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Abstract. The set G0(S) of the classes of non-divisorial ideals of
a numerical semigroup S can be endowed with a natural partial
order induced by the set of star operations on S. We study embed-
dings of G0(S) into Nn, specializing on three families of numerical
semigroups with radically different behaviour.

1. Introduction

The concept of star operation was born in the setting of integral
domains as a way to generalize the properties of the divisorial closure
[10, 6]; it admits a natural extension to numerical semigroups, allowing
to define semigroups with properties similar to Krull domains [9]. In
[15], the main properties of star operations on numerical semigroups
were studied: in particular, it was proven that the number of star
operations on a numerical semigroup is always finite and that, for n >
1, there is only a finite number of numerical semigroups S with exactly
n star operations.

A deeper examination of the questions tackled in [15] led in [16]
and [17] to the introduction of a partial order on the set G0(S) of the
classes of non-divisorial ideals of a numerical semigroup S: in partic-
ular, it was shown that there is a strong link between the set Star(S)
of star operations on S and the antichains of G0(S) (an antichain of
a partially ordered set P is a subset of P composed by pairwise in-
comparable elements). In particular, [16] provided a full analysis of
the case when the multiplicity of the numerical semigroup is 3, while
[17] presented some estimates on the number of star operations on a
numerical semigroup and, consequently, on the cardinality of the set of
semigroups with some fixed number of star operations.

In this paper, we concentrate on the order on the set G0(S). In par-
ticular, we are interested in ways to embed it into a product of chains,
or, rather, in Nn, for some (possibly small) integer n; this lead to the
question of finding the dimension and the tight dimension of G0(S)
(see Section 3 for the definitions). While we are not able to prove
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general results, we analyze three different families of numerical semi-
groups with rather different properties: pseudosymmetric semigroups
with multiplicity 4 (Section 4), semigroups of the form 〈4, 6, x, x + 2〉
(with x ≥ 9 odd; Section 5), and pseudosymmetric semigroups with
F (S) ≤ 2µ(S) + 2 (where F (S) is the Frobenius number and µ(S) the
multiplicity of S; Section 6). In all cases, we determine an embedding
of G0(S) into Nn, and determine the dimension and the tight dimension
of G0(S); we also use these embeddings to estimate the number of star
operations on members of these families. Finally, in Section 7, we give
two examples of individual numerical semigroups with even different
behaviour.

2. Notation and preliminaries

For further information about numerical semigroups, the interested
reader may consult [14].

A numerical semigroup is a subset S of N such that:

• a+ b ∈ S for every a, b ∈ S;
• 0 ∈ S;
• N \ S is finite.

The notation S = {0, x1, . . . , xn,→} indicates that S contains the ele-
ments 0, x1, . . . , xn and every integer bigger than xn.

The greatest element in Z \ S is the Frobenius number of S, and is
denoted by F (S); the least element of S \ {0} is the multiplicity of S,
and is denoted by µ(S).

A fractional ideal (or simply an ideal) of S is a subset I ( Z such
that i + s ∈ I for every i ∈ I, s ∈ S; in particular, each fractional
ideal is bounded below, and there is a unique t ∈ Z such that I + t :=
{i+ t | i ∈ I} has minimum 0. We denote by F(S) the set of fractional
ideals of S, and by F0(S) the set of fractional ideals I of S such that
min I = 0; equivalently, F0(S) is the set of fractional ideals I of S such
that S ⊆ I ⊆ N. If I ∈ F0(S) and I 6= N, we set η(I) := max(N \ I).
Moreover, if I ∈ F0(S) and k ∈ I, we define the k-shift of I as the
fractional ideal ρk(I) := (−k + I) ∩ N ∈ F0(S).

The set M := S \ {0} is an ideal of S, called the maximal ideal of S.
If I is an ideal of S and x a positive integer, the Apéry set of I with

respect to x is

Ap(I, x) := {i ∈ I | i− x /∈ I}.

In particular, Ap(I, x) has cardinality x.
If I and J are two fractional ideals, (I − J) := {t ∈ Z | t + J ⊆ I}

is again an ideal. The set (S −M) \ S is denoted by T (S), and its
cardinality, denoted by t(S), is called the type of S.

A semigroup S is symmetric if F (S) − a ∈ S for every a ∈ N \ S,
and it is pseudosymmetric if F (S) is even and F (S)− a ∈ S for every
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a ∈ N \ S, a 6= F (S)/2. A semigroup S is symmetric if and only if
t(S) = 1 [4, Proposition 2].

A star operation on S [15] is a map ∗ : F(S) −→ F(S) such that,
for every I, J ∈ F(S), x ∈ Z,

• I ⊆ I∗ (∗ is extensive);
• (I∗)∗ = I∗ (∗ is idempotent);
• if I ⊆ J , then I∗ ⊆ J∗ (∗ is order-preserving);
• x+ I∗ = (x+ I)∗;
• S = S∗.

In particular, since N∗ = N for every star operation ∗ (this follows from
[15, Lemma 3.3]), a star operation ∗ restricts to a map ∗0 : F0(S) −→
F0(S), and ∗ is completely determined by ∗0. An ideal I such that
I = I∗ is said to be a ∗-closed ideal.

The set of star operations on S is denoted by Star(S), and is always a
finite set; moreover, if n > 1, there is only a finite number of numerical
semigroups S such that |Star(S)| = n [15, Theorem 4.15]. If ∗1, ∗2 ∈
Star(S), we set ∗1 ≤ ∗2 if I∗1 ⊆ I∗2 for every I ∈ F(S), or equivalently
if I = I∗2 implies that I = I∗1 .

The maximum of Star(S) under this order is the divisorial closure,
defined by Iv := (S − (S − I)) [15, Section 2]; if I = Iv then I is said
to be divisorial. The divisorial closure coincides with the identity (i.e.,
|Star(S)| = 1) if and only if S is symmetric [1, Proposition I.1.15]. The
set of non-divisorial ideals I such that min I = 0 is denoted by G0(S).

Every non-divisorial ideal I generates a star operation ∗I , defined,
for every J ∈ F(S), by (see [15, Proposition 3.6])

J∗I := Jv ∩ (I − (I − J)) = Jv ∩
⋂

α∈(I−J)

(−α + I).

Alternatively, ∗I is the biggest star operation ∗ such that I is ∗-closed.
We have ∗I = ∗I′ if and only if I = x + I ′ for some integer x. In
particular, the map

∗ : G0(S) −→ Star(S)

I 7−→ ∗I
is injective, and it can be used to define an order on G0(S). We define
the ∗-order ≤∗ to be the opposite order with respect to the one induced
by the map above: more explicitly, given I, J ∈ G0(S), we have

I ≤∗ J ⇐⇒ ∗I ≥ ∗J ⇐⇒ I = I∗J .

An antichain of a partially ordered set (P ,≤) is a (possibly empty)
subset X ⊆ P such that no two different elements of X are comparable
under ≤. We denote the cardinality of the set of antichains on (P ,≤)
by ω(P ,≤) (or simply ω(P) if there is no danger of confusion). The
n-th Dedekind number, denoted by ω(n), is the number of antichains
of the power set of a set with n elements, under the order given by the
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set-theoretic containment. Every antichain ∆ of (G0(S),≤∗) induces a
star operation ∗∆ on S, defined by

J∗∆ :=
⋂
I∈∆

J∗I = Jv ∩
⋂
I∈∆

⋂
α∈(I−J)

(−α + I)

for every J ∈ F(S); moreover, every star operation on S is in the form
∗∆, for some antichain ∆ of (G0(S),≤∗) [17, Section 3].

If x ∈ N \ S, we denote by Qx the set of ideals I ∈ G0(S) such that
η(I) = x and x ∈ Iv. If also F (S)−x /∈ S, or if x = F (S), then I ∈ Qx
if and only if η(I) = x [17, Proposition 5.2(e)]. The ∗-order on Qx is
coarser then the set-theoretic containment (i.e., if I ≤∗ J , then I ⊆ J)
[17, Proposition 5.7(c)]; if Qx 6= ∅, then the ∗-maximum of Qx is the
ideal [17, Proposition 5.2(b)]

Mx :=
⋃
{I ∈ F0(S) | x /∈ I} = {y ∈ N | x− y /∈ S}.

If x < y and Qx 6= ∅, then also Qy 6= ∅, and Mx <∗ My [17, Propo-
sition 5.2(c)]. When S is not symmetric, the ideal MF (S) generates
the identity star operation [15, Corollary 4.5] (see also [8, Satz 4 and
Hillsatz 5]), and thus it is the maximum of (G0(S),≤∗); it is called the
canonical ideal of S.

