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Abstract: We discuss a class of normal forms of the completely resonant non-linear
Schrödinger equation on a torus. We stress the geometric and combinatorial construc-
tions arising from this study.
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1. Introduction

In this paper we exhibit a normal form, with remarkable integrability properties, for the
completely resonant non-linear Schrödinger equation on the torus T

n, n ∈ N (NLS for
brevity):

− iut +�u = κ|u|2qu + ∂ūG(|u|2), q ≥ 1 ∈ N. (1)

where u := u(t, ϕ), ϕ ∈ T
n and G(a) is a real analytic function whose Taylor series

starts from degree q + 2. The case q = 1 is of particular interest and is usually referred
to as the cubic NLS.

It is well known that Eq. 1, the NLS, can be written as an infinite dimensional
Hamiltonian dynamical system.

It has the energy H = ∫
Tn (|∇(u)|2 +κ(q +1)−1|u|2(q+1)+G(|u|2)) dφ

(2π)n , the momen-

tum M = ∫
Tn ū(ϕ)∇u(ϕ) dφ

(2π)n and the mass L = ∫
Tn |u(ϕ)|2 dφ

(2π)n , as integrals of
motion.

Passing to the Fourier representation

u(t, ϕ) :=
∑

k∈Zn

uk(t)e
i(k,ϕ), (2)

we have, up to a rescaling of u and of time, in coordinates:

H :=
∑

k∈Zn

|k|2ukūk ±
∑

ki∈Zn :∑2q+2
i=1 (−1)i ki=0

uk1 ūk2 uk3 ūk4 . . . uk2q+1 ūk2q+2 +
∫

Tn
G(|u|2) dφ

(2π)n
.

(3)

We fix the sign to be + since in our treatment it does not play any particular role.
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1.1. Preliminaries. By Formula (3), we can write Eq. (1) as an infinite dimensional
Hamiltonian dynamical system, where the quadratic term consists of infinitely many
independent oscillators with rational frequencies and hence completely resonant (all
the bounded solutions are periodic). In order to study resonant systems a standard
instrument is the “Resonant Birkhoff normal form”. In Formula (3) denote by K :=∑

k∈Zn |k|2ukūk .
The first step of “resonant Birkhoff normal form” is the sympletic change of variables

which reduces the Hamiltonian H to

H = HRes + H (2q+4); HRes = K + H (2q+2)
res (u, ū),

where H (2q+4) is an analytic function of degree at least 2q + 4 while H (2q+2)
res is of degree

2q + 2 and consists exactly of the degree 2q + 2 terms of (3) which Poisson commute
with K . Then one wishes to treat the truncated system HRes = K + H (2q+2)

res (u, ū), as the
new unperturbed Hamiltonian and H (2q+4) as a small perturbation. An ideal situation is
when the truncated system is integrable, this is the case for the cubic NLS in dimension
1, as shown by Kuksin and Pöschel in [14]. However the special degenerations of the
truncated system used by these authors are not valid in the case of the non-cubic NLS,
already in dimension one, nor for the cubic case in dimension higher than one.

Although the truncated system appears to be very complicated (see formula (8)) we
show that it admits infinitely many invariant subspaces (cf. §2.1.1), defined by requiring
uk = 0 for all k /∈ S, where S = {v1, . . . , vm}, tangential sites, is some (arbitrarily
large) subset of Z

n satisfying the completeness condition (see Proposition 1).
The dynamics on these subspaces depends in a subtle way on the geometric proper-

ties of S, we show – in Proposition 1 ii)– that for generic choices of S the behavior is
integrable and that all the |uvi | are constants of motion. Suitable non-generic choices of
S lead also to interesting non-integrable behavior as for instance in the paper [7].

By momentum conservation, it is easily seen that for any set S ⊂ Z
n , the subspace

uk = 0 for all k /∈ Span(S) is invariant. We restrict to this subspace1 and denote by
Sc := Span(S)\S the normal sites. We collect in HRes the terms by the degree (which
we denote by #Sc) in the variables uk, ūk, k ∈ Sc we have

HRes = HS + H#Sc=1 + H#Sc=2 + H#Sc>2,

by definition the completeness is equivalent to the fact that the term of degree one is
zero, i.e. H#Sc=1 = 0.

We show that the term H#Sc>2 is negligible and we give an explicit formula for
H#Sc=2 described by an infinite dimensional matrix (cf. Formula (30)) with coefficients
depending on the “tangential angles”. This is done explicitly by 1) putting the tangential
variables in action–angle coordinates and then 2) introducing parameters for the actions
and finally 3) isolating the terms of the Hamiltonian HRes of degree ≤ 2. The resulting
Hamiltonian is what we call the normal form, it is quadratic and explicitly described by
a matrix which depends on the “tangential angles”. Hence the dynamics of this quadratic
Hamiltonian is apparently non-integrable and given by an infinite set of coupled linear
equations with non-constant coefficients.

It is natural at this point to try to reduce the normal form to constant coefficients,
exploiting the fact that H (2q+2)

res is smaller than K . However the quadratic term K is very
degenerate and does not satisfy the second Melnikov condition, hence the perturbative

1 Notice that this subspace is invariant not only for HRes but also for the full Hamiltonian H .
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methods, see for instance [9], fail. In finite dimensional systems one can still approxi-
mately reduce (to constant coefficients) matrices whose diagonal part does not satisfy the
second Melnikov condition, see [6]. This is done via a change of variables which is not
close–to–identity and hence must be constructed explicitly. In our infinite dimensional
setting however these kinds of results are not applicable, since in general the change of
variables suggested by the finite dimensional analog is not analytic.

1.2. The object of this paper. The main contribution of this paper is to construct, for
generic S, an explicit analytic symplectic change of variables which removes the depen-
dence from the tangential angles so that the Normal form is block–diagonal (with blocks
of dimension ≤ 2n) and integrable, see Theorem 1 for a precise statement. Notice that
this symplectic transformation is not close–to–identity. It is given by explicit algebraic
formulas (Formula (70)) and not constructed through a recursive algorithm. This is due
to the fact that we can achieve a complete control on the diagonal blocks of the normal
form. In turn this is done by codifying the corresponding matrix in terms of graphs,
see Definition 9, and describing the possible blocks which may appear in the normal
form, depending on the choice of the tangential sites, combinatorially using finitely many
graphs.

Then we find optimal constraints on the tangential sites, given by a finite list of poly-
nomial inequalities on the coordinates of S. If S satisfies these inequalities we say that
it is generic and then, these constraints make the normal form as simple as possible.

We organize our constraints in 6 different requirements, summarized in Definition
22. Under these constraints the normal form is block–diagonal with blocks of dimension
bounded by n + 1, except finitely many exceptional blocks of size bounded by 2n. The
diagonal blocks are explicitly described as functions of the average tangential actions ξ
and angles x .

Then, for these infinitely many choices of the tangential sites S, we exhibit2 a sym-
plectic change of variables (cf. Formula (70)) which makes the normal form with constant
coefficients and still block–diagonal.

Finally we show that, in dimension one and two, the normal form has both stable and
unstable regions, namely there are open sets for the parameters ξ where the normal form
is completely elliptic–hence its Hamiltonian flow is stable. For all the remaining values
of the parameters ξ there are a finite number of unstable directions. In the stable region
one may perform a further analytic change of variables which reduces the normal form
to the standard elliptic one (ω(ξ), y) +

∑
k �̄k |zk |2 (cf. Corollary 1).

1.3. Some related literature. The idea of choosing an appropriate set of tangential sites
S was first used by Bourgain in [4] in a slightly different context. He studied the cubic
NLS in dimension two and proved the existence of quasi–periodic solutions with two
frequencies by using a combination of Lyapunov-Schmidt reduction techniques and a
Nash–Moser algorithm to solve the small divisor problem (the so–called Craig–Wayne–
Bourgain approach, see [4,8] and for a recent generalization also [2]). In [4] it is shown
that, for appropriate choices of the tangential sites, one may find simple solutions for the
bifurcation equation where only the Fourier indexes of the tangential sites are excited.

2 In general, in order to construct a change of variables one solves a Hamilton–Jacobi equation, finding a
generating function for the change of variables. In our case however we do not use this procedure, indeed the
change of variables was guessed directly.
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This strategy was generalized by Wang in [17] to study the NLS on a torus T
n and prove

existence of quasi periodic solutions with n frequencies. A similar idea was exploited
in [12] and [13] to look for “wave packet” periodic solutions (i.e. periodic solutions
which at leading order excite an arbitrarily large number of “tangential sites”) of the
cubic NLS in any dimension both in the case of periodic and Dirichlet boundary condi-
tions.

In the context of KAM theory and normal form, this idea was used by Geng in [10]
for the NLS in dimension one with the nonlinearity |u|4u.

A similar strategy is used by Geng-You and Xu in [11], to study the cubic NLS in
dimension two. In that paper the authors show that one may give constraints on the tan-
gential sites so that the normal form is non-integrable (i.e. it depends explicitly on the
angle variables) but block diagonal with blocks of dimension 2. They apply this result
to perform a KAM algorithm and prove existence (but not stability) of quasi–periodic
solutions. We also mention the paper [16], which studies the non-local NLS and the
beam equation both for periodic and Dirichlet boundary conditions. The main result
of that paper is that, by only requiring very simple constraints on the tangential sites,
the leading order of the normal form Hamiltonian is quadratic and block diagonal, with
blocks of uniformly bounded dimension.

Finally we mention the preprints by Wang [18] and [19], which use the Craig–Wayne–
Bourgain approach to study quasi–periodic solutions for the NLS (1) in any dimension.

1.4. Description of the paper. In Sect. 2 we introduce some necessary Hamiltonian
formalism, we perform the Birkhoff change of variables and study the truncated sys-
tem HRes . In particular we study invariant subspaces and in Propositions 1 and 2 we
give conditions for their completeness and integrability. Finally we pass to the ellip-
tic–action angle variables and define the functional domains in which we work. All
the results and techniques of this section are pretty standard so we try to review them
concisely.

Having introduced the relevant notations, in Sect. 3 we give the notion of generic
tangential set S and state our main results Theorem 1 and Corollary 1.

In Sect. 4 we impose Constraint 1 on the tangential sites S; this enables us to define
our normal form N – see Proposition 4–and prove that N satisfies non-degeneracy in the
action variables– see Proposition 5. Finally we discuss the perturbation P and estimate
its size– see Proposition 6.

In Sect. 5 we define two spaces V 0,1 and F0,1 on which we study the linear operator
ad(N ) := {N , ·}. This gives two matrix descriptions of N .

In Sect. 6 we describe the two matrices in terms of two graphs �̃S and S with
vertices respectively the basis elements of V 0,1 and F0,1 and edges connecting those
couples of elements which have a non-zero matrix coefficient. This is a standard way to
display infinite matrices, in particular one easily sees that the connected components of
the graph correspond to block–diagonal terms in the matrix.

From these graphs we deduce a more abstract geometric graph�S which still contains
all the information necessary to compute the matrix entries of ad(N ).

In 6.1 we define a graph �geo
S with vertices on R

n which contains �S but is eas-
ier to study. With these notations we prove– Proposition 7– a first rough bound on the
dimension of the block–diagonal blocks in ad(N ).

Finally in 6.2– Theorems 2 and 3– we state our main results on the connected com-
ponents of �geo

S and �S , this is the core of the paper. It is interesting to notice that these
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results hold independently of the number of tangential sites and hence remain true also
if one excites infinitely many tangential sites.

It is possible that our constraints may be improved (the best possible result is that the
geometric constraints are sufficient to bound the dimension of all the blocks by n + 1).
This is actually true in low dimensions n = 1, 2 for all q. For q = 1 we believe it to be
true in any dimension, this will be discussed in a separate paper.

In Sect. 7 we formalize our graphs as subgraphs of a Cayley graph (we group the
relevant definitions and properties in the Appendix). This is the content of Proposition 9
and enables us to endow our graphs with a group action that simplifies the combinatorial
analysis.

In Sect. 8 we impose Constraints 2 and 3. This enables us to identify the connected
components of S with those of �S– see Proposition 10 and Corollary 4. The isomor-
phism between the connected components of the two graphs is the key point which
allows us to construct the change of variables which sends N to constant coefficients,
as can be seen in Example 14.

In Sect. 9 we define a finite set of connected graphs, the possible combinatorial
graphs. To a graph A of this set, with k vertices, we associate a list of k−1 linear and qua-
dratic equations in n variables, given by Formula (61). Then in Proposition 11 we show
that A is isomorphic to a connected subgraph of�S if and only if its equations have solu-
tions in Sc (the solutions are identified with a special vertex in �S , called the root). This
enables us to describe the infinite connected components of �S via a finite set of graphs.

To a possible combinatorial graph A we associate its Eqs. (61), which have as coef-
ficients linear and quadratic functions of the tangential sites. If these equations do not
have real solutions for generic choices of S then A cannot be isomorphic to a connected
subgraph of �S for generic S. This is a geometric condition from which one expects to
be able to rule out the connected components of �S as soon as k−1 ≥ n +1 by imposing
that those overdetermined systems of equations be generically incompatible. However
this simple idea does not cover various pathological cases. We try to give an idea of the
main problems.

Given a graph A with k vertices its Eqs. (61) may not be of maximal rank for par-
ticular choices of S ⊂ Z

k−1, this can be avoided by introducing appropriate generiticity
constraints, as Constraint 5. Unfortunately it may well be, see Example 9, that Eqs. (61)
are linearly dependent for all choices of S, independently of the dimension n such that
S ∈ Z

n . In this case one is faced with a compatibility problem, namely one can try to
exclude these graphs by requiring that the equations are incompatible for generic choices
of S, see Example 9 and Constraint 4.

This does not conclude the analysis since it is possible that the equations be always
compatible, see Remark 22. So it is possible that one has a graph with k > n + 1 vertices
but still with rank ≤ n, this is the reason of our bound k ≤ 2n. To simplify the problem
we introduce the notion of colored rank, see Definition 20; we have Theorem 4.

In Sect. 10, using Theorem 4, we discuss possible combinatorial graphs A with rank
r = n + 1, when S ⊂ Z

n .
We prove that if their equations are always compatible then their (unique) solution

must be a point in S. This means that A cannot be isomorphic to a connected subgraph
of �S (which has vertices in Sc).

This enables us to prove Theorems 2 and 3.
In Sect. 11 we prove Theorem 1 by exhibiting in Formula 70 the change of variables

which reduces the normal form N to constant coefficients. We also give explicit formulæ
which allow to compute N in this new set of variables, via the combinatorial graphs.
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In Sect. 12 we prove Proposition 3 and Corollary 1. The most relevant notion is that
of arithmetic constraint. Roughly speaking we want to ensure that if a combinatorial
graph A is such that its equations have a unique solution in R

2, then this solution is not
integer valued.

This result enables us to prove the existence of stable regions for the parameters ξ ,
where N is purely elliptic. Corollary 1 follows from the theory of Quadratic hamiltonians
and from Proposition 3.

2. Hamiltonian Formalism

We work on the scale of complex Hilbert spaces

�̄
(a,p) := {u = {uk}k∈Zn

∣
∣ |u0|2 +

∑

k∈Zn

|uk |2e2a|k||k|2p := ||u||2a,p <∞}, (4)

a > 0, p > n/2 ,

equipped with the symplectic structure i
∑

k∈Zn duk ∧ dūk .
These choices are rather standard in the literature and consist in requiring that the

functions u(ϕ) extend to analytic functions in the complex domain |I m(ϕ)| < a, with
Sobolev regularity on the boundary, the condition p > n/2 ensures that our function
spaces are Hilbert algebras.

Remark 1. It is not necessary to assume that the torus T
n = R

n/Zn . The theory works
and in fact we shall apply it, also if T

n = R
n/, where is a lattice generated by a not

necessarily orthonormal basis.

We may write, for any d,

[u]2d :=
∑

ki∈Zn

uk1 ūk2 uk3 ūk4 . . . uk2d−1 ūk2d =
∑

α,β∈(Zn )N :
|α|=|β|=d

(
d

α

)(
d

β

)

uα ūβ, (5)

where α : k 	→ αk ∈ N and uα = ∏
k uαk

k , the same for β. It is easily seen that for any
d the function [u]2d is an analytic function of u, ū. Moreover [u]2d is regular, namely

its Hamiltonian vector field is an analytic function from �̄
(a,p) × �̄

(a,p)
to itself.

In formula (3) we may expand G in Taylor series obtaining a totally convergent sum
of terms [u]2d ; this shows that our Hamiltonian is analytic and regular.

The torus T
n acts on itself by translations leaving invariant the symplectic form, in

fact it gives rise in this way to a moment map in the sense of symplectic Geometry or
a momentum vector in the language of Mechanics. The Hamiltonian is invariant under
translation so by Noether’s Theorem it Poisson commutes with momentum.

We thus will systematically apply the fact that our Hamiltonian H (see Formula (3))
has n + 1 conserved quantities: the n–vector momentum M = ∑

k|uk |2 and the scalar
mass L =∑

k |uk |2, with

{M, uh} = ihuh, {M, ūh} = −ihūh, {L , uh} = iuh, {L , ūh} = −iūh . (6)

The terms in Eq. (5) commute with L . The conservation of momentum selects the terms
with

∑
k(αk − βk)k = 0. A first useful consequence of the conservation of momentum

is that given any set S ⊂ Z
n , setting

�̄
(a,p)
S := {u ∈ �̄(a,p) : uk = 0, ∀k /∈ Span(S)},

�̄
(a,p)
S × �̄(a,p)S is an invariant subspace for the dynamics.
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Remark 2. This has the following geometric interpretation, the lattice  := Span(S) ⊂
Z

n is of some rank k and it is the character group of a torus T̄ = R
k/ with a natural

map π : T → T̄ . Under this map a simple variant of the space �̄(a,p) for the torus T̄ is
identified to �̄(a,p)S .

2.1. One step of Birkhoff normal form. A monomial uα ūβ is an eigenvector of
ad(K ) := {K ,−} of eigenvalue

∑
k(αk − βk)|k|2, where K is the quadratic part

K :=
∑

k∈Zn

|k|2ukūk quadratic energy. (7)

We apply a step of the Birkhoff normal form (cf. [1,4,5]), by which we cancel all
the terms of degree 2(q + 1) which do not Poisson commute with K . This is done by
applying a well known analytic change of variables, with generating function

A :=
∑

α,β∈(Zn )N :|α|=|β|=q+1
∑

k (αk−βk )k=0 ,
∑

k (αk−βk )|k|2 �=0

(
q + 1

α

)(
q + 1

β

)
uα ūβ

∑
k(αk − βk)|k|2 .

We denote the change of variables by �(1) := ead(A) and notice that it is well defined
and analytic: Bε0 × Bε0 → B2ε0 × B2ε0 , with ε0 = (2ca,p)

−1 (here Br denotes the open
ball of radius r and ca,p is the algebra constant of the space3 �̄(a,p)).

