U−(β0). Therefore, again by continuity, there exists a continuous
curve β0 = β0(ε) defined in a suitable neighbourhood U = (−ε, ε) such that β0(0) = β∗0 and
GR(ε, β0(ε)) ≡ 0. Moreover, if ∂n

β0
GR(0, β∗0) > 0, then V+, V− are of the form (β∗0 , v+) and

(v−, β
∗
0 ) respectively, and therefore ∂β0

GR(c, β0(c)) ≥ 0 for all c ∈ U . If on the contrary
∂n

β0
GR(0, β∗0 ) < 0, one has V+ = (v+, β

∗
0) and V− = (β∗0 , v−), and then ∂β0

GR(c, β0(c)) ≤ 0 for
all c ∈ U . Hence the assertion follows in both cases, again by Hypothesis 2.
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Remark 4.16. Note that Lemma 4.15 implies only continuity of the curve β(ε); see also
comments at the end of Section 7.

Remark 4.17. If M satisfies property 1, one has GR(ε, β0) = [F (ωt, β0 + bR(t; ε, β0))]0 and
hence, if β0 = β0(ε) is the solution referred to in Lemma 4.15, by Lemma 4.6 the function
β(t; ε) = β0(ε) + bR(t; ε, β0(ε)) solves the equation of motion (1.1).

Remark 4.18. The results of this section are not sufficient to prove Theorem 2.1 because we
have assumed – without proof – that property 1 is satisfied. In Section 5 we shall show that
property 1 is found to be satisfied along a suitable continuous curve β0 = β0(ε) such that
GR(ε, β0(ε)) = 0.

5 Convergence of the resummed series: part 2

In this section we shall remove the assumption that the self-energies satisfy property 1 of Defi-
nition 4.4 – see Remark 4.18. We shall proceed as follows. We sligthly modify the propagators
by replacing the self-energies Mn(x; ε, β0) with new quantities Mn(x; ε, β0) and we prove recur-
sively that such quantities satisfy the symmetry properties of Lemma 4.10: this will imply that
property 1 holds. Then we shall check a posteriori that on a suitable curve β0 = β0(ε) one has
Mn(x; ε, β0) = Mn(x; ε, β0); moreover, thanks to the identity of Lemma 4.12, on such a curve
also the bifurcation equation is satisfied, so that the function β0(ε) + bR(t; ε, β0(ε)), with bR

given by (3.12a), turns out to be well-defined and solve the equations of motion.

For all n ≥ 0, define the C∞ non-increasing functions ξn such that

ξn(x) =

{
1, x ≤ αmn+1

(ω)2/212,

0, x ≥ αmn+1
(ω)2/211,

(5.1)

and set ξ−1(x) = 1. Define recursively, for all n ≥ 0, the propagators

Gn(x; ε, β0) = Ψn(x)
(
x2 −Mn−1(x; ε, β0)ξn−1(Mn−1(0; ε, β0))

)−1
, (5.2)

with M−1(x; ε, β0) = ε∂βF0(β0), and for n ≥ 0

Mn(x; ε, β0) = Mn−1(x; ε, β0) + χn(x)Mn(x; ε, β0), (5.3)

where we have set

Mn(x; ε, β0) :=
∑

T∈Rn

εk(T )
V T (x; ε, β0), (5.4a)

V T (x; ε, β0) :=

(
∏

v∈N(T )

Fv(β0)

)(
∏

ℓ∈L(T )

Gnℓ
(ω · νℓ; ε, β0)

)
, (5.4b)

with x = ω ·νℓ′
T
. Set M = {Mn(x; ε, β0)}n≥−1 and M

ξ
= {Mn(x; ε, β0)ξn(Mn(0; ε, β0))}n≥−1.

Lemma 5.1. M
ξ

satisfies property 1.
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Proof. We shall prove that M
ξ

satisfies property 1-p for all p ≥ 0, by induction on p. Property

1-0 is trivially satisfied for ε small enough. Assume M
ξ

to satisfy property 1-p. Then we can
repeat – almost word by word – the proofs of Lemmas 4.8 and 4.10 (see also Remark 4.9) so as

to obtain Mp(x; ε, β0) = Mp(0; ε, β0) +O(εx2), hence, by the definition of the function ξp, M
ξ

satisfies property 1-(p + 1), and thence the assertion follows.

Set

V (θ; ε, β0) :=



∏

v∈N(θ)

Fv(β0)





∏

ℓ∈L(θ)

Gnℓ
(ω · νℓ; ε, β0)


 , (5.5a)

b
[k]
ν

(ε, β0) :=
∑

θ∈ΘR
k,ν

V (θ; ε, β0), (5.5b)

and define
b(t, ε, β0) =

∑

k≥1

εkb
[k]

(ε, β0) =
∑

k≥1

εk
∑

ν∈Zd
∗

eiν·ωtb
[k]
ν

(ε, β0). (5.6)

Note that, by (the proof of) Lemma 4.5 the series (5.6) converges. Define also

M∞(x; ε, β0) := lim
n→∞

Mn(x; ε, β0), (5.7)

and note that, by Lemma 5.1 the limit in (5.7) is well defined and it is C∞ in both ε and β0.
Introduce the C∞ functions G(ε, β0) such that M∞(0; ε, β0) = ε∂β0

G(ε, β0) and G(0, β∗0 ) = 0,
and for any such function consider the implicit function equation

G(ε, β0) = 0. (5.8)

Recall the definition of half-neighbourhood after Remark 4.14.

Lemma 5.2. The implicit function equation (5.8) admits a solution β0 = β0(ε) such that
β0(0) = β∗0 . Moreover in a suitable half-neighbourhood of ε = 0, one has ε∂β0

G(ε, β0(ε)) ≤ 0.

Proof. By construction, all the functions G(ε, β0) are smooth and of the form G(ε, β0) =
F0(β0) +O(ε). Then the result follows straightforward from (the proof of) Lemma 4.15.

Lemma 5.3. Let β0 = β0(ε) be the solution referred to in Lemma 5.2. Then one has
ξn(Mn(0; ε, β0(ε))) ≡ 1 for all n ≥ 0, in a suitable half-neighbourhood of ε = 0.

Proof. If β0 = β0(ε), one has M∞(0; ε, β0(ε)) = ε∂β0
G(ε, β0(ε)) ≤ 0, by Lemma 5.2 in a suitable

half-neighbourhood of ε = 0. Hence, as the bound (4.4a) holds also for Mn(x; ε, β0), one has

Mn(0; ε, β0(ε)) ≤ Mn(0; ε, β0(ε)) −M∞(0; ε, β0(ε))

≤
∑

p≥n+1

|M p(0; ε, β0(ε))| ≤ 2K1ε
2e−K22

mn+1

≤
αmn+1

(ω)2

213
,

(5.9)

so that the assertion follows by the definition of ξn.
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Lemma 5.4. One can choose G(ε, β0) such that GR(ε, β0(ε)) = G(ε, β0(ε)) = 0. In particular
β(t; ε) = β0(ε) + bR(t; ε, β0(ε)) defined in (3.12) solves the equation of motion (1.1).

Proof. For any G(ε, β0) as above there is a curve β0(ε) along which M = M = M
ξ
, and

hence M satisfies property 1 and G(ε, β0(ε)) = 0. By Lemma 4.12 also GR(ε, β0) is one of such
primitives and then the assertion follows.

Remark 5.5. Note that without Lemma 4.12 we were able to prove only the existence of curves
on which the solution of the range equation (2.4a) is well-defined. On the other hand Lemma
4.12 guarantees that the solution of the bifurcation equation (2.4b) is one of such curves, say
β0(ε), so that the function β(t; ε) = β0(ε) + bR(t; ε, β0(ε)) given by (3.12) is well defined and
solves the equation of motion (1.1).

6 Proof of Theorem 2.2

If F0(β0) vanishes identically, let us come back to the formal expansion (3.4) of G(ε, β0), where
G(0)(β0) = F0(β0) ≡ 0 by hypothesis.

Assume first that there exists k0 ∈ N such that all functions G(k)(β0) are identically zero for
0 ≤ k ≤ k0 − 1, while G(k0)(β0) is not identically vanishing. Then we can write

G(ε, β0) = εk0

(
G(k0)(β0) +G(>k0)(ε, β0)

)
, (6.1)

with G(>k0)(ε, β0) = O(ε), and we can solve the equation of motion up to order k0 without
fixing the parameter β0. Any primitive function g(k0)(β0) of G(k0)(β0) is therefore analytic
and periodic: since it is not identically constant, it admits at least one maximum β̄′0 and one
minimum β̄′′0 , so that one can assume the following

Hypothesis 3. β∗0 is a zero of order n̄ for G(k0)(β0) with n̄ odd, and εk0+1∂n̄
β0
G(k0)(β∗0) < 0.

Indeed, if k0 is even one can choose β∗0 = β̄′0 for ε > 0, and β∗0 = β̄′′0 for ε < 0; if k0 is odd we
have to fix β∗0 = β̄′0: in both cases Hypothesis 3 is satisfied.

Then one can adapt the proof in the previous sections to cover this case. Namely, as the
formal expansion of GR coincide with that of G, one sets GR(ε, β0) =: εk0G∗(ε, β0) and hence,
if M satisfies property 1,

M∞(0; ε, β0) = εk0+1∂β0
G∗(ε, β0). (6.2)

On the other hand, Hypothesis 3 and Lemma 4.15 guarantee the existence of a continuous curve
β0(ε) such that β0(0) = β∗0 , G∗(ε, β0(ε)) ≡ 0 and if k0 is even then εk0+1∂β0

G∗(ε, β0(ε)) ≤ 0 in
a suitable half-neighbourhood of ε = 0, while if k0 is odd and β∗0 is a maximum for g(k0), then
∂β0

G∗(ε, β0(ε)) ≤ 0 in a whole neighbourhood of ε = 0. Then one can reason as in Section 5 to
obtain the result.

Finally, assume G(k)(β0) ≡ 0 for all k ≥ 0. We shall see that no resummation is necessary
in that case: this situation is reminiscent of the “null-renormalisation” case considered in [26]
when studying the stability problem for Hill’s equation with a quasi-periodic perturbation.
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We define trees and clusters according to the definitions previously done. On the other hand,
we slight change the definition of self-energy clusters. Namely, a cluster T on scale n ≥ 0 with
only one entering line ℓ′T and one exiting line ℓT and with νℓT

= νℓ′
T
, is called a self-energy

cluster if one has ν0
ℓ 6= 0 for all ℓ ∈ PT . The definition of self-energy cluster does not change

for the self-energy cluster on scale −1. We denote by Θk,ν the set of trees with order k and
momentum ν as in Section 3, and by Sk

n the set of (non-renormalised) self-energy clusters with
order k and scale n; note that self-energy clusters are allowed both in Θk,ν and in Sk

n.

For any subgraph S of any tree θ ∈ Θk,ν and for any T ∈ Sk
n, define the (non-renormalised)

value of S and T as in (3.10) and (3.9c) respectively, but with the (undressed) propagators
defined as

Gnℓ
(ω · νℓ) :=





Ψnℓ
(ω · νℓ)

ω · ν2
ℓ

, nℓ ≥ 0,

1, nℓ = −1.