An atom of S (or of G0(S)) is an I ∈ G0(S) such that, whenever
∗I ≥ ∗1 ∧ ∗2 for some ∗1, ∗2 ∈ Star(S), then ∗I ≥ ∗1 or ∗I ≥ ∗2

(here ∗1 ∧ ∗2 indicates the infimum of ∗1 and ∗2) [17, Definitions 4.1
and 4.3]. Sufficient conditions for I ∈ G0(S) to be an atom are that
|Iv \ I| = 1 [17, Proposition 4.8] and that I is an element of Qx such
that |Mx \ I| ≤ 1 [17, Proposition 5.3]. If every non-divisorial ideal I
is an atom, then the number of star operations on S is equal to the
number of antichains of (G0(S),≤∗), and conversely [17, Proposition
4.9].

We state explicitly two results which will be useful in the rest of the
paper.

Lemma 2.1. Let S be a numerical semigroup, I, J ∈ G0(S). Let x ∈
Jv \ J . If J ≤∗ I, there is a t ∈ I such that J ⊆ ρt(I) and t+ x /∈ I.

Proof. By [15, Proposition 3.6], we have

J = J∗I = Jv ∩
⋂

α∈(I−J)

(−α + I).

In particular, there must be a t ∈ (I − J) such that x /∈ −t+ I; hence,
t+ J ⊆ I (equivalently, J ⊆ (−t+ I) ∩ N = ρt(I)) and x+ t /∈ I. �

Lemma 2.2. Let S be a pseudosymmetric semigroup and I ∈ G0(S);
let τ := F (S)/2. Then, η(I) ≥ τ .

Proof. If η(I) < τ , then each element bigger than τ is in I. Hence,
τ + i ≥ τ for every i ∈ I, and τ + I ⊆ I, i.e., τ ∈ (I − I). Thus, I = Iv

by [1, Proposition I.1.16], and I /∈ G0(S). �
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3. Embeddings and dimensions

Due to the link between antichains of G0(S) and star operations, a
natural way to find the cardinality of Star(S) is to study the ∗-order on
G0(S), calculate the number of antichains and then trying to determine
which ones give star operations. This program was carried out in [16]
for the case of numerical semigroups of multiplicity 3. More precisely,
the following result was proved.

Proposition 3.1. [16, Theorem 7.4] Let S := 〈3, 3α+ 1, 3β + 2〉, with
α, β positive integers. Then, (G0(S),≤∗) is order-isomorphic to C(2α−
β)× C(2β − α + 1), where C(k) denotes a chain of k elements.

In a more geometrical way, this proposition can be rephrased by
saying that G0(S) is isomorphic to a rectangle with sides of length
2α− β and 2β − α + 1.

In particular, the proposition asserts that G0(S) can be embedded
into N2, where an embedding of partially ordered sets is a map f : P −→
Q such that, for every p1, p2 ∈ P , p1 ≤ p2 if and only if f(p1) ≤ f(p2).
Similarly, an order-reversing embedding is a map f : P −→ Q such
that p1 ≤ p2 if and only if f(p1) ≥ f(p2).

The dimension of a finite partially ordered set P (denoted by dim(P))
is the smallest n such that P can be embedded into Nn endowed with
the the product order (that is, (a1, . . . , an) ≤ (b1, . . . , bn) if and only if
ai ≤ bi for every i); note that this is not the original definition intro-
duced in [3], but it is equivalent [12, Section 10.4]. Such an n always
exists; indeed, dim(P) ≤ |P| [7]. Clearly, dim(P) is also the smallest
integer n such that there is an order-reversing embedding of P into Nn.

It is natural to ask for a characterization of all numerical semigroups
S such that G0(S) has a fixed dimension; the first cases are not difficult.

Proposition 3.2. Let S be a numerical semigroup.

(a) dim(G0(S)) = 0 if and only if S is symmetric.
(b) dim(G0(S)) = 1 if and only if µ(S) = 3 and S is pseudosym-

metric.

Proof. (a) follows immediately from the fact that dimP = 0 if and only
if |P| ≤ 1, and that |G0(S)| ≥ 2 as soon as S is not symmetric.

(b) By the previous point, we can suppose that S is not symmetric;
let µ := µ(S). If µ = 3, then the claim is essentially [16, Proposition
7.8]. Suppose µ ≥ 4: we want to find two ideals I and J such that
I 6≤∗ J and J 6≤∗ I. Since S is not symmetric, there is an a ∈ N such
that a, F (S)− a /∈ S and a ≤ F (S)/2. We distinguish four cases.

If a ≥ 3, then by [15, Lemma 4.13] there are x1, x2 ∈ N\S such that
a − µ < xi < a; consider Ii := S ∪ {x ∈ N | x > a} ∪ {xi}. By [15,
Lemma 4.7], both Ii are in Qa; moreover, I1 * I2 and I2 * I1. Hence,
I1 and I2 are not comparable in the ∗-order [17, Proposition 5.7(c)].
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If a < 3 and µ ≥ 5, let x1, x2 be two different elements in {1, 2, 3} \
{3 − a}, and define Ii := S ∪ {x ∈ N | x > 4} ∪ {3 − a, xi}. By the
proof of [17, Proposition 5.20], I1 and I2 are in Q4, and again by [17,
Proposition 5.7(c)] they are not comparable in the ∗-order.

If µ = 4 and a = 2, consider the ideals I1 := S ∪ {F (S) − 2} and
I2 := S ∪ (2 + S). Then, they are both elements of QF (S). We have
2 /∈ I1 (otherwise 2 = F (S) − 2 and F (S) = 4, against µ(S) = 4) and
F (S)− 2 /∈ I2 (otherwise F (S)− 2 ∈ 2 + S, i.e., F (S)− 4 ∈ S, against
4 ∈ S and F (S) /∈ S). Hence, we can apply again [17, Proposition
5.7(c)], and I and J are not ∗-comparable.

If µ = 4 and a = 1, then F (S)− 1 /∈ S. Let I := S ∪{F (S)− 1} and
J := MF (S)−1. By [17, Lemma 5.10], since I ∈ QF (S) and J ∈ QF (S)−1,
we have I 6≤∗ J . By Lemma 2.1, if J ≤∗ I there is a t ∈ I such that
J ⊆ ρt(I) and t + F (S) − 1 /∈ I. The latter condition implies that
t = 1; however, the definition of I now implies that 1 = F (S)− 1, i.e.,
F (S) = 2. This is impossible when µ = 4, and thus I and J are not
∗-comparable. �

Already in dimension 2, however, it does not seem so easy to obtain
a characterization.

Example 3.3. Let S := 〈4, 5, 6, 7〉. By [17, Example 5.21], putting
I(t) := S ∪ {t} and I(s, t) := S ∪ {s, t}, the Hasse diagram of G0(S) is
the following:

I(1, 2)

I(2) I(1, 3) I(1)

I(2, 3) I(3).

It is not hard to embed G0(S) into N2, by sending (see the left of
Figure 1)

I(1, 2) 7→ (2, 2) I(2) 7→ (2, 0) I(1) 7→ (0, 2)

I(1, 3) 7→ (1, 1) I(2, 3) 7→ (1, 0) I(3) 7→ (0, 1).

Hence, dim(G0(S)) = 2.

Given x, y ∈ P (where P is a partially ordered set) we say that x
covers y, and we write x ≺ y, if x < y and there is no z ∈ P such
that x < z < y. An embedding f : P −→ Q is tight if x ≺ y implies
f(x) ≺ f(y) [11]. Any distributive lattice can be tightly embedded
into a product of chains [11, Proposition 1]; on the other hand, a non-
distributive lattice must have a sublattice isomorphic to M3 or N5

(see Figure 2), and it is easily seen that neither M3 nor N5 can be
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x

y

z

I(1) I(1, 2)

I(3)
I(1, 3)

I(2, 3) I(2) x

y

z

I(3)

I(1)
I(1, 2)

I(1, 3)

I(2)

I(2, 3)

Figure 1. Two possible embeddings of G0(〈4, 5, 6, 7〉)
into N2 and N3.

M3 N5

Figure 2. The two lattices M3 (on the left) and N5 (on
the right).

tightly embedded into a product of chains. Note that it is not known
if (G0(S),≤∗) is always a distributive lattice.