By construction �(1) brings (3) to the form H = HRes + P2(q+2) where:

HRes :=
∑

k∈Zn

|k|2ukūk +
∑

α,β∈(Zn )N:|α|=|β|=q+1
∑

k (αk−βk )k=0 ,
∑

k (αk−βk )|k|2=0

(
q + 1

α

)(
q + 1

β

)

uα ūβ , (8)

P2(q+2)(u) has degree at least 2(q + 2) in u, it is analytic and regular and satisfies the
bound:

sup
(u,ū)∈Bε×Bε

‖X P2(q+2)‖a,p ≤ cost ε2q+3 , ∀ε < ε0,

where cost denotes a universal constant (depending only on q, ca,p and the function G).

Remark 3. The three constraints in the second summand of formula (8) express the
conservation of L ,M and the quadratic energy K .

Definition 1. We say that a list k1, . . . , k2d of vectors in Z
n is resonant if, up to reor-

dering, we have

k1 + k3 · · · + k2d−1 = k2 + · · · + k2d , |k1|2 + · · · + |k2d−1|2 = |k2|2 + · · · + |k2d |2.
We say that the list is integrable if furthermore, up to reordering, we have k2i−1 =
k2i , i = 1, . . . , d.

3 Notice that the unperturbed Hamiltonian K is completely resonant so A does not have small divisors.
Since �̄(a,p) is a Hilbert algebra, this implies that the change of variables does not lose regularity.
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Fig. 1. A resonant quadruple k1, k2, k3, k4

The resonant lists with d = q + 1 describe the resonant monomials, that is those
monomials which Poisson commute with K , which appear in HRes. The integrable lists
describe the monomials in |uh |2.

Example 1. [q = 1]

k1 + k3 = k2 + k4, |k1|2 + |k3|2 = |k2|2 + |k4|2
is equivalent to

k1 + k3 = k2 + k4, (k1 − k2, k3 − k2) = 0 (9)

Notice that a quadruple k1, k2, k3, k4 is resonant if these points are the vertices of
a rectangle; it is integrable if and only if the corresponding rectangle is degenerate
(Fig. 1).

2.1.1. Invariant subspaces. In view of Remark 2 we wish to study the Hamiltonian HRes
on the invariant subspaces �a,p

S for suitable choices of S. We want to characterize those
subsets S ⊂ Z

n , such that the Hamiltonian vector field X HRes is tangent to the subspace
of equation

uk = 0 = ūk , ∀k ∈ Sc := Span(S)\S,
this of course implies that this subspace is stable under the dynamics, a set S with this
property is called complete. We denote by HS the Hamiltonian HRes restricted to such a
subspace; naturally HS depends only on uk, ūk with k ∈ S.

The next statement follows immediately from the definitions:

Proposition 1. i) S is complete if and only if, for any choice of 2q + 1 vectors vi ∈ S
the following holds:
If there exists a further vector w ∈ Z

n such that the list v1, . . . , v2q+1, w is resonant
then w ∈ S.

ii) If all the lists in S of 2q + 2 elements which are resonant are also integrable, then
HS depends only on the elements |uh |2 with h ∈ S.

Remark 4. A sufficient condition for S to be integrable is the following: set S =
{v1, . . . , vm}, introduce variables ei with i = 1, . . . ,m. For any choice of 2q +2 elements
ei1 , . . . ei2q+2 if the expression

ei1 + · · · + eiq+1 − (eiq+2 + · · · + ei2q+2)

is not zero then

vi1 + · · · + viq+1 − (viq+2 + · · · + vi2q+2) �= 0.

We have thus shown that completeness and integrability are a genericity condition on S,
the first of many which we will impose.
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Example 2. q = 1, n = 2,m = 4 Four vectors v1, v2, v3, v4 in the plane are not
complete if they form a picture of type

◦ v1 ◦ v4

◦ v2 ◦ v3

that is we have a right triangle which is not completed to a rectangle.
The list

◦ v1 ◦ v4

◦ v2 ◦ v3

is complete but not integrable, and finally

◦ v1 ◦ v4

◦ v2 ◦ v3

is complete and integrable.

When we partition

Span(S) = S ∪ Sc, S := (v1, . . . , vm),

where S is complete, we call the elements of S tangential sites and of Sc the normal
sites. Of course the word tangential is justified by the fact that the Hamiltonian vector
field is tangent to the subspace parametrized by the coordinates in S.

We introduce

Ar (ξ1, . . . , ξm) =
∑

∑
i ki=r

(
r

k1, . . . , km

)2 ∏

i

ξ
ki
i . (10)

Proposition 2. If S is complete and integrable the restricted Hamiltonian is

HS =
m∑

i=1

|vi |2|uvi |2 + Aq+1(|uv1 |2, . . . , |uvm |2)

=
m∑

i=1

|vi |2|uvi |2 +
∑

∑
i ki=q+1

(
q + 1

k1, . . . , km

)2 ∏

i

|uvi |2ki .

Proof. This follows immediately from Formula (8) and the definitions. ��
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2.2. Tangential sites in action–angle coordinates. We set

uk := zk for k ∈ Sc , uvi :=
√
ξi + yi e

ixi =√
ξi (1 +

yi

2ξi
+ . . .)eixi for i=1, . . .m,

(11)

considering the ξi > 0 as parameters |yi | < ξi while y, x, w := (z, z̄) are dynamical
variables.

Definition 2. We denote by �(a,p) the subspace of �̄(a,p)× �̄(a,p) generated by the indices
in Sc with coordinates w = (z, z̄).

For all ε > 0 and for all,

ξ ∈ Aε2 := {ξ : 1

2
ε2 ≤ ξi ≤ ε2 }. (12)

Formula (11) is a well known analytic and symplectic change of variables �(2)ξ in the
domain

Da,p(s, r) = D(s, r) := {x, y, w : x ∈ T
m
s , |y| ≤ r2 , ‖w‖a,p ≤ r}

⊂ T
m
s × C

m × �(a,p). (13)

Here ε > 0, s > 0 and 0 < r < ε/2 are auxiliary parameters. T
m
s denotes the open

subset of the complex torus T
m
C
:= C

m/2πZ
m , where x ∈ C

m, |Im(x)| < s. Moreover if
√

2m(max(|vi |)pe(s+a max(|vi |))ε < ε0 , (14)

the change of variables sends D(r, s)→ Bε0 so we can apply it to our Hamiltonian.
We thus assume that the parameters ε, r, s satisfy (14).
Formula (11) puts in action angle variables (y; x) = (y1, . . . , ym; x1, . . . , xm) the

tangential sites, close to the action ξ = ξ1, . . . , ξm , which are parameters for the system.
The symplectic form is now dy ∧ dx + i

∑
k∈Sc dzk ∧ dz̄k .

Following [15] we study regular functions F : Aε2 × Da,p(s, r)→ C, that is whose
Hamiltonian vector field X F is analytic from D(s, r)→ C

m×C
m×�a,p. In the variables

ξ we require Lipschitz regularity. We use the weighted norm:

‖X F‖λs,r = sup
A
ε2×D(s,r)

‖X F‖s,r + λ sup
ξ �=η∈A

ε2 , (x,y,w)∈D(s,r)

‖X F (η)− X F (ξ)‖s,r
|η − ξ | ,

(15)

where λ = ε2 and

‖X F‖s,r := r−2|∂x F | + s−1|∂y F | + r−1‖∂wF‖a,p.
The different weights ensure that if ‖X F‖λs,r < 1

2 then F generates a close–to–identity
symplectic change of variables from D(r/2, s/2)→ D(r, s).

2.2.1. Quadratic Hamiltonians. We have the rules of Poisson bracket

{yi , y j } = {xi , x j } = 0, {yi , x j } = δi
j , {zh, zk} = {z̄h, z̄k} = 0, {z̄h, zk} = iδh

k .

(16)

If we definew as the infinite row vectorwwith coordinates zh and then z̄h and J the stan-

dard skew symmetric matrix J :=
∣
∣
∣
∣
0 −1
1 0

∣
∣
∣
∣ we have the Poisson bracket4 {wt , w} = iJ .

4 The apex t is the transpose.
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Thus a quadratic Hamiltonian Q(w) in the elements of w represents by Poisson bracket
a linear transformation on the space with basis w. If Q(w) is real, the matrix of this
linear transformation is purely imaginary; thus it is convenient to denote it by iQ and
write ad(Q) := {Q(w),wt } = iQwt . The equations of motion are ẇ = iwQt . The
matrix Q is related to the quadratic expression by5

Q(w) = 1

2
(w,wJ Qt ) = −1

2
wQ Jwt . (17)

Quadratic Hamiltonians are closed under Poisson bracket and, by Jacobi’s identity, if
Q1(w),Q2(w) correspond to matrices Q1, Q2, then {Q1(w),Q2(w)} corresponds to
[Q1, Q2]. Moreover, a quadratic Hamiltonian Q has ‖XQ‖r,s < ∞ if and only if its
matrix Q is such that Q J is a continuous symmetric linear operator from �a,p to itself.

3. Main Dynamical Results

3.0.2. Generiticity conditions. Our theorems hold under some constraints on S such
as those of Remark 4. These constraints are expressed by the condition that the list of
vectors S, thought of as a point in Z

mn , does not lie in any of the varieties defined by a
finite list of polynomial equations, called the avoidable resonances.

In order to explain this let us establish some simple language.

Definition 3. Given a list R := {P1(ζ ), . . . , PU (ζ )}of polynomials in d vector variables
ζi , called resonance polynomials, we say that a list of vectors S = {v1, . . . , vm}, vi ∈
C

n is generic relative to R if, for any list A = {u1, . . . , ud} such that ui ∈ S, ∀i, ui �=
u j if i �= j , the evaluation of the resonance polynomials at ζi = ui is non-zero.

If m is finite this condition is equivalent to requiring that S (considered as a point
in C

nm) does not belong to the algebraic variety where at least one of the resonance
polynomials is zero.

In our specific case the condition of being generic for the tangential sites S is expressed
by a finite list of non-zero polynomials with integer coefficients depending on d =
4q(n + 1) vector variables ζ = (ζ1, . . . , ζd) with ζi = (ζ 1

i , . . . , ζ
n
i ). The explicit list

of these resonances (see Definition 22) depends on some non trivial combinatorics,
nevertheless it is easy to give a (highly) redundant list of inequalities out of which the
resonances appear. There is a constant C > 0 depending only on q, n so that we can
take as resonances the non-zero polynomials of the form:

i) Linear inequalities. For all non-zero vectors (a1, . . . , a4q(n+1))with ai ∈Z, |ai | ≤
C, we require that

4q(n+1)∑

i=1

aiζi �= 0,

ii) Quadratic inequalities. Let (ζi , ζ j ) =∑n
h=1 ζ

h
i ζ

h
j be the scalar products. For all

non zero matrices {ai, j }4q(n+1)
i, j=1 with ai, j ∈ Z, |ai, j | ≤ C, we require

4q(n+1)∑

i, j=1

ai, j (ζi , ζ j ) �= 0.

5 The parentheses represent the scalar product in R.
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iii) Determinantal inequalities. Consider n linear combinations uh out of the list of
elements L := {∑4q(n+1)

i=1 ah,iζi , ah,i ∈ Z, |ah,i | ≤ C}.
The determinantal resonances are contained in the list of the formally non-zero

expressions of type det(u1, . . . , un), ui ∈ L.
Given any m ∈ N, let S = {v1, . . . , vm} ∈ Z

nm be a generic choice of the tangential
sites.

Theorem 1. For all r, s, ε satisfying (14) and for all ξ ∈ Aε2 , there exists an analytic
symplectic change of variables:

�ξ : (y, x)× (z, z̄)→ (u, ū)

from D(s, r/2)→ B2ε0 such that the Hamiltonian (3) in the new variables is analytic
and has the form

H ◦�ξ = (ω(ξ), y) +
∑

k∈Sc

�̃k |zk |2 + Q̃(ξ, w) + P̃(ξ, y, x, w) ,

where

i) Non-degeneracy: ωi (ξ)− |vi |2 is homogeneous of degree q.
The map (ξ1, . . . , ξm) 	→ (ω1(ξ), . . . , ωm(ξ)) is a diffeomorphism for ξ outside a
real algebraic hypersurface.

ii) Asymptotic of the normal frequencies: We have �̃k = |k|2 +
∑m

i=1 |vi |2L(i)(k),
where L(i)(k) ∈ Z satisfy |L(i)(k)| ≤ 4nq.

iii) Reducibility: The matrix Q̃(ξ) which represents the quadratic form Q̃(ξ, w)(see
formula (17)) depends only on the variables ξ and all its entries are homogeneous
of degree q in these variables. It is block–diagonal and satisfies the following
properties:

All of the blocks except a finite number are self adjoint and of dimension≤ n + 1;
the remaining finite number of blocks are of dimension ≤ 2n.

All the (infinitely many) blocks are chosen from a finite list of matrices M(ξ).
iv) Smallness: If ε3 < r < ε/2, the perturbation P̃ is small, more precisely we have

the bounds:

‖X P̃‖λs,r ≤ C(ε2q−1r + ε2q+3r−1) , (18)

where C is independent of r, ε.

Proof. See §13. ��
Remark 5. At first inspection it may seem that the estimate on X P is too small to be
possible. Indeed P should contain terms from P(2q+4), which should contribute to X P
a term of order ε2q+4r−2. In fact for a generic choice of S these terms are constant so
they do not enter in the vector field.

Remark 6. The list of matrices M(ξ) is constructed in Sect. 11, cf. Definition 24.
It contains at most 2n · (2q)m−1! matrices distributed in at most 2n · (2q)4nq ! orbits

under the group of permutations of the variables ξi .
In Example 15 we exhibit M(ξ) in the case q = 1, n = 2.
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3.0.3. Stable regions for the normal form. An interesting issue is to see if one can use
arithmetic constraints such as those of [11], to simplify those matrices in M which are
not self–adjoint. In Proposition 15 we show that, for n ≤ 2 and all q it is possible to
choose the tangential sites so that the matrices reduce to only 2 × 2 matrices indepen-
dently of m. This requires a notion of generic, of arithmetic (or probabilistic) nature,
which we call the x–constraints discussed in §12.1. One may deduce the following very
useful property, proved in §12.1.1:

Proposition 3. Under the hypotheses of Proposition 15, there exists an open region
Oε2 ⊂ Aε2 where all the non self–adjoint matrices in M have real and distinct eigen-
values.

Proof. The region is the one where all discriminants are strictly positive; we show in
§12.1.1 that it is a non empty open cone. ��
It then follows fairly easily from this result and Theorem 1:

Corollary 1. There exists an algebraic hypersurface A such that on the open region
Aε2\A there is an analytic symplectic change of coordinates taking Q into a diagonal
form with constant coefficients plus a form Q̄ with constant coefficients depending only
on finitely many variables zk, z̄k, k ∈ A.

The change of variables does not depend on (x, y), it is linear in w and analytic in
ξ . The Hamiltonian is then

Hfin = (ω(ξ), y) +
∑

k∈Sc

�̄k |zk |2 + Q̄ + P(ξ, x, y, w), (19)

where

�̄k =
{
�̃k + λk(ξ) , ∀k ∈ Sc\A,
�̃k, k ∈ A.

i) The correction λk(ξ) is chosen in a finite list, say

λk(ξ) ∈ {λ(1)(ξ), . . . , λ(K )(ξ)} , K := K (n,m), (20)

of different (real) analytic functions of ξ .
ii) The functions λ(i)(ξ) are homogeneous of degree q in ξ . Let Aε2 be a tubular

neighborhood of A with radius of order ε2. For ξ ∈ Aε2\Aε2 the λ(i)(ξ) satisfy the
bounds

|λ(i)(ξ)|≤Cε2q , cε2q≤|λ(i)(ξ)± λ( j)(ξ)|≤Cε2q , |∇ξ λ(i)(ξ)|≤Cε2q−2.

(21)

iii) For ξ ∈ Aε2\Aε item iv) of Theorem 1 holds.
iv) Q̄ is a quadratic Hamiltonian with constant coefficients in finitely many of the

variables zk, z̄k, k ∈ Sc.
v) For n = 1, 2 and all q it is possible to choose the tangential sites so that Q̄ is

formed by 2 × 2 blocks which (outside the hypersurface A) are semisimple with
distinct eigenvalues. The region in which these eigenvalues are real is open non
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empty and on this region the real eigenvalues are given by analytic functionsμk(ξ)

so that we may write

Hfin = (ω(ξ), y) +
∑

k∈Sc

�̄k |zk |2 + P(ξ, x, y, w), (22)

with �̄k = �̃k + μk(ξ) , ∀k ∈ A.

Proof. See Sect. 12.1.1. ��

4. A Normal Form

In this section we make a preliminary study of the Hamiltonian Hres and introduce some
simple constraints on the tangential sites S; this enables us to define our normal form.

Definition 4. We call x, y, w dynamical variables. We give degree 0 to the angles x, 2
to y and 1 to w.

We use the degree only for handling dynamical variables, as follows. We develop
in the Taylor expansion, in particular since y is small with respect to ξ we develop√
ξi + yi = √ξi (1 + yi

2ξi
+ . . .), as a series in yi

ξi
we then develop the entire Hamiltonians

H, HRes as a series in y, w.

Definition 5 (Normal form). We separate HRes + P2(q+2)(u) = H = N + P, where the
normal form N collects all the terms of HRes (as series in y, w) of degree ≤ 2 in the
variables y, w.

The series P collects all terms of P2(q+2)(u) and all the terms of HRes of degree> 2
in the variables y, w.

It is easily seen that H , hence P , depend analytically on all the variables ξ, y, x, w
in the domain Aε2 × D(r, s).

In the new variables:

M =
∑

i

ξivi +
∑

i

yivi +
∑

k∈Sc

k|zk |2, L =
∑

i

ξi +
∑

i

yi +
∑

k∈Sc

|zk |2,
(23)∑

k∈Zn

|k|2ukūk = K = (ω0, ξ + y) +
∑

k∈Sc

|k|2|zk |2 , ω0 = (|v1|2, . . . , |vm |2).

Remark 7. The terms
∑

i ξi ,
∑

i ξivi and
∑

i ξi |vi |2 are constant and can be dropped,
renormalizing the three quantities M, L , K (momentum, mass and quadratic energy).

We summarize the commutation rules:

{M, yh}={L , yh}={K , yh}=0, {M, xh} = vh xh, {L , xh} = xh, {K , xh} = |vh |2,
{M, zk} = ikzk, {L , zk} = izk, {K , zk} = i|k|2zk, (24)

{M, z̄k} = −ikz̄k, {L , z̄k} = −iz̄k, {K , z̄k} = −i|k|2 z̄k .

We formalize the momentum and mass by two linear maps.

π : Zm → Span(S), π(ei ) = vi , momentum; η : Zm → Z, η(ei ) = 1 mass,

(25)

where e1, . . . , em are the elements of the standard basis of the lattice Z
m .
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Lemma 1. Each monomial ei(ν,x)yl zα z̄β is an eigenvector of the linear operators6

ad(M) and ad(L) with eigenvalues (i.e. with momentum and mass) given by

π(ν) +
∑

k∈Sc

(αk − βk)k , η(ν) +
∑

k∈Sc

(αk − βk). (26)

Proof. This follows computing {M, ei(ν,x)yl zα z̄β} and {L , ei(ν,x)yl zα z̄β} using Formu-
las (23) and the rules of Poisson bracket. ��
Remark 8. A monomial Poisson commutes with M and L if and only if the momentum
and mass are zero, that is π(ν) = −∑

k∈Sc (αk − βk)k , η(ν) = −∑
k∈Sc (αk − βk).