(6.3)

Note that now the values of trees and self-energy clusters do not depend on ε, and they depend
on β0 only through the node factors. From now on we do not write explicitly the dependence
on β0 to lighten the notations. For all k ≥ 1, define

b
(k)
ν :=

∑

θ∈Θk,ν

V (θ), G(k−1) :=
∑

θ∈Θk,0

V (θ), (6.4a)

M (k)
n (x) :=

∑

T∈Sk
n

V T (x), M(k)
n (x) :=

n∑

p=0

M (k)
p (x), n ≥ −1 (6.4b)

M(k)
∞ (x) := lim

n→∞
M(k)

n (x). (6.4c)

The coefficients (6.4a) coincide with (3.2) and (3.5), as is easy to check; in particular, for all
k ≥ 1 one has

∑
θ∈Θk,0

V (θ) ≡ 0 by assumption.

Remark 6.1. One has Sk
−1 = S1

n = ∅ for k ≥ 2 and n ≥ 0. On the other hand |S1
−1| = 1 and

V T (x) = ∂β0
F0 ≡ 0 if T is the self-energy cluster in S1

−1; see Remark 3.4. Hence M
(1)
n (x) =

M
(1)
n (x) = M

(1)
∞ (x) = M

(k)
−1 = M

(k)
−1 ≡ 0 for all n ≥ −1, k ≥ 1.

Given a tree θ with V (θ) 6= 0, we shall say that a line ℓ ∈ L(θ) is resonant if it is the exiting
line of a self-energy cluster T , otherwise we shall say that ℓ is non-resonant. For any subgraph
T of any tree θ ∈ Θk,ν, denote by N∗

n(T ) the number of non-resonant lines on scale ≥ n in T ,
and set K(T ) as in (4.2). Define also, for any line ℓ ∈ L(T ), ζℓ := min{n ∈ Z+ : Ψn(ω ·νℓ) 6= 0}
and denote by N•

n(T ) the number of non-resonant lines ℓ ∈ L(T ) such that ζℓ ≥ n. Then we can
prove the analogous of Lemmas 4.1 and 4.2, namely the following results.

Lemma 6.2. For any θ∈Θk,ν such that V (θ) 6=0 one has N•
n(θ)≤2−(mn−2)K(θ), for all n ≥ 0.

Lemma 6.3. For any T ∈Sk
n such that V T (x) 6=0 one has K(T )≥2mn−1 and N•

p(T )≤2−(mp−2)

K(T ), for all 0 ≤ p ≤ n.

We omit the proofs of the two results above as it would be essentially a repetition of those
for Lemmas 4.1 and 4.2, respectively. Note that, since self-energy clusters are now allowed, for
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the proof of Lemma 6.3 one needs that the momenta of the lines in PT are different from those
of the external lines: this explains the new definition of self-energy clusters.

In light of Lemmas 6.2 and 6.3, although one has the ‘good bound’ 1/x2 for the propagators,
one cannot prove the convergence of the power series (3.1) as done in Lemma 4.5, because we
do not have any bound for the number of resonant lines, which in principle can accumulate ‘too
much’. In fact, we need a gain factor proportional to (ω · νℓ)

2 for each resonant line ℓ.

Lemma 6.4. For all n ≥ 0 and for all k ≥ 2 one has ∂xM
(k)
n (0) = 0 and hence ∂xM

(k)
n (0) = 0.

Proof. As the propagators are trivially even in the momenta, one can repeat (almost word by
word) the proof of Lemma 4.10 so as to obtain the result.

Lemma 6.5. One has M
(k)
∞ (0) ≡ 0 for all k ≥ 2.

Proof. One has (see also Remark 4.13) ∂β0
G(k−1) ≡ M

(k)
∞ (0) so that the assertion follows.

Lemma 6.6. For all k ≥ 1 one has |M
(k)
n (x)|Ψn+1(x) ≤ Ckx2Ψn+1(x) for some C > 0.

The latter result, proved in Appendix G, implies the convergence of the series (3.1). Indeed,
for any tree θ, consider the set T1(θ) of its maximal self-energy clusters and sum together the
values of the trees obtained by replacing each T ∈ T1(θ) with any self-energy cluster with the
same order and scale < min{nℓT

, nℓ′
T
}. Then the product of the propagators of the non-resonant

lines outside T1(θ) is bounded thanks to Lemma 6.3, while the product of the propagators of the
resonant lines exiting any self-energy cluster T ∈ T1(θ) times the product of the corresponding
self-energy values is bounded through Lemma 6.6.

Remark 6.7. We have obtained the convergence of the power series (3.1) and (3.4) for any β0

and any ε small enough. Hence, in this case, the response solution turns out to be analytic in
both ε and β0.

Remark 6.8. Note that the problem under study has analogies with the problem considered
in [24]. In that case, the resummation adds to the small divisor iω · ν a quantity −ε(ω · ν)2 +
Mn(ω · ν; ε), and one can prove that Mn(x, ε) is smooth in x and it is real at x = 0, so that
the dressed propagator is proportional to 1/(iω · ν − ε(ω · ν)2 + Mn(ω · ν; ε)), and hence can
be bounded essentially as the undressed one. In the present case, both the small divisor (ω ·ν)2

and the correction are real, but, up to negligible corrections, they turn out to have the same
sign (for a suitable choice of β∗0), so that once more the dressed propagator can be bounded as
the undressed one.

7 Conclusions

In this paper we proved the existence of response solutions to (1.1) for ε small enough and ω
satisfying the Bryuno condition, with no other assumption on the perturbation than analyticity.
As we said in the introduction, the result can be interpreted as a result on persistence of lower-
dimensional tori in quasi-integrable systems. As far as we know, the only other result in the
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literature on the persistence of lower-dimensional tori with no assumption on the perturbation
is due to Cheng [8]. He proved that, for convex unperturbed Hamiltonians, given any (d + 1)-
dimensional unperturbed resonant torus on which the flow is quasi-periodic with frequency vector
ω ∈ R

d satisfying the standard Diophantine condition, there exists at least one d-dimensional
submanifold of the resonant torus persisting under small perturbations and still carrying a quasi-
periodic flow with the same frequency vector. We have proved a result of the same kind for the
equation (1.1), that is the existence of at least one response solution for ε small enough – see
Theorem 2.2 in Section 2.

Of course, if the one hand we can look at the problem of existence of response solutions to
(1.1) as a problem of persistence of d-dimensional tori in a system with d+1 degress of freedom,
on the other hand d degrees of freedom trivially evolve according to the first equation in (1.4): in
fact (1.1) is actually a 1-degree of freedom system with an arbitrary quasi-periodic perturbation.
However, even though the Hamiltonian (1.3) can be seen as a simplified model for the problem
of lower-dimensional tori, we think that our result can be of interest by its own for the following
reasons.

First of all, Cheng’s result does not directly apply, since the convexity property he requires is
obviously not satisfied by the Hamiltonian (1.3). Very likely Cheng’s method could be extended
to the case (1.3): indeed the anisochrony condition is expected to be removable (and in fact it is,
as our result yields) when the perturbation depends only on the angle variables – in the case of
maximal tori this has been explicitly showed; see for instance [15, 29]. However, at least, a proof
would require some adaptation from Cheng’s paper. Moreover, just because of its simplicity, the
model is particularly suited to point out the main issues of the proof, avoiding all aspects that
would add only technical intricacies without shedding further light on the problem of persistence
of resonant tori. Finally, our method is completely different from Cheng’s: in fact one of the
main motivations for us was to provide an alternative approach to the problem.

We also mention that we allow a weaker Diophantine condition on the frequency vector, i.e.
the Bryuno condition. Recently the Bryuno condition has been widely studied in the theory of
small divisors problems. Its relevance is also related to the possibility of describing properties
of the analyticity domain, such as the radius of convergence, of the solutions in terms of the
Bryuno function; this has been explictly showed in some simple cases, such as the Siegel problem
[37], the semi-standard map [11] and the standard map [2]. It is generally believed that any
analytical KAM-type problem that can be solved under the standard Diophantine condition,
can also be solved using the Bryuno condition.

Note also that, in contrast to the case of periodic perturbations, the quasi-periodic solution
to (1.1) is not expected to be analytic in ε nor is some fractional power of ε. Already in the non-
degenerate case the solution has been proved only to be C∞ smooth in ε [17], and analyticity is
very unlikely. In the degenerate case, under some further assumptions on the forcing one obtain
smoothness in some fractional power of ε [18]. However, in general no more than continuity in ε
can be proved. This is ultimately related to the implicit function problem (2.6): the best we can
do is to show that there exists a continuous solution β0(ε) to (2.6). Furthermore the argument
is not constructive (a different situation arises in the case of the forced strongly dissipative
systems studied in [24, 25], where the proof of existence of response solutions has been made
fully constructive and C∞ smoothness follows). This not surprising: the same non-constructive
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feature of the proof appears in Cheng’s approach, due to the use of variational methods.

As emerges from the proof, very likely, the only case in which the quasi-periodic solution
is analytic is when the infinitely many conditions G(k)(β0) ≡ 0 are satisfied. Of course this is
a highly non-generic situation: moreover in that case, the entire resonant torus persists – see
Remark 6.7.

A Proof of Lemma 4.1

First of all we note that if Nn(θ) ≥ 1, then K(θ) ≥ 2mn−1. Indeed, if a line ℓ has scale nℓ ≥ n,
then

|ω · νℓ| ≤
1

8
αmn−1

(ω) <
1

4
αmn−1+pn−1

(ω) =
1

4
αmn−1(ω) < αmn−1(ω),

and hence, by definition of αm(ω), one has K(θ) ≥ |νℓ| ≥ 2mn−1. Now we prove the bound
Nn(θ) ≤ max{2−(mn−2)K(θ) − 1, 0} by induction on the order.

ℓθ

≥ n
< n

≥ n
ℓ1

θ1

≥ n

ℓ2

θ2

≥ n
ℓr θr

Figure 2: Construction used in the proof of Lemma 4.1 when nℓθ
≥ n.

If the root line of θ has scale nℓθ
< n then the bound follows by the inductive hypothesis.