With this terminology, the embedding given in Example 3.3 is not
tight and, indeed, there is no tight embedding of G0(〈4, 5, 6, 7〉) into
N2. On the other hand, we can tightly embed it into N3 (see the right
of Figure 1):

I(1, 2) 7→ (1, 1, 1) I(2) 7→ (1, 1, 0) I(1) 7→ (0, 1, 1)

I(1, 3) 7→ (1, 0, 1) I(2, 3) 7→ (1, 0, 0) I(3) 7→ (0, 0, 1).

If P can be tightly embedded into Nn, but not in Nn−1, we call n
the tight dimension of P , and we denote it by dimt(P). If P cannot
be embedded into any Nn, we say that the tight dimension is infinite.
Clearly, dimt(P) ≥ dim(P).

The previous results shows that, if S ha multiplicity 3 and is not
pseudosymmetric, then dim(G0(S)) = dimt(G0(S)) = 2, while if S =
〈4, 5, 6, 7〉 then dim(G0(S)) = 2 and dimt(G0(S)) = 3.



8 DARIO SPIRITO

4. Pseudosymmetric semigroups of multiplicity 4

In this section we analyze the case of pseudosymmetric semigroups
with multiplicity 4. By [13, Theorem 8], such a semigroup must be
of the form S := 〈4, x, x + 2〉, where x ≥ 5 is an odd number. In
particular, the smallest element of S congruent to 2 modulo 4 will be
2x; hence, F (S) = 2x− 4. We set τ := F (S)/2 = x− 2.

In the following, the calculations take a slightly different shape ac-
cording to whether x ≡ 1 mod 4 or x ≡ 3 mod 4, but are essentially
analogous. For the sake of simplicity, we shall only carry them out for
the case x ≡ 1 mod 4.

Let thus x := 4k + 1; then, τ = 4k − 1, and the Apéry set of S with
respect to 4 is {0, 4k+1, 4k+3, 8k+2}; in particular, each t > τ , t /∈ S
is congruent to 2 modulo 4. Given integers α, β, γ, we set

[α, β, γ] := 4N ∪ (4α + 1 + 4N) ∪ (4β + 2 + 4N) ∪ (4γ + 3 + 4N).

It is straightforward to check that [α, β, γ] is an ideal in F0(S) if and
only if

(1)



0 ≤ 4α + 1 ≤ 4k + 1

0 ≤ 4β + 2 ≤ 8k + 2

0 ≤ 4γ + 3 ≤ 4k + 3

4α + 1 + x ≥ 4β + 2

4γ + 3 + x+ 2 ≥ 4β + 2

that is,


0 ≤ α, γ ≤ k

0 ≤ β ≤ 2k

α + k ≥ β

γ + k + 1 ≥ β.

Suppose I := [α, β, γ] ∈ F0(S). For I to be non-divisorial, we must
have τ /∈ (I−I) [1, Proposition I.1.16]; hence, at least one between the
following must hold:

(2)


4β + 2 + τ < 4α + 1

4γ + 3 + τ < 4β + 2

τ < 4γ + 3

that is,


β + k < α

γ + k < β

k < γ + 1.

Note that the first condition can never hold, since α ≤ k.
We divide G0(S) into two classes:

• X := {I ∈ G0(S) | τ ∈ I};
• Y := {I ∈ G0(S) | τ /∈ I}.

We note that Y can be further subdivided, in a natural way, into Qτ
(the ideals with η(I) = τ) and the ideals with η(I) > τ (since, by
Lemma 2.2, η(I) ≥ τ); however, this is not necessary for our analysis.

We first analyze the two classes separately.

Suppose I := [α, β, γ] ∈ X . Since τ = 4k − 1 ∈ I, we have γ ≤
k − 1, so the third condition of (2) never holds; hence, γ + k < β, i.e.,
γ + k+ 1 ≤ β. By (1), we have γ + k+ 1 ≥ β, and thus β = γ + k+ 1.
The condition β ≤ α+ k thus becomes γ + 1 ≤ α; hence, the ideals of
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this class have the form

x(ω, λ) := [ω, λ+ k + 1, λ]

with 0 ≤ ω ≤ k and 0 ≤ λ ≤ ω − 1. Moreover, no x(ω, λ) is divisorial,
and

x(ω, λ)v = [ω, λ+ k, λ] = x(ω, λ) ∪ {4λ+ 4k + 2}.
We now want to find the ∗-order on X . We claim that x1 :=

x(ω1, λ1) ≤∗ x(ω2, λ2) =: x2 if and only if λ1 ≤ λ2 and λ1−ω1 ≤ λ2−ω2.
Without loss of generality, we may suppose that x1 6= x2.

Suppose the two inequalities hold. Since λ1 ≤ λ2, we have

x′ := ρ4(λ2−λ1)(x2) = [ω2 − λ2 + λ1, λ1 + k + 1, λ1]

with ω2 − λ2 + λ1 ≤ ω1 − λ1 + λ1 = ω1; hence, x1 ⊆ x′. However, x′

does not contain 4λ1 + 4k+ 2; hence, x1 = xv1 ∩ x′ = xv1 ∩ ρ4(λ2−λ1)(x2),
and thus x1 ≤∗ x2.

Conversely, suppose x1 ≤∗ x2. Since η(x1) = 4λ1 + 4k + 2 ∈ Iv \ I,
we must have η(x2) ≥ η(x1), and thus λ2 ≥ λ1. Since every element
out of x2 bigger than τ is congruent to 2 modulo 4, we must have
x1 ⊆ ρ4(λ2−λ1)(x2), which by the previous calculation is equivalent to
λ1 − ω1 ≤ λ2 − ω2.

Let now I := [α, β, γ] ∈ Y . Since τ /∈ I, we have γ = k. Hence, I is
in the form

y(ω, λ) := [ω, λ, k]

with 0 ≤ ω ≤ k and 0 ≤ λ ≤ ω + k. Moreover, these ideals are non-
divisorial unless ω = k and λ = 2k (since [k, 2k, k] = S is divisorial),
so we must exclude this case.

We claim that y1 := y(ω1, λ1) ≤∗ y(ω2, λ2) =: y2 if and only if
ω1 ≥ ω2 and λ1 ≥ λ2, i.e., if and only if y1 ⊆ y2.

Indeed, y(ω, λ)v = y(ω, λ) ∪ {τ}; hence, if y1 ⊆ y2 then y1 = yv1 ∩ y2

and y1 ≤∗ y2.
Conversely, suppose y1 ≤∗ y2 but y1 * y2. Then, there must be a

t ∈ y2 such that y1 ⊆ ρt(y2) but τ + t /∈ y2. Since y1 * y2, t > 0; hence,
τ + t ≡ 2 mod 4, and since τ ≡ 3 mod 4 also t ≡ 3 mod 4. Since t ∈ y2,
it must be t ≥ τ + 4; but this implies t + τ ≥ τ + 4 + τ ≥ F (S) + 4,
which belongs to S and, a fortiori, to y2. This is a contradiction, and
we must have y1 ⊆ y2.

Theorem 4.1. Let S := 〈4, 4k + 1, 4k + 3〉. Then, the map

Ψ: G0(S) −→ N2

x(ω, λ) 7−→ (2k − 1 + λ− ω, k + 1 + λ)

y(ω, λ) 7−→ (2k − λ, k − ω)

is a tight embedding.
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Proof. The fact that Ψ is an embedding when restricted to X or to Y is
a consequence of the previous reasoning. Moreover, k+1+λ > k ≥ k−ω
for every λ, ω ≥ 0, and thus Ψ is injective.

Let now I := x(ω1, λ1) ∈ X and J := y(ω2, λ2) ∈ Y : we have to
prove that I ≤∗ J if and only if Ψ(I) ≤ Ψ(J), and that I ≥∗ J if and
only if Ψ(I) ≥ Ψ(J).

For the former case, Ψ(I) ≤ Ψ(J) never happens; suppose I ≤∗ J .
Since Iv \ I = {4λ1 + 4k+ 2}, there is a t ∈ J such that I ⊆ ρt(J) and
4λ1 + 4k + 2 + t * J . Since I * J (being τ ∈ I \ J) and all elements
bigger than τ and out of S are congruent to 2 modulo 4, we must have
t ≡ 0 mod 4, i.e., t = 4s for some integer s. Then,

ρt(J) = [ω2 − s, λ2 − s, k − s]

and thus we must have
ω2 − s ≤ ω1

λ2 − s = λ1 + k + 1

k − s ≤ λ1.

The second condition implies λ1 = λ2 − s − k − 1; plugging it in the
third condition we have

k − s ≤ λ2 − s− k − 1 =⇒ λ2 ≥ 2k + 1.