4.0.4. The normal form N. Our next task is to describe the Hamiltonian N of Definition
5, provided that S satisfies some basic constraints. This is done in Proposition 4.

N is described in terms of a list of vectors, called edges since they will appear as
edges of a graph describing the non-diagonal elements in ad(N ).

Definition 6 (Edges). Consider the elements

Xq := {� :=
2q∑

j=1

±ei j =
m∑

i=1

�i ei , � �= 0,−2ei ∀i , η(�) ∈ {0,−2}}. (27)

Notice the mass constraint
∑

i �i = η(�) ∈ {0,−2}. We call all these elements respec-
tively the black, η(�) = 0 and red η(�) = −2 edges and denote them by X0

q , X−2
q

respectively.

Example 3. For q = 1 we have ei − e j ,−(ei + e j ), i �= j. For q = 2 we have all the
terms for q = 1 and ei − e j − ea − eb, , 2ei − 2e j , −3ei + e j , i �= j, a, b.

We start to impose a list of linear and quadratic inequalities on the choice of S which
will be justified in Proposition 4.

Constraint 1. i) We assume that
∑m

j=1 n jv j �= 0 for all ni ∈ Z,
∑

i ni = 0, 1 <∑
i |ni | ≤ 2q + 2.

ii) |∑i nivi |2 −∑
i ni |vi |2 �= 0 when ni ∈ Z,

∑
i ni = 1, 1 <

∑
i |ni | ≤ 2q + 1.

iii) We assume that
∑m

j=1 � jv j �= 0, when u :=∑m
j=1 � j e j is either an edge or a sum

or difference of two distinct edges.
iv) 2

∑m
j=1 � j |v j |2 + |∑m

j=1 � jv j |2 �= 0 for all edges � =∑m
j=1 � j e j in X−2

q .

Lemma 2. Constraint 1i) is an integrability constraint. Constraint 1ii) is the complete-
ness constraint. Constraint iii) means that an edge � =∑m

j=1 � j e j is determined by the
associated vector π(�) =∑m

j=1 � jv j .

Proof. i) The first statement follows from Remark 4.
ii) Using Proposition 1 it is enough to show that, under Constraint ii), we cannot

find 2q + 1 elements u j = vi j for which there is a further vector w in Z
m with

u1, . . . , u2q+1, w resonant. Otherwise w = ∑
i nivi is a linear combination with

±1 coefficients of the vi , hence it is a vector satisfying the hypotheses of item ii),
but the quadratic condition in the same item implies that the list is non resonant.

iii) is clear. ��
6 Given a polynomial P , we denote by ad(P) the linear operator that associates to each polynomial A the

polynomial {P, A}.



Normal Forms for the NLS 517

Constraint iv) will be used in the next proposition, we shall see that it excludes
quadratic terms of type z2

h or z̄2
h in HRes .

For q = 1 this constraint means only that −2|vi |2 − 2|v j |2 + |vi + v j |2 �= 0, i �= j
and this just means vi �= v j .

Proposition 4. Under all the previous constraints we have

N := (ω(ξ), y) +
∑

k∈Sc

|k|2|zk |2 + Q(x, w), (28)

where (cf. Formula (23)) the coefficient

ω(ξ) = ω0 + ∇ξ Aq+1(ξ)− (q + 1)2 Aq(ξ)1, (29)

does not depend on the dynamical variables. Here 1 ∈ N
m denotes the vector with all

coordinates equal to 1.
The term Q(x, w) is quadratic:

Q =
∑

�∈X0
q

c(�)ei(�,x)
∑

(h,k)∈P�
zh z̄k +

∑

�∈X−2
q

c(�)
∑

{h,k}∈P�
[ei(�,x)zhzk + e−i(�,x) z̄h z̄k],

(30)

where, given an edge �, we set � = �+ − �− and define:

cq(�) ≡ c(�) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(q + 1)2ξ
�++�−

2
∑

α∈Nm
|α+�+|1=q

(
q

�+ + α

)(
q

�− + α

)

ξαi � ∈ X0
q

(q + 1)qξ
�++�−

2
∑

α∈Nm
|α+�+|1=q−1

(
q + 1

�− + α

)(
q − 1

�+ + α

)

ξαi � ∈ X−2
q

cq(�) = cq(−�) � ∈ X2
q

(31)

for the definition of P� see Definition 7.

Example 4. Let us discuss q = 1, the cubic NLS. We have

ωi (ξ) := |vi |2 − 2ξi , (32)

finally the quadratic form is

Q(w) = 4
∗∑

1≤i �= j≤m
h,k∈Sc

√
ξiξ j e

i(xi−x j )zh z̄k

+2
∗∗∑

1≤i< j≤m
h,k∈Sc

√
ξiξ j e

−i(xi +x j )zhzk + 2
∗∗∑

1≤i< j≤m
h,k∈Sc

√
ξiξ j e

i(xi +x j ) z̄h z̄k . (33)

Notice that in the sums
∑∗∗ each term appears twice.
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Here
∑∗ denotes that (h, k, vi , v j ) satisfy:

{(h, k, vi , v j ) | h + vi = k + v j , |h|2 + |vi |2 = |k|2 + |v j |2},
and

∑∗∗, that (h, vi , k, v j ) satisfy:

{(h, vi , k, v j ) | h + k = vi + v j , |h|2 + |k|2 = |vi |2 + |v j |2}.
Proof of Proposition 4. By definition the normal form N collects all the terms of HRes
(as a series in y, w) of degree ≤ 2 in the variables y, w. In turn HRes is the sum of
the quadratic term K = ∑

k |k|2|uk |2 and of the terms of degree 2q + 2 in the original
variables u, ū.

From Remark 7 the quadratic term K contributes to N the terms

(ω0, y) +
∑

k∈Sc

|k|2|zk |2.

The remaining terms uk1 ūk2 uk3 ūk4 . . . uk2q+1 ūk2q+2 satisfy the constraints
∑

i

(−1)i ki = 0,
∑

i

(−1)i |ki |2 = 0. (34)

These terms may contribute to terms of N only if they are of total degree ≤ 2 in y, w.
We analyze the three possible cases, of degree 0, 1, 2 in w.

• degree 0. If all the ki are in S the momentum
∑

i (−1)i ki is a linear expression∑
j m jv j . From momentum conservation and Constraint 1 i) we must have m j =

0, ∀ j . This implies that we can pair the even and odd k′s and, as shown in Proposition
2, this gives a contribution Aq+1(ξ + y). In this expression the terms of degree ≤ 2
give a constant (which we ignore) and the term (∇ξ Aq+1(ξ), y).

• degree 1. One and only one of the ki = k ∈ Sc. Formula (34) becomes

k −
∑

i

nivi = 0 , |k|2 −
∑

i

ni |vi |2 = 0,

where
∑

i nivi satisfies the hypotheses of Constraint 1 ii). Thus these terms do not
occur and S is complete.

• degree 2. Given h, k ∈ Sc we compute the coefficients of zh z̄k or zhzk or z̄h z̄k .
These terms are obtained when all but two of the ki are in S. Each ki in S contributes√
ξi + yi e±xi , giving a coefficient

√∏m
j=1 ξ

� j
j ei(�,x), whenever

(zh z̄k) :
m∑

j=1

� jv j + h − k = 0,
m∑

j=1

� j |v j |2 + |h|2 − |k|2 = 0, � ∈ X0
q ,

(35)

(zhzk) :
m∑

j=1

� jv j + h + k = 0,
m∑

j=1

� j |v j |2 + |h|2 + |k|2 = 0, � ∈ X−2
q ,

(36)

(z̄h z̄k) :
m∑

j=1

� jv j − h − k = 0,
m∑

j=1

� j |v j |2 − |h|2 − |k|2 = 0, � ∈ X2
q .

(37)
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Definition 7. Given � ∈ X (0)q denote by P� the set of pairs h, k satisfying Formula (35).

If � ∈ X (−2)
q we denote by P� the set of unordered pairs {h, k} satisfying Formula (36).

Constraint 1 iii), where u is the sum or difference of two edges, implies that h, k
fix � uniquely. In Formulas (36), (37) we see that we cannot have � = ∓2ei since the
equations in these formulas have the only solution h = k = vi ∈ S. This explains why
in Definition 6 we have excluded ±2ei as edges. Constraint 1 iv) implies that h �= k
in Formulas (36), (37). By Constraint 1 iii) where u is an edge, in (35) k = h implies
� = 0. This contributes a term (q + 1)2 Aq(ξ)

∑
k∈Sc |zk |2. It is convenient to write

∑

k

(q + 1)2 Aq(ξ)|zk |2 = (q + 1)2 Aq(ξ)(
∑

k

|zk |2 +
∑

i

yi )− (q + 1)2 Aq(ξ)(
∑

i

yi ),

and notice that (q + 1)2 Aq(ξ)(
∑

k |zk |2 +
∑

i yi ) is a mass term (hence a constant of
motion for the whole Hamiltonian) and can be dropped from the Hamiltonian, so we
change N into

N=K + (∇ξ Aq+1(ξ)−(q + 1)2 Aq(ξ)1, y) + Q(x, w), K =(ω0, y) +
∑

k

|k|2|zk |2.

(38)

Recall that 1 ∈ N
m denotes the vector with all coordinates equal to 1.

Let us now compute Q(x, w), given an edge � set � = �+ − �− formula (31) comes
from the expansion

cq(�) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(q + 1)2
∑

eh1−ek1 +eh2 +···+ehq−ekq=�

q∏

i=1

(ξhi ξki )
1/2 � ∈ X0

q

(q + 1)q
∑

eh1−ek1 +eh2 +···+ehq−1−ekq−1−ehq−ekq=�

q∏

i=1

(ξhi ξki )
1/2 � ∈ X−2

q

cq(−�) = cq(�).

��
It is interesting to notice a point essential for the KAM algorithm, since it gives a

locally invertible change of coordinates ωi = ωi (ξ) expressing

(∇ξ Aq+1(ξ)− (q + 1)2 Aq(ξ)1, y) =
m∑

i=1

ωi yi .

Proposition 5. For every r , the Hessian of Ar (ξ) is a non degenerate matrix as polyno-
mial in ξ .

Proof. Let r = pst with p prime and p � |t . It is well known and elementary that, if p
does not divide

(r
�

)
, then ps divides the vector �. The coefficients of ∂ξ1∂ξ2 Ar (ξ) are

�1�2

(
r

�

)2

= r(r − 1)

(
r − 2

�1 − 1, �2 − 1, . . . , �m

)(
r

�

)

.
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We claim that they are divisible by psr(r − 1). Indeed if p does not divide
(r
�

)
we

have seen that p2s divides �1�2 while ps+1 does not divide r(r − 1). The coefficients of
∂2
ξ1

Ar (ξ) are

�1(�1 − 1)

(
r

�

)

= r(r − 1)

(
r − 2

�1 − 2, �2, . . . , �m

)

.

It follows that the Hessian is divisible by r(r−1), the off diagonal terms are divisible
by psr(r −1)while the diagonal contains the term r(r −1)diag(ξ r−2

i ). Therefore, once
we divide by r(r − 1) we have a matrix which, modulo p, is diagonal with non zero
entries. ��

From Proposition 5 we have the coordinate change:

Corollary 2. The map ξ → ∇ξ Aq+1(ξ) − (q + 1)2 Aq(ξ)1 is a local diffeomorphism
outside a real algebraic hypersurface.

Proof. The Jacobian of this map is a matrix with entries polynomials in ξ with integer
coefficients. Reasoning as in Proposition 5 we see that this Jacobian matrix is of the
form J = q(q + 1)A − (q + 1)2 B, where q(q + 1)A is the Hessian of Aq+1(ξ) while
B has as entries the derivatives of Aq(ξ), therefore B = qC has coefficients divisible
by q. Thus when we divide J by q(q + 1) we have a matrix A − (q + 1)C with entries
polynomials with integer coefficients. Modulo a prime p dividing q +1 we have only the
contribution from A which gives the diagonal matrix with non zero entries discussed in
the proof of Proposition 5. It follows that the determinant of the Jacobian J is a non-zero
polynomial. ��

4.0.5. The perturbation P. Remark that P(x, y, w) is regular in the sense of §2.2.
Indeed in (3) all the terms of degree > 2 are regular and the Birkhoff normal form and
elliptic-action angle variables preserve this property by the chain rule.

We say that P is of order εarb for some integers a, b if its norm is smaller than Cεarb

for some ε, r independent constant C . This implies, since P is regular, that X P is of
order εarb−2 (i.e. ‖X P‖λs,r is bounded by C ′εarb−2).

According to Definition 5, P comes from two types of terms. In a term– denote
it by P(3)– we collect all the terms of degree 2i + j > 2 coming from the resonant
terms

∏q+1
i=1 uki ūhi (of HRes). In P(2q+4) we collect all the terms coming from products

∏d
i=1 uki ūhi , with d ≥ q + 2 of P2(q+2).
Recall that uvi =

√
ξi + yi eixi = √ξi (1 + yi

2ξi
+ . . . )eixi is of order ε, while zk is of

order r . Then the dominant term in P(3) is given by the dominant terms of the monomials
of degree 2i + j = 3. Hence all the other 2q − 1 variables are tangential and computed
at y = 0. The order is hence r3ε2q−1

The order of P(2q+4) is clearly ε2q+4 and comes from a term depending only on
ξ and possibly on x . However, by hypothesis all its Fourier coefficients must respect
momentum conservation. Reasoning as in Proposition 4, by Constraint 1 iii) such a term
is necessarily constant in the dynamical variables, hence we drop it, since it does not
contribute to the vector field. Hence the order is either ε2q+6 or ε2q+3r . For r > ε3, the
leading term is ε2q+3r . Passing to the vector field, under our constraints:

Proposition 6. The order of X P(3) is rε2q−1.

The order of X P(2q+4) is ε2q+3r−1.
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Remark 9. It is possible to improve the estimate r > ε3 to r > ε2q+1 by noticing that
with one step of the Birkhoff normal form one can remove all the non-resonant terms
in H of degree < 4q + 2, then we repeat the analysis as above. This procedure only
changes ω and Q in a trivial way.

5. Matrix Description of ad(N)

5.1. The spaces V i, j and F0,1.

Definition 8. We denote by V i, j the space of functions spanned by elements of total
degree i in y and j in w and V h =∑

i+ j=h V i, j , V∞ =∑
i, j V i, j .

The space V 0,1 has a basis over C given by the elements {ei
∑

j ν j x j zk, e−i
∑

j ν j x j z̄k},
where ν ∈ Z

m , k ∈ Sc.
It can be also viewed as a free module7 with basis the elements zk, z̄k , over the alge-

bra F of the finite Fourier series. This is useful since, by Formula (30), the function Q
commutes with F and thus it can be described by a matrix, with entries in F , in the basis
zk, z̄k .

We now impose the restrictions of momentum and mass conservation. Denote by
F0,1 the subspace of V 0,1 commuting with momentum. By formula (24) we see that
F0,1 has as basis, which we call the frequency basis, the set FB of elements (cf. (25)),

FB = {ei
∑

j ν j x j zk, e−i
∑

j ν j x j z̄k};
∑

j

ν jv j + k = π(ν) + k = 0 , k ∈ Sc.

(39)

An element of FB is completely determined by the value of ν and the fact that the z
variable may or may not be conjugated, thus sometimes we refer to ei

∑
j ν j x j z−π(ν) as

(ν,+) and to e−i
∑

j ν j x j z̄−π(ν) as (ν,−). By construction ν ∈ Z
m
c , where

Z
m
c := {μ ∈ Z

m | − π(μ) ∈ Sc} , (40)

and we may identify FB with Z
m
c × Z/(2).

We can further decompose the space F0,1 = ⊕F0,1
� by the eigenspaces of the mass

operator ad(L). Notice that the mass of ei
∑

j ν j x j zk is � =∑
i νi +1, thus on the subspace

commuting with L we have −1 =∑
i νi for (ν,±).

5.1.1. The action of ad(N ). In order to study the action of ad(N ) on the two spaces
F0,1 and V 0,1 we notice that:

Remark 10. i) The terms
∑

k |k|2|zk |2 + Q(x, w) Poisson commute with the algebra
F of Fourier series in x .

ii) ad(
∑

k |k|2|zk |2) is a diagonal matrix in the geometric basis zk, z̄k .
iii) ad((ω(ξ), y) +

∑
k |k|2|zk |2) is a diagonal matrix in the frequency basis FB .

Hence, in order to describe ad(N ), we only need to understand the action of ad(Q)
on the two spaces F0,1 and V 0,1. We then have two matrix descriptions. One, denoted
iQ(x), with respect to the basis w and with finite Fourier series as entries, the other iQ
with respect to the frequency basis and with constant coefficients. Of course each can
be deduced from the other in a simple way.

7 A free module is the vector space of linear combinations of a basis with coefficients in an algebra.
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6. Graph Representation

A matrix (ai, j ) over a basis indexed by a set I is conveniently displayed graphically
by a graph with vertices the elements of I . Two vertices i, j are joined by an edge if
ai, j �= 0, in this case it is also convenient to orient the edge and mark it with the entry
of the matrix as

i ��
ai, j

j .

The usefulness of this construction lies in the fact that the connected components of the
graph correspond to the diagonal indecomposable blocks into which the matrix can be
decomposed.

We thus associate to the matrices Q(x), Q two graphs �̃S,S encoding the infor-
mation of the non-zero off diagonal entries in the respective bases.

Definition 9. The graph �̃S has as vertices the geometric basis, i.e. the variables zk, z̄h ,
and edges corresponding to the nonzero entries of the matrix Q(x) in this basis.

The graph S has as vertices the elements of FB = Z
m
c × Z/(2), and edges corre-

sponding to the nonzero entries of the matrix Q in this frequency basis.

Remark 11. We could also introduce the graph describing the matrix Q on the entire
space V 0,1 in its corresponding basis. It is just obtained as infinitely many copies ofS

(for all values of momentum) by multiplying with all possible exponentials ei
∑

j ν j x j .

6.0.2. The rules. The rules to construct the graph are the Formulas (35), (36), (37).
To be explicit in our case, if ai, j �= 0 also a j,i �= 0 so we should connect each

connected pair of vertices with two edges. In fact it is clear that both edges and their
markings are uniquely determined by a single edge �. We discuss the simple choices
that we make in order to be explicit.

In case of an ordered pair (h, k) satisfying (35) for the edge � ∈ X0
q , we display:

zh zk
�� c(�)ei�·x

c(�)e−i�·x
�� ≡ zh zk

�� �

−�
�� , z̄h z̄k

�� −c(�)e−i�·x

−c(�)ei�·x
�� ≡ z̄h z̄k

�� −�
�

�� .

Of course, if � ∈ X0
q then also−� ∈ X0

q . We choose one representative of the pair �,−�
(for instance using lexicographic ordering) and drop one of the arrows.