If nℓθ
≥ n, call ℓ1, . . . , ℓr the lines with scale ≥ n closest to ℓθ (that is such that nℓ′ < n for all

lines ℓ′ ∈ P(ℓθ, ℓi), i = 1, . . . , r); see Figure 2. If r = 0 then Nn(θ) = 1 and |ν| ≥ 2mn−1, so that
the bound follows. If r ≥ 2 the bound follows once more by the inductive hypothesis. If r = 1,
then ℓ1 is the only entering line of a cluster T which is not a self-energy cluster as θ ∈ ΘR

k,ν, and
hence νℓ1 6= ν. But then

|ω · (ν − νℓ1)| ≤ |ω · ν| + |ω · νℓ1| ≤
1

4
αmn−1

(ω) <
1

2
αmn−1+pn−1

(ω) =
1

2
αmn−1(ω),

as both ℓθ and ℓ1 are on scale ≥ n, so that one has K(T ) ≥ |ν − νℓ1 | ≥ 2mn−1. Now, call θ1 the
subtree of θ with root line ℓ1. Then one has Nn(θ) = 1+Nn(θ1) ≤ 1+max{2−(mn−2)K(θ1)−1, 0},
so that Nn(θ) ≤ 2−(mn−2)(K(θ) −K(T )) ≤ 2−(mn−2)K(θ) − 1, again by induction.
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B Proof of Lemma 4.2

We first prove that for all n ≥ 0 and all T ∈ Rn, one has K(T ) ≥ 2mn−1. In fact if T ∈ Rn then
T contains at least a line on scale n. If there is ℓ ∈ L(T ) \ PT with nℓ = n, then

|ω · νℓ| <
1

8
αmn−1

(ω) < αmn−1(ω),

and hence K(T ) ≥ |νℓ| > 2mn−1. Otherwise, let ℓ ∈ PT be the line on scale n which is
closest to ℓ′T . Call T̃ the subgraph (actually the cluster) consisting of all lines and nodes of T

preceding ℓ; see Figure 3. Then νℓ 6= νℓ′
T
, otherwise T̃ would be a self-energy cluster. Therefore

K(T ) > |νℓ − νℓ′
T
| > 2mn−1 as both ℓ, ℓ′T are on scale ≥ n.

ℓ ℓ′T
T̃T =

Figure 3: Construction used to prove K(T ) ≥ 2mn−1 when there is a line ℓ ∈ PT on scale n.

Given a tree θ, call C(n, p) the set of renormalised subgraphs T of θ with only one entering line
ℓ′T and one exiting line ℓT both on scale ≥ p, such that L(T ) 6= ∅ and nℓ ≤ n for any ℓ ∈ L(T ).
Note that Rn ⊂ C(n, p) for all n, p ≥ 0. We prove that Np(T ) ≤ max{K(T )2−(mp−2) − 1, 0}
for all 0 ≤ p ≤ n and all T ∈ C(n, p). The proof is by induction on the order. Call N(PT )
the set of nodes in T connected by lines in PT . If all lines in PT are on scale < p, then
Np(T ) = Np(θ1) + . . . + Np(θr) if θ1, . . . , θr are the subtrees with root line entering a node in
N(PT ), and hence the bound follows from (the proof of) Lemma 4.1. If there exists a line ℓ ∈ PT

on scale ≥ p, call T1 and T2 the subgraphs of T such that L(T ) = {ℓ} ∪L(T1)∪L(T2), and note
that if L(T1), L(T2) 6= ∅, then T1, T2 ∈ C(n, p); see Figure 4.

T =
≥ p

T1

≥ p

ℓ
T2

≥ p

Figure 4: Construction used to prove Lemma 4.2.

Hence, by the inductive hypothesis one has Np(T ) = 1 + Np(T1) + Np(T2) ≤ 1 +
max{2−(mp−2)K(T1) − 1, 0} + max{2−(mp−2)K(T2) − 1, 0}. If both Np(T1),Np(T2) are zero
the bound trivially follows as K(T ) ≥ 2mp−1, while if both are non-zero one has Np(T ) ≤
2−(mp−2)(K(T1) +K(T2)) − 1 = 2−(mp−2)K(T ) − 1. Finally if only one is zero, say Np(T1) 6= 0
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and Np(T2) = 0, then T2 is a cluster and hence νℓ 6= νℓ′
T
, which implies K(T2) ≥ 2mp−1, so

that Np(T ) ≤ 2−(mp−2)K(T1) = 2−(mp−2)K(T ) − 2−(mp−2)K(T2) ≤ 2−(mp−2)K(T ) − 1. On the
other hand, either T2 ∈ C(n, p) or it is constituted by only one node v with νv 6= 0, so that
K(T2) > 2mp−1 in both cases. The same argument can be used in the case Np(T1) = 0 and
Np(T2) 6= 0.

C Proof of Lemma 4.5

Let θ ∈ ΘR
k,ν. The analyticity of f , hence of F , implies that there exist positive constants

F1, F2, ξ such that for all v ∈ N(θ) one has

|Fv(β0)| =
1

sv!
|∂sv

β Fνv(β0)| ≤ F1F
sv

2 e−ξ|νv|. (C.1)

Moreover property 1 implies |Gn(x; ε, β0)| ≤ c0αmn(ω)−2 for all n ≥ 0 and for some positive
constant c0, and hence by Lemma 4.1 one can bound

∏

ℓ∈L(θ)

|Gnℓ
(ω · νℓ; ε, β0)| ≤

∏

n≥0

(
c0

αmn(ω)2

)Nn(θ)

≤

(
c0

αmn0
(ω)2

)k ∏

n≥n0+1

(
c0

αmn(ω)2

)Nn(θ)

≤

(
c0

αmn0
(ω)2

)k

exp


8K(θ)

∑

n≥n0+1

1

2mn
log

c
1/2
0

αmn(ω)


 ≤ Dk(n0)exp(ξ(n0)K(θ)),

with

D(n0) =
c0

αmn0
(ω)2

, ξ(n0) = 8
∑

n≥n0+1

1

2mn
log

c
1/2
0

αmn(ω)
.

Then, by Hypothesis 1, one can choose n0 such that ξ(n0) ≤ ξ/2. The sum over the other labels
is bounded by a constant to the power k, and hence one can bound

∑

θ∈ΘR
k,ν

|V (θ; ε, β0)| ≤ C0C
k
1 e

−ξ|ν|/2,

for some constants C0, C1, and this is enough to prove the assertion.

D Proof of Lemma 4.6

We shall prove that, the function bR defined in (3.12) satisfies the equation of motion (2.4a),
i.e. we shall check that bR = εgF (ωt, β0 + bR), where g is the pseudo-differential operator with
kernel g(ω · ν) = 1/(ω · ν)2. We can write the Fourier coefficients of bR as

bR
ν

=
∑

n≥0

b
[n]
ν , b

[n]
ν =

∑

k≥1

εk
∑

θ∈ΘR
k,ν

(n)

V (θ; ε, β0), (D.1)
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where ΘR
k,ν(n) is the subset of ΘR

k,ν such that nℓθ
= n.

Using Remark 3.3 and Lemma 4.5, in Fourier space one can write

g(ω · ν)[εF (ωt, β0 + bR)]ν = g(ω · ν)
∑

n≥0

Ψn(ω · ν)[εF (ωt, β0 + bR)]ν

= g(ω · ν)
∑

n≥0

Ψn(ω · ν)(Gn(ω · ν; ε, β0))
−1Gn(ω · ν; ε, β0)[εF (ωt, β0 + bR)]ν

= g(ω · ν)
∑

n≥0

(
(ω · ν)2 −Mn−1(ω · ν; ε, β0)

)
Gn(ω · ν; ε, β0)[εF (ωt, β0 + bR)]ν

= g(ω · ν)
∑

n≥0

(
(ω · ν)2 −Mn−1(ω · ν; ε, β0)

)∑

k≥1

εk
∑

θ∈Θ
R

k,ν (n)

V (θ; ε, β0),

where Θ
R
k,ν(n) differs from ΘR

k,ν(n) as it contains also trees θ which have one self-energy cluster
with exiting line ℓθ. If we separate the trees containing such self-energy cluster from the others,
we obtain

[εF (ωt, β0 + bR)]ν =
∑

n≥0

(
(ω · ν)2 −Mn−1(ω · ν; ε, β0)

)
b
[n]
ν

+
∑

n≥0

Ψn(ω · ν)
∑

p≥n

n−1∑

q=−1

Mq(ω · ν; ε, β0)b
[p]
ν +

∑

n≥1

Ψn(ω · ν)
n−1∑

p=0

p−1∑

q=−1

Mq(ω · ν; ε, β0)b
[p]
ν

=
∑

n≥0

(
(ω · ν)2 −Mn−1(ω · ν; ε, β0)

)
b
[n]
ν +

∑

p≥0

(
p−1∑

q=−1

Mq(ω · ν; ε, β0)
∑

n≥q+1

Ψn(ω · ν)

)
b
[p]
ν

=
∑

n≥0

(
(ω · ν)2 −Mn−1(ω · ν; ε, β0)

)
b
[n]
ν +

∑

n≥0

(
n−1∑

q=−1

Mq(ω · ν; ε, β0)χq(ω · ν)

)
b
[n]
ν

=
∑

n≥0

(
(ω · ν)2 −Mn−1(ω · ν; ε, β0)

)
b
[n]
ν +

∑

n≥0

Mn−1(ω · ν; ε, β0)b
[n]
ν

and hence
g(ω · ν)[εF (ωt, β0 + bR)]ν =

∑

n≥0

b
[n]
ν = bR

ν
,

so that the proof is complete.

E Proof of Lemma 4.8

Property 1-p implies |Gn(x; ε, β0)| ≤ c0αmn(ω)−2 for all 0 ≤ n ≤ p. Then, using also Lemma 4.2
and the fact that any self-energy cluster in Rn has at least two nodes for any n ≥ 0, we obtain

|Mn(x; ε, β0)| ≤
∑

T∈Rn

|ε|k(T )|V T (x; ε, β0)| ≤
∑

k≥2

|ε|kCke−K22mn
,
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so that (4.4a) is proved for ε small enough. Now we prove (4.4b) by induction on n. For n = 0
the bound is obvious. Assume then (4.4b) to hold for all n′ < n. For any T ∈ Rn such that
V T (x; ε, β0) 6= 0 one has

∂x V T (x; ε, β0) =
∑

ℓ∈PT




∏

v∈N(T )

Fv(β0)




∂xGnℓ

(xℓ; ε, β0)
∏

ℓ′∈L(T )\{ℓ}

Gnℓ′
(ω · νℓ′ ; ε, β0)


 ,

where xℓ = ω · νℓ = x+ ω · ν0
ℓ and

∂xGnℓ
(xℓ; ε, β0) =

∂xΨnℓ
(xℓ)

x2
ℓ −Mnℓ−1(xℓ; ε, β0)

−
Ψnℓ

(xℓ) (2xℓ − ∂xMnℓ−1(xℓ; ε, β0))(
x2

ℓ −Mnℓ−1(xℓ; ε, β0)
)2 .

One has

|∂xΨnℓ
(xℓ)| ≤ |∂xχnℓ−1(xℓ)| + |∂xψnℓ

(xℓ)| ≤
B1

αmnℓ
(ω)

,

for some constant B1 and, by (4.4a), the inductive hypothesis and Hypothesis 1,

|∂xMnℓ−1(xℓ; ε, β0)| ≤

nℓ−1∑

q=0

|(∂xχq(xℓ))Mq(xℓ; ε, β0)| +

nℓ−1∑

q=0

|∂xMq(xℓ; ε, β0)|

≤ ε2B1K1

∑

q≥0

1

αmq(ω)
e−K22mq

+ ε2C1

∑

q≥0

e−C12mq
≤ ε2B2,

for some constant B2. Hence, at the cost of replacing the bound for the propagators with
C̃αmnℓ

(ω)−4 for some constant C̃, one can rely upon Lemma 4.2 to obtain (4.4b) for j = 1. For
j = 2 one can reason analogously.

