Some exercises on Linear systems

March 12, 2016

Exercise 1. Study the solutions of the system

$$
\dot{x}=A x, \quad A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -3 \\
1 & 3 & 2
\end{array}\right), \quad x(t) \in \mathbb{R}^{3}
$$

Exercise 2. Find the exponential of the following matrices

$$
\begin{gathered}
\left(\begin{array}{cc}
5 & -6 \\
3 & -4
\end{array}\right), \quad\left(\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right), \quad\left(\begin{array}{cc}
2 & -1 \\
0 & 2
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \\
\left(\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
\lambda & 0 & 0 \\
1 & \lambda & 0 \\
0 & 1 & \lambda
\end{array}\right), \quad\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right),
\end{gathered}
$$

Give a general formula for the exponent of a Jordan block.
Compute the logarithm of the invertible matrices.
Exercise 3. Study the solutions of the system

$$
\dot{x}=A x+b(t), \quad A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -3 \\
1 & 3 & 2
\end{array}\right), \quad b=\left(\begin{array}{c}
\cos (t) \\
t \\
1
\end{array}\right), \quad x(t) \in \mathbb{R}^{3}
$$

Exercise 4.Reduce to constant coefficients the complex system

$$
\binom{\dot{u}}{\dot{v}}=\left(\begin{array}{cc}
0 & e^{i t} \\
e^{-i t} & 0
\end{array}\right)\binom{u}{v}
$$

find a fundamental solution and solve the associated non-homogeneous problem

$$
\binom{\dot{u}}{\dot{v}}=\left(\begin{array}{cc}
0 & e^{i t} \\
e^{-i t} & 0
\end{array}\right)\binom{u}{v}+\binom{1}{e^{-2 i t}}
$$