Similarly for (a, σ ) , (b, ρ) ∈ Z
m × Z/(2) such that b = a + �, h = −π(b) , k =

−π(a) , σ = ρ (and h, k as above) we have

(b,+) (a,+)�� c(�)

c(�)
�� ≡ (b,+) �� �

(a,+) ,

(b,−) (a,−)�� −c(�)

−c(�)
�� ≡ (b,−) �� �

(a,−) .

Notice that our convention in describing the basis FB , implies that the arrow joining
(a,−) to (b,−) has the opposite direction to that joining z̄h to z̄k .
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In case of an unordered pair (h, k) satisfying (36) for the edge � ∈ X−2
q we display:

zh z̄k
�� −c(�)ei�·x

c(�)e−i�·x
�� ≡ zh

�
z̄k , (a,+) (b,−)�� −c(�)

c(�)
�� ≡ (a,+)

�
(b,−) ,

where −π(a) = h,−π(b) = k and a + b = �.
Remark 12. Since K commutes with Q, a block for Q is contained in an eigenspace of
K with fixed eigenvalue κ . We have

{K , eiμ.x zk} = i(
∑

i

μi |vi |2+ |k|2)eiμ.x zk,

{K , e−iμ.x z̄k} = −i(
∑

i

μi |vi |2+ |k|2)e−iμ.x z̄k .
(41)

The eigenspace of K where
∑

i μi |vi |2 + |k|2 = κ in general is an infinite block which
has to be further reduced, by the explicit description of Q, into the direct sum of infinitely
many finite blocks.

While the graph �̃S appears naturally in the description of Q(x), we find it convenient
to forget the conjugate variables getting a purely geometric graph �S with vertices in
Sc and colored edges.

Definition 10. Two points h, k ∈ Sc are connected by a black edge if zh, zk are con-
nected in �̃S, the edge has the same orientation as the one joining zh, zk and mark the
edge by−π(�). Similarly, h, k ∈ Sc are connected by a red edge if zh, z̄k are connected
in �̃S, the marking is again −π(�).
Example 5 (q = 1). Suppose we have in �̃S the connected component containing zk1 :

Ãk1,+= z̄k4

−e2−e1

zk1
e3−e1 �� zk2

e3−e2 �� zk3

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

k2 − k1 + v3 − v1 = 0
|k2|2 − |k1|2 + |v3|2 − |v1|2 = 0
k3 − k2 + v3 − v2 = 0
|k3|2 − |k2|2 + |v3|2 − |v2|2 = 0
k4 + k2 − v2 − v1 = 0
|k4|2 + |k2|2 − |v2|2 − |v1|2 = 0

(42)

with k1 �= k2 �= k3 �= k4 ∈ Sc. Then the block of the matrix Q(x) corresponding to this
graph is

4

⎛

⎜
⎜
⎝

0
√
ξ1ξ3e−i(x3−x1) 0 0√

ξ1ξ3ei(x3−x1) 0
√
ξ2ξ3e−i(x3−x2) −√ξ1ξ2e−i(x1+x2)

0
√
ξ2ξ3ei(x3−x2) 0 0

0
√
ξ1ξ2ei(x1+x2) 0 0

⎞

⎟
⎟
⎠ ,

where we have arbitrarily chosen the ordering zk1, zk2 , zk3 , z̄k4 .
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By the reality condition we also have the connected component:

Ãk1,− = zk4

−e2−e1

z̄k1
��e3−e1 z̄k2

��e3−e2 z̄k3 ,

which we think of as a conjugated block.
In conclusion the contribution of these two components to Q is:

4
√
ξ1ξ3ei(x1−x3)zk1 z̄k2 + 4

√
ξ2ξ3ei(x2−x3)zk2 z̄k3 + 4

√
ξ1ξ2e−i(x1+x2)zk2 zk4

+ 4
√
ξ1ξ3e−i(x1−x3) z̄k1 zk2 + 4

√
ξ2ξ3e−i(x2−x3) z̄k2 zk3 + 4

√
ξ1ξ2ei(x1+x2) z̄k2 z̄k4 .

(43)

Let now a ∈ Z
m be any vector such that −π(a) = k1, then the graph S has the two

components

A(a,+) = (−e2 − e3 − a,−)
−e2−e1

(a,+)
e3−e1�� (a + e3 − e1,+)

e3−e2�� (a − e1 − e2 + 2e3,+),

A(a,−) = (−e2 − e3 − a,+)

−e2−e1

(a,−) e3−e1�� (a + e3 − e1,−) e3−e2 �� (a − e1 − e2 + 2e3,−).

(44)

Finally the geometric graph corresponding to (42) is 8

Ak1 = k4

v2+v1

k1
v1−v3 �� k2

v2−v3 �� k3,

(45)

The vectors appearing as vertices must satisfy the linear and quadratic constraints
appearing in (42). Notice that we can deduce the list of equations associated to a geo-
metric graph by looking at its vertices, indeed if ki , k j are connected by an edge then
this arises from an � (see Formulas (35)–(37)) which is uniquely determined.

Remark 13. All the connected components which we have described in this simple exam-
ple are isomorphic (as marked graphs), this is a fundamental issue since it enables us to
define the change of variables which reduces the Hamiltonian to constant coefficients.
The geometric graph probably gives the clearer picture since it encodes in the simplest
way the list of equations which the ki must fulfill.

It is useful to notice that, as soon as m > n, corresponding to the components
Ãk1,± ∈ �̃S, there are infinitely many components A(a,±) ∈ S , one for each of the
points (a,±) such that−π(a) = k. These points are infinitely many if m > n, since the
vectors vi cannot be independent and so π must have a kernel ker(π), these components
are obtained from a given one by translations by elements of ker(π).

8 We shall denote by a red edge.
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Fig. 2. The plane H� with � = e j − ei and the sphere S� with � = −ei − e j . The points h1, k1, v j , vi form
the vertices of a rectangle. Same for the points h2, vi , k2, v j

6.1. Geometric graph �geo
S . We define a graph on R

n using the formulas (35) and (36).

Definition 11. An edge � ∈ X−2
q defines a sphere S� through the relation:

|x |2 + (x,
∑

i

�ivi ) = −1

2
(|

∑

i

�ivi |2 +
∑

i

�i |vi |2), (46)

An edge � ∈ X0
q defines a plane H� through the relation

(x,
∑

i

�ivi ) = 1

2
(|

∑

i

�ivi |2 +
∑

i

�i |vi |2). (47)

Definition 12. Each x ∈ S� is joined by a red unoriented edge to −x −∑
i �ivi ∈ S�.

Each x ∈ H� is joined by a black oriented edge to x −∑
i �ivi ∈ H−�. We construct

the graph �geo
S with vertices all the points of R

n and edges the black and red edges
described in Fig. 2.

It is convenient to mark each edge of the graph with the element −π(�) from which
it comes from. Notice that Constraint 1 implies that the edge � is uniquely determined
by the vector π(�).

Remark 14. The points in H� are the initial vertices of an edge � ∈ X (0)q ending in the
parallel hyperplane H� −∑

i �ivi = H−�.
The points in S� are the initial vertices of an edge of type � ∈ X (2)q which is a diameter

of the sphere.

Remark 15. The completeness Constraint 1 ii) on S implies that the vectors v1, . . . , vm
form a component of the graph �geo

S . In this component every two vertices are joined
by a red and by a black edge marked respectively vi + v j and vi − v j .

This is independent of the choices of q,m, n.



526 M. Procesi, C. Procesi

Definition 13. The component v1, . . . , vm is called the special component of the graph
�

geo
S .

We want to understand the other connected components of the graph �geo
S , which

contain a purely geometric description of the possible components of�S . Naturally most
of the components of the graph �geo

S will not be formed by integral vectors.

6.1.1. A rough estimate. Before we start a fine analysis we may recall first a simple
result, which is proved in [16]:

Lemma 3. i) The number of vertices which may be adjacent to a red edge is finite
and bounded by some constant N (q, n,maxm

i=1(|vi |).
ii) For generic choices of S each path in P ∈ �geo

S containing only black edges cannot

contain two distinct edges marked with the same � ∈ X (0)q .

Proof. i) Each � ∈ X (−2)
q defines a sphere and on each sphere there are only a finite

number of points, at most Rn−1
� , where R� is the radius of the sphere. If a vertex

k is adjacent to � by definition k ∈ S�; the statement follows.
ii) In a minimal counterexample we suppose that an edge � appears twice and all

others appear at most once. Let x1, x2 be the two distinct vertices out of which �
exits and consider a path P(x1, x2) joining them. By applying the linear equations
in (35) to the vertices in P(x1, x2) one may conclude that x2 = x1 +

∑
nivi , where

the ni are integers which depend on P(x1, x2). Since P(x1, x2) does not contain
any other edge more than once, then |ni | ≤ (2q)m+1. We now write the condition
that x1, x2 ∈ H�, using (47):

2(x1,
∑

i

�ivi ) =
∑

i

�i |vi |2 + |
∑

i

�ivi |2,

2(x1 +
∑

nivi ,
∑

i

�ivi ) =
∑

i

�i |vi |2 + |
∑

i

�ivi |2,

and this may be excluded by requiring

(
∑

nivi ,
∑

i

�ivi ) �= 0, ∀
∑

nivi �= 0, |ni | ≤ (2q)m+1

which is a generiticity condition. ��
This lemma immediately implies:

Proposition 7. For generic choices of S there is a uniform bound on the number of
vertices in each connected component of �geo

S .

Proof. By Lemma 3 ii) a path made of black edges has a finite (and uniformly bounded)
length since each edge may appear at most once. So the connected components contain-
ing black edges have a uniform bound on the number of vertices. By Lemma 3 i) we
may form a finite block with all the points adjacent to a red edge and all the vertices
connected to them. Indeed if a vertex is connected to a vertex in a sphere by a path made
of black edges then this path has finite length. ��

This bound is clearly very rough, however to prove optimal bounds one must work
much harder and this we shall do in the rest of the paper.
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6.2. Geometric results. Our goal. We want to decompose the graph �geo
S into simple

blocks, as for instance that of (45). The fact that this may be possible with blocks of
at most n + 1 vertices is suggested by a simple count of parameters, indeed one sees in
(42) that a tree with e edges occurs when the e + 1 vertices (corresponding to (e + 1)n
incognitæ) satisfy a set of e(n + 1) equations.

Indeed, this bound can be achieved for all blocks consisting only of black edges under
all geometric constraints.

The core of the paper is to prove Theorems 2 and 3 by imposing a finite number of
non-zero polynomial constraints on S; Constraints 1 are the beginning of this analysis.
The full list of the explicit geometric constraints is summarized in Definition 22.

Theorem 2. For a generic choice of the vi as in Def. 22 we have:

i) All connected components of the graph �geo
S consisting only of black edges have at

most n + 1 vertices.
ii) There are finitely many components in �S containing red edges, each can contain

at most 2n vertices.
iii) The connected components of �geo

S consisting only of black edges are divided into
a finite number of families.

iv) Each family in �geo
S is formed by all the graphs obtained from a given one G, with

k + 1 affinely independent vertices, under translation by all the points of the n − k
dimensional subspace orthogonal to the span of G, minus a union A of a finite
number of lower dimensional affine subspaces.
The translates G + a, a ∈ A are contained in strictly larger connected components
of �geo

S .
Moreover

v) All connected components of the graph S have at most 2n vertices. The vertices
with the same sign are affinely independent. There may be complicated dependen-
cies between vertices with different signs.

Proof. See §10.1. ��

The next result relates the three graphs S, �̃S, �S . Take a frequency μ ∈ Z
m
c , let

A(μ,+) be the component in S of (μ,+) and set k = −π(μ). From Formula (39) the
associated component in �̃S is the one of the element zk and will be denoted by Ã(k,+).
Finally in the geometric graph �S we have the component of the element k which will
be denoted by Ak with a similar description for (μ,−).

Theorem 3. For a generic choice of S the map −π establishes a graph isomorphism
between A(μ,±) and Ã(k,±), which is also mapped isomorphically to Ak. All these maps
are compatible with the markings.

Proof. See §10.2. ��

In particular the space spanned by all transforms of eiμ.x zk applying the operator
ad(N ) has a basis extracted from the frequency basis in correspondence, under −π ,
with the vertices of Ak .

All other connected components of S lying over Ak are obtained from A(μ,±) by
adding all the elements ν such that π(ν) = 0.
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7. A Formalization of the Graphs

The rules (35), (36), (37) determine the edges of the three graphs S, �̃S, �S that we
have introduced in §6.2. These rules consist of a linear and a quadratic constraint which
encode respectively the conservation of momentum and of quadratic energy (i.e. the
fact that we have kept only resonant terms). We want to see first that, if we implement
only the linear rules, the graphs we construct are contained in some Cayley graphs (see
the Appendix for the relevant definitions). Next we show that the quadratic rules select,
inside the large Cayley graphs, the graphs of our interest.

7.1. The linear momentum constraints. Denote by Z
m := {∑m

i=1 ai ei , ai ∈ Z} the
lattice with basis the elements ei .

We consider the group G := Z
m

� Z/(2)9 of couples (a, σ ) with a ∈ Z
mσ = ±.

The group structure is given by the rules

(a,+)(b,+) = (a + b,+) , (a,−)(b,+) = (a − b,−) ,
(a,+)(b,−) = (a + b,−) , (a,−)(b,−) = (a − b,+).

It will be notationally convenient to identify by a the operator of left multiplication by
(a,+) and by τ the operator of left multiplication by (0,−) so that

(a,+) = a(0,+) , (a,−) = aτ(0,+).

Note the commutation rules aτ = τ(−a). Sometimes we refer to the elements a = (a,+)
as black and aτ = (a,−) as red.

Recall we defined the mass in Formula (25) by η : Zm → Z, η(ei ) := 1. If p ∈ Z it
is easily seen that the set G p := {a : η(a) = 0, aτ : η(a) = p} form a subgroup. In
particular G−2 is generated by the elements ei − e j , (−ei − e j )τ .

The group G has also a simple geometric interpretation: for any a ∈ Z
m the element

a acts on Z
m as the translation ta : x 	→ x + a, while the element τ is the sign change

τ : x →−x , so aτ acts by x 	→ a − x .

Remark 16. In our dynamical setting, we have chosen a list of vectors vi and defined
(cf. Formula (25)) π : Zm → R

n by π : ei 	→ vi .
We can think of G also as linear operators on R

n by setting

ak := −π(a) + k, k ∈ R
n, a ∈ Z

m , τk := −k. (48)

For each q = 1, 2, . . . we consider the Cayley graphs in G,Zm,Rn associated to the
set X = {X0

q = (X0
q ,+), X−2

q τ = (X−2
q ,−)} (cf. Formula (27)). Notice that, for all

a ∈ Z
m , we have (a,−)2 = (0,+) = I d, the identity of G. In particular X = X−1.

We take two elements (a, σ ), (b, ρ) ∈ G (σ, ρ = ±). We have

(b, ρ)(a, σ )−1 = b(0, ρ)(0, σ )(−a) =
{

b − a if ρ = σ
(a + b)τ if ρ �= σ . (49)

9 The notation � stands for semidirect product
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Therefore (a, σ ), (b, ρ) are joined by an oriented edge marked with � ∈ X0 if σ = ρ
and b − a = �, while (a, σ ), (b, ρ) are joined by an edge marked with �τ, � ∈ X−2 if
σ = −ρ and a + b = �. Graphically

(b,+) �� �
(a,+) , (b,−) �� �

(a,−) , (a,+)
�τ

(b,−) .
We have obtained the same picture as in §6.0.2, only now we are not imposing the qua-
dratic constraint h = −π(a), k = −π(b), where (h, k) satisfy (35) or (36). We usually
drop the τ in the marking of the unoriented edges associated to � ∈ X−2

q .
The significance of this choice is:

Proposition 8. i) The elements X0
q , X−2

q τ generate G−2.

ii) The Cayley graph R
n
X contains the geometric graph �geo

S of Definition 10.
We identify the basis FB of Formula (39) with Z

m
c × Z/(2) ⊂ G then:

iii) The graph S (cf. 9) is a subgraph of the Cayley graph G X .
iv) Each connected component of S is a full10 subgraph of the Cayley graph G X .

In view of the previous proposition we set a:

Definition 14. A complete marked graph, on a set A ⊂ Z
m

� Z/(2) is the full sub–
graph generated by the vertices in A.

In fact using conservation of mass and the action of G on Z
m , it is even better to

considerS lying in the orbit of G−2 in Z
m formed of elements a ∈ Z

m | η(a) = 0,−2.
This identification is not canonical but depends on the choice of a root r ∈ S that
corresponds to 0.

There are symmetries in the graph. The symmetric group Sm of the m! permutations
of the elements ei preserves the graph. By Lemma 13 we have the right action of G, on
the graph:

(b, σ ) 	→ (b, σ )τ = bστ, (b, σ ) 	→ (b, σ )a = (b + σa, σ ), ∀a, b ∈ Z
m . (50)

Up to the G action any subgraph can be translated to one containing (0,+); in this way
we keep only the combinatorial information.

7.2. The quadratic energy constraints. We consider R
m with the standard scalar product.

Given a list S of m vectors vi ∈ R
n , we have defined the linear map π : ei 	→ vi .

Let S2[Zm] := {∑m
i, j=1 ai, j ei e j }, ai, j ∈ Z be the polynomials of degree 2 in the ei

with integer coefficients. We extend the map π and introduce a linear map L(2) : a 	→
a(2) as:

π(ei ) = vi , π(ei e j ) := (vi , v j ), L(2) : Zm → S2(Zm),

a =
∑

ai ei 	→ a(2) :=
∑

ai e
2
i .

We have π(AB) = (π(A), π(B)),∀A, B ∈ Z
m .

Remark 17. Notice that we have a(2) = a2 if and only if a equals 0 or one of the
variables ei .

10 A full subgraph of a graph � consists of a subset of the vertices and all the edges in � between these
chosen vertices.
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Definition 15. Given an element u = (a, σ ) = (∑i ai ei , σ ) ∈ G set

C(u) := σ

2
(a2 + a(2)),

1

2
K (u) := π(C(u)) = σ

2
(|

∑

i

aivi |2 +
∑

i

ai |vi |2). (51)

We call K (u) the energy of u; this is exactly the eigenvalue of K given by Formula (41).

Notice that C(u) has integer coefficients.
For u = (a, σ ) and g = (

∑
i ni ei , ρ) consider gu = (b, σρ), b = ∑

i ni ei + ρa.
We have

C(gu) = σC(g) + C(u) + (ρ − 1)
σ

2
a2 + σ(

∑

i

ni ei )a. (52)

From (52) we see that K (gu) = K (u) if and only if:

0 = K (g) + (ρ − 1)|π(a)|2 + 2(
∑

i

nivi , π(a)). (53)

Definition 16. Given an edge u x �� v , u = (a, σ ), v = (b, ρ) = xu, x ∈ Xq, we
say that the edge is compatible with S or π if K (u) = K (v).

As in the previous section we identify the basis FB of Formula (39) with
Z

m
c � Z/(2)⊂G.

Proposition 9. The graph S of Definition 9 is the subgraph of G X in which we only
keep the compatible edges and the vertices in Z

m
c � Z/(2).