F Proof of Lemma 4.12

First of all, for any renormalised tree θ set

∂v V (θ; ε, β0) := ∂β0
Fv(β0)

(
∏

w∈N(θ)\{v}

Fw(β0)

)(
∏

ℓ∈L(θ)

Gnℓ
(ω · νℓ; ε, β0)

)
, (F.1)

and

∂ℓ V (θ; ε, β0) := ∂β0
Gnℓ

(xℓ; ε, β0)

(
∏

v∈N(θ)

Fv(β0)

)(
∏

λ∈L(θ)\{ℓ}

Gnλ
(xλ; ε, β0)

)

= Aℓ(θ, xℓ; ε, β0) ∂β0
Gnℓ

(xℓ; ε, β0)Bℓ(θ; ε, β0),

(F.2)
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where xℓ := ω · νℓ, ∂β0
Gnℓ

(xℓ; ε, β0) is written according to Remark 3.5,

Aℓ(θ, xℓ; ε, β0) :=

(
∏

v∈N(θ)
v 6≺ℓ

Fv(β0)

)(
∏

ℓ′∈L(θ)
ℓ′ 6�ℓ

Gnℓ′
(xℓ′ ; ε, β0)

)
, (F.3a)

Bℓ(θ; ε, β0) :=

(
∏

v∈N(θ)
v≺ℓ

Fv(β0)

)(
∏

ℓ′∈L(θ)
ℓ′≺ℓ

Gnℓ′
(xℓ′ ; ε, β0)

)
. (F.3b)

Let us define in the analogous way ∂v V T (x; ε, β0) and ∂ℓ V T (x; ε, β0) for any self-energy cluster
T , and let us write

∂β0
V (θ; ε, β0) = ∂N V (θ; ε, β0) + ∂L V (θ; ε, β0), (F.4)

where

∂N V (θ; ε, β0) :=
∑

v∈N(θ)

∂v V (θ; ε, β0), ∂L V (θ; ε, β0) :=
∑

ℓ∈L(θ)

∂ℓ V (θ; ε, β0). (F.5)

Let us also write
∂β0

V T (x; ε, β0) = ∂N V T (x; ε, β0) + ∂L V T (x; ε, β0), (F.6)

for any T ∈ Rn, n ≥ 0, where the derivatives ∂N and ∂L are defined as in the previous cases
(F.5), with N(T ) and L(T ) replacing N(θ) and L(θ), respectively, so that we can split

∂β0
Mn(x; ε, β0) = ∂NMn(x; ε, β0) + ∂LMn(x; ε, β0),

∂β0
Mn(x; ε, β0) = ∂NMn(x; ε, β0) + ∂LMn(x; ε, β0),

(F.7)

again with obvious meaning of the symbols.

Remark F.1. We can interpret the derivative ∂v as all the possible ways to attach an extra line
(carrying a momentum 0) to the node v, so that

∑
k≥0 ε

k+1
∑

θ∈ΘR
k+1,0

∂N V (θ; ε, β0) produces

contributions to M∞(0; ε, β0).

Given any θ ∈ ΘR
k,0 we have to study the derivative (F.4). The terms (F.5) produce imme-

diately contributions to M∞(0; ε, β0) by Remark F.1. Thus, we have to study the derivatives
∂ℓ V (θ; ε, β0) appearing in the sum (F.5). Here and henceforth, we shall not write any longer
explicitly the dependence on ε and β0 of both propagators and self-energies, in order not to
overwhelm the notation.

For any θ ∈ ΘR
k,0 such that V (θ; ε, β0) 6= 0 and for any line ℓ ∈ L(θ), either there is only one

scale n such that Ψn(xℓ) 6= 0 (and in that case Ψn(xℓ) = 1 and Ψn′(xℓ) = 0 for all n′ 6= n) or
there exists only one n ≥ 0 such that Ψn(xℓ)Ψn+1(xℓ) 6= 0.

1. If Ψn(xℓ) = 1 one has

∂ℓ V (θ; ε, β0) = Aℓ(θ, xℓ)
Ψn(xℓ)

x2
ℓ −Mn−1(xℓ)

∂β0
Mn−1(xℓ)

1

x2
ℓ −Mn−1(xℓ)

Bℓ(θ)

= Aℓ(θ, xℓ)
Ψn(xℓ)

x2
ℓ −Mn−1(xℓ)

∂β0
Mn−1(xℓ)

Ψn(xℓ)

x2
ℓ −Mn−1(xℓ)

Bℓ(θ)

= Aℓ(θ, xℓ)Gn(xℓ)∂β0
Mn−1(xℓ)Gn(xℓ)Bℓ(θ),

(F.8)

where (here and henceforth) we shorten Aℓ(θ, xℓ) = Aℓ(θ, xℓ; ε, β0) and Bℓ(θ) = Bℓ(θ; ε, β0).
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Remark F.2. Note that if we split ∂β0
= ∂N + ∂L in (F.8), the term with ∂NMn−1(xℓ) is a

contribution to M∞(0).

If there is only one n ≥ 0 such that Ψn(xℓ)Ψn+1(xℓ) 6= 0, then Ψn(xℓ) + Ψn+1(xℓ) = 1
and χq(xℓ) = 1 for all q = −1, . . . , n − 1, so that ψn+1(xℓ) = 1 and hence Ψn+1(xℓ) = χn(xℓ).
Moreover it can happen only (see Remark 3.7) nℓ = n or nℓ = n+ 1.

2. Consider first the case nℓ = n+ 1. One has

∂ℓ V (θ; ε, β0) = Aℓ(θ, xℓ)Gn+1(xℓ)∂β0
Mn(xℓ)

1

x2
ℓ −Mn(xℓ)

Bℓ(θ)

= Aℓ(θ, xℓ)Gn+1(xℓ)∂β0
Mn−1(xℓ)

Ψn(xℓ) + Ψn+1(xℓ)

x2
ℓ −Mn(xℓ)

Bℓ(θ)

+ Aℓ(θ, xℓ)Gn+1(xℓ)∂β0
Mn(xℓ)

χn(xℓ)

x2
ℓ −Mn(xℓ)

Bℓ(θ)

= Aℓ(θ, xℓ)Gn+1(xℓ)




n∑

q=−1

∂β0
Mq(xℓ)


Gn+1(xℓ)Bℓ(θ)

+ Aℓ(θ, xℓ)Gn+1(xℓ)




n−1∑

q=−1

∂β0
Mq(xℓ)


Gn(xℓ)Bℓ(θ)

+ Aℓ(θ, xℓ)Gn+1(xℓ)




n−1∑

q=−1

∂β0
Mq(xℓ)


Gn(xℓ)Mn(xℓ)Gn+1(xℓ)Bℓ(θ).

(F.9)

We can represent graphically the three contributions in (F.9) as in Figure 5: we represent the
derivative ∂β0

as an arrow pointing toward the graphical representation of the differentiated
quantity; see also Figures 7, 10 and 12.

n+1
≤ n

n+1
+

n+1
≤ n−1

n

+
n+1

≤ n−1
n

n
n+1

Figure 5: Graphical representation of the derivative ∂ℓ V (θ; ε, β0) according to (F.9).

Remark F.3. Note that the Mn(xℓ) appearing in the latter line of (F.9) has to be interpreted
(see Remark 3.6) as ∑

T∈LFn

εk(T )
V T (xℓ; ε, β0).
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Note also that, again, if we split ∂β0
= ∂N + ∂L in (F.9), all the terms with ∂NMq(xℓ) are

contributions to M∞(0).

Now consider the case nℓ = n.

3. If ℓ is not the exiting line of a left-fake cluster, set θ̄ = θ; otherwise, if ℓ is the exiting
line of a left-fake cluster T , define – if possible – θ̄ as the renormalised tree obtained from θ
by removing T and ℓ′T . In both cases, define – if possible – τ1(θ̄, ℓ) as the set constituted by
all the renormalised trees θ′ obtained from θ̄ by inserting a left-fake cluster, together with its
entering line, between ℓ and the node v which ℓ exits; see Figure 6. Here and henceforth, if S
is a subgraph with only one entering line ℓ′S = ℓv and one exiting line ℓS and we “remove” S
together with ℓ′S , we mean that we also reattach the line ℓS to the node v.

θ̄ =
n

ℓ
θ′ =

n

ℓ
n

n+1

Figure 6: The renormalised tree θ̄ and the renormalised trees θ′ of the set τ1(θ̄, ℓ) associated with θ̄.

Remark F.4. The construction of the set τ1(θ̄, ℓ) could be impossible if the removal or the
insertion of a left-fake cluster T , together with its entering line ℓ′T , produce a self-energy cluster.
We shall see later how to deal with these cases.

Then one has

∂ℓ V (θ̄; ε, β0) + ∂ℓ

∑

θ′∈τ1(θ̄,ℓ)

V (θ′; ε, β0) = Aℓ(θ̄, xℓ) ∂β0
Gn(xℓ) (1 +Mn(xℓ)Gn+1(xℓ)) Bℓ(θ̄), (F.10)

where

∂β0
Gn(xℓ) (1 +Mn(xℓ)Gn+1(xℓ))

= Gn(xℓ)∂β0
Mn−1(xℓ)Gn(xℓ) + Gn(xℓ)∂β0

Mn−1(xℓ)
Ψn+1(xℓ)

x2
ℓ −Mn−1(xℓ)

+ Gn(xℓ)∂β0
Mn−1(xℓ)Gn(xℓ)Mn(xℓ)Gn+1(xℓ)

+ Gn(xℓ)∂β0
Mn−1(xℓ)

Ψn+1(xℓ)

x2
ℓ −Mn−1(xℓ)

Mn(xℓ)Gn+1(xℓ)

= Gn(xℓ)∂β0
Mn−1(xℓ)Gn(xℓ) + Gn(xℓ)∂β0

Mn−1(xℓ)Gn+1(xℓ)

− Gn(xℓ)∂β0
Mn−1(xℓ)

χn(xℓ)

x2
ℓ −Mn−1(xℓ)

Mn(xℓ)Gn+1(xℓ)

+ Gn(xℓ)∂β0
Mn−1(xℓ)Gn(xℓ)Mn(xℓ)Gn+1(xℓ)

+ Gn(xℓ)∂β0
Mn−1(xℓ)

Ψn+1(xℓ)

x2
ℓ −Mn−1(xℓ)

Mn(xℓ)Gn+1(xℓ)

= Gn(xℓ)∂β0
Mn−1(xℓ)Gn(xℓ) + Gn(xℓ)∂β0

Mn−1(xℓ)Gn+1(xℓ)

+ Gn(xℓ)∂β0
Mn−1(xℓ)Gn(xℓ)Mn(xℓ)Gn+1(xℓ),

(F.11)
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n
≤ n− 1

n
+

n
≤ n−1

n+1

+
n

≤ n−1
n

n
n+1

Figure 7: Graphical representation of the three contributions in the last two lines of (F.11).

so that also in this case, if we split ∂β0
= ∂N +∂L, all the terms with ∂NMn−1 are contributions to

M∞(0) – see Remark F.2. Again, we can represent graphically the three contributions obtained
inserting (F.11) in (F.10): see Figure 7.