However, λ2 ≤ 2k by construction; hence, I 6≤∗ J , as claimed.
For the second case, we have Ψ(I) ≥ Ψ(J) if and only if{
2k − 1 + λ1 − ω1 ≥ 2k − λ2

k + 1 + λ1 ≥ k − ω2

that is,

{
λ1 − ω1 − 1 ≥ −λ2

λ1 + 1 ≥ −ω2;

since the second condition is always satisfied, Ψ(I) ≥ Ψ(J) if and only
if ω1 − λ1 − 1 ≥ λ2.

Suppose this inequality holds. The Apéry set Ap(I, 4) is equal to
{0, 4ω1 + 1, 4(λ1 + k + 1) + 2, 4λ1 + 3}; hence,

Ap(−(4λ1 + 3) + I, 4) = {−(4λ1 + 3), 4(ω1 − λ1 − 1) + 2, 4k + 3, 0}

and thus

ρ4λ1+3(I) = [0, ω1 − λ1 − 1, k] = y(0, ω1 − λ1 − 1).

However, by hypothesis ω1−λ1−1 ≥ λ2; by the analysis of the ∗-order
in Y , it follows that

I ≥∗ y(0, ω1 − λ1 − 1) ≥∗ y(0, λ2) ≥∗ y(ω2, λ2),

as claimed.
Conversely, suppose I ≥∗ J . Since τ ∈ Jv \ J , there must be a

t ∈ I such that ρt(I) contains J but not τ . Since τ ∈ I, t > 0; hence,
t + τ ≡ 2 mod 4, and thus t ≡ 3 mod 4. Since I = [ω1, λ1 + k + 1, λ1],
we must have t = 4(λ1 + s) + 3 for some s ≥ 0; hence, applying the
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Figure 3. The image of Ψ(G0(S)) for the semigroups
〈4, 9, 11〉 (on the left) and 〈4, 11, 13〉 (on the right). Black
circles represent ideals of Y , gray circles are ideals of X .

same reasoning of the previous case, ρt(I) = [0, ω1 − λ1 − 1, k]. Since
J ⊆ I, this implies λ2 ≤ ω1 − λ1 − 1, as claimed.

The fact that Ψ is tight follows directly from the previous part of
the proof. The theorem is proved. �

The case x = 4k + 3 is essentially analogous: the set G0(S) can be
divided into the two classes X and Y , with X containing the ideals

x(ω, λ) := [λ, λ+ k + 1, ω] for

{
0 ≤ ω ≤ k

0 ≤ λ ≤ ω,

while Y contains the ideals

y(ω, λ) := [k + 1, λ, ω] for


0 ≤ ω ≤ k

0 ≤ λ ≤ ω + k + 1

(ω, λ) 6= (k, 2k + 1).

The analogue of Theorem 4.1 is the following.

Theorem 4.2. Let S := 〈4, 4k + 3, 4k + 5〉. Then, the map

Ψ: G0(S) −→ N2

x(ω, λ) 7−→ (2k + 1 + λ− ω, k + 1 + λ)

y(ω, λ) 7−→ (2k + 1− λ, k − ω)

is a tight embedding.

The range of Ψ in these two cases is pictured in Figure 3.
An immediate consequence is the following.

Theorem 4.3. Let S be a pseudosymmetric semigroup of multiplicity
4. Then, dim(G0(S)) = dimt(G0(S)) = 2.
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Proof. By Theorems 4.1 and 4.2 we have dim(G0(S)) ≤ dimt(G0(S)) ≤
2. However, dim(G0(S)) ≥ 2 by Proposition 3.2(b). The claim is
proved. �

This embedding allows also to determine the number of star opera-
tions on these semigroups S. Indeed, we have seen in the analysis of
X and Y that |Iv \ I| = 1 for every I ∈ G0(S); hence, by [17, Proposi-
tions 4.8 and 4.9], the cardinality of Star(S) is exactly the number of
antichains of G0(S).

Let now H(n) be the set of points (x, y) ∈ N2 such that 0 ≤ x ≤ n
and 0 ≤ y ≤ x: then, H(n) is just an “half-square”. By Theorems
4.1 and 4.2, the image of G0(S), for S a semigroup of multiplicity 4, is
exactly H(n) \ {(0, 0)} (for an appropriate n).

Proposition 4.4. The partially ordered set H(n) has 2n+1 antichains.

Proof. If n = 0, then H(n) is just a point and has two antichains (the
empty one and the one formed by the point).

Suppose the claim holds for n−1. We can divide the set of antichain
of H(n) into the n+2 sets An0 , . . . , Ann, An∞, where an antichain belongs
to Ani if it contains the point (n, i), and to An∞ if it does not contain
any point with first coordinate n. (Note that an antichain cannot have
two points with first coordinate n, and thus these sets are disjoint.)

If now R is the bottom row of H(n), the difference H(n)\R is order-
isomorphic to H(n−1), and (for i > 0) the antichains in Ani correspond
bijectively to antichains in An−1

i−1 ; moreover, the antichain of An0 corre-
spond to the antichains in An−1

∞ . On the other hand, antichains in An∞
correspond to the antichains of H(n) \ C, where C is the rightmost
column; however, H(n) \ C ' H(n− 1). Therefore,

ω(H(n)) = |An∞|+
n∑
i=0

|Ani | = ω(H(n− 1)) + |An−1
∞ |+

n−1∑
j=0

|An−1
j | =

= ω(H(n− 1)) + ω(H(n− 1)) = 2n−1+1 + 2n−1+1 = 2n+1,

as claimed. By induction, the claim holds for every n. �

Theorem 4.5. Let S be a pseudosymmetric numerical semigroup of
multiplicity 4, and let τ := F (S)/2. Then,

|Star(S)| = 2
τ+3

2 − 1 = 2
F (S)+6

4 − 1.

Proof. By the discussion before Proposition 4.4, |Star(S)| is exactly
the number of antichains of G0(S), or, equivalently, the number of
antichains of Ψ(G0(S)) (where Ψ is the embedding defined in Theorem
4.1 or Theorem 4.2, according to the equivalence class of x modulo
4). Since Ψ(G0(S)) = H(n) \ {(0, 0)} for some n, and since (0, 0) is a
minimal element of H(n), we have |Star(S)| = 2n+1− 1; hence, we just
have to find n in function of S.
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If S = 〈4, 4k + 1, 4k + 3〉, then the rightmost element of Ψ(G0(S))
on the x-axis is (2k, 0). Since τ = 4k − 1, it follows that n = τ+1

2
, and

thus |Star(S)| = 2
τ+3

2 − 1.
Analogously, if S = 〈4, 4k + 3, 4k + 5〉 then the rightmost element

is (2k + 1, 0), and τ = 4k + 1; hence, n = τ+1
2

, and thus |Star(S)| =

2
τ+3

2 − 1.
The other expression follows, since τ = F (S)/2. The claim is proved.

�

In particular, since there is exactly one pseudosymmetric semigroup
of multiplicity 4 for every Frobenius number F (S), we see that the
number of such semigroups with |Star(S)| ≤ n, where n ≥ 7, is exactly
blog2(n+ 1)c − 2.

5. A linear family

In this section we analyze semigroups of the form 〈4, 6, x, x + 2〉,
where x ≥ 9 is an odd number. As in the previous section, the calcula-
tions for the cases x ≡ 1 mod 4 and x ≡ 3 mod 4 are slightly different,
but essentially equivalent; for the sake of simplicity, we shall do the full
analysis only of the former case.

Let thus k ≥ 2 and let S := 〈4, 6, 4k+1, 4k+3〉 = {0, 4, 6, 8, . . . , 4k,→
}. Let

[α, β, γ] := 4N ∪ (4α + 1 + 4N) ∪ (4β + 2 + 4N) ∪ (4γ + 3 + 4N).

