Università degli Studi Roma Tre - Corso di Laurea in Matematica

Esercitazioni di AL210

A.A. 2016–2017 - Docente: Prof. S. Gabelli Esercitatore: Dario Spirito

Esercitazione 5 25 ottobre 2016

- 1. Sia $\phi: G \longrightarrow G'$ un omomorfismo di gruppi. Dimostrare che, se $g, h \in G'$ sono nell'immagine di ϕ , allora $\phi^{-1}(g)$ e $\phi^{-1}(h)$ hanno la stessa cardinalità.
- 2. Sia $\phi: G \longrightarrow G'$ un omomorfismo di gruppi. Dimostrare che, per ogni $g \in G$, l'ordine di $\phi(g)$ divide l'ordine di g.
- 3. Sia G un gruppo, e sia $\operatorname{Aut}(G)$ l'insieme degli $\operatorname{automorfismi}$ di G, ovvero degli isomorfismi di G in sé.
 - a) Dimostrare che Aut(G) è un gruppo rispetto alla composizione di funzioni.
 - b) Dimostrare che Aut $(S_3) \simeq S_3$.
 - c) Dimostrare che Aut $(\mathbb{Z}_2 \times \mathbb{Z}_2) \simeq S_3$.
- 4. Dimostrare che $\operatorname{Aut}(\mathbb{Z}_n)$ è isomorfo al gruppo delle unità di \mathbb{Z}_n .
- 5. Sia ϕ la mappa

$$\phi \colon \mathbb{R} \longrightarrow \mathbb{C}$$
$$x \longmapsto e^{2\pi i x}$$

- a) Dimostrare che ϕ è un omomorfismo di gruppi tra $(\mathbb{R},+)$ e (\mathbb{C}^*,\cdot) .
- b) Dimostrare che ker $\phi = \mathbb{Z}$.
- c) Dimostrare che l'immagine di ϕ è $S^1:=\{z\in\mathbb{C}:|z|=1\}.$
- d) Dedurne che $S^1 \simeq \mathbb{R}/\mathbb{Z}$.
- e) Dedurne che $\mathbb{C}_{\infty} \simeq \mathbb{Q}/\mathbb{Z}$, dove \mathbb{C}_{∞} è l'insieme delle radici dell'unità.
- 6. Sia G un gruppo finito di ordine dispari e sia $n \geq 3$. Dimostrare che ogni omomorfismo da S_n a G è banale.
- 7. Un sottogruppo H di G è detto caratteristico se $\phi(H) \subseteq H$ per ogni $\phi \in \operatorname{Aut}(G)$.
 - a) Dimostrare che ogni sottogruppo caratteristico è normale.
 - b) Dimostrare che il centro di G è un sottogruppo caratteristico.
 - c) Trovare un esempio di un sottogruppo caratteristico H e un omomorfismo $\phi: G \longrightarrow G$ tale che $\phi(H) \nsubseteq H$.

8. Dati due gruppi (G, \star) e (G', \star) , sia hom(G, G') l'insieme degli omomorfismi di G in G'. Sia + l'operazione su hom(G, G') definita come

$$(\phi + \psi)(x) := \phi(x) * \psi(x)$$
 per ogni $x \in G$.

- a) Dimostrare che (hom(G, G'), +) è un gruppo. Qual è il suo elemento neutro?
- b) Dimostrare che, se G' è commutativo, lo è anche hom(G, G').
- c) Aut(G) è un sottogruppo di hom(G,G)?
- 9. Calcolare hom(\mathbb{Z}_2, S_3) e hom(\mathbb{Z}_2, D_4).
- 10. Siano a e b numeri interi.
 - a) Dimostrare che hom $(\mathbb{Z}_a, \mathbb{Z}_b) = \{e\}$ se a e b sono coprimi.
 - b) Determinare il numero di omomorfismi suriettivi da \mathbb{Z}_a a \mathbb{Z}_b .
 - c) Determinare il numero di omomorfismi iniettivi da \mathbb{Z}_a a \mathbb{Z}_b .
 - d) Dimostrare che hom $(\mathbb{Z}_a, \mathbb{Z}_b)$ è sempre un gruppo ciclico e calcolare la sua cardinalità.
 - e) Determinare esplicitamente gli elementi di hom $(\mathbb{Z}_4, \mathbb{Z}_6)$.
- 11. Sia D_4 il gruppo diedrale di ordine 4.
 - a) Determinare tutti i sottogruppi di D_4 e specificare quali sono normali.
 - b) Determinare il quoziente D_4/N per ogni sottogruppo normale N.
 - c) Determinare il gruppo degli automorfismi di D_4 .
 - d) Determinare tutti gli omomorfismi di D_4 in D_4 .