4. Assume now that ℓ is not the exiting line of a left-fake cluster, and the insertion of a left-fake
cluster, together with its entering line, produces a self-energy cluster. Note that this can happen
only if ℓ is the entering line of a renormalised right-fake cluster T . Let ℓ be the exiting line (on
scale n+ 1) of the renormalised right-fake cluster T , call θ the renormalised tree obtained from
θ by removing T and ℓ and call τ2(θ, ℓ) the set of renormalised trees θ′ obtained from θ by
inserting a right-fake cluster, together with its entering line, before ℓ; see Figure 8.

θ′ =
n+1

ℓ
n

n

ℓ
θ =

ℓ

n+1

Figure 8: The trees θ′ of the set τ2(θ, ℓ) obtained from θ when ℓ ∈ L(θ) enters a right-fake cluster.

By construction one has

V (θ; ε, β0) = Aℓ(θ, xℓ)Gn+1(xℓ)Bℓ(θ)∑

θ′∈τ2(θ,ℓ)

V (θ′; ε, β0) = Aℓ(θ, xℓ)Gn+1(xℓ)Mn(xℓ)Gn(xℓ)Bℓ(θ),

where we have used that xℓ = xℓ̄.

Consider the contribution to ∂ℓ V (θ; ε, β0) – see (F.9) – given by

Aℓ(θ, xℓ)Gn+1(xℓ)∂LMn(xℓ)Gn+1(xℓ)Bℓ(θ). (F.12)

Call Rn(T ) the subset of Rn such that if T ′ ∈ Rn(T ) the exiting line ℓT ′ exits also the renor-
malised right-fake cluster T ; note that the entering line ℓ of T must be also the exiting line of
some renormalised left-fake cluster T ′′ contained in T ′; see Figure 9.

Define
Mn(T, xℓ; ε, βo) =

∑

T ′∈Rn(T )

εk(T ′)
V T ′(xℓ; ε, β0). (F.13)
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T T ′′

T ′

n+1 n
n

n n+1

ℓℓT ′ ℓ′T ′

Figure 9: A self-energy cluster T ′ ∈ Rn(T ).

Hence one has

∂ℓ

∑

θ′∈τ2(θ,ℓ)

V (θ′; ε, β0) + Aℓ(θ, xℓ)Gn+1(xℓ) ∂ℓ

∑

T∈RFn

Mn(T, xℓ)Gn+1(xℓ)Bℓ(θ)

= Aℓ(θ, xℓ)Gn+1(xℓ)Mn(xℓ)∂β0
Gn(xℓ) (1 +Mn(xℓ)Gn+1(xℓ))Bℓ(θ),

(F.14)

where we have used again that xℓ = xℓ. Thus, one can reason as in (F.11), so as to obtain the
sum of three contributions, as represented in Figure 10.

n+1
n

n
≤n−1

n
+

n+1
n

n
≤ n−1

n+1

+
n+1

n
n

≤ n−1
n

n
n+1

Figure 10: Graphical representation of the three contributions arising from (F.14).

5. Finally, consider the case in which ℓ is the exiting line of a renormalised left-fake cluster, T0

and the removal of T0 and ℓ′T0
creates a self-energy cluster.

Set (for a reason that will become clear later) θ0 = θ and ℓ0 = ℓ. Then there is a maximal
m ≥ 1 such that there are 2m lines ℓ1, . . . , ℓm and ℓ′1, . . . ℓ

′
m, with the following properties:

(i) ℓi ∈ P(ℓθ0
, ℓi−1), for i = 1, . . . ,m,

(ii) nℓi
= n + i < max{p : Ψp(xℓi

) 6= 0} = n + i + 1, for i = 0, . . . ,m − 1, while nm := nℓm
=

n+m+ σ, with σ ∈ {0, 1},
(iii) νℓi

6= νℓi−1
and the lines preceding ℓi but not ℓi−1 are on scale ≤ n+ i− 1, for i = 1, . . . ,m,

(iv) νℓ′i
= νℓi

, for i = 1, . . . ,m,
(v) if m ≥ 2, ℓ′i is the exiting line of a left-fake cluster Ti, for i = 1, . . . ,m− 1,
(vi) ℓ′i ≺ ℓ′Ti−1

and all the lines preceding ℓ′Ti−1
but not ℓ′i are on scale ≤ n+i−1, for i = 1, . . . ,m,

(vii) n′m := nℓ′m = n+m+ σ′ with σ′ ∈ {0, 1}.

Note that one cannot have σ = σ′ = 1, otherwise the subgraph between ℓm and ℓ′m would
be a self-energy cluster. Note also that (ii), (iv) and (v) imply nℓ′i

= n+ i for i = 1, . . . ,m− 1 if
m ≥ 2. Call Si the subgraph between ℓi+1 and ℓi, and S′

i the cluster between ℓ′Ti
and ℓ′i+1 for all
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i = 0, . . . ,m − 1. For i = 1, . . . ,m, call θi the renormalised tree obtained from θ0 by removing
everything between ℓi and the part of θ0 preceding ℓ′i, and note that if m ≥ 2, properties (i)–(vii)
hold for θi but with m− i instead of m, for all i = 1, . . . ,m− 1.

For i = 1, . . . ,m, call Ri the self-energy cluster obtained from the subgraph of θi−1 between
ℓi and ℓ′i, by removing the left-fake cluster Ti−1 together with ℓ′Ti

. Note that L(Ri) = L(Si−1)∪
{ℓi−1} ∪ L(S′

i−1) and N(Ri) = N(Si−1) ∪N(S′
i−1); see Figure 11.

θ0 =
n+1

ℓ1
≤ n

S0

n

ℓ0
n

T0

n+1

ℓ′T0

≤ n

S′
0

ℓ′1

n+1

θ1 =
n+1

ℓ1
R1

n

ℓ0
≤ n ≤ n

S′
0S0

Figure 11: The renormalised trees θ0 and θ1 and the self-energy cluster R1 in case 5 with m = 1 and
σ = σ′ = 0. Note that the set S′

0
is a cluster, but not a self-energy cluster.

For i = 0, . . . ,m − 1, given ℓ′, ℓ ∈ L(θi), with ℓ′ ≺ ℓ, call P(i)(ℓ, ℓ′) the path of lines in
θi connecting ℓ′ to ℓ (hence P(i)(ℓ, ℓ′) = P(ℓ, ℓ′) ∩ L(θi)). For any i = 0, . . . ,m − 1 and any
ℓ ∈ P(i)(ℓi, ℓ

′
m), let τ3(θi, ℓ) be the set of all renormalised trees which can be obtained from θi

by replacing each left-fake cluster preceding ℓ but not ℓ′m with all possible left-fake clusters. Set
also τ3(θm−1, ℓ

′
m) = θm−1.

Note that
Aℓm

(θm, xℓm
)Gnm(xℓm

)V (Sm−1) = Aℓm−1
(θm−1, xℓm−1

),

V (S′
m−1)Gn′

m
(xℓm

)Bℓm
(θm) = Bℓ′

Tm−1

(θm−1),
(F.15)

and one among cases 1–4 holds for ℓm ∈ L(θm) so that we can consider the contribution to
∂ℓm

V (θm; ε, β0) (together with other contributions as in 3 and 4 if necessary) given by – see
(F.8), (F.9) and (F.11) –

Aℓm
(θm, xℓm

)Gnm(xℓm
)∂ℓm−1

V Rm(xℓm
)Gn′

m
(xℓm

)Bℓm
(θm).

Then one has

Aℓm
(θm, xℓm

)Gnm(xℓm
)∂ℓm−1

V Rm(xℓm
)Gn′

m
(xℓm

)Bℓm
(θm) + ∂ℓm−1

∑

θ′∈τ3(θm−1,ℓm−1)

V (θ′; ε, β0) (F.16)

= Aℓm−1
(θm−1, xℓm−1

)∂β0
Gn+m−1(xℓm−1

)
(
1 +Mn+m−1(xℓm−1

)Gn+m(xℓm−1
)
)
Bℓ′

Tm−1

(θm−1),
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and hence we obtain, reasoning as in (F.11),

Aℓm−1
(θm−1, xℓm−1

)Gn+m−1(xℓm−1
)∂β0

Mn+m−2(xℓm−1
)Gn+m−1(xℓm−1

)Bℓ′
Tm−1

(θm−1)

+Aℓm−1
(θm−1, xℓm−1

)Gn+m−1(xℓm−1
)∂β0

Mn+m−2(xℓm−1
)Gn+m(xℓm−1

)Bℓ′
Tm−1

(θm−1)

+Aℓm−1
(θm−1, xℓm−1

)Gn+m−1(xℓm−1
)∂β0

Mn+m−2(xℓm−1
)Gn+m−1(xℓm−1

) (F.17)

×Mn+m−1(xℓm−1
)Gn+m(xℓm−1

)Bℓ′
Tm−1

(θm−1).

Then, for i = m− 1, . . . , 1 we recursively reason as follows. Set

Bℓ′
Ti

(τ3(θi, ℓ
′
i+1)) :=

∑

θ′∈τ3(θi,ℓ′i+1
)

Bℓ′
Ti

(θ′),

and note that

Aℓi
(θi, xℓi

)Gn+i(xℓi
)V (Si−1) = Aℓi−1

(θi−1, xℓi−1
),

V (S′
i−1)Gn+i(xℓi

)Mn+i(xℓi
)Gn+i+1(xℓi

)Bℓ′
Ti

(τ3(θi, ℓ
′
i+1)) = Bℓ′

Ti−1

(τ3(θi−1, ℓ
′
i)).

(F.18)

Consider the contribution

Aℓi
(θi, xℓi

)Gn+i(xℓi
)∂ℓi−1

V Ri
(xℓi

)Gn+i(xℓi
)Mn+i(xℓi

)Gn+i+1(xℓi
)Bℓ′

Ti

(τ3(θi, ℓ
′
i+1)), (F.19)

obtained at the (i+ 1)-th step of the recursion. By (F.18) one has (see Figure 12)

Aℓi
(θi, xℓi

)Gn+i(xℓi
)∂ℓi−1

V Ri
(xℓi

)Gn+i(xℓi
)Mn+i(xℓi

)Gn+i+1(xℓi
)Bℓ′

Ti

(τ3(θi, ℓ
′
i+1))

+ ∂ℓi−1

∑

θ′∈τ3(θi−1,ℓi−1)

V (θ′; ε, β0) = Aℓi−1
(θi−1, xℓi−1

) ∂β0
Gn+i−1(xℓi−1

)

×
(
1 +Mn+i−1(xℓi−1

)Gn+i(xℓi−1
)
)
Bℓ′

Ti−1

(τ3(θi−1, ℓ
′
i)),

(F.20)

which produces, as in (F.17), the contribution

Aℓi−1
(θi−1, xℓi−1

)Gn+i−1(xℓi−1
)∂ℓi−2

V Ri−1
(xℓi−1

)Gn+i−1(xℓi−1
)

×Mn+i−1(xℓi−1
)Gn+i(xℓi−1

)Bℓ′
Ti−1

(τ3(θi−1, ℓ
′
i)).