Proof. i) If we have a ∈ Z
m and b = (�, 1)a = � + a, set k := −π(b), h := −π(a),

we have k + π(�) = h. The condition K (a) = K (b) is given by formula (53) with
g = (�, 1). This in turn gives formula (47) with x = h, i.e. implies the fact that h ∈ H�
or equivalently that h, k satisfy Eqs. (35).

Similarly if b = (�, τ )a = (� − a, τ ) we have π(�) + h + k = 0, the condition
K (a) = K (b) is given by (53) with g = (�, τ ); this gives formula (46) with x = h or
x = k, i.e. implies the fact that h, k ∈ S� or equivalently that h, k satisfy Eqs. (36). ��
Example 6. In our Example 5 consider the component A(a,+) in (44). By construction
the edges appear in the Cayley graph, moreover the condition that all the vertices have
the same energy are the equations in (42). The projection of A(a,+) with the map −π
gives Ak1 in (45).

This proposition is the combinatorial counterpart of conservation of the quadratic
energy K computed in Formula (41) and summarized as:

• If u, v are in the same connected component of S we have K (u) = K (v).
• Under the map −π , the component A maps to a connected component C of �S .

Corollary 3. A connected component A of S is a complete subgraph (cf. Definition
14) of G X .

Proof. Fix an element u of which we want to find the component. Consider the set of
all elements v with the same energy as u. They determine a complete (or full) subgraph
of the graph G X , and an edge in this subgraph is by construction compatible, thus the
component passing through u of this graph is the required one. ��
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8. Graph Isomorphism

We wish to identify the connected components of S with those of �S .

Proposition 10. i) Under the map (a, σ ) 	→ −π(a) the graph S maps surjectively
to the geometric graph �S. The image of an edge in S is an edge in �S.

ii) The preimage of an edge in �S is a set of edges in S which are simply permuted
by right translations under the subgroup ker(π) of Z

m.

Proof. i) This is just the definition of �S since we have shown that a compatible

edge (a,±) �� �
(b,±) is such that setting h = −π(a), k := −π(b) one has

that h, k respect (35).

ii) Given a compatible edge (a,±) �� �
(b,±) let h = −π(a) , k = −π(b).

Consider now a′ such that a − a′ ∈ ker(π) and set b′ = a′ + � so that by defini-
tion (a′,±) is connected to (b′,±) in G X . We notice that π(a) = π(a′) so that
K (a) = K (a′), the same holds for b′ and we may conclude that K (a′) = K (b′).
This shows that (a′,±) �� �

(b′,±) is a compatible edge. We follow the same
reasoning in the case of a red edge (�, τ ). ��

We now want to invert Proposition 10 and thus lift a connected component C of
�S to a connected component of S . In our Example 5, one can easily see that Ak1 is
isomorphic to Aa,± and hence can be lifted. However this is not always the case unless
we impose some further constraints. Indeed consider a connected graph in A ∈ S and
let A be its projection on �S . As seen in Corollary 7, the two graphs are isomorphic if
and only if every circuit in A is also a circuit in A.

There can be two cases: 1. the circuit in A contains an even number of red edges.
2. the circuit in A contains an odd number of red edges.

Example (Case 1). Suppose that the geometric graph contains a component

k3

v2−v4

����
��

��
� ��

v2−v3

��
��

��
�

k1
v2−v1 �� k2

which is the case provided that

v1 − 3v2 + v3 + v4 = 0 ,

{
2(k1, v2 − v1) = |v2 − v1|2 + |v2|2 − |v1|2
2(k1, v4 − v2) = |v4 − v2|2 + |v4|2 − |v2|2.

Let us choose any a ∈ Z
m such that −π(a) = k1. We easily verify that the tree

(a,+)
e1−e2�� (a + e1 − e2,+)

e3−e2�� (a + e1 − 2e2 + e3,+)
e4−e2�� (a + e1 − 3e2 +e3 + e4,+)

is contained in S . Let us call v = e1 − 3e2 + e3 + e4, by hypothesis π(v) = 0, so that
we have−π(a +αv) = k1 for all integers α. This implies that the connected component
of (a,+) has infinitely many vertices:

(a,+)
e1−e2�� (a + e1 − e2,+)

e3−e2 �� (a + e1 − 2e2 + e3,+)
e4−e2 �� (a + v,+)

e1−e2

��
· · · �� e1−e2

(a + 2v,+) �� e4−e2
(a + v + e1 − 2e2 + e3,+) ��e3−e2

(a + v + e1 − e2,+).
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To avoid this pathology we simply require that v1 − 3v2 + v3 + v4 �= 0 so that this
geometric graph does not have a realization.

Example (Case 2). Suppose that the geometric graph contains a component

k3

v2−v4

����
��

��
�

v2+v3

��
��

��
�

��
��

��
�

k1
v2−v1 �� k2

which is the case provided that

k2 + k3 = k1 + v2 − v1 + k1 + v4 − v2 = v2 + v3,

2k1 = v1 + v2 + v3 − v4 ,

{
2(k1, v2 − v1) = |v2 − v1|2 + |v2|2 − |v1|2
2(k1, v4 − v2) = |v4 − v2|2 + |v4|2 − |v2|2;

we substitute 2k1 in one of the linear equations and obtain that this geometric graph does
not have realization if

(v1 + v2 + v3 − v4, v4 − v2) �= |v4 − v2|2 + |v4|2 − |v2|2.
To repeat this reasoning in the general case we need the following trivial fact:

Lemma 4. If a =∑
i ni ei ∈ Z

m resp. (a, τ ) is a product of d elements in Xq we have
that

∑
i |ni | ≤ 2dq.

It should be clear at this point that in order to lift the components of �S with at most
d vertices we must impose as many linear/quadratic inequalities on S as the number
of loops which may appear in a component. Thus if we wish to impose only a finite
number of constraints we cannot lift arbitrarily large components. Our strategy is the
following: first we fix d = 2n + 2 and impose constraints to ensure that all components
with at most d vertices can be lifted. Then we show that there are no compatible graphs
in �geo

S with d vertices; this excludes the existence of graphs C in �S with d or more
vertices. Otherwise we would be able to lift some subgraph of C with d vertices to a
compatible graph in S . This means that the mapping −π gives an isomorphism from
each connected component of S to its image in �S .

We impose

Constraint 2. We assume
∑

i �ivi �= 0, for all choices of the �i such that
∑

i �i = 0,∑
i |�i | ≤ 4q(n + 1) and

∑
i �i ei �= 0.

Under this constraint take an element g =∑
i ni ei which is a product of d ≤ 2n + 2

elements in X . We have then
∑

i |ni | ≤ 4q(n+1) so if g �= 0 we haveπ(g) =∑
i nivi �=

0. Then for all k ∈ Z
ngk = π(g) + k �= k, ∀k, hence Case 1 may not occur.

For Case 2 let g = (a, τ ), a =∑
i ni ei ,

∑
i ni = −2 be such that gk = k for some

k ∈ Z
n . This is possible if and only if π(a) = ∑

i nivi = 2k. Since we are assuming
that there is a non-trivial odd loop starting from k, changing if necessary the starting
point, the first step of the loop tells us that k lies in a sphere S� for some initial edge
� ∈ X .

This implies that k = −1/2
∑

i nivi satisfies a relation of type

|
∑

i

nivi |2 − 2(
∑

i

nivi , π(�)) = 2K (�), (54)
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where � = (∑i �i ei ) ∈ X (−2)
q . This formula vanishes identically if a2−2a� = 2C(�) =

−2(�2 + �(2)). Thus

(a − �)2 = −�2 − 2�(2).

This implies that all coefficients of � must be −1, and � = −ei − e j .
This implies a − � = ±(ei − e j ) hence a = −2ei ,−2e j and k = vi , v j .
We impose

Constraint 3. We assume that for all choices of the ni such that
∑

i ni = −2,
∑

i |ni | ≤
4q(n + 1) all Eqs. (54) are not satisfied.

If C is any marked graph which has at most d vertices, a minimal loop in C has at
most d edges, thus:

Corollary 4. Under the previous constraints if C ⊂ �S is a connected graph with at
most 2n + 2 vertices then C can be lifted.

Proof. By Corollary 7 we only need to prove that, under the previous hypotheses, it is
not possible that a non-trivial element g, which is a product of at most 2n + 2 elements
of X , fixes an element k ∈ C .

By the constraints that we have imposed this may happen if and only if this element
generates a trivial constraint, that is an identity for all choices of vi . If g = a ∈ Z

m this
is excluded by Constraint 2 and for g = aτ it is excluded by Constraint 3. ��

9. The Equations Defining a Connected Component of �S

Take a connected subgraph A of �S which can be lifted (in particular this will be the
case if A has at most 2n + 2 vertices by the previous constraints). Choose a root x ∈ A;
we lift x = −π(a), and this lifts A to the component A(a,+) through a inS . For h ∈ A
we have an element gh ∈ G obtained by lifting a path in A from x to h and such that
h = gh x . We set

gh := (L(h), σ (h)), L(h) ∈ Z
m, σ (h) ∈ {1, τ } �⇒ h = −π(L(h)) + σ(h)x .

(55)

We then can deduce that:

Lemma 5. For each h ∈ A we have:
{
(x, π(gh)) = 1

2 K (gh) if σ(h) = 1

|x |2 + (x, π(gh)) = 1
2 K (gh) if σ(h) = τ . (56)

Proof. We use Formula (53) which implies that:

0 = K (gh) + (σ (h)− 1)|x |2 − 2(π(gh), x). (57)

To be explicit if L(h) =∑
i mi ei by (51):

π(gh) =
∑

i

mivi , K (gh) = σ(h)(|
∑

i

mivi |2 +
∑

i

mi |vi |2). (58)

��
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The equations on x given in Formula (56) are a complete set of conditions for the exis-
tence of a graph A inside some connected component (which could also properly contain
A) of �geo

S . The reader should notice that these equations are completely analogous to
the ones of Definition 11, given only for edges.

Definition 17. Let A ⊂ G X be the graph with vertices the elements gh (and gx =
(0,+) = I d), this is called the combinatorial graph associated to A and the root x.

Example 7. We explicitly compute the combinatorial graph associated to Ak1 of Example
5. We choose k1 as the root.

A = (−e2 − e3,−)
−e2−e1

(0,+)
e3−e1 �� (e3 − e1,+)

e3−e2�� (−e1 − e2 + 2e3,+).

(59)

The system of equations associated to this graph is
⎧
⎨

⎩

(x, v3 − v1) = |v3|2 − (v1, v3)

(x,−v1 − v2 + 2v3) = 3|v3|2 − 2(v1 + v2, v3) + (v1, v2).

|x |2 − (x, v2 + v3) = −(v2, v3)

(60)

Notice that this graph does not belong to S but if a ∈ Z
m is such that −π(a) = k1,

then the right translation by (a,+), i.e. A(a,+) gives A(a,+) ∈ S .

Remark 18. Notice that the map which associates to each h ∈ A the element gh =
(L(h), σ (h)) is well defined only if A can be lifted. The construction of the L(k) is in
turn the key to the reducibility as can be seen in Example 14.

Consider now a complete subgraph (cf. Definition 14) of G X which contains (0,+).
We associate to each vertex g �= (0,+) of the graph an equation:

{
(x, π(a)) = 1

2 K (a) if g = (a,+)

|x |2 + (x, π(a)) = 1
2 K (a) if g = (a,−) . (61)

We think of this system of equations as associated to the graph.

Definition 18. We call the set of complete subgraphs of G X which contain (0,+) and
have at most 2n + 2 vertices the set of possible combinatorial graphs. We say that a
possible combinatorial graph A has a geometric realization (in �geo

S ) if the equations
associated to the graph have real solutions.

The following statement holds.

Proposition 11. A possible combinatorial graph A is a combinatorial graph if and only
if Eqs. (61) have solutions in Sc.

Remark 19. Notice that in a possible combinatorial graph one may deduce the color of
each vertex by computing its mass. Indeed all vertices (a,+) must have η(a) = 0 while
(a,−) corresponds to η(a) = −2.
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We have reduced our problem to that of understanding which possible combinatorial
graphs have a geometric realization. Naturally for given S this amounts to checking
whether the equations associated to the graph are independent and– if they are not– to
verify their compatibility.

Definition 19. We say that two possible combinatorial graphs are equivalent if one is
obtained from the other by right translation by an element of G (see formula (50)).

Remark 20. It should be clear that if A has a geometric realization then so has any other
equivalent possible combinatorial graph. Moreover the two identify the same compo-
nents of �geo

S with a different choice of the root.

Example 8. The following combinatorial graph is equivalent to A of Example 7:

A′ = (−e2 − e1,−)
−e2−e1

(e1 − e3,+)
e3−e1 �� (0,+)

e3−e2 �� (e3 − e2,+).

(62)

Indeed it is obtained by right translation with the element (e1 − e3,+). The equations
are

⎧
⎨

⎩

(x, v1 − v3) = |v1|2 − (v1, v3)

(x, v3 − v2) = |v3|2 − (v2, v3)

|x |2 − (x, v2 + v1) = −(v2, v1);
(63)

it is easily seen that these equations are equivalent to the system given by formula (60),
and they still identify the geometric graph Ak1 of Example 5 only now the root is in k2.

9.1. Relations. Take a possible combinatorial graph A
Definition 20. • If A has k + 1 vertices is said to be of dimension k.
• The dimension of the lattice generated by the vertices of A is the rank, rk A, of the

graph A. The dimension of the lattice generated by the black vertices (a,+) (resp.
red) is called the black (resp. red) rank of A.

• If the rank of A is strictly less than the dimension of A we say that A is degenerate.

Take a connected component A of �S and choose a root x ∈ A. Assume that A can
be lifted. Let A = {ga, a ∈ A} be the combinatorial graph of which A is a geometric
realization.

Lemma 6. The rank of A does not depend on the choice of the root but only on A.

Proof. If we change the root from x to another y we can stress in the notation ga,x =
(Lx (a), σx (a)) and have

ga,x = ga,ygy,x , �⇒ Lx (a) = L y(a) + σy(a)Lx (y), σx (a) = σy(a)σx (y). (64)

This shows that the notion of rank is independent of the root. ��
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Notice that when we change the root in A we have a simple way of changing the
colors and the ranks of the vertices of A that we leave to the reader.

If A is degenerate then there are non trivial relations,
∑

a naa = 0, na ∈ Z, where
the sum runs among the vertices a ∈ A.

Remark 21. It is also useful to choose a maximal tree T in A. There is a triangular change
of coordinates from the vertices to the markings of T . Hence the relation can be also
expressed as a relation between these markings.

We must have by linearity, for every relation
∑

a naa = 0, na ∈ Z that 0 =∑
a naa(2), where we recall that if a =∑

ai ei we have that a(2) =∑
ai e2

i . Finally we
have 0 =∑

a naπ(a) and
∑

a naη(a) = 0.
Recalling that η(a) = 0,−2 (resp. if a is black or red), we have :

0 =
∑

a | η(a)=−2

na . (65)

Applying Formula (56) we deduce that, in order to ensure that the equations of A are
compatible, we must have

∑

a

na K (a) = 2(x,
∑

a

naπ(a)) + [
∑

a | η(a)=−2

na](x)2 = 2(x,
∑

a

naπ(a)) = 0.

(66)

The expression
∑

a na
K (a)

2 = π(∑a naC(a)) is a linear combination with integer coef-
ficients of the scalar products (vi , v j ).

Given a possible combinatorial graph A with a relation:

Definition 21. If
∑

a naC(a) �= 0 we say that the graph has an avoidable resonance.

Lemma 7. A degenerate possible combinatorial graph A with an avoidable resonance
has no geometric realization for a generic choice of the S := {vi }.
Proof. The graph has a realization only if

∑
a na K (a) = 0 but this polynomial, by

definition, is not identically zero. ��
Example 9. Consider the possible degenerate combinatorial graph

A = e1 − e2 �� e1−e2
0

−e1−e2

−e1−e3 −e1 − e3
e1−e3 �� −2e3

−e1 − e2

.

The relation is (e1 − e2) + 2(−e1 − e3)− (−2e3)− (−e1 − e2) = 0.
We may write the value of C(a) of each vertex a; we get

e2
1 − e1e2 0 e1e3 −e2

3

e1e2

.
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We have
∑

a

naC(a) = e2
1 − e1e2 + 2e1e3 + e2

3 − e1e2,

so the equations of this graph are incompatible if π(e2
1 − e1e2 + 2e1e3 + e2

3 − e1e2) �= 0;
this is a generiticity condition.

We arrive now at the main theorem of the section:

Theorem 4. Given a possible combinatorial graph of rank k for a given color, then
either it has exactly k vertices of that color or it produces an avoidable resonance.

Proof. Assume by contradiction that we can choose k + 1 vertices (a0, a1, . . . , ak), dif-
ferent from the root of the given color so that we have a non trivial relation

∑
i ni ai = 0

with n0 �= 0 and the vertices ai , i = 1, . . . , k are linearly independent. We compute the
resonance relation

2
∑

i

ni C(ai ) =
∑

i

niσ(ai )(a
2
i + a(2)i ) = ±

∑

i

ni (a
2
i + a(2)i ),

since all the vertices ai have the same color. By linearity we have
∑

i ni a
(2)
i = 0. We

deduce that
∑

i ni C(ai ) = ±∑
i ni a2

i .
We consider the elements ai with i = 1, . . . , k as independent variables and write

the relations as

0 = n0a0 +
k∑

i=1

ni ai , �⇒ (

k∑

i=1

ni ai )
2 + n0

k∑

i=1

ni a
2
i = 0.

Now
∑k

i=1 ni a2
i does not contain any mixed terms ahak, h �= k, therefore this equation

can be verified if and only if the sum
∑k

i=1 ni ai is reduced to a single term ni ai , and
then we have n0 = −ni and a0 = ai , a contradiction. ��
Constraint 4. We impose that the vectors vi are generic for all resonances arising from
degenerate possible combinatorial graphs with at most n + 1 elements of a given color.

Remark 22. It is essential that we introduce the notion of colored rank, otherwise our
statement is false as can be seen with the following graph:

(−e2 + e1) (−2e1)

0 (−e2 − e1).

(67)

Relation is (−e2 + e1)− (−e2 − e1) + (−2e1) = 0; we have

C(−e2 + e1) = e2
1 − e1e2, C(−e2 − e1) = −e1e2, C(−2e1) = −e2

1,

e2
1 − e1e2 − (−e1e2)− e2

1 = 0.

Actually this graph does not really pose any problem since its only geometric realization
is in S (hence it is not a true combinatorial graph). However we are not able to exclude
the existence of more complicated graphs of this form which may have realization in Sc.
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We are reduced to considering possible combinatorial graphs with at most 2n + 2
vertices and such that the vertices of the same color are linearly independent. We call
these graphs colored-non-degenerate.

We now look at Eqs. (61) associated to the graph by a choice of S. Consider a possible
combinatorial graph A of black rank h and red rank k. If h ≤ n then we can require that
the images of the black vertices a ∈ A through the map −π are independent. Then the
linear equations (61) associated to these vertices are independent and have solutions. The
same holds for the red vertices, only Eqs. (61) associated to these vertices are quadratic
and so the solutions need not be real.