Then, [α, β, γ] is an ideal in F0(S) if and only if
0 ≤ α, γ ≤ k

α− 2 ≤ γ ≤ α + 1

0 ≤ β ≤ 1;

therefore, F0(S) can be divided into the following eight classes:

• R0,−2 := {[α, 0, α− 2] | 2 ≤ α ≤ k}
• R0,−1 := {[α, 0, α− 1] | 1 ≤ α ≤ k}
• R0,0 := {[α, 0, α] | 0 ≤ α ≤ k}
• R0,1 := {[α, 0, α + 1] | 0 ≤ α ≤ k − 1}
• R1,−2 := {[α, 1, α− 2] | 2 ≤ α ≤ k}
• R1,−1 := {[α, 1, α− 1] | 1 ≤ α ≤ k}
• R1,0 := {[α, 1, α] | 0 ≤ α ≤ k}
• R1,1 := {[α, 1, α + 1] | 0 ≤ α ≤ k − 1}.
In particular, S = [k, 1, k]. The ideals ρt(S) different from N are

ρ4l(S) = [k − l, 0, k − l] and ρ4l+2(S) = [k − l, 0, k − l − 1] (both cases
for 0 < l < k), and these ideals are all comparable; thus, this class is
closed by intersections. Therefore, the divisorial ideals are exactly the
families R0,0 and R0,−1, with the exception of [k, 0, k] and [k, 0, k− 1].

We shall consider three subsets of G0(S) separately; the first one is
A := R0,1 ∪R1,1 ∪R0,−2 ∪R1,−2.
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Figure 4. The embedding of A into N2.

Proposition 5.1. Let S and A be as above. The map

ΨA : A −→ N2

[α, 1, α + 1] 7−→ (k − α− 1, k − α)

[α, 0, α + 1] 7−→ (k − α− 1, k − α− 1)

[α, 0, α− 2] 7−→ (k − α + 1, k − α)

[α, 1, α− 2] 7−→ (k − α + 2, k − α)

is an order-reversing embedding.

From a graphical point of view, this map sends each class into a
segment parallel to the bisector of the first and the third quadrant (see
Figure 4).

Proof. Let I := [α1, β1, γ1] and J := [α2, β2, γ2] be two ideals. We must
show that I ≥∗ J if and only if Ψ(I) ≤ Ψ(J) (where, for simplicity,
Ψ := ΨA). We shall divide the proof according to which class I and J
belong. Let R1 be the class of I and R2 be the class of J .

Let Si := Ψ(Ri), and suppose first that the two segments S1,S2 are
contiguous (i.e., the other two segments are outside the strip between S1

and S2). Then, S1∪S2 is linearly ordered (it suffices to go alternatively
one step to the right and one step up in the grid); thus, the embedding
condition is equivalent to the condition that R1∪R2 is linearly ordered
(in the “right” way).

Suppose I ∈ R1,1 and J ∈ R0,1. Then, Ψ(I) ≤ Ψ(J) if and only if
α1 ≥ α2 and α1 ≥ α2 + 1, i.e., if and only if the latter holds. Similarly,
Ψ(I) ≥ Ψ(J) if and only if α1 ≤ α2. Hence, we must prove that, for
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every α,

[α, 0, α + 1] ≥∗ [α, 1, α + 1] ≥∗ [α− 1, 0, α].

Indeed, ρ4α+1([α, 0, α + 1]) = [0, 1, 0], and thus

[α, 1, α + 1] = [α, 0, α + 1] ∩ [0, 1, 0]

is ∗[α,0,α+1]-closed; analogously, ρ4([α, 1, α+1]) = [α−1, 0, α], and thus
the latter is ≤∗ [α, 1, α + 1].

If I ∈ R0,1 and J ∈ R0,−2, then we must prove that

[α, 0, α + 1] ≥∗ [α + 1, 0, α− 1] ≥∗ [α− 1, 0, α],

which is true since each term is equal to the 2-shift of the previous one.

If I ∈ R0,−2 and J ∈ R1,−2, then we must prove that

[α, 0, α− 2] ≥∗ [α, 1, α− 2] ≥∗ [α− 1, 0, α− 3],

which follows from the fact that ρ4([α, 1, α− 2]) = [α− 1, 0, α− 3] and
that [α, 1, α− 2] = ρ4α−5([α, 0, α− 2]) ∩ [α, 0, α− 2].

In particular, these cases also provide a proof for the case where the
class of I is equal to the class of J .

Suppose now that the segments are not contiguous.
If I ∈ R1,1 and J ∈ R0,−2, then Ψ(I) ≤ Ψ(J) if and only if α1 ≥ α2.

If the latter condition is true, then

[α2, 1, α2 + 1] ≥∗ [α2 − 1, 0, α2] ≥∗ [α2, 0, α2 − 2]

by the previous part of the proof; since α2 ≥ α1, moreover, [α2, 0, α2−
2] ≥∗ [α1, 0, α1 − 2], and I ≥∗ J .

Conversely, suppose that α1 6≥ α2. We want to show that I 6≥∗ J , and
thus it suffices to consider the case α2 = α1 +1; i.e., we must show that
I = [α, 1, α+1] 6≥∗ [α+1, 0, α−1] = J for every α. The biggest element
in N\J is 4α+ 1, and it does belong to [α+ 1, 0, α− 1]v = [α, 0, α− 1].
Thus, if I ≥∗ J there must be a t ∈ I such that J ⊆ ρt(I) but
4α+1+ t /∈ I. The only element of N\I greater or equal than 4α+1 is
4α + 3, so t should be 2; however, 2 /∈ I. Hence, I 6≥∗ J , as requested.

All the other cases follow by using the same technique. �

Let us now consider the other two classes of non-divisorial ideals,
namely R1,0 and R1,−1. For reasons that will be clear shortly, we
define

B := (R1,0 ∪R1,−1) \ {[k, 1, k − 1]}.

Proposition 5.2. B is linearly ordered (in the ∗-order).

Proof. We claim that

[α, 1, α] ≥∗ [α + 1, 1, α] for α ∈ [0, k − 1]

and

[α, 1, α− 1] ≥∗ [α, 1, α] for α ∈ [1, k − 1].
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Indeed, [t, 0, t− 1] is divisorial for every t ∈ [0, k − 1], and thus

[α + 1, 1, α] = [α, 1, α] ∩ [α + 1, 0, α− 1],

i.e., [α + 1, 1, α] ≤∗ [α, 1, α]. In the same way, [t, 0, t] is divisorial for
every t ∈ [1, k − 1], and thus

[α, 1, α] = [α + 1, 1, α] ∩ [α, 0, α]

so that [α, 1, α] ≤∗ [α, 0, α]. �

How do the ideals of B compare with the ideals of A? The upper
right corner of the image of ΨA is the following (arrows go from bigger
to smaller in the ∗-order):

[0, 1, 1]

[0, 0, 1]

[2, 0, 0] [2, 1, 0] .

We claim that ΨA can be extended to B in the following way:

[0, 1, 1] [1, 1, 0] [1, 1, 1] [2, 1, 0] · · ·

[0, 0, 1] [0, 1, 0]

[2, 0, 0] [2, 1, 0] .

We first show the positive:

• [0, 0, 1] ≥∗ [0, 1, 0] since ρ1([0, 0, 1]) = [0, 1, 0];
• [0, 1, 1] ≥∗ [1, 1, 0] since ρ1([0, 1, 1]) = [1, 1, 0].

For the negative, it is enough to show that [0, 1, 1] 6≥∗ [0, 1, 0] and
that [0, 1, 0] is not bigger than any element of A.

For the former case, we note that η([0, 1, 0]) = 2 ∈ [0, 1, 0]v, and
thus there must be a t ∈ [0, 1, 1] such that [0, 1, 0] ⊆ ρt([0, 1, 1]) but
t + 2 /∈ [0, 1, 1]. However, N \ ([0, 1, 1]) = {2, 3}, and thus t can only
be 0 or 1: in both cases, ρt([0, 1, 1]) does not contain [0, 1, 0], and
[0, 1, 1] 6≥∗ [0, 1, 0].

Suppose now that J ≤∗ [0, 1, 0] for some J ∈ A. We first note that
the only shifts of [0, 1, 0] that are not equal to N are the 0-shift (i.e.,
the identity) and the 1-shift, which gives [1, 0, 0] (which is a divisorial
ideal). Hence, any element smaller than [0, 1, 0] must also be smaller
than [0, 1, 0] ∩ I, where I is a divisorial ideal. Now I is either in the
form [α, 0, α] or [α, 0, α−1]; the intersection of these ideals with [0, 1, 0]
gives only elements of B. Since all the elements of B (except [0, 1, 0])
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are smaller than [1, 1, 0], and [1, 1, 0] is smaller than [0, 1, 1], we have
J ≤∗ [0, 1, 1]. However, by Proposition 5.1, [0, 1, 1] is a minimal element
of A; since also [0, 1, 1] ≥∗ [0, 1, 0], J cannot exist.