(F.21)

Hence we can proceed recursively from θm up to θ0, until we obtain

Aℓ0(θ0, xℓ0)Gn(xℓ0)∂β0
Mn−1(xℓ0)Gn(xℓ0)Bℓ′

T0

(τ3(θ0, ℓ
′
1))

+ Aℓ0(θ0, xℓ0)Gn(xℓ0)∂β0
Mn−1(xℓ−0)Gn+1(xℓ0)Bℓ′

T0

(τ3(θ0, ℓ
′
1))

+ Aℓ0(θ0, xℓ0)Gn(xℓ0)∂β0
Mn−1(xℓ0)Gn(xℓ0)Mn(xℓ0)Gn+1(xℓ0)Bℓ′

T0

(τ3(θ0, ℓ
′
1)).

(F.22)

Once again, if we split ∂β0
= ∂N + ∂L, all the terms with ∂NMn−1 are contributions to M∞(0).

6. We are left with the derivatives ∂LMq(x; ε, β0), q ≤ n, when the differentiated propagator
is not one of those used along the cases 4 or 5; see for instance (F.14), (F.16) and (F.20).
One can reason as in the case ∂L V (θ; ε, β0), by studying the derivatives ∂ℓ V T (xℓ; ε, β0) and
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n+i

ℓi
≤n+i−1

Si−1

Ri

ℓi−1

≤n+i−1

S′
i−1

ℓ′i

n+i n+i n+i+1

ℓ′
Ti

+

n+i

ℓi
≤n+i−1

Si−1

ℓi−1
n+i−1

n+i

ℓ′Ti−1

≤n+i−1

S′
i−1

n+i

ℓ′i
n+ i n+i+1

ℓ′
Ti

Figure 12: Graphical representation of the left hand side of (F.20).

proceed iteratively along the lines of cases 1 to 5 above, until only lines on scales 0 are left. In
that case the derivatives ∂β0

G0(xℓ; ε, β0) produce derivatives ∂β0
M−1(x; ε, β0) = ε∂2

β0
F0(β0) (see

Remarks 3.4 and 3.5). Therefore, for n = −1, in the splitting (F.7), there are no terms with the
derivatives ∂ℓ, and the derivatives ∂v can be interpreted as said in Remark F.1. It is also easy
to realize that, by construction, each contribution to M∞(0; ε, β0) appears as one term among
those considered in the discussion above. Hence the assertion follows.

Remark F.5. If we used a sharp scale decomposition instead of the C∞ one, the proof above
would be much easier. More precisely, if we defined the (discontinuous) function

χ(x) :=

{
1, |x| ≤ 1,

0, |x| > 1,

and consequently changed the definitions of ψ, and χn, ψn and Ψn for n ≥ 0, we could reduce
the proof of Lemma 4.12 to (iterations of) case 1. Moreover in such a case, defining GR

n (ε, β0) =∑
k≥0 ε

kG
[k]
n (ε, β0) and G

[k]
n (ε, β0) =

∑
θ∈ΘR

k+1,0,n
V (θ, ε, β0), with ΘR

k,ν,n = {θ ∈ ΘR
k,ν : nℓ ≤

n for all ℓ ∈ L(θ)}, we would obtain the stronger identity Mn(0; ε, β0) = ε∂β0
GR

n (ε, β0) for all
n ≥ −1. On the other hand, the bound (4.4b) in Lemma 4.8 would be no longer true because
of the derivative ∂xΨn, so that further work would be however needed; see for instance [16]
where a sharp scale decomposition is used for the standard KAM theorem and ω satisfying
the standard Diophantine condition. Analogously, using a scale decomposition depending on
the whole sequence {αn(ω)}n≥0, i.e. definig the function χ as in (3.8) but setting χn(x) =
χ(8x/αn(ω)) and consequently changing the definitions of ψn and Ψn for n ≥ 0, Remark 3.7
does not hold anymore so that the analysis of cases 2–5 becomes more complicated.
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G Proof of Lemma 6.6

For all n ≥ 0 one can write

M(k)
n (x) = −M

(k)
>n(0) + x2

∫ 1

0
dτ0 (1 − τ0) ∂

2
xM

(k)
n (τ0x), (G.1)

where we have used Lemmas 6.4 and 6.5 and we have defined

M
(k)
>n(0) =

∞∑

p=n+1

M (k)
p (0). (G.2)

Call Sk
>n and Sk

≤n the sets of self-energy clusters with order k and scale p > n and p ≤ n,

respectively, and denote by Sk the set of all self-energy clusters of order k. Then one can write

M(k)
n (x) = −

∑

T∈Sk
>n

V T (0) + x2
∑

T∈Sk
≤n

∫ 1

0
dτ0 (1 − τ0) ∂

2
x V T (τ0x). (G.3)

Given a self-energy cluster T , we define T (T ) the set of self-energy clusters in T and by
T1(T ) the set of maximal self-energy clusters strictly contained in T . Given a line ℓ ∈ L(T )
there exist p = p(ℓ) ≥ 1 self-energy clusters T0, . . . , Tp−1 such that T = T0 ⊃ T1 ⊃ . . . ⊃ Tp−1,
Tj ∈ T1(Tj−1) for j = 1, . . . , p− 1 and Tp−1 is the minimal self-energy cluster containing ℓ: we

call Cℓ(T ) := {Tj}
p−1
j=0 the cloud of ℓ and {Tj}

p−1
j=1 the internal cloud of ℓ. If p = 1 then the

internal cloud of ℓ is the empty set.

With each T contributing to M
(k)
n (x) through (G.3) we associate a label δT ∈ {L,R}, by

setting δT = L if the scale of T is > n and δT = R if the scale of T is ≤ n: If we define

LT = −V T (0), RT (x) = x2

∫ 1

0
dτ0 (1 − τ0) ∂

2
x V T (τ0x), (G.4)

then we associate with T the value LT if δT = L and the value RT (x) if δT = R.

Consider first a contribution LT in (G.3). Call F(T ) the set of all self-energy clusters T ′ ∈
Sk

>n where each Ti ∈ T1(T ) is replaced by any self-energy cluster with the same order ki as Ti

and scale ≤ ni, if ni + 1 = nTi
; here and henceforth, given a self-energy cluster T , we define

nT = min{nℓT
, nℓ′

T
}. Call T ∗ the set of nodes and lines obtained from T by removing all nodes

and lines belonging to the self-energy clusters T ′ ∈ T1(T ); one has (T ′)∗ = T ∗ for all T ′ ∈ F(T ).
For all i = 1, . . . , |T1(T )| we sum together

∑

Ti∈S
ki
≤ni

V Ti
(xℓ′

Ti

(τ0)) = M(ki)
ni

(xℓ′
Ti

(τ0)), (G.5)

where xℓ′
Ti

(τ0) = x0
ℓ′
Ti

:= ω · ν0
ℓ′
Ti

; the choice of such a notation will be clear later (see after

(G.12)). By using (G.3) for k = ki and n = ni, we decompose each M
(ki)
ni (xi(τ0)) into a sum
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over self-energy clusters, that we still denote by Ti, and associate with each of them a label
δTi

∈ {L,R}, where δTi
= L for Ti ∈ S

ki
>ni

and δTi
= R for Ti ∈ S

ki

≤ni
. Then we can write

∑

T ′∈F(T )

LT ′ = −
∑

Ti∈Ski

i=1,...,|T1(T )|

V T ∗(0)

(|T1(T )|∏

i=1
δTi

=R

RTi
(x0

ℓ′
Ti

)

)(|T1(T )|∏

i=1
δTi

=L

LTi

)
, (G.6)

where

V T ∗(0) =

(
∏

v∈N(T ∗)

Fv

)(
∏

ℓ∈L(T ∗)

Gℓ(x
0
ℓ )

)
. (G.7)

Define T̃ as the set of nodes and lines such that N(T̃ ) = N(T ∗) ∪N(T1) ∪ . . . ∪N(T|T1(T )|) and

L(T̃ ) = L(T ∗) ∪ L(T1) ∪ . . . ∪ L(T|T1(T )|) and set T1(T̃ ) = {Ti}
|T1(T )|
i=1 . Note that if δTi

= L then
Ti contains at least one line with scale ≥ ni + 1, so that Ti cannot be considered as a cluster of
T ′ for any T ′ ∈ F(T ); on the contrary if δTi

= R then Ti is a cluster of T ′ for some T ′ ∈ F(T ).
In both cases the external lines ℓTi

and ℓ′Ti
of Ti belong to L(T ∗); in particular xℓ′

Ti

is fixed once

and for all, independent of Ti. We call replacement the operation which, given T , generates all
sets T̃ which are summed over in (G.6): each T̃ can be imagined as obtained from a self-energy
cluster T ′ ∈ F(T ) by (1) replacing some self-energy clusters Ti ∈ T1(T ) with new sets (still called
Ti) which are no longer clusters of T ′ and (2) substituing all V Ti

(xℓ′
Ti

(τ0)) with LTi
, when Ti is

not a cluster of T ′, and with RTi
(xℓ′

Ti

(τ0)), when Ti is still a cluster of T ′. By passing from the

sum over T ′ ∈ F(T ) to the sum over the sets T̃ in (G.6), we group together various contributions
to exploit the cancellations and at the end everything is decomposed again into a sum over single
sets T̃ .

Next, we consider a contribution

RT (x) = x2

∫ 1

0
dτ0 (1 − τ0) ∂

2
x V T (τ0x)

to (G.3). We write

∂2
x V T (τ0x) =

∑

ℓ1 6=ℓ2∈L(T )

(
∂xGnℓ1

(xℓ1(τ0))
)(

∂xGnℓ2
(xℓ2(τ0))

)( ∏

ℓ∈L(T )\{ℓ1,ℓ2}

Gnℓ
(xℓ(τ0))

)(
∏

v∈N(T )

Fv

)

+
∑

ℓ1∈L(T )

(
∂2

xGnℓ1
(xℓ1(τ0))

)( ∏

ℓ∈L(T )\{ℓ1}

Gnℓ
(xℓ(τ0))

)(
∏

v∈N(T )

Fv

)
,

where xℓ(τ0) = x0
ℓ + τ0x if ℓ ∈ PT and xℓ = x0

ℓ otherwise, with x0
ℓ := ω · ν0

ℓ . To simplify the
notations we associate with each line ℓ ∈ L(T ) a label dℓ ∈ {0, 1, 2}, which denotes the number
of derivatives acting on the corresponding propagator, and set

Gℓ(x) = ∂dℓ
x Gnℓ

(x); (G.8)
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then we rewrite ∂2
x V T (τ0x) as

∂2
x V T (τ0x) =

∑

ℓ1,ℓ2∈L(T )

(
∏

ℓ∈L(T )

Gℓ(xℓ(τ0))

)(
∏

v∈N(T )

Fv

)
, (G.9)

where the constraint
∑

ℓ∈L(T ) dℓ = 2 is understood.