Given a colored-non-degenerate possible combinatorial graph A with ranks h, k ≤ n
for dimension n we associate to it the n × h matrix M+(A) with columns the vectors
π(a), where a runs over the black vertices, with the same for the e n×k matrix M−(A).
Constraint 5. For any colored-non-degenerate possible combinatorial graph A with
red and black rank ≤ n we require that:11

∧h(M+(A)) �= 0 , ∧k(M−(A)) �= 0.

If one of the colored ranks is k = n + 1, then any choice of S must lead to a relation
between the vectors π(ai ), where the ai are the vertices of the same color. We will use
this to show that either the equations are generically incompatible or they give a solution
in the special component. This is the content of the next section.

10. Geometric Realization

Consider a possible–combinatorial graph A with≤ 2n+2 vertices and suppose that it has
rank n + 1. By Theorem 4, the vertices of each color are linearly independent. We want
to study its geometric realizations in dimension exactly n. For this we can consider the
variety RA of realizations of the graph, i.e. the set of points (x, v1, . . . , vm) ∈ C

(m+1)n

which satisfy Eqs. (61) associated to A.
Call θ : RA → C

mn the projection map (x, v1, . . . , vm) → (v1, . . . , vm). We say
that a graph is not realizable for generic vi if θ(RA) is an algebraic variety of codimension
at least one.12

Suppose that we have n + 1 black vertices (different from the root). If we choose n of
them (discarding say a1) by Theorem 4, we can require that for generic S the π(ai )with
i = 2, . . . , n + 1, are independent. This we do by choosing S so that the determinant of
the matrix M1 having π(ai ) as rows is non-zero. Then the system of equations is incom-
patible if the n + 1× n + 1 matrix obtained by adding the row π(a1) and the column of
inhomogeneous terms has non-zero determinant. We compute this determinant which
is a polynomial in the vi and if it is not identically zero we impose it as a generiticity
constraint and A is not generically realizable.

If it is identically zero then the equations have a solution, which we can compute by
Cramer’s rule by discarding the first equation. Hence A is generically realizable.

In the same way suppose we have n + 1 red vertices. We choose one of them, say
a1, and subtract the equation for a1 to the remaining Eqs. (61). We obtain a system of
n linear equations M1x = b which, by Theorem 4, are generically independent. We

11 If A is a a × b matrix and h ≤ min(a, b) we denote by ∧h A the matrix with entries the determinants of
the h × h minors.

12 In this discussion we ignore the delicate issues of whether a realization may be integral, real or imaginary.
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impose as a genericity constraint det(M1) �= 0 and solve the equations by Cramers
rule. We obtain a solution xA which is a rational function in the vi with det(M1) at the
denominator. The graph has realization for all the S for which xA solves the quadratic
equation associated to a1. We substitute xA and rationalize. If the numerator is a non-
zero polynomial then we impose it as a generiticity constraint and A is not generically
realizable. Summarizing, we impose

Constraint 6. For any colored-non-degenerate possible combinatorial graph A with
red and/or black rank n + 1, we impose that the vectors vi are generic for all resonances
described above.

Example 10. We consider the combinatorial graph of example 8 in dimension n = 2.
We impose

d = (v1,1 − v3,1)(v3,2 − v2,2)− (v1,2 − v3,2)(v3,1 − v2,1) �= 0,

solve the first two Eqs. (63) by Cramer’s rule and obtain the solution x = (x1, x2):

x1 = (|v1|2 − (v1, v3))(v3,2 − v2,2)− (v1,2 − v3,2)(|v2|2 − (v2, v3))/d ,

x2 = (v1,1 − v3,1)(|v2|2 − (v2, v3))− (|v1|2 − (v1, v3))(v3,1 − v2,1)/d.

We substitute in the last equation, rationalize and obtain that a realization exists only if

(
(v1, v2)− (v1, v3) + |v3|2 − (v2, v3)

)
·

(
v1,1

3 v2,1 + v1,1 v1,2
2 v2,1 + v1,2

2 v2,1
2

+ v1,1
2 v1,2 v2,2 + v1,2

3 v2,2 − 2 v1,1 v1,2 v2,1 v2,2

+ v1,1
2 v2,2

2 − v1,1
3 v3,1 − v1,1 v1,2

2 v3,1 − 3 v1,1
2 v2,1 v3,1 − 3 v1,2

2 v2,1 v3,1

+ 2 v1,2 v2,1 v2,2 v3,1−2 v1,1 v2,2
2 v3,1+3 v1,1

2 v3,1
2+2 v1,2

2 v3,1
2 + 3 v1,1 v2,1 v3,1

2

− v1,2 v2,2 v3,1
2 + v2,2

2 v3,1
2 − 3 v1,1 v3,1

3 − v2,1 v3,1
3 + v3,1

4

− v1,1
2 v1,2 v3,2 − v1,2

3 v3,2 − 2 v1,2 v2,1
2 v3,2 − 3 v1,1

2 v2,2 v3,2 − 3 v1,2
2 v2,2 v3,2

+ 2 v1,1 v2,1 v2,2 v3,2 + 2 v1,1 v1,2 v3,1 v3,2 + 4 v1,2 v2,1 v3,1 v3,2 + 4 v1,1 v2,2 v3,1 v3,2

−2 v2,1 v2,2 v3,1 v3,2 − 3 v1,2 v3,1
2 v3,2 − v2,2 v3,1

2 v3,2

+ 2 v1,1
2 v3,2

2 + 3 v1,2
2 v3,2

2 − v1,1 v2,1 v3,2
2 + v2,1

2 v3,2
2 + 3 v1,2 v2,2 v3,2

2

− 3 v1,1 v3,1 v3,2
2−v2,1 v3,1 v3,2

2+2 v3,1
2 v3,2

2−3 v1,2 v3,2
3−v2,2 v3,2

3+v3,2
4
)
=0.

We thus have the final definition of generic for tangential sites S.

Definition 22. We say that the tangential sites are generic if they do not vanish for any
of the polynomials given by Constraints 1 through 6.

Remark 23. Each of the constraints involves at most 2n + 2 edges, thus at most 4q(n + 1)
indices which have to be taken up to symmetry by Sm , hence can be taken in correspon-
dence with the vector variables y1, . . . , y4q(n+1).

We have ensured that for generic choices of S only those graphs which are generically
realizable are realized.
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Example 11. Consider the possible combinatorial graph:

(−e3 − e4,−)
−e3−e4

−e1−e4

������������ −e2−e4

������������

(e3 − e1,+) ��e3−e1
(0,+)

e3−e2 �� (e3 − e2,+).

It is easily seen that in dimension n = 2 this graph is generically realizable, and its
equations have the unique solution x = v3.

We now want to study those graphs of rank n + 1 which are generically realizable in
dimension n. As we have seen, on a Zariski open set of the space v1, . . . , vm we have
a unique realization given by solving a system of linear equations and thus given by a
vector x whoose coordinates are rational functions in the vectors vi . We call this function
the generic realization.

Theorem 5. If A is a possible combinatorial graph of rank n +1 which has a realization
for generic vi ’s, then its generic realization is in the special component (the solution x
belongs to the set S).

The proof is based on two points. A graph which has a generic geometric real-
ization in the special component is called special. It is easy to describe the special
graphs, up to translation they correspond to combinatorial graphs with vertices in the
set −ei ,−e jτ, i, j = 1, . . . ,m.

Lemma 8. If for a non-degenerate graph of dimension n > 1 the solution to the associ-
ated system, in dimension n, is given by a polynomial, then the graph is special and the
polynomial is of the form vi for some i .

For n = 1 the same result is true for a nondegenerate graph with 2 edges.

Proof. See Appendix B. ��
Let A be a graph of rank ≥ n + 1; consider as before the variety RA of realizations

of the graph, with its map θ : RA → C
mn .

Proposition 12. There is an irreducible hypersurface W of C
mn such that the map θ has

an inverse on C
mn\W . The inverse is a polynomial map.

Proof. Black edges. We have n + 1 linear equations (x, π(ai )) = bi which are generi-
cally compatible. We solve them by Cramer’s rule choosing an index j and discarding
Eq. (61) associated to a vertex a j . Since the equations are always compatible we must
obtain, generically, the same solution for all choices of a j . Consider the matrix M j with
rows the π(ai ), i = 1, . . . , n + 1i �= j . The solution is a rational function of the vi
having as denominator the determinant of M j . This reasoning defines the solution of
our equations for all S for which there exists a j such that det(M j ) �= 0. We claim
that each of these determinants is an irreducible polynomial so it defines an irreducible
hypersurface Hj .

In fact a choice of n rows gives by assumption a surjective linear map C
mn → C

n2
.

Any surjective linear map can be considered (in appropriate coordinates) as a projec-
tion on the first mn coordinates. Hence an irreducible polynomial remains irreducible
by composition. The claim follows since it is well known that the determinant is an
irreducible polynomial of the matrix elements.
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We claim that these hypersurfaces are not all equal. By hypothesis the matrix B =
(ai j ) has rank n + 1. All the matrices obtained by B dropping one row define the various
determinantal varieties, Hj . The fact that these varieties are not equal is discussed in
Appendix C. It depends on the fact that the matrices cannot have all the same kernel
(otherwise the rank of B is ≤ n). Then the result follows by Proposition 16.

Hence our solution is well defined outside a subvariety of codimension at least 2.
This implies immediately that it is given by a polynomial using the following standard
fact (which follows immediately from the unique factorization property of polynomial
algebras): Let W be a subvariety of C

N of codimension≥ 2, let F be a rational function
on C

N which is holomorphic on C
N \W , then F is a polynomial.

Red edges. When we also have red edges we select n+1 linear and quadratic equations
associated to the n + 1 vertices which are formally independent. We see that Eqs. (61)
(for these vertices) are clearly equivalent to a system on n linear equations associated
to formally linearly independent markings, plus a quadratic equation chosen arbitrarily
among the ones appearing in (56). Thus a realization is obtained by solving this system
and, by hypothesis, such solution satisfies the quadratic equation identically.

Let P be the space of functions
∑m

i=1 civi , ci ∈ R and (P, P) their scalar products.
By assumption we have a list of n equations

∑m
j=1 ai j (x, v j ) = (x, ti ) = bi with the

ti = ∑m
j=1 ai jv j linearly independent in the space P and bi = ∑

h,k ai
h,k(vh, vk) ∈

(P, P).
Solve these equations by Cramer’s rule considering the vi as parameters. Write xi =

fi/d, where d(v) := det(A(v)) is the determinant of the matrix A(v)with rows ti , fi (v)

is also a determinant of another matrix Bi (v) both depending polynomially on the vi .
We have thus expressed the coordinates xi as rational functions of the coordinates of the
vi . The denominator is an irreducible polynomial vanishing exactly on the determinantal
variety of the vi for which the matrix of rows t j , j = 1, . . . , n is degenerate.

Lemma 9. Given x = (x1, . . . , xn) = ( f1/d, . . . , fn/d), let (x)2 = ∑
i x2

i . Assume
there are two elements a ∈ P, b ∈ (P, P) such that (x)2 + (x, a) + b = 0 holds
identically (in the parameters vi ); then x is a polynomial in the vi .

Proof. Substitute xi = fi/d in the quadratic equation and get

d−2(
∑

i

f 2
i ) + d−1

∑

i

fi ai + b = 0, �⇒
∑

i

f 2
i + d

∑

i

fi ai + d2b = 0.

Since d = d(v) = det(A(v)) is irreducible this implies that d divides
∑

i f 2
i .

Since the fi are real, for those v := (v1, . . . , vm) ∈ R
mn for which d(A(v)) = 0, we

have fi (v) = 0,∀i ; so fi vanishes on all real solutions of d(A(v)) = 0. These solutions
are Zariski dense, by Lemma 17, in the determinantal variety d(A(v)) = 0. In other
words fi (v) vanishes on all the v solutions of d(A(v)) = 0 and thus d(v) divides fi (v)

for all i , hence x is a polynomial. ��
Proof of Theorem 5. Once we fix a root we have that the variety RA is the set of solu-
tions of a system of≥ n + 1 linear and quadratic equations in the variables x, vi . We are
assuming, by Proposition 12, that we have a solution x = F(v) which is a polynomial
in v1, . . . , vm . We now can apply Lemma 8. ��

10.1. Proof of Theorem 2.
i) Assume by contradiction that there is a connected subgraph A of the graph �geo

S
with n + 2 vertices and all black edges. Then A is the geometric realization of
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a possible combinatorial graph A with n + 1 non-zero black vertices which, by
Theorem 4 must be independent. By Theorem 5 we have that A is contained in the
special component and we have a contradiction.

ii) Such a component must contain an integral point in one of the spheres S�. Suppose
by contradiction that there is a connected subgraph of this component with 2n + 1
vertices, denote it by A. By hypothesis A can be lifted, let A be its combinatorial
graph. We can have at most n black and n red vertices otherwise the graph has
rank≥ n + 1, but if we have exactly n black vertices and at least one red vertex we
also have rank ≥ n + 1 since the red vectors are linearly independent of the black
similarly for red. So we can have at most n− 1 black and n red vertices for a total
(including the root) of 2n vertices.

iii) We put in the same family two components whose combinatorial graphs are equiv-
alent.
There are only finitely many possible combinatorial graphs with at most 2n verti-
ces. A family is formed by the geometric realization of one representative for each
equivalence class of equivalent combinatorial graphs. This automatically chooses
a root.

iv) Take a marked graph A with k + 1 < n + 1 vertices and all black edges. Call A a
realization of A and let x be the root. Any other realization A′ has a corresponding
root x ′ such that x− x ′ is a vector orthogonal to all the π(ai ), where ai are the non-
zero vertices. By Costraint 5, the π(ai ) are all independent. Conversely if x ′ is a
point in R

n such that x ′ − x is a vector orthogonal to all the π(ai ), then it solves the
same equations as x . Hence it is a vertex of a connected component which contains
a translate of A and can only be bigger. If the component corresponds to a bigger
graph, the point x ′ solves some further independent linear equations, with respect
to x , and hence x ′ belongs to a lower dimensional affine subspace determined by
the bigger graph; since these graphs are finitely many this completes the picture.

v) This is the content of Theorems 4 and 5.

Definition 23. Let Bn = Bn,m,q be the set of non-equivalent combinatorial graphs for
a given dimension n.

Each A ∈ Bn has realizations in �S and the choice of a representative in the equiva-
lence class fixes a root in each component of �S .

Example 12. The set B1 is simply the set of graphs with a single edge: (0,+), (�, 1+η(�)).
For n = 2 we have B1 and the complete graphs with three vertices (0,+), (�, 1 +

η(�)), (�′, 1 +η(�′)). We should consider graphs with up to 2n = 4 vertices which are of
rank ≤ 2 and such that the non-zero vertices of different colors are dependent. A direct
computation shows that no such graphs exist.

Remark 24. One might think at this point that for any n the set Bn is only made of graphs
with at most n+1 vertices which are affinely independent. However this conjecture seems
quite hard to prove; it is true but requires a lengthy proof for q = 1, and for general q it
seems quite hard to verify even in dimension n = 3 and indeed it may not be true.

10.2. Proof of Theorem 3. Once we have ensured that no graphs with more than 2n
vertices exist we can apply Proposition 10 and Corollary 4. This gives an isomorphism
between the components of �S and those of S . More precisely for each family of
components we choose one A ∈ �S and we also choose a root.
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By translation this also determines a root for all other components in the same family.
With these choices we can associate to A the combinatorial graph A ∈ Bn of which it is
a realization, see Definition 17. Let x be the vertex associated to (0,+). Then we obtain
all the components in S over A by right translation with all the elements (a,±) such
that x = −π(a).

To establish the isomorphism with the components of �̃S we make sure that two
conjugate blocks are disjoint, i.e. that a pair zk, z̄k is never in the same block of ad(N ).
This would correspond to a loop in the geometric graph which is not a loop inS , which
is excluded by Constraint 3.

Corollary 5. If the vi are generic, in the projection map �̃S → �S the preimage of
a connected component of �S is the union of two disjoint and conjugate connected
components of �̃S.

Each A ∈ Bn has realizations in �S and the choice of a representative in the equiv-
alence class fixes a root in each component of �S . For all k ∈ Sc set x(k) := x(A) to
be the root of the component A of �S to which k belongs. By Corollary 4 and Formula
(55):

Lemma 10. Each component A can be lifted defining in a compatible way elements g(k)
so that k = g(k)x(A), g(k) = (L(k), σ (k)), and if k1, k2 are joined by an edge marked
� ∈ G we have g(k2) = �g(k1).

Clearly if A is a realization of A then (L(k), σ (k)) is just the vertex of A which is
identified with k in the isomorphism between A and A.

Example 13. We consider the component Ak1 of Example 5 (which exists provided that
n > 2). This component is the realization of the combinatorial graph A of Example 7.
Hence:

gk1 = (0,+) , gk2 = (e3 − e1,+) , gk3 = (−e1 − e2 − 2e3,+) ,

gk4 = (−e1 − e2,−). (68)

11. Proof of Theorem 1

11.0.1. Reduction to constant coefficients. We think of y = (y1, . . . , ym), x =
(x1, . . . , xm) as vectors so that, given a = ∑

i ni ei ∈ Z
m , we have a · x :=∑

i ni xi , a · dx :=∑
i ni dxi = d(a · x). Furthermore dy ∧ dx =∑

i dyi ∧ dxi .
Before proving the theorem in general we show how to reduce to constant coefficient

a single block. As usual we use the graphs in Example 5.

Example 14. Consider for q = 1, the Hamiltonian:

(ω(ξ), y) +
4∑

i=1

|ki |2|zki |2 + 4
√
ξ1ξ3ei(x1−x3)zk1 z̄k2 + 4

√
ξ2ξ3ei(x2−x3)zk2 z̄k3

+4
√
ξ1ξ2e−i(x1+x2)zk2 zk4 + 4

√
ξ1ξ3e−i(x1−x3) z̄k1 zk2 + 4

√
ξ2ξ3e−i(x2−x3) z̄k2 zk3

+4
√
ξ1ξ2ei(x1+x2) z̄k2 z̄k4 ,
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the terms depending on z, z̄ are those of Formula (43). We apply the change of variables:

zki = e−iL(ki ).x z′ki
, y = y′ +

4∑

i=1

L(ki )|z′ki
|2, x = x ′,

where L(ki ) are defined in Lemma 10 and given in formula (68): L(k1) = 0, L(k2) =
e3 − e1, L(k3) = −e1 − e2 − 2e3, L(k4) = −e1 − e2. A direct check shows that this
change of variables is symplectic and that the Hamiltonian in the new variables is:

(ω(ξ), y′) +
4∑

i=1

(
ω0, L(ki )) + |ki |2

)
|z′ki
|2 + Q̃, (69)

where ω(ξ) = ω0 − 2ξ , and:

Q̃ = −2
4∑

i=1

(ξ, L(ki ))|z′ki
|2 + 4

√
ξ1ξ3z′k1

z̄′k2
+ 4

√
ξ2ξ3z′k2

z̄′k3

+4
√
ξ1ξ2z′k2

z′k4
+ 4

√
ξ1ξ3 z̄′k1

z′k2
+ 4

√
ξ2ξ3 z̄′k2

z′k3
+ 4

√
ξ1ξ2 z̄′k2

z̄′k4
.