There is a lot of freedom in the choice of the embedding on B: for
example, the image of B can be chosen to be a segment parallel to the
x-axis, or a segment parallel to the y-axis. We choose a middle ground,
with the image extending over two diagonals: more specifically, we
define

ΨB : B −→ N2

[α, 0, α] 7−→ (k + α, k + α)

[α, 0, α + 1] 7−→ (k + α, k + α + 1).

The only ideals to which we still have to find a place are now [k, 0, k],
[k, 0, k − 1] and [k, 1, k − 1]. It is worthwhile to note that, up to now,
we were able to construct a tight embedding of A ∪ B into N2.

We start with considering [k, 0, k] and [k, 0, k − 1]. We claim that
(as above, arrows go from bigger to smaller)

[k − 1, 0, k] [k, 0, k − 2]

[k, 0, k] [k, 0, k − 1] .

Indeed:

• [k − 1, 0, k] ≥∗ [k, 0, k − 2] follows from Proposition 5.1;
• ρ2([k, 0, k]) = [k, 0, k − 1], so [k, 0, k] ≥∗ [k, 0, k − 1];
• [k − 1, 0, k] is the canonical ideal, so [k − 1, 0, k] ≥∗ [k, 0, k];
• [k, 0, k−1] = [k−1, 0, k−1]∩[k, 0, k−2], and since [k−1, 0, k−1]

is divisorial we have [k, 0, k − 2] ≥∗ [k, 0, k − 1].

We claim that these are the unique relationships between [k, 0, k],
[k, 0, k − 1] and the other ideals.

Proposition 5.3. Let I ∈ G0(S) be an ideal that is comparable, in the
∗-order, with [k, 0, k] or with [k, 0, k− 1]. Then, I ∈ {[k, 0, k], [k, 0, k−
1], [k − 1, 0, k], [k, 0, k − 2]}.

Proof. Since [k, 0, k] ≥∗ [k, 0, k − 1], it is enough to show that, if
[k, 0, k] ≥∗ I or if I ≥∗ [k, 0, k − 1] then I is one of these four ideals.

Consider the shifts of [k, 0, k]: then,

• ρ4l([k, 0, k]) = [k − l, 0, k − l], which is divisorial when l > 0,
and equal to [k, 0, k] when l = 0;
• ρ4l+2([k, 0, k]) = [k − l, 0, k − l − 1], which is divisorial when
l > 0, and equal to [k, 0, k − 1] when l = 0.

Moreover, the intersection of [k, 0, k] or [k, 0, k − 1] with a divisorial
ideal is either divisorial or one of these two ideals; hence, no other
ideal is ∗-smaller than [k, 0, k].



18 DARIO SPIRITO

Suppose now that I ≥∗ [k, 0, k − 1], and let I = [α, β, γ]. We have
η([k, 0, k−1]) = 4k−3, and 4k−3 belongs to [k, 0, k−1]v = [k−1, 0, k];
hence, there is t ∈ I such that [k, 0, k − 1] ⊆ ρt(I) and 4k − 3 + t /∈ I.
Since F (S) = 4k−1, and since 4k−2 ∈ S ⊆ I (since 6 ∈ S and k ≥ 2),
t can be either 0 or 2.

If t = 0, then α = k and β = 0; hence, I is one of [k, 0, k], [k, 0, k−1]
and [k, 0, k − 2], and we have nothing new.

If t = 2, then γ = k; hence, I should be one of [k, 0, k], [k − 1, 0, k],
[k, 1, k], and [k − 1, 1, k]. The first two are known, while the other two
are divisorial, and thus they cannot give anything new. The claim is
proved. �

In particular, the previous proposition shows a way to extend Ψ,
keeping it a tight embedding, by adding a new dimension: we set

Ψ([k, 0, k]) := (0, 0, 1) and Ψ([k, 0, k − 1]) := (1, 0, 1),

while elements of A ∪ B go into the xy-plane.

The last ideal to consider is [k, 1, k − 1].

Proposition 5.4. [k, 1, k − 1] is a minimal element of (G0(S),≤∗).
Moreover, if J >∗ [k, 1, k−1], then J ∈ {[k−1, 0, k], [k, 0, k−2], [k, 1, k−
2]}.

Proof. Let I := [k, 1, k − 1] = {0, 4, 6, 8, . . . , 4(k − 1) + 2,→}. If t ∈ I,
t > 0, then ρt(I) is divisorial. Moreover, I is contained in any divisorial
ideal J of F0(S) (with the exception of S); therefore, I is minimal in
(G0(S),≤∗).

We have [k − 1, 0, k] ≥∗ [k, 0, k − 2] ≥∗ [k, 1, k − 2]; furthermore,
Iv = [k − 1, 0, k − 1], and thus I = Iv ∩ [k, 1, k − 2], and hence I ≤∗
[k, 1, k − 2].

Suppose now that J ≥∗ I for some J = [α, β, γ]. Then, there is a
t ∈ J such that I ⊆ ρt(J) but 4(k− 1) + 1 + t /∈ J (since 4(k− 1) + 1 ∈
Iv \ I). Hence, there must be an element of N \ J that is at least
4(k − 1) + 1; since the greatest element of N \ S is 4k − 1, this means,
as in Proposition 5.3, that N \ J contains at least one between 4k − 3
and 4k − 1, and t ∈ {0, 2}.

If t = 2, then γ = k, and so J is [k, 0, k] or [k − 1, k, 0]; however,
Proposition 5.3 shows that these ideals are not ∗-bigger than I.

If t = 0, then α = k and we have six possibilities: [k, 0, k − 2],
[k, 0, k− 1], [k, 0, k], [k, 1, k− 2], [k, 1, k− 1] and [k, 1, k]. However, this
ideals are either divisorial or have already been considered, and thus
we don’t get anything new. The claim is proved. �

The images of [k − 1, 0, k], [k, 0, k − 2] and [k, 1, k − 2] under Ψ lie
on the x-axis; thus, the natural way to extend Ψ to [k, 1, k − 1] is by
putting Ψ([k, 1, k − 1]) = (L, 0, 0), with L chosen bigger than the first
coordinate of Ψ(I), for every I ∈ A ∪ B. In particular, L = 2k + 1
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suffices. Another possibility is to introduce a new dimension, sending
[k, 1, k − 1] to (2, 0, 0, 1) (and leaving the rest in the space where the
fourth coordinate is 0).

Putting together all the results of this section, we get the following.

Theorem 5.5. Let S := 〈4, 6, 4k + 1, 4k + 3〉, with k ≥ 2. Then, the
map

Ψ: G0(S) −→ N3

[α, 1, α + 1] 7−→ (k − α− 1, k − α, 0) for 0 ≤ α ≤ k − 1

[α, 0, α + 1] 7−→ (k − α− 1, k − α− 1, 0) for 0 ≤ α ≤ k − 1

[α, 0, α− 2] 7−→ (k − α + 1, k − α, 0) for 2 ≤ α ≤ k

[α, 1, α− 2] 7−→ (k − α + 2, k − α, 0) for 2 ≤ α ≤ k

[α, 1, α] 7−→ (k + α, k + α, 0) for 0 ≤ α ≤ k − 1

[α, 1, α + 1] 7−→ (k + α, k + α + 1, 0) for 0 ≤ α ≤ k − 1

[k, 0, k] 7−→ (0, 0, 1)

[k, 0, k − 1] 7−→ (1, 0, 1)

[k, 1, k − 1] 7−→ (2k + 1, 0, 0)

is an order-reversing embedding. Moreover, the map

Ψ′ : G0(S) −→ N4

I 7−→ (Ψ(I), 0) if I 6= [k, 1, k − 1]

[k, 1, k − 1] 7−→ (2, 0, 0, 1)

is an order-reversing tight embedding.

The version for x ≡ 3 mod 4 is structurally analogous.