For i = 1, 2 there exist pi self-energy clusters T
(i)
0 , T

(i)
1 , . . . , T

(i)
pi−1 such that, setting T

(1)
0 =

T
(2)
0 = T , {T

(i)
j }pi−1

j=0 is the cloud of the line ℓi (note that the two lines ℓ1 and ℓ2 may coincide:
in such a case one has only one cloud). With each self-energy cluster T ′ of the internal clouds of
ℓ1 or ℓ2 we associate a label δT ′ = 0: we denote by T ∗

0 (T ) the set of such self-energy clusters, i.e.

T ∗
0 (T ) = {T

(i)
j : i = 1, 2, j = 1, . . . , pi −1}. Set T ∗(T ) = T (T )\T ∗

0 (T ) and denote by T ∗
1 (T ) the

set of maximal self-energy clusters in T ∗(T ): one can think of T ∗
1 (T ) as the set of self-energy

clusters which become maximal in T when ignoring the internal clouds of ℓ1 and ℓ2. Finally
denote by T ∗ the set (of nodes and lines) obtained from the self-energy cluster T by removing
all nodes and lines belonging to the self-energy clusters T ′ ∈ T ∗

1 (T ). Note that both T ∗
1 (T ) and

T ∗ depend on ℓ1 and ℓ2. Call F(T ) the set of all self-energy clusters T ′ ∈ Sk
≤n obtained from T

by replacing each Ti ∈ T ∗
1 (T ) with any self-energy cluster with the same order ki as Ti and scale

≤ ni, with ni + 1 = nTi
. Of course F(T ) too depends on ℓ1 and ℓ2; on the other hand one has

T ∗ = (T ′)∗ for all T ′ ∈ F(T ). Then, if we sum together all contributions we obtain by choosing
the lines ℓ1, ℓ2 ∈ L(T ) and the self-energy clusters T ′ in the corresponding set F(T ), we have

∑

ℓ1,ℓ2∈L(T )

∑

T ′∈F(T )

x2

∫ 1

0
dτ0 (1 − τ0)

(
∏

v∈N(T ′)

Fv

)(
∏

ℓ∈L(T ′)

Gℓ(xℓ(τ0))

)

=
∑

ℓ1,ℓ2∈L(T )

V T ∗(x)

(|T ∗
1 (T )|∏

i=1

M(ki)
ni

(xℓ′
Ti

(τ0))

)
,

(G.10)

where

V T ∗(x) = x2

∫ 1

0
dτ0 (1 − τ0)

(
∏

v∈N(T ∗)

Fv

)(
∏

ℓ∈L(T ∗)

Gℓ(xℓ(τ0))

)
. (G.11)

Again, by using (G.3), we decompose each M
(ki)
ni (xℓ′

Ti

(τ0)) into a sum over self-energy clusters,

still denoted by Ti, and we associate with each of them a label δTi
∈ {L,R}. This leads to

∑

ℓ1,ℓ2∈L(T )

∑

T ′∈F(T )

x2

∫ 1

0
dτ0 (1 − τ0)

(
∏

v∈N(T ′)

Fv

)(
∏

ℓ∈L(T ′)

Gℓ(xℓ(τ0))

)

=
∑

ℓ1,ℓ2∈L(T )

∑

Ti∈Ski

i=1,...,|T ∗
1

(T )|

V T ∗(x)

(|T ∗
1 (T )|∏

i=1
δTi

=R

RTi
(xℓ′

Ti

(τ0))

)(|T ∗
1 (T )|∏

i=1
δTi

=L

LTi

)
,

(G.12)

where V T ∗(x) is defined in (G.11). Both (G.7) and (G.11) contain also the product of the
propagators of the resonant lines in L(T ∗). We define the sets T̃ and T1(T̃ ) as after (G.7), with
T ∗

1 (T ) replacing T1(T ).
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To make the notations uniform, for δT = L we set T ∗
0 (T ) = ∅ and τ0 = 0, so that T ∗

1 (T ) =

T1(T ) and xℓ′
Ti

(τ0) = x0
ℓ′
Ti

in such a case. For given T̃ , define T̂ as the self-energy cluster obtained

from T̃ by the following pruning operation: we remove each self-energy cluster Ti ∈ T1(T̃ ) with
δTi

= L and replace it with a node vi with labels νvi
= 0, svi

= 1 and node factor Fvi
= 1;

it turns out to be convenient to associate with such a node vi two further labels nvi
= nTi

and
kvi

= k(Ti).

An important fact is that the values LTi
factorise in both (G.6) and (G.12). For each

self-energy cluster Ti with δTi
= R we apply once more (G.12), where now the roles of T ,

T ∗
1 (T ) and Ti are played by Ti, T

∗
1 (Ti) and Ti,j, with respectively, j = 1, . . . , |T ∗

1 (Ti)|. For each

i = 1, . . . , |T ∗
1 (T )| such that δTi

= R we introduce the sets T̃i and contruct the sets T̂i by pruning

T̃i. Again, the values LTi,j
corresponding to the self-energy clusters Ti,j with δTi,j

= L factorise,
while the values corresponding to the self-energy clusters Ti,j with δTi,j

= R can be dealt with
by relying again on (G.12): once more we apply the replacement and pruning operations, i.e.
we introduce the sets T̃i,j as before and construct the sets T̂i,j by pruning T̃i,j. And so on: at
each step we first apply the replacement operation whenever there is a self-energy cluster T ′

with δT ′ = R, so obtaining a new set T̃ ′, then we apply the pruning operation to T̃ ′ by replacing
all self-energy clusters T ′′ ∈ T1(T̃

′) with nodes v′, with the labels as described above, and so
obtaining a self-energy cluster T̂ ′. The factorising values LT ′ can be treated in the same way,
by applying iteratively the replacement and pruning operations.

Furthermore, at each step the order of the self-energy clusters has decreased, so that eventu-
ally the procedure stops. Therefore we end up with a sum of terms, each of which is given by the
product of factors with the following structure. Each factor is the value a self-energy cluster S⋆

obtained by successive replacement and pruning operations starting from a self-energy cluster
S, with δS ∈ {L,R} if S = T and δS = L otherwise. By construction, all self-energy clusters
T ′ ∈ T (S⋆) \ {S⋆} carry a label δT ′ ∈ {R, 0}. Moreover each S⋆ can contain nodes v′ with
labels νv′ = 0, sv′ = 1, kv′ ∈ N and nv′ ≥ 0 and node factor Fv′ = 1; the label nv′ is such that
nv′ + 1 is the minimum between the scales of the lines entering and exiting v′. We call NL(S⋆)
the set of such nodes and LL(S⋆) the set of lines exiting one such node. Note that the nodes in
NL(S⋆) can be regarded as self-energy clusters on scale −1 so that the lines in LL(S⋆), which
were resonant as lines in L(S), are resonant as lines in S⋆ as well. Each node v′ ∈ NL(S⋆) has
been obtained by pruning a self-energy cluster T ′ with δT ′ = L, k(T ′) = kv and scale ≥ nv′ ;
note that also T ′, through successive replacement and pruning operations, produces self-energy
clusters (T ′)⋆ which can be dealt with as S⋆. We define the depth D(S⋆) recursively by setting
D(T ⋆) = 0 and if there exists v′ ∈ NL(S⋆) which has been obtained by pruning a self-energy
cluster S′ then D((S′)⋆) = D(S⋆)+1. Another important remark is that the propagator of each
line ℓ ∈ L(S⋆) is differentiated at most twice.

Then the value of each S⋆ such that δS = L is

−V S⋆(0) = −
∏

T ′∈T (S⋆)
δS′=R

x2
ℓ′
T ′

(τ)

∫ 1

0
dτT ′ (1 − τT ′)

(
∏

v∈N(S⋆)

Fv

)(
∏

ℓ∈L(S⋆)

Gℓ(xℓ(τ))

)
, (G.13)

where the set of interpolation parameters τ = {τT ′ : T ′ ∈ T (S⋆)} and the set of interpolated
arguments {xℓ(τ)}ℓ∈L(S⋆) are defined as follows. If δT ′ = 0 then τT ′ = 1, if δT ′ = L then τT ′ = 0
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and if δT ′ = R then τT ′ ∈ [0, 1]. Given a line ℓ ∈ L(S⋆) consider its cloud Cℓ(S
⋆) and define

C∗
ℓ (S⋆) = {T ′ ∈ Cℓ(S

⋆) : ℓ ∈ PT ′} If T ′ is the minimal self-energy cluster containing ℓ such that
ℓ ∈ PT ′ , we set

ν0
ℓ =

∑

w∈N(T ′)
w≺ℓ

νw

so that νℓ = ν0
ℓ + νℓ′

T ′
(in general only if T ′ = S⋆ one has ν0

ℓ = ν0
ℓ , with ν0

ℓ defined in

Remark 3.2). Then xℓ(τ) depends only on the parameters τT ′ with T ′ ∈ C∗
ℓ (S⋆) and, if we set

C∗
ℓ (S⋆) = {T0, T1, . . . , Tp},

xℓ(τ) = x0
ℓ + τp

(
x0

ℓp
+ τp−1

(
x0

ℓp−1
+ τp−2 (. . .+ τ0xℓ0)

))
, (G.14)

where we have shortened τi = τTi
and ℓi = ℓ′Ti

and set x0
ℓi

= ω · ν0
ℓi
.

For each set S⋆ one finds the bound

∣∣V S⋆(0)
∣∣ ≤ C

k(S⋆)
1 e−(ξ/2)K(S⋆)




∏

ℓ∈LL(S⋆)

αmnℓ
(ω)−2


 , (G.15)

for some positive constant C1. To obtain (G.15) we can reason as follows.

Each label δT ′ = R means that either there are two lines ℓ1, ℓ2 ∈ L((T ′)∗) with dℓ1 = dℓ2 = 1
or one line ℓ1 ∈ L((T ′)∗) with dℓ1 = 2. Then, when bounding the product of propagators, with
respect to the bound ∏

ℓ∈L(S)

c0
2
αmnℓ

(ω)−2,

with c0 defined as in the proof of Lemma 4.5, for each T ′ with δT ′ = R we have an extra factor

c1 αmnℓ1
(ω)−1αmnℓ2

(ω)−1|xℓT ′ |
2, (G.16)

where αmnℓi
(ω)−1 is due to the derivative acting on the line ℓi and c1 is a suitable constant (ℓ1

and ℓ2 may coincide) On the contrary we have no gain factors corresponding to lines exiting the
self-energy clusters T ′ with δT ′ = 0; moreover all resonant lines can be differentiated once or
twice. In order to deal with all such lines we need some preliminary results.