Theorem 1 is contained in the following, more precise, proposition:

Proposition 13. i) The equations

zk = e−iL(k).x z′k, y = y′ +
∑

k∈Sc

L(k)|z′k |2, x = x ′ (70)

define a symplectic change of variables �(3) : D(s, r/2) → D(s, r), which pre-
serves the spaces V i .
We denote by W = diag({eiL(k).x }k∈Sc , {e−iL(k).x }k∈Sc ), the matrix of �(3) on w.

ii) The Hamiltonian H in the new variables is N ′ + P ◦�(3), where

N ′ = N ◦�(3) := (ω(ξ), y′) +
∑

k∈Sc

(
|k|2 +

(
ω(ξ), L(k)

))|z′k |2 + Q′(w′), (71)

and

Q′(w′) := Q(x, w′W ) ≡ Q ◦�(3)
=

∑

�∈X0
q

c(�)
∑

(h,k)∈P�
z′h z̄′k +

∑

�∈X−2
q

c(�)
∑

{h,k}∈P�
[z′hz′k + z̄′h z̄′k], (72)

is independent of x.

iii) P̃ := P ◦�(3) satisfies the bounds of Theorem 1, iv).

Proof. i) By definition |L(k)| ≤ 4nq for all k. Since

sup
D(s,r/2)

|w′|a,p ≤ eCs |w|a,p ≤ eCsr/2 ≤ r
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for s small enough the transformation is well defined from D(s, r/2) to D(s, r).
It is symplectic because:

dy ∧ dx + idz ∧ dz̄ = dy′ ∧ dx ′ −
∑

k

(L(k) · dx ′) ∧ d(|zk |2)

+idz′ ∧ dz̄′ +
∑

k

d(L(k).x ′) ∧ (z′kd z̄′k + z̄′kdz′k) = dy′ ∧ dx ′ + idz′ ∧ dz̄′.

Finally it preserves the spaces V i since it is linear in the variables w which
have degree 1 and in y, |zk |2 of degree 2. In fact it maps a space V i, j into∑i

h=0 V i−h, j+2h .
ii) We simply substitute the new variables in the Hamiltonian; we obtain that

(ω(ξ), y) +
∑

k

|k|2|zk |2 = (ω(ξ), y′) +
∑

k

(ω(ξ), L(k))|z′k |2 +
∑

k

|k|2|z′k |2.

(73)

By definition of W we have Q(x, w) ◦�(3) = Q(x, w′W ). Formula (72) follows
from Lemma 10. In fact we substitute in Formula (30) zk = e−iL(k).x z′k , then if
� ∈ X0

q , (h, k) ∈ P� we have

ei(�,x)zh z̄k = ei(�,x)e−iL(h).x z′heiL(k).x z̄′k
and, by Formula (49) we have � − L(h) + L(k) = 0. Similarly when � ∈
X−2

q , {h, k} ∈ P� we have

ei(�,x)zhzk = ei(�,x)e−iL(h).x z′he−iL(k).x z′k
and, by Formula (49) we have �− L(h)− L(k) = 0.

iii) Let us prove the bounds. We notice that the total degree 2i + j is the same in the
two sets of variables. Moreover �(3) is independent of ξ , hence P ◦ �(3) has the
same order as P , see Sect. 4.0.5, and the bounds follow by Proposition 6. ��

Remark 25. It is possible to choose also infinite sets of vi so that the change of variables
is still convergent in a ball. For this it is enough to impose a reasonable growth to |vi |
as i →∞.

11.1. Definitions of �̃k, Q̃. From Formula (38) we have

N ′ = K ′ + (∇ξ Aq+1(ξ)− (q + 1)2 Aq(ξ)1, y′ +
∑

k

L(k)|z′k |2) + Q′(w′),

K ′ = (ω0, y′) +
∑

k

((ω0, L(k)) + |k|2)|z′k |2.
(74)

We set

�̃k = (ω0, L(k)) + |k|2,
Q̃ := Q′(w′) +

∑

k

(∇ξ Aq+1(ξ)− (q + 1)2 Aq(ξ)1, L(k))|z′k |2, (75)
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and remark that the �̃k are integers and the coefficients of the quadratic form Q̃ are
homogeneous in the variables ξ of degree q.

We can group Q̃ = ∑
A Q̃A, where the sum runs over all blocks A ∈ �S and Q̃A

involves only the variables z′k, z̄′k with k appearing in the block. We now use the graph
language. Having made the change of variables we should really introduce a new graph
�̃′S expressing the non-zero entries of Q in the basis z′. In fact by Remark 11 this is just a
subgraph of that larger graph but it is also clearly isomorphic to �̃S although the matrix
entries have changed, so by abuse of notation we still denote it by the same symbol �̃S .

Take a block A ∈ �S and let Ã± be the corresponding disjoint conjugate compo-
nents in �̃S (by convention, in Ã+ the root x corresponds to zx , while in Ã− the root x
corresponds to z̄x ).

Remark 26. 1. Q̃A is a Hamiltonian on the symplectic space WA with basis (z′k, z̄′k), k
running over the vertices of A.

2. We denote the vertices in each Ã± by Z A and Z̄ A resp. The variables Z A and Z̄ A
form the bases of two Lagrangian subspaces13 decomposing WA.

3. Both K ′ and (∇ξ Aq+1(ξ) − (q + 1)2 Aq(ξ)1, y′) in N ′ commute with Q(x, w′W ),
hence ad(K ′ + (∇ξ Aq+1(ξ)− (q + 1)2 Aq(ξ)1, y′)) takes a scalar value on any given
block Z A.

11.1.1. The matrix blocks of Q̃. Set iQ′A to be the matrix of ad(Q′A) and iD′A to be the
(diagonal) matrix of

ad(
∑

k

(∇ξ Aq+1(ξ)− (q + 1)2 Aq(ξ)1, L(k))|z′k |2)

in the geometric basis z′k, z̄′k with k ∈ Sc. Clearly the matrix representation of Q̃A is
Q̃ A = Q′A + D′A. Moreover, by definition of �̃′S , we have Q′A = Q′

Ã+
⊕ Q′

Ã−
.

Given two vertices a �= b ∈ Ã+, we have, from Formula (30), that the matrix element
Q′a,b is non-zero if and only if they are joined by an edge � and then Q′a,b = c(�) if
b = z′k or Q′a,b = −c(�) if b = z̄′k . The element c(�) is described in Formula (30). On

the diagonal we have Q′a,a = 0, while the D′a,a = (∇ξ Aq+1(ξ)− (q + 1)2 Aq(ξ)1, L(k))
if a = z′k or−(∇ξ Aq+1(ξ)− (q + 1)2 Aq(ξ)1, L(k)) if a = z̄′k (cf. (16)). The same rules
hold for vertices a �= b ∈ Ã− and one easily verifies that

Q̃ Ã− = −Q̃ Ã+
. (76)

By definition L(k) depends only on the combinatorial graph A of which A is a
realization, therefore the matrix Q̃ A depends only on the combinatorial block A.

In order to stress this point we write Q̃ A ≡ CA=CA,+⊕CA,−, with CA,−=−CA,+.

Lemma 11. For all combinatorial blocks A which do not contain red edges, the matrix
CA,+ is self–adjoint for all ξ ∈ Aε2 . If A contains red edges then each vertex has a sign.
This defines a diagonal matrix of signs�A, and CA,+ is self–adjoint with respect to the
indefinite form defined by �A.

13 Notice that the two bases iZ A and Z̄ A are dual bases only when A does not contain red edges. Indeed, in
general, the duality matrix is diagonal with elements ±1.
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Proof. This is essentially a consequence of the fact that H is real, but it follows imme-
diately from the definition of c(�) and the explicit formulas for CA,+ given above. ��
Definition 24. We denote by M the finite list of matrices {CA}A, where A runs over all
the non-equivalent combinatorial blocks with chosen root at (0,+) which contain only
the indices 1, . . . , 4qn. We denote by M(ξ) the finite (and independent of m) list of
matrices {CA}A, where A runs over all the non-equivalent combinatorial blocks with
chosen root at 0.

Corollary 6. The matrices M(ξ) are obtained from the matrices M by permuting the
variables {ξ1, . . . , ξm}.
Proof. In fact we have finitely many graphs with at most 2n vertices, the indices appear-
ing in the edges are the ones appearing on a maximal tree with at most 2n edges. On
each edge they involve at most 2q indices and so we have the a priori bound number
4qn of indices which, up to symmetry, can be taken to be 1, . . . , 4qn. ��
Example 15. We describe the block CA,+ for the graph A consisting of a unique edge �.
Recall that η(�) =∑

i �i is either 0 or −2 so 1 + η(�) = 1,−1 respectively. Set

c(�) = (q + 1)a(�) , ∇ξ Aq+1(ξ).�− (q + 1)2 Aq(ξ)η(�) = (q + 1)(1 + η(�))b(�) ,

we then have:

CA,+ = (q + 1)

∣
∣
∣
∣
∣
∣

0 (1 + η(�))a(�)

a(�) b(�)

∣
∣
∣
∣
∣
∣
. (77)

For q = 1 one gets

A1 = (0,+)
1,2 �� (e2 − e1,+) A2 = (0,+)

1,2
(−e1 − e2,−) ,

CA1,+ = 2

∣
∣
∣
∣
∣
∣

0 2
√
ξ1ξ2

2
√
ξ1ξ2 ξ1 − ξ2

∣
∣
∣
∣
∣
∣
, CA2,+ = 2

∣
∣
∣
∣
∣
∣

0 −2
√
ξ1ξ2

2
√
ξ1ξ2 −ξ1 − ξ2

∣
∣
∣
∣
∣
∣
. (78)

For q = 1 consider the component A of Formula 59, we obtain

CA,+ = 2

⎛

⎜
⎜
⎝

0 2
√
ξ1ξ3 0 0

2
√
ξ1ξ3 ξ1 − ξ3 2

√
ξ2ξ3 −2

√
ξ1ξ2

0 2
√
ξ2ξ3 ξ1 + ξ2 − 2ξ3 0

0 2
√
ξ1ξ2 0 −ξ1 − ξ2

⎞

⎟
⎟
⎠ ;

the reader can easily verify that in the Hamiltonian (69) Q̃ is represented by the matrix
above.

Proof of Theorem 1. The change of variables �ξ = �(1) ◦�(2) ◦�(3). Item i) follows
from Corollary 2. Item ii) follows from the corresponding item of Proposition 13. Item
iii) also follows by item ii) of 13. The set of matrices M is defined in Definition 24. iv)
follows from the same statement for P . ��
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12. Proof of Proposition 3 and Corollary 1

12.1. The arithmetic constraints. We want to show now that in some special cases, on
the integer points of the geometric graph we may impose much stronger conditions.

Proposition 14. (i) For n = 1 and for generic choices of S, all the connected com-
ponents of �S are either vertices or single edges.

(ii) For n = 2, and for every m there exist infinitely many choices of generic tangential
sites S = {v1, . . . , vm} such that, if A is a connect component of the geometric
graph �S, then A is either a vertex or a single edge.

Proof. (i) It is proven in Example 12.
(ii) This statement is proved in [11] for q = 1 by a very direct and lengthy computa-

tion. Here we give a more conceptual proof based on estimates of integral points
on algebraic curves, valid for all q.

The simplest of such estimates is that, for all 0 < δ < 1 one can estimate the number
of integral points of a circle of radius R by� Rδ as R →∞.

In general Bombieri and Pila prove, in [3] Theorem 5, that if C is a real absolutely
irreducible algebraic curve of degree d and if N > ed , the number of integral points in
C in the square [0, N ] × [0, N ], is bounded by

N 1/d exp(12
√

log(N ) log log(N )).

In particular for any δ > 0 and N large we have a bound N 1/d+δ .
We need a less fine estimate, if the curve is not necessarily absolutely irreducible but

contains no lines we still get, by looking at its irreducible factors an estimate of type
N 1/2+δ for N large. We want to use these bounds for our estimates.

Let us first characterize the sets x, v1, . . . , vm such that there is an edge marked �with
vertex in x . We can interpret Formulas (47)–(46) by saying that x, v1, . . . , vm satisfy
an equation which is the equation for a sphere in either x (red edge) or one of the v j ’s–
here we consider the other variables as parameters. Suppose now that x is a vertex of a
graph U with two different edges �1, �2. Hence x satisfies the two equations given by
these edges.

Case q = 1. We know that there is an index i = 1, . . . ,m such that ei appears in �1 but
not in �2 (otherwise we would have �1 = ei − e j and �2 = −ei − e j which does not
have a realization in �S).

Suppose now that �2 is red. We next claim that if |vi | ≤ R for all i then |x | < C R
(where C is a universal constant). Indeed since one of the edges is red then x belongs
to the circle of diameter v1, v2 (we are assuming without loss of generality that the red
edge is �2 = −e1 − e2).

Consider the set

AU : {v1, . . . , vm, x}⊂Z
2m+2, |vi |≤ R, x solves the equations given by U :=�1, �2.

We claim that |AU | � R2m−1+δ . Without loss of generality we may suppose that �1
depends non trivially on e3.

We first use the equation given by �1 to express v3,1 in terms of the other parameters.
This of course gives at most two solutions. Then the equation for �2 is a circle in x with
diameter ≤ 2R.

Thus ∪U AU has � (m
2

)2
R2m−1+δ elements. When R is large � (m

2

)2
R2m−1+δ <

R2m , thus the projection of this set on the first m coordinates is not surjective and thus
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any point outside this projection is a set of tangential sites satisfying the condition of
our proposition.

To treat the case of �1, �2 both black we need to ensure that |x | < C R provided
that the |vi | < R. We compute x by Cramer’s rule, the denominator is π(�1) ∧ π(�2)

while the numerator is bounded proportionally to |π(�1)||π(�2)|R. To obtain the desired
bound we restrict v1, . . . , vm to the sector where |π(�1)∧π(�2)| ≥ c(m)|π(�1)||π(�2)|
for all choices of �1, �2 ∈ X0

1; here c(m) is some constant depending only on m. The set
of vi ’s which satisfy this constraint and have |vi | < R is still of the order of R2m .

As done before, we use the equation given by �1 to express v3,1 in terms of the
other parameters. Then the equation for �2 is a circle in one of the variables v1, v2 with
diameter ≤ 2C R.

Case q > 1. It is no longer always true that there exists an index i such that ei appears in
�1 but not in �2. If this restriction is satisfied then the previous proof applies, otherwise
we claim that we can apply Theorem 5 in the paper of Bombieri and Pila [3]. In fact
look at an equation

|(x, y)|2 + ((x, y),
∑

i

mivi ) = −1/2(|
∑

i

mivi |2 +
∑

i

mi |vi |2)

or equivalently

|2(x, y) +
∑

i

mivi |2 := |(x ′, y′)|2 = −(|
∑

i

mivi |2 + 2
∑

i

mi |vi |2),

since
∑

i mi = −2, either
∑

i mivi = −ea − eb (where the previous arguments apply)
or there is then an index j with m j > 0, write the equation in terms of (x ′, y′), z = v j,1
considering the other coordinates as parameters. This defines an ellipsoid

(x ′)2 + (y′)2 + (m2
j + 2m j )z

2 + az + b = 0

which, if the remaining coordinates of the v j are bounded by some R, is contained in a
cube [−C R,C R]3 with C some fixed integer depending on the mi . We now intersect with
the other equation and claim that we have an absolutely irreducible curve; to its projection
on one of the coordinate planes we apply the theorem of Bombieri and Pila. The other
equation is of the form (�x,∑i nivi ) = 1/2(|∑i nivi |2 +

∑
i ni |vi |2) if the other edge

is black or (�x,∑i (ni − mi )vi ) = −1/2(|∑i nivi |2 +
∑

i ni |vi |2) + 1/2(|∑i mivi |2 +∑
i mi |vi |2) if the edge is red. The equation is of the form n j x ′z+cz+dy′+ex ′+ f z2+g =

0, where d =∑
i nivi,2. If d �= 0 we solve it for y and see that we have a plane quartic,

otherwise we project it to the plane y′, z still getting a plane quartic. In either case the
quartic does not contain a real line since its real points are bounded; the estimate on its
integral points follows from Theorem of Bombieri and Pila.

Two black edges.
∑

i mi ei ,
∑

j n j e j ,
∑

i mi =∑
j n j = 0. The equations are

(�x,
∑

i

mivi ) = 1/2(|
∑

i

mivi |2 +
∑

i

mi |vi |2),

(�x,
∑

i

nivi ) = 1/2(|
∑

i

nivi |2 +
∑

i

ni |vi |2).
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Say that m1 �= n1, consider all the vi , i > 1 and y as parameters, let z, w denote the
coordinates of v1 which we consider as variables, so write the equations as

x(a + m1z) = 1/2(m2
1 + m1)[z2 + w2] + m1zw + bz + cw + d,

x(a′ + n1z) = 1/2(n2
1 + n1)[z2 + w2] + n1zw + b′z + c′w + d ′.

We may assume n1 �= 0, otherwise we are in the previous case of an index appearing in
�1 and not in �2. Project to the z, w plane and we see that we obtain the cubic

[1/2(m2
1 + m1)[z2 + w2] + m1zw + bz + cw + d](a′ + n1z)

= (a + m1z)[1/2(n2
1 + n1)[z2 + w2] + n1zw + b′z + c′w + d ′]

of equation

Az[z2 + w2] + Bz2 + Cw2 + Dzw + Ez + Fw + G = 0

with A = 1/2n1m1(m1 − n1) �= 0. Let us show that this is absolutely irreducible.
Otherwise it factors through a linear and a quadratic term, and we can always assume
that the linear term is defined over R since with any factor we also have the conjugate
factor. This implies that if there is a factorization it is of the form

(Az + K )(z2 + w2 + Mz + Nw + P)

which implies that

Az(Mz + Nw + P)+ K (z2 +w2 + Mz + Nw + P)= Bz2 + Cw2 + Dzw + Ez + Fw + G

AM + K = B, K = C, AN = D, AP + K M = E, K N = F, K P = G

in particular C = K . Now C = (m2
1 +m1)a′−(n2

1 +n1)a, where a =∑
i>1 mivi,1, a′ =∑

i>1 nivi,1.
We have AF = C D and we claim that this imposes a non-trivial restriction to the

parameters, thus for a large set of parameters we can apply the method.
We have F = ca′ − c′a and c = −m1 y + m1

∑
j>1 m jv j,2, c′ = −n1 y +

n1
∑

j>1 n jv j,2, while D = a′m1 + cn1 − an1 − c′m1. We see that in D the var-
iable y disappears while in F it appears linearly with coefficient −m1a′ + n1a =∑

i>1(n1mi − m1ni )vi,1. We cannot have (n1mi − m1ni ) = 0 for all i > 1 unless
�2 is a multiple of �1. This case, though, we have excluded in Theorem 4.

