Università degli Studi Roma Tre - Corso di Laurea in Matematica

Esercitazioni di AL210

A.A. 2016–2017 - Docente: Prof. S. Gabelli Esercitatore: Dario Spirito

ESERCITAZIONE 8 28 NOVEMBRE 2016

- 1. Dati i seguenti insiemi A e B (con le operazioni naturali), determinare se B è un sottoanello e/o un ideale di A.
 - a) $A = \mathbb{R}, B = \mathbb{Q}$
 - b) $A = M_n(\mathbb{R}), B = \{M \in A \mid \det(M) = 0\}$
 - c) $A = M_n(\mathbb{R}), B = \{M \in A \mid M\mathbf{v} = \mathbf{0}\}$ (dove \mathbf{v} è un fissato elemento di \mathbb{R}^n).
 - d) $A = \mathbb{C}, B = \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$
 - e) $A = \{\text{funzioni } \mathbb{R} \longrightarrow \mathbb{R}\}, B = \{\text{funzioni continue}\}.$
 - f) $A = \{\text{funzioni continue } \mathbb{R} \longrightarrow \mathbb{R}\}, B = \{f \in A \mid f(1) = 0\}.$
 - g) $A = (\mathcal{P}(S), \Delta, \cap)$, $B = \mathcal{P}(X)$, dove $X \subseteq S$, \mathcal{P} è l'insieme delle parti e Δ la differenza simmetrica.
- 2. Dimostrare che $4\mathbb{Z}_{12}$ è un anello unitario, ma che $2\mathbb{Z}_{12}$ non lo è.
- 3. Sia A un anello e siano I, J ideali (entrambi destri o entrambi sinistri) di A. Dimostrare che i seguenti insiemi sono ideali di A:
 - a) $I \cap J$;
 - b) $I + J := \{i + j \mid i \in I, j \in J\};$
 - c) $IJ := \{ \sum i_1 j_1 + \dots + i_n j_n \mid i_t \in I, j_t \in J \}.$
- 4. Determinare l'insieme degli elementi invertibili dei seguenti anelli:
 - a) \mathbb{Z}

f) $M_n(\mathbb{R})$

b) Q

g) $M_n(\mathbb{Z})$

c) C

- h) $A := \mathbb{Z}_{(12)} := \{ \frac{a}{12^n} \mid a \in \mathbb{Z}, n \in \mathbb{N} \}$
- $d) \ \mathbb{Z}[i] := \{a + bi \mid a, b \in \mathbb{Z}\}\$
- i) $A := \{\frac{a}{b} \mid a, b \in \mathbb{Z}, 3 \nmid b\}$
- e) $\mathbb{Z}[\sqrt{3}i] := \{a + b\sqrt{3}i \mid a, b \in \mathbb{Z}\}\$
- $j) \mathbb{Q}[X]$
- 5. Sia $\phi: A \longrightarrow B$ un omomorfismo di anelli e I un ideale di B.
 - a) Dimostrare che $\phi^{-1}(I)$ è un ideale di A.
 - b) Dimostrare che, se I è primo e $\phi(A) \nsubseteq I$, allora $\phi^{-1}(I)$ è un ideale primo.
 - c) Dare un esempio in cui $\phi(A) \nsubseteq I$ e I è massimale, ma $\phi^{-1}(I)$ no.

- 6. Sia $a \in A$. L'ideale (destro) principale generato da a è l'insieme $aA := \{ab \mid b \in A\}$.
 - a) Dimostrare che aA è un ideale.
 - b) Dimostrare che, se A è un anello unitario, allora aA è il più piccolo ideale destro contenente a.
 - c) Dimostrare che, se A è commutativo e unitario, allora $aA \cdot bA = abA$.
- 7. Determinare tutti gli ideali di \mathbb{Z} , sottolineando in particolare quali sono primi e quali sono massimali. Determinare anche, per ogni I e J, la somma I+J e l'intersezione $I \cap J$.
- 8. Sia $A := \mathbb{Z}[i]$, e siano I := (1+3i), J := (3-3i) e K := (4+i). Determinare la somma e l'intersezione di ogni coppia di questi ideali.
- 9. Sia $A := \mathbb{Q}[X, Y]$. Dimostrare che l'insieme $I := \{ f \in \mathbb{Q}[X, Y] \mid f \text{ non ha termine noto} \}$ è un ideale di A; determinare un insieme di generatori per I e dimostrare che I non è un ideale principale.
- 10. Sia A un anello unitario. Un elemento $a \in A$ è idempotente se $a^2 = a$. Mostrare che:
 - a) se a è idempotente, allora 1 a è idempotente;
 - b) se a è idempotente e $a \neq 1$, allora a è un divisore dello zero;
 - c) se a è idempotente, allora $A \simeq aA \times (1-a)A$.
- 11. Sia A un anello e sia I un ideale. Il radicale di I è l'insieme $rad(I) := \{a \in A \mid a^n \in I \text{ per un } n \in \mathbb{N}\}.$
 - a) Dimostrare che rad(rad(I)) = rad(I).
 - b) Dimostrare che, se A è commutativo, allora rad(I) è un ideale.
 - c) Dare un esempio di un anello non commutativo in cui rad(0) non è un ideale.
- 12. Sia $n \in \mathbb{N}$ e sia $n = p_1^{a_1} \cdots p_n^{a_n}$ la sua fattorizzazione. Dimostrare che $\mathbb{Z}_n \simeq \mathbb{Z}_{p_1^{a_1}} \times \cdots \times \mathbb{Z}_{p_n^{a_n}}$.
- 13. Determinare se i seguenti sono omomorfismi di anelli e, in caso affermativo, determinare nucleo e immagine e definire l'isomorfismo canonico dato dal teorema fondamentale di omomorfismo.
 - a) $\mathbb{Z} \longrightarrow \mathbb{Z}_n$, $k \mapsto \overline{k}$.
 - b) $\mathbb{Z} \longrightarrow \mathbb{Z}[X], k \mapsto kX$
 - c) $\mathbb{Q} \longrightarrow \mathbb{C}[X], k \mapsto k + X$
 - d) $\mathbb{Z}[X] \longrightarrow \mathbb{Z}_n[X], \sum a_i X^i \mapsto \sum \overline{a_i} X^i$
 - e) $\mathbb{C}[X] \longrightarrow \mathbb{C}, f \mapsto f(\sqrt{5})$
 - f) $\mathbb{Z}[i] \longrightarrow \mathbb{Z}_4, \ a + bi \mapsto \overline{a^2 + b^2}$