Lemma G.1. Given a self-energy cluster T such that V T (x) 6= 0, if ℓ ∈ L(T ) is a resonant line,
let T ′ be the minimal self-energy cluster containing ℓ. Then there is at least one non-resonant
line ℓ′ ∈ L(T ′) with νℓ′ = νℓ and hence ζℓ′ = ζℓ.

Proof. If ℓ is a resonant line there are p ≥ 1 self-energy clusters T1, . . . , Tp with ℓ′Ti
= ℓTi+1

for i = 1, . . . , p − 1, such that ℓ = ℓTj
for some j = 1, . . . , p and ℓ′Tp

is non-resonant. Then

ℓ′Ti
∈ L(T ′) for i = j, . . . , p: otherwise there would be j′ ∈ {j, . . . , p} such that ℓTj′

∈ L(T ′) and

ℓ′Tj′
/∈ L(T ′), and hence ν0

ℓT
j′

= 0, so that T ′ would not be a self-energy cluster. In particular

ℓ′Tp
∈ L(T ′). Obviously νℓT ′

p
= νℓ and ζℓ′

Tp
= ζℓ, so that the assertion follows.
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Given a resonant line ℓ call λ(ℓ) the non-resonant line which is associated with ℓ by Lemma
G.1. Of course the application ℓ → λ(ℓ) is not necessarily injective. Denote by LR(S⋆) the
set of resonant lines in S⋆ and set LNR(S⋆) = L(S⋆) \ LR(S⋆). Set also LD(S⋆) = {ℓ ∈
LR(S⋆) : dℓ > 0}, L0(S

⋆) = {ℓ ∈ LR(S⋆) : ℓ = ℓT ′ for some T ′ ∈ T (S⋆) with δT ′ = 0} and
L∗

R(S⋆) = L0(S
⋆) ∪ LD(S⋆).

Lemma G.2. Let ℓ1, . . . , ℓp ∈ L∗
R(S⋆) and, for all i = 1, . . . , p denote by T ′

i the minimal self-
energy cluster containing ℓi. If T ′

1 = . . . = T ′
p =: T ′ then p ≤ 2 and dℓ1 + dℓ2 ≤ 2.

Proof. Let T ′′ ⊇ T ′ the minimal self-energy cluster containing the lines ℓ1, . . . , ℓp and such that
δT ′′ = R. Then there are at most either two lines ℓ, ℓ′ ∈ L(T ′) such that dℓ = dℓ′ = 1 or one line
ℓ ∈ L(T ′) such that dℓ = 2.

Define the multiplicity (function) of a non-injective map as the cardinality of its pre-image
sets [14, 33].

Lemma G.3. There exists an application Λ : L∗
R(S⋆) → LNR(S⋆) with multiplicity at most 2

such that ζℓ = ζΛ(ℓ).

Proof. If ℓ ∈ L∗
R(S⋆) and T ′ is the minimal self-energy cluster containing ℓ, by Lemma G.1,

there is at least one line ℓ′ such that ℓ′ = λ(ℓ), i.e. such that ℓ′ ∈ LNR(S⋆), ℓ′ ∈ L(T ′) and
ζℓ′ = ζℓ. By Lemma G.2 there can be at most two lines ℓ1, ℓ2 ∈ L∗

R(S⋆) such that, if T ′
1 and

T ′
2 denote the minimal self-energy clusters which contain ℓ1 and ℓ2, respectively, then T ′

1 = T ′
2.

Therefore there are at most two resonant lines ℓ1, ℓ2 ∈ L∗
R(S⋆) such that λ(ℓ1) = λ(ℓ2).

Let Λ be as in Lemma G.3. Define L∗
NR(S⋆) = Λ(L∗

R(S⋆)). By Lemma G.3 for ℓ ∈ L∗
NR(S⋆)

the set Λ−1(ℓ) contains at most two elements. Finally for ℓ ∈ L∗
R(S⋆) define σ∗ℓ = 0 if ℓ exits a

self-energy cluster T ′ with δT ′ = 0 and σ∗ℓ = 2 if ℓ exits a self-energy cluster T ′ with δT ′ = R.

Lemma G.4. For all ℓ ∈ L∗
NR(S⋆) one has

|Gℓ|
∏

ℓ′∈Λ−1(ℓ)

(ω · νℓ′)
σ∗

ℓ′ |Gℓ′ | ≤ c2 αmnℓ
(ω)−(2+a), (G.17)

with a = 4 and c2 > 0.

Proof. If Λ−1(ℓ) contains only one line ℓ′, then, if ℓ′ ∈ L0(S
⋆) one has dℓ′ ≤ 1 and dℓ + dℓ′ ≤ 1,

so that (G.17) follows with a = 3. If ℓ′ ∈ LD(S⋆) exits a self-energy cluster T ′ with δT ′ = R
then dℓ′ ≤ 2 and dℓ + dℓ′ ≤ 2: hence (G.17) follows with a = 2.

If Λ−1(ℓ) contains two distinct lines ℓ′1 and ℓ′2, we distinguish between the following cases: if
ℓ′1, ℓ

′
2 ∈ L0(S

⋆) then dℓ = dℓ′
1

= dℓ′
2

= 0 and hence the bound follows with a = 4; if both lines
ℓ′1 and ℓ′2 exit self-energy clusters with label R then dℓ′

1
+ dℓ′

2
≤ 2, so that one finds the bound

(G.17) with a = 2; if ℓ′1 ∈ L0(S
⋆) while ℓ′2 ∈ LD(S⋆) exits a self-energy cluster T ′ with δT ′ = R

then dℓ′
2
≤ 1, dℓ′

1
+ dℓ′

2
≤ 1 and dℓ + dℓ′

1
+ dℓ′

2
≤ 1, so that the bound follows once more with

a = 3.
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Then (G.16) and Lemma G.4 imply

(
∏

ℓ∈LNR(S⋆)

|Gℓ|

)(
∏

T ′∈T (S⋆)
δT ′=R

|xℓ′
T ′
|2

)(
∏

ℓ∈L∗
R

(S⋆)

|Gℓ|

)
≤

∏

ℓ∈LNR(S⋆)

C̃ αmnℓ
(ω)−6,

for some positive constant C̃. The conclusion is that, at the price of replacing the bound of the
propagator of each line ℓ ∈ LNR(S⋆) with C̃αmnℓ

(ω)−6 to take into account the extra derivatives
and the self-energy clusters T ′ with δT ′ = 0, we can bound the product of all propagators in terms
of the product of propagators of the non-resonant lines times the product of the propagators of
the lines in LL(S⋆). Then, by using Lemma 6.3 and Remark 4.9, the bound (G.15) follows.

To deal with the factors αmnℓ
(ω)−2 of the lines ℓ ∈ LL(S⋆) in (G.15), we proceed iteratively

by starting from the self-energy clusters (S′)⋆ with label δS′ = L which have highest depth, say
D. If (S′)⋆ is one of such sets then LL((S′)⋆) = ∅ and hence the bound (G.15) follows with the
last product replaced by 1:

∣∣V (S′)⋆(0)
∣∣ ≤ C

k((S′)⋆)
1 e−(ξ/2)K((S′)⋆). (G.18)

If (S′)⋆ has depth D − 1, then each node v′′ ∈ NL((S′)⋆) has been obtained by pruning a self-
energy cluster S′′ such that NL((S′′)⋆) = ∅, then we apply the bound (G.18) to each such (S′′)⋆.

In particular, we can extract a factor e−(ξ/4)K((S′′)⋆) ≤ e−(ξ/8)2
mn

S′′
from each of them and, by

exploiting that nℓ′
S′′

≥ nS′′ +1, use it to compensate the corresponding factor αmℓ′
S′′

(ω)−2. And

so on, iteratively, up to the self-energy cluster S⋆ itself.

We have still to sum over all the possible self-energy clusters T . To take into account the
sum over the scale labels nℓ, ℓ ∈ L(T ), simply recall that for each momentum νℓ only two scale
labels are allowed (see Remark 3.7). To sum over the mode labels νv, v ∈ N(T ), we can neglect
all constraints and use a factor e−(ξ/4)|νv| for each node v ∈ N(T ). Finally, we have to sum
over all possible ‘shapes’ of self-energy clusters of order k, that is over all possible unlabelled
self-energy clusters of order k: this is bounded as Ck for some constant C. In conclusion, for

all p > n we have
∣∣M (k)

p (0)
∣∣ ≤ Dk

1e
−D22mp

, for some positive constants D1 and D2. Hence the

assertion follows from (G.2), as far as in (G.1) the contribution −M
(k)
>n(0) is concerned. To take

into account the other contributions we reason in the same way, with the only difference that
a label δT = R is associated with T , so that the corresponding value V T ∗(x) is expressed as in
(G.13), but with S = T and the second product over all T ′ ∈ T (S⋆). This produces once more
the desired bound, so that the result follows.

H Existence of the formal power series

Here we shall prove that the formal power series (3.1) is well defined for all k ≥ 1 and all ν ∈ Z
d
∗.

Set

εn = εn(ω) :=
1

2n
log

1

αn(ω)
, (H.1)

and note that by Hypothesis 1 εn → 0 as n→ ∞.

39



To study the formal power series we can use the tree expansion introduced in Section 6,

simply without imposing the conditions G(k)(β0) = 0. So we write the coefficients b
(k)
ν as in

(6.4a). For all θ ∈ Θk,ν one has

|V (θ)| ≤



∏

v∈N(θ)

e−ξ|νv|





∏

ℓ∈L(θ)

1

|ω · νℓ|2


 = e−ξK(θ)



∏

ℓ∈L(θ)

1

|ω · νℓ|2




= e−ξK(θ)/2
(
e−ξK(θ)/2k

)k



∏

ℓ∈L(θ)

1

|ω · νℓ|2


 ≤ e−ξ|ν|/2

∏

ℓ∈L(θ)

e−ξ|νℓ|/2k 1

|ω · νℓ|2

≤ e−ξ|ν|/2
∏

ℓ∈L(θ)

e−ξ2nℓ/4k 1

αnℓ
(ω)2

= e−ξ|ν|/2
∏

ℓ∈L(θ)

e(−ξ/4k+2εnℓ
)2nℓ ,

(H.2)

where we have set nℓ = n(νℓ) := inf{n ≥ 0 : |νℓ| ≤ 2n}. But then, since the sum over all the
shapes and all the labels except the mode labels is bounded by a constant to the power k, one
has

∑

θ∈Θk,ν

|V (θ)| ≤ e−ξ|ν|/2Ck



∑

n≥0

e(−ξ/4k+2εn)2n




k

≤ e−ξ|ν|/2CkB(k)k (H.3)

where C is a suitable constant and B(k) is a constant depending on k. Therefore the assertion
follows.

Remark H.1. Of course B(k) grows with k (for instance if ω is Diophantine one has B(k) ≈ k)
and hence the bound (H.3) is not enough to obtain the convergence of the power series.
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(1995), 3–88.

[38] Zh.F. Zhang, B.Y. Li, High order Melnikov functions and the problem of uniformity in global bifur-
cation, Ann. Mat. Pura Appl. (4) 161 (1992), 181–212.

42