We conclude that, for any δ > 0, the number of integral points are less than a constant
(dependent only on δ) times R1/2+δ . At this point the proof is identical to the previous
argument. ��

We denote the sets S which do not contribute to any AU as arithmetically generic and
think of the condition � ∃x ∈ Z

2 : (v1, . . . , vm, x) ∈ ∪U AU as an arithmetic constraint.

Proposition 15. Under the geometric and arithmetic constraint for n = 1 or n = 2 all
the non-diagonal blocks in Q̃ are two by two and given by Formula (77).

Remark 27. It is unclear what happens in higher dimension. One can use the same argu-
ment to exclude graphs of rank equal to the dimension, so Dimension 3 could still behave
in a special way. On the other hand, for q = 1 there is a different method using the second
Melnikov condition which we shall discuss elsewhere.
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12.1.1. Real roots We ask if there are regions in the parameters ξ where all blocks have
real roots. The issue is only for graphs containing red edges and the region is described
by a finite set of inequalities given by Sylvester’s Theory.

We discuss here the case in which all graphs containing a red edge reduce to this
edge. As remarked in §12.1, one can have this case in dimension n = 1, 2 for all q.

The matrix associated to the graph A consisting of a unique red edge � is given by
Formula (77) where:

a(�) = qξ
�++�−

2
∑

α∈Nm
|α+�+|1=q−1

(
q + 1

�− + α

)(
q − 1

�+ + α

)

ξαi ,

∇ξ Aq+1(ξ).�− (q + 1)2 Aq(ξ)η(�) = −(q + 1)b(�).

(79)

The characteristic polynomial of CA/(q + 1) is t (t − b(�)) + a(�)2 with discriminant
b(�)2 − 4a(�)2. We want to show that there is a non empty open region in our param-
eter space where the roots of all these polynomials are distinct real, that is where all
these discriminants are strictly positive. For this, using the usual lexicographical order,
let us compute the leading terms of all these polynomials. Apply Formula (79) letting
d(�) := q − 1− |�+|1, we see that the leading monomial of −4a(�)2 is ξd(�)

1 ξ�
++�− . As

for b(�) it has the monomial ξq
1 appearing with the following coefficient. In ∂Aq+1(ξ)

∂ξ1
the

coefficient of ξq
1 comes from

∂ξ
q+1
1
∂ξ1
= (q +1)ξq

1 while for i > 1 in
∂Aq+1(ξ)

∂ξi
the coefficient

of ξq
1 comes from

∂(q+1)2ξi ξ
q
1

∂ξi
= (q + 1)2ξq

1 . If � = (�1, . . . , �m) the coefficient of ξq
1 in

b(�) is �1 + (q + 1)
∑

i>1 �i . Since
∑

i �i = −2 we finally have �1 + (q + 1)
∑

i>1 �i =
�1 − (q + 1)�1 − 2(q + 1) = −q�1 − 2(q + 1) = −q(�1 + 2)− 2.

In the term −(q + 1)Aq(ξ)η(�) = 2(q + 1)Aq(ξ) the monomial appears with coef-
ficient 2(q + 1). Thus we get a total contribution of −q�1. Thus if �1 �= 0 the leading
monomial of the discriminant is ξ2q

1 with positive coefficient. If �1 = 0 let us look at the

coefficient of ξq−1
1 in

∂Aq+1(ξ)

∂ξi
, i �= 1. This comes from the terms q(q+1)

2 ξ
q−1
1 ξ2

i giving

q(q + 1)ξq−1
1 ξi and q(q + 1)ξq−1

1 ξiξ j , i �= j �= 1 giving q(q + 1)ξq−1
1

∑
j �=1,i ξ j .

Together we get q(q + 1)ξq−1
1

∑
j �=1 ξ j . When we take the scalar product with � we get

thus a total contribution of −2q(q + 1)ξq−1
1

∑
j �=1 ξ j . From 2(q + 1)Aq(ξ) we get the

term 2q2(q +1)ξq−1
1

∑
j �=1 ξ j . Thus we get a leading term of type 2(q2−q)(q +1)ξq−1

1 ξ2
unless q = 1; in this case we need to do a different argument.

The leading term of b(�)2 is thus ξ2q−2
1 ξ2

2 with positive coefficient. This gives the
leading term in the discriminant unless �+ = 0, hence d(�) = 0 and � = −2e2, but this
is not possible by one of our first constraints.

Finally for q = 1 the discriminants are all of type ξ2
i + ξ2

j − 14ξiξ j , so we see that
in all cases we can apply the following lemma.

Given j ∈ N consider the list M j of monomials of degree ≤ j in the variables
ξi , i = 1, . . . ,m ordered lexicographically, denote by A ≺ B this ordering.

Given a positive constant D, set

AD := {ξ | ξi > 0, A(ξ) > DB(ξ)}, ∀B ≺ A, A, B ∈M j }.
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Lemma 12. i) For every D > 0 the open set AD is non empty.
ii) Consider a list of polynomials fi (ξ) of degree≤ j and with real coefficients. If, for

each i , the coefficient in fi of the leading monomial is strictly positive, then there
is a positive constant D so that in the region AD we have fi (ξ) > 0 for all i .

iii) Under the hypotheses of ii), if all the fi are homogeneous, the non empty open set
where fi (ξ) > 0 for all i is a cone.

Proof. i) Consider the curve ξi := t ( j+1)m+1−i
, if M = ∏m

i=1 ξ
hi
i , we have that on

this curve M(t) = t
∑

i hi ( j+1)m+1−i
. It is clear that B =∏m

i=1 ξ
ki
i ≺ A =∏m

i=1 ξ
hi
i

if and only if the sequence (k1, . . . km) ≺ (h1, . . . hm). But if
∑

i ki ≤ j,
∑

i hi ≤
j, (k1, . . . km) ≺ (h1, . . . hm) we have

∑
i hi ( j + 1)m+1−i >

∑
i ki ( j + 1)m+1−i

so that limt→∞ A(t)/B(t) = ∞. For any D > 0, for large t the curve lies in AD .
ii) The leading monomial is the maximum in the lexicographic order. Take a polyno-

mial f = aM +
∑k

i ai Mi with M leading monomial and a > 0. We have, in the
quadrant ξi > 0, that aM +

∑k
i ai Mi ≥ aM −∑k

i |ai |Mi . If deg( f ) ≤ j , in AD
we further have:

aM −
k∑

i

|ai |Mi ≥
k∑

i

(
a

k
D − |ai |)Mi .

Since a > 0 it is enough to choose D > max |ai | ka .
iii) The set where an homogeneous polynomial is positive is a cone. ��
Proof of Theorem 3. This now follows from the previous lemma and the discussion of
the discriminants that we have performed. ��
Proof of Corollary 1. We use the notations and results of Remark 26. We divide Sc in the
connected components of �S and apply the standard theory of quadratic Hamiltonians
to each geometric block A:

HA :=
∑

k∈A

�̃k |z′k |2 + Q̃A(w
′),

where now all the �̃k in the block are equal in the case of A black while they are oppo-
site in the case of a red edge so that ad(

∑
k∈A �̃k |z′k |2) acts as a scalar matrix on the

variables Z A.
If i ad(Q̃A(w)) is semi–simple with real eigenvalues, it is a standard fact that there

exists a real linear symplectic change of variables ψA under which

HA ◦ ψA =
∑

k∈A

�̄k |zk |2,

where ±�̄k are the eigenvalues of iad(HA).
In particular for all geometric blocks A which do not contain a red edge, this property

holds for all positive ξ by using Lemma 11. Formula (19) follows with Q̄ =∑
A∈red Q̃A,

here A ∈ red means that A contains red edges, and we have seen that this is a finite set.
We have proved ii).

The change of variables ψA := wA → LA(ξ)wA where wA = (z′k, z̄′k)k∈A and LA

is a matrix which diagonalizes Q̃ A = iad(Q̃A). Since there are only a finite number of
distinct matrices Q̃ A, we only need a finite number of distinct ψA.
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We have �̄k = �̃k + λk(Q̃ A), where λk(Q̃ A) runs over the eigenvalues of Q̃ A, this
proves i).

Each change of variablesψA is locally analytic (real algebraic) in ξ for those ξ where
the eigenvalues which are not identically equal are distinct. This condition identifies an
algebraic hypersurface (where the non-identically equal eigenvalues of a combinatorial
block coincide) which we have to remove. The algebraic hypersurface that we remove
is a cone, so we can remove a conic neighborhood of this hypersurface arbitrarily deter-
mined by its intersection with the unit sphere. Since the choice of the neighborhood on
the unit sphere is arbitrary, we easily see that in the domain Aε2 this is equivalent to
removing a tubular neighborhood of order ε2. The bounds iii) follow by homogeneity
of the functions.

To be more explicit, from Theorem 1 we have decomposed our space as an infinite
direct orthogonal sum of symplectic spaces, each decomposed explicitly as the direct
sum of two Lagrangian subspaces in duality, each stable under ad(N ).

It is a standard fact that, if for a given symplectic block the matrix is semisimple
with real eigenvalues, then on that block there is a symplectic change of variables which
makes it diagonal. In fact if the matrix preserves the decomposition into two Lagrang-
ian subspaces, as in our case, we can take the change of variables preserving the two
subspaces.

Under the geometric constraint all blocks relative to only black edges give rise to
symmetric matrices for a positive quadratic form which thus are semisimple with real
eigenvalues and can be diagonalized.

Consider next the cases in which, under the arithmetic constraint, we have the remain-
ing 2× 2 blocks associated to red edges. For these we can apply Theorem 3. It remains
to prove that the global symplectic transformation defined as direct sum of all the ones
diagonalizing each block is indeed continuous and preserves the domain. This follows
from the fact that, up to a scalar summand, we have only finitely many types of blocks
in ad(Q). ��
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Appendix A. Marked Graphs

This section is independent of the previous parts of the paper. Its only purpose is to
establish the correct algebraic language.This standard material in Group Theory.

A.1. The Cayley graphs. Let G be a group and X = X−1 ⊂ G a subset.

A.1.1. Marked graphs.

Definition 25. An X–marked graph is an oriented graph A such that each oriented edge
is marked with an element x ∈ X.

a x �� b a �� x−1

b

We mark the same edge, with opposite orientation, with x−1.
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A morphism of marked graphs j : A1 → A2 is a map between the vertices, which
preserves the oriented edges and their markings.

A morphism which is also injective is called an embedding.

Recall that

Definition 26. i) A path p of length f , from a vertex a to a vertex b in a graph is
a sequence of vertices p = {a = a0, a1, . . . , a f = b} such that ai−1, ai form an
edge for all i = 1, . . . , f .
The vertex a is called the source and b the target of the path.

ii) A circuit is a path from a vertex a to itself.
We always exclude the presence in a path of trivial steps that is ai−1 = ai+1.

iii) A graph without circuits is called a tree.

iv) If we have an oriented path p := {a0, a1, . . . , a f } marked ai−1
gi→ ai , i =

1, . . . , f in an X–marked graph, then we set g(p) := g f g f−1 . . . g1.
v) If g2 = 1 then an edge marked g has both orientations so we consider it as unori-

ented.

A.1.2. Cayley graphs. A typical way to construct an X–marked graph is the following.
Consider an action G × A→ A of G on a set A, we then define.

Definition 27 (Cayley graph). The graph AX has as vertices the elements of A and,

given a, b ∈ A we join them by an oriented edge a
x→ b, marked x, if b = xa, x ∈ X.

If G acts on two sets A1 and A2 and π : A1 → A2 is a map compatible with the G
action, then π is also a morphism of marked graphs.

A special case is obtained when G acts on itself by left (resp. right) multiplication
and we have the Cayley graph Gl

X (resp. Gr
X ). We concentrate on Gl

X which we just
denote by G X . One then immediately sees that

Lemma 13. If G acts on a set A and a ∈ A the orbit map g 	→ ga is compatible with
the graph structure.

The graph G X is preserved by right multiplication by elements of G, that is if a, b
are joined by an edge marked g then also ah, bh are so joined, for all h ∈ G.

The graphs Gl
X , Gr

X are isomorphic with opposite orientations under the map
g 	→ g−1.

The graph G X is connected if and only if X generates G, otherwise its connected
components are the right cosets in G of the subgroup H generated by X.

Definition 28. Given an X–marked graph A. We say that A is compatible with G X if it
can be embedded j : A→ G X in G X .

Note. Two embeddings of A in G X differ by a right multiplication by an element
of G.

Let us understand the conditions under which a connected graph A is compatible.
Take two vertices h, k in A and join them by a path p := k = k0, k1, . . . , kt = h.
Assume that ki−1, ki , i = 1, . . . , t is marked by the element gi ∈ X . Then define
g(p) := gt gt−1 . . . g1. We can fix an element r ∈ A which we call the root and lift it
for instance to 1. Given any other element h ∈ A, choose a path p from r to h and set
gh := g(p). In order for this to be well defined we need that if h is joined by two distinct
paths p1, p2 then g(p1) = g(p2). In other words
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Lemma 14. A is compatible if and only if given any circuit p from r to r we have
g(p) = I d.

If this condition is fulfilled we have the special lift j : a 	→ ga under which r 	→ 1.
In particular suppose that G acts on a set A and A ⊂ A is a connected subgraph of

AX with f vertices. Then

Corollary 7. A sufficient condition for A to be embedded in G X is that, for any a ∈ A, if
an element g ∈ G is a product g = x1x2 . . . xd of d ≤ f elements we have that ga = a
implies g = 1.

Appendix B. Proof of Lemma 8

Proof. Consider a graph with r + 1 vertices and of rank r ≥ 2. We distinguish the ele-
ments ai , i = 1, . . . , u corresponding to black vertices from the b j , j = 1, . . . , v of
red vertices, we are assuming that both colors appear. We have ai (1) = 0, b j (1) = −2.

We have the equations

(x, π(ai )) = K (ai ), |x |2 + (x, π(b j )) = K (b j ).

If the solution x is polynomial in the vi , it is linear by a simple degree computation.
Since it is also equivariant under the orthogonal group, it follows that it has the form
x =∑

s csvs for some numbers cs . Let now a = −∑
s cses so x = −π(a). The fact that

the given system of equations is satisfied for all vi (this since they are now polynomials)
is equivalent to the equations.

− aai = C(ai ), a2 − ab j = C(b j ). (A.1)

By changing root if necessary we may always assume that there are black vertices dif-
ferent from the root. For such a vertex ai �= 0 we have an equation −2aai = a2

i + a(2)i

which implies that ai divides a(2)i .

If ai = ∑
j p j e j we have that a(2)i = ∑

j p j e2
j is an irreducible polynomial unless

ai = p(eh − ek) (recall that
∑

j p j = 0). Then −2a − ai = (eh + ek) which implies
−2a = (1 + p)eh + (1− p)ek , namely a = αeh + (−α − 1)ek , for some α.

Now we exploit the fact that a satisfies also all the other equations. If it satisfies
another black equation–say with a vertex a j – by linear independence of the vertices we
must have α = 0 or α = −1 and a = −eh for some h. Hence the only case to exclude
is 1 black and one or more red equations. For a red equation we have:

2a2 − 2ab j = −b2
j − b(2)j ⇐⇒ a2 + (a − b j )

2 = −b(2)j .

By comparing the coefficients of the quadratic terms we see that b j = ∑
l qlel cannot

have any positive coefficient ql , since η(b j ) = −2. Hence we must have b j = −eh − ek
for the same h, k appearing in a. Now substitute in the equation

(αeh + (−α − 1)ek)
2 + ((α + 1)eh − αek)

2 = e2
h + e2

k

to get α2 + (α + 1)2 = 1 with solutions α = 0,−1, hence x = vh, vk as desired. ��
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Appendix C. Determinantal Varieties

In this section we think of a marking � =∑m
i=1 aivi coming from the edges (for q = 1

we have ±vi ± v j ) as a map from V⊕m to V . Here V is a vector space where the vi
belong. Thus a list of k markings is thought of as a map ρ : V⊕m = V ⊗ C

m →
V⊕k = V ⊗ C

k . Such a map is given by a k × m matrix A and ρ = 1V ⊗ A so that
I m(ρ) = V ⊗ I m(A), ker(ρ) = V ⊗ ker(A).

When dim(V ) = n we shall be interested in particular in n–tuples of markings. In
this case we have

Lemma 15. An n–tuple of markings mi := ∑
j ai jv j is formally linearly independent

– that is the n × m matrix of the ai j has rank n– if and only if the associated map
ρ : V⊕m → V⊕n is surjective.

We may identify V⊕n with n× n matrices and we have the determinantal variety Dn
of V⊕n, defined by the vanishing of the determinant det (an irreducible polynomial),
and formed by all the n–tuples of vectors v1, . . . , vn which are linearly dependent. The
variety Dn defines a similar irreducible determinantal variety Dρ := ρ−1(Dn) in V⊕m

which depends on the map ρ. This is a proper hypersurface if and only if ρ is surjective.
We have already remarked that, in this case, Dρ is an irreducible hypersurface with equa-
tion the irreducible polynomial det ◦ρ. We need to see when different lists of markings
give rise to different determinantal varieties in V⊕m .

Lemma 16. Given a surjective map ρ : V⊕m → V⊕n, a vector a ∈ V⊕m is such that
a + b ∈ Dρ, ∀b ∈ Dρ if and only if ρ(a) = 0.

Proof. Clearly if ρ(a) = 0 then a satisfies the condition. Conversely if ρ(a) �= 0,
we think of ρ(a) as a non zero matrix A and it is easily seen that there is a matrix
B = ρ(b) ∈ Dn such that A + B = ρ(a + b) /∈ Dn . ��

Let ρ1, ρ2 : V⊕m → V⊕n be two surjective maps, given by two n × m matrices
A = (ai, j ), B = (bi, j ); ai, j , bi, j ∈ C.

Proposition 16. ρ−1
1 (Dn) = ρ−1

2 (Dn) if and only if the two matrices A, B have the
same kernel.

Proof. The two matrices A, B have the same kernel if and only if ρ1, ρ2 have the same
kernel. By Lemma 16, if ρ−1

1 (Dn) = ρ−1
2 (Dn) then the two matrices A, B have the

same kernel. Conversely if the two matrices A, B have the same kernel we can write
B = C A with C invertible. Clearly C Dn = Dn and the claim follows. ��

We shall also need the following well known fact:

Lemma 17. Consider the determinantal variety D, given by d(X) = 0, of n×n complex
matrices of determinant zero. The real points of D are Zariski dense in D.14

Proof. Consider in D the set of matrices of rank exactly n − 1. This set is dense in
D and obtained from a fixed matrix (for instance the diagonal matrix In−1 with all 1
except one 0) by multiplying AIn−1 B with A, B invertible matrices. If a polynomial f
vanishes on the real points of D then F(A, B) := f (AIn−1 B) vanishes for all A, B

14 This means that a polynomial vanishing on the real points of D vanishes also on the complex points.
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invertible matrices and real. This set is the set of points in R
2n2

, where a polynomial
(the product of the two determinants) is non zero. But a polynomial which vanishes in
all the points of any space R

s where another polynomial is non zero is necessarily the
zero polynomial. So f vanishes also on complex points. This is the meaning of Zariski
dense. ��
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