Theorem 5.6. Let S := 〈4, 6, 4k − 1, 4k + 1〉, with k ≥ 3. Then, the
map

Ψ: G0(S) −→ N3

[α, 1, α− 2] 7−→ (k − α, k − α + 1, 0) for 2 ≤ α ≤ k

[α, 0, α− 2] 7−→ (k − α, k − α, 0) for 2 ≤ α ≤ k

[α, 0, α + 1] 7−→ (k − α + 3, k − α + 2, 0) for 0 ≤ α ≤ k − 2

[α, 1, α + 1] 7−→ (k − α + 4, k − α + 2, 0) for 0 ≤ α ≤ k − 2

[α, 1, α] 7−→ (k + α + 2, k + α, 0) for 0 ≤ α ≤ k − 2

[α, 1, α + 1] 7−→ (k + α, k + α + 1, 0) for 0 ≤ α ≤ k − 2

[k, 0, k − 1] 7−→ (0, 0, 1)

[k − 1, 0, k − 1] 7−→ (1, 0, 1)

[k − 1, 1, k − 1] 7−→ (2k + 1, 0, 0)
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Figure 5. Growth of Ψ(G0(S)) in the family 〈4, 6, x, x+
2〉. Black circles are the image for 〈4, 6, 9, 11〉, gray circles
are the ideals added by 〈4, 6, 11, 13〉 and white circles are
the ideals added by 〈4, 6, 13, 15〉. The black circle on the
far right “moves” to be always on the right of the rest of
the image.

is an order-reversing embedding. Moreover, the map

Ψ′ : G0(S) −→ N4

I 7−→ (Ψ(I), 0) if I 6= [k − 1, 1, k − 1]

[k − 1, 1, k − 1] 7−→ (2, 0, 0, 1)

is an order-reversing tight embedding.

The existence of Ψ and Ψ′ allows to find the dimensions of G0(S).

Theorem 5.7. Let S := 〈4, 6, x, x+2〉, where x ≥ 9 is an odd number.

(a) dim(G0(S)) = 2.
(b) dimt(G0(S)) = 4.

Proof. (a) By Proposition 3.2(b) we have dim(G0(S)) ≥ 2. Let n ≥
2k + 1; then, Ψ(G0(S)) is contained into R := R1 ∪R2, where

R1 := {(x, y, 0) | 0 ≤ x, y ≤ n}

and

R2 := {(x, 0, z) | 0 ≤ x, z ≤ n}.
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We claim that R can be embedded into N2. Indeed, define

Θ: R −→ N2

(x, y, 0) 7−→ (x, (n+ 1)y + x)

(x, 0, z) 7−→ ((n+ 1)z + x, x).

Note that Θ is well-defined since R1∩R2 = {(x, 0, 0) | 0 ≤ x ≤ n} and
(x, 0, 0) get sent to (x, x) under both definitions.

Since 0 ≤ x ≤ n, we have (n + 1)y1 + x1 ≤ (n + 1)y2 + x2 if and
only if y1 ≤ y2; hence, Θ|R1 is an embedding. Analogously, Θ|R2 is
an embedding. If now P := (x1, y, 0) ∈ R1 \ R2 and Q := (x2, 0, z) ∈
R2 \ R1, then y 6= 0 6= z, and thus P and Q are not comparable;
moreover, (n + 1)z + x > x and (n + 1)y + x > x, and thus neither
Θ(P ) and Θ(Q) are comparable.

Therefore, Θ is an embedding of R into N2, and Θ◦Ψ embeds G0(S)
into N2. Hence, dim(G0(S)) ≤ 2, and thus dim(G0(S)) = 2, as claimed.

(b) The existence of Ψ′ shows that dimt(G0(S)) ≤ 4. For the sake
of simplicity, we shall give the proof only in the case x = 4k + 1
(but the case x = 4k + 3 is completely analogous). Let X := A ∪
{[k, 0, k], [k, 0, k−1]}. We claim that, up to permutation of coordinates,
any order-reversing tight embedding Φ of X into N3 coincides with the
Ψ defined in Theorem 5.5.

Without loss of generality, we can put Φ([k−1, 0, k]) = (0, 0, 0). The
ideal [k − 1, 0, k] covers three ideals, namely [k − 1, 1, k], [k, 0, k − 2]
and [k, 0, k]; since Φ is tight, they must be sent (in some order) to
(0, 1, 0) and (1, 0, 0) and (0, 0, 1); again without loss of generality, we
can suppose that Φ and Ψ coincide on them.

The ideal [k, 0, k − 1] is covered, in the ∗-order, by [k, 0, k − 2] and
[k, 0, k]; to respect the tightness of Φ, therefore, it must be sent to
(1, 0, 1). Likewise, [k−2, 0, k−1] is covered by [k, 0, k−2] and [k−1, 1, k]
and thus must be sent to (1, 1, 0).

Consider now [k, 1, k − 2]: it is covered by [k, 0, k − 2], and thus its
image has distance one from Φ([k, 0, k − 2]) = (1, 0, 0): hence, it must
be one between (2, 0, 0), (1, 1, 0) and (1, 0, 1). The second and the third
ones are impossible since Φ must be injective; hence, Φ([k, 1, k− 2]) =
(2, 0, 0). Similarly, [k−2, 1, k−1] is covered only by [k−1, 0, k−3] and
thus its image has distance 1 from (1, 1, 0); hence, it must be (2, 1, 0),
(1, 2, 0) or (1, 1, 1). The first one is impossible because (1, 1, 0) = Φ([k−
1, 1, k]) ≤ (2, 1, 0) while [k − 1, 1, k] 6≥∗ [k − 2, 1, k]; the third one is
impossible because (1, 0, 1) = Φ([k, 0, k − 1]) ≤ (1, 1, 1) while [k, 0, k −
1] 6≥∗ [k − 2, 1, k]; hence Φ([k − 2, 1, k]) = (1, 2, 0).

Step by step, we can thus construct all the image of X without any
choice (except the starting ones). Hence, Ψ is essentially the unique
tight embedding of X into N3.

Finally, consider [k, 1, k − 1]: it is covered only by [k, 1, k − 2], and
thus its image must be at distance one from Ψ([k, 1, k− 2]) = (2, 0, 0);
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hence, it can be only (3, 0, 0), (2, 1, 0) or (2, 0, 1). The first one would
imply that [k, 1, k − 1] ≥∗ [k − 1, 1, k − 3], which is false; the second
one is already the image of [k − 1, 0, k − 3]; the third one would imply
[k, 0, k − 1] ≥∗ [k, 1, k − 1]. Since all these cases are impossible, we
cannot embed tightly X ∪{[k, 1, k− 1]} into N3; hence, dimt(G0(S)) ≥
dimt(X ∪ {[k, 1, k − 1]}) > 3. It follows that dimt(G0(S)) = 4, as
claimed. �

Unlike what happens in the previous section, this representation
does not lead directly to the calculation of the number of star opera-
tions on these semigroups: the reason is that not all ideals are atoms.
For example, [0, 1, 0] = [0, 1, 1] ∩ [1, 1, 0], but [0, 1, 0] 6≤∗ [0, 1, 1] and
[0, 1, 0] 6≤∗ [1, 1, 0], so [0, 1, 0] is not an atom of S [17, Proposition 4.4].

However, we can at least recursively count the number of antichains
of G0(S). Let Sl := 〈4, 6, 9 + 2 · l, 11 + 2 · l〉; then, an application of
Theorems 5.5 and 5.6 (or a look at Figure 5) shows that

ω(G0(Sl+1)) = ω(G0(Sl)) + 30

for every l ≥ 0, and thus that

ω(G0(Sl)) = ω(G0(S0)) + 30 · l = 65 + 30 · l.
In particular, we have the following.

Proposition 5.8. Let Sl := 〈4, 6, 9 + 2 · l, 11 + 2 · l〉, where l ≥ 0 is an
integer.

(a) |Star(Sl)| ≤ 65 + 30 · l.
(b) Let ξ̃(n) be the number of semigroups Sl such that |Star(Sl)| ≤

n. Then, ξ̃(n) ≥ n− 65

30
≥ n

30
− 2.

It is reasonable to think that, like for the number of antichains,
also the cardinality of Star(S) verifies a similar linear growth; indeed,
a computer calculation (obtained by checking the image of the map
A defined in [17, discussion after Definition 3.2], implemented using
GAP’s package numericalsgps [5, 2]) shows that

|Star(Sl)| = 51 + 20 · l for 0 ≤ l ≤ 20.

However, we are not yet able to prove this formula.

6. Two pseudosymmetric families

In this section, we analyze two families of pseudosymmetric semi-
groups whose Frobenius number is small compared to the multiplicity.

Lemma 6.1. Let µ ≥ 3 be an integer.

(a) There is a unique pseudosymmetric semigroup S such that µ(S) =
µ and F (S) = 2µ− 2.

(b) There is a unique pseudosymmetric semigroup T such that µ(T ) =
µ and F (T ) = 2µ+ 2.
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Proof. Let S be a pseudosymmetric semigroup such that µ(S) = µ and
F (S) = 2µ− 2. None of the integers 1, . . . , µ− 2 belong to S, and each
one is smaller than F (S)/2 = µ−1; hence, F (S)−1, . . . , F (S)−(µ−2)
are in S. Since F (S) = 2µ−2, these numbers are exactly µ, . . . , 2µ−3,
and S = {0, µ, µ+1, . . . , 2µ−3, 2µ−1,→}, which is pseudosymmetric.

Analogously, if T is pseudosymmetric, µ(T ) = µ, and F (T ) = 2µ+2,
then T must be equal to {0, µ, µ+ 3, . . . , 2µ+ 1, 2µ+ 3,→}. �

Before starting with the analysis of the two cases, we fix a notation.
Let X := {x1, . . . , xn} be an ordered set of n elements. The standard
embedding of the power set P(X) of X is

Ψn : P(X) −→ Nn

A 7−→ (δ(A, x1), . . . , δ(A, xn))

where δ(A, xi) = 1 if xi ∈ A and δ(A, xi) = 0 if xi /∈ A. Clearly, Ψn is
a tight embedding.

6.1. The case F (S) = 2µ(S)− 2. Let now S := {0, µ, µ+ 1, . . . , 2µ−
3, 2µ− 1,→}. Let F := F (S) = 2µ− 2 and let τ := F/2 = µ− 1.

This case was treated in [17, Proposition 6.3]: the elements of G0(S)
are J := S ∪ {τ} and IA := S ∪ {F} ∪ A, for any A ⊆ {1, . . . , µ − 2}.
Moreover, J is the canonical ideal of S, while IA ≥∗ IB if and only if
A ⊇ B.

It follows that (G0(S),≤∗)\{J} is order-isomorphic to the power set
of {1, . . . , µ− 2}; hence, the map

G0(S) −→ Nµ−2

J 7−→ P

IA 7−→ Ψµ−2(A),

where Ψµ−2 is the standard embedding of {1, . . . , µ− 2} and P is any
point such that P > (1, . . . , 1), is an embedding. In particular, choosing
P = (2, 1, . . . , 1) the embedding is also tight, and we have the following.

Theorem 6.2. Let S := {0, µ, µ + 1, . . . , 2µ − 3, 2µ − 1,→}. Then,
dim(G0(S)) = dimt(G0(S)) = µ− 2.

Proof. The existence of Ψ shows that dim(G0(S)) ≤ dimt(G0(S)) ≤
µ − 2. Moreover, dim(G0(S)) ≥ dim(G0(S) \ {J}), which is µ − 2 by
[12, Theorem 10.4.4], since G0(S) \ {J} is isomorphic to the power set
of {1, . . . , µ− 2}. The claim is proved. �

The description of G0(S) also allows to prove that |Star(S)| = 1 +
ω(µ− 2) (see [17, Proposition 6.3]).



24 DARIO SPIRITO

6.2. The case F (S) = 2µ(S) + 2. Let now S := {0, µ, µ+ 3, . . . , 2µ+
1, 2µ + 3,→}. Let F := F (S) = 2µ + 2 and let τ := F/2 = µ + 1.
Clearly, N \ S = {1, . . . , µ− 1, τ, τ + 1, F}.

By Lemma 2.2, η(I) ∈ {τ, τ + 1, F} for every I ∈ G0(S). We distin-
guish four classes of ideals:

(1) η(I) = F . Then, I = S ∪ {τ} = MF .
(2) η(I) = τ . Then, I = S∪{τ+1, F}∪X, whereX ⊆ {2, . . . , µ−1}

(1 /∈ I since otherwise 1 + µ = τ ∈ I). Define AX := S ∪ {τ +
1, F} ∪ X: then, AvX = AX ∪ {τ}, so that each AX is non-
divisorial.

(3) η(I) = τ + 1 and τ /∈ I. Since τ = µ + 1 and τ + 1 = µ + 2
are not in I, we have 1, 2 /∈ I. Therefore, I = S ∪ {F} ∪ Y ,
with Y ⊆ {3, . . . , µ−1}. Each subset Y defines a non-divisorial
ideal; if BY := S ∪ {F} ∪ Y then by [17, Proposition 6.2(a)] we
have Bv

Y = BY ∪ {τ}.
(4) η(I) = τ + 1 and τ ∈ I. Then, 2 /∈ I; moreover, if 1 /∈ I then

I + τ ⊆ I, and I would be divisorial [1, Proposition I.1.16].
Therefore, I = S ∪ {1, τ, F} ∪Z, with Z ⊆ {3, . . . , µ− 1}; each
Z defines a non-divisorial ideal, and if CZ := S ∪ {1, τ, F} ∪ Z
then Cv

Z = CZ ∪ {τ + 1} (since CZ ∪ {τ + 1} is divisorial by
Lemma 2.2).

Let A, B, C be the sets of ideals AX , BY and CZ , respectively. Note
that A = Qτ and C = Qτ+1.

Clearly, if X ⊆ X ′ then AX = AvX ∩ AX′ , and thus AX ≤∗ AX′ .
Conversely, if X * X ′ and AX ⊆ ρt(AX′), then t > 0, and thus τ ∈
ρt(AX′); this implies that the ∗AX′ -closure of AX contains τ , and thus it
cannot be AX . Hence, AX 6≤∗ AX′ . Therefore, A (with the ∗-order) is
isomorphic to the power set of {2, . . . , µ−1}. With the same reasoning,
we see that the same happens for B and C. In particular, we have the
standard embeddings Ψµ−2 : A −→ Nµ−2, Ψµ−3 : B −→ Nµ−3 and
Ψµ−3 : C −→ Nµ−3.

To obtain the full picture of G0(S), we need now to show how ideals
of different classes compare under the ∗-order.

Suppose AX ≤∗ BY . Since τ ∈ AvX \ AX , there must be a t ∈ BY

such that I ⊆ ρt(BY ) and t + τ /∈ BY . The latter condition implies
t = 0 or t = 1; however, AX * BY (since τ +1 ∈ AX \BY ) and 1 /∈ BY .
Hence, AX 6≤∗ BY . In a similar way, we can see that, for every X, Y, Z,
we have CZ 6≤∗ BY and CZ 6≤∗ AX .

On the other hand, we claim that BY ≤∗ AX if and only if Y ⊆ X.
Indeed, if Y ⊆ X then BY = Bv

Y ∩AX ; however, if BY ⊆ ρt(AX), then
either t = 0 (and Y ⊆ X) or t > 0 (in which case Bv

Y ⊆ ρt(AX) would

not be significant for the calculation of B
∗AX
Y ).

To study the case of C, we need a notation. For each Z ⊆ {3, . . . , µ−
1}, let ν1(Z) := {z− 1 : z ∈ Z ∪ {µ}}. Then, we claim that AX ≤∗ CZ
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if and only if X ⊆ ν1(Z): indeed, if the latter is true then AX =
ρ1(CZ)∩AvX . On the other hand, if AX ≤∗ CZ , let t ∈ CZ be such that
t+AX ⊆ CZ and t+ τ /∈ CZ : the latter condition implies t = 1, which
forces AX ⊆ ρ1(CZ) and X ⊆ ν1(Z). The same reasoning shows that
BY ≤∗ CZ if and only if Y ⊆ ν1(Z).

We can now construct an embedding Ψ of G0(S) into Nµ−2. The
“smallest” elements are the ideals in B: we put

Ψ(BY ) := (0,Ψµ−3(Y )).

Then, there are the elements of A: we move them along the first di-
mension, and define

Ψ(AX) := Ψµ−2(X) + (1, 0, . . . , 0).

Clearly, Ψ(AX) ≥ Ψ(BY ) if and only if X ⊇ Y , and so if and only if
AX ≥∗ BY . The image of A is a cube extending from (1, 0, . . . , 0) to
(2, 1, . . . , 1); the class C will need to be parallel to another face of the
cube. For simplicity of notation, we choose

Ψ(CZ) := (Ψµ−3(Z), 2) + (1, 0, . . . , 0).

Then, the i-th component of Ψµ−3(Z) is exactly δ(ν1(Z), i), i.e., Ψµ−3(Z)i =
1 if and only if i ∈ ν1(Z), so that Ψ(AX) ⊆ Ψ(CZ) if and only if
X ⊆ ν1(Z), and analogously Ψ(BY ) ⊆ Ψ(CZ) if and only if Y ⊆ ν1(Z).

Hence, if P is any point such that P > (2, 1, . . . , 1, 2), the map

Ψ: G0(S) −→ Nµ−2

AX 7−→ Ψµ−2(X) + (1, 0, . . . , 0)

BY 7−→ (0,Ψµ−3(Y ))

CZ 7−→ (Ψµ−3(Z), 2) + (1, 0, . . . , 0)

MF 7−→ P

will be an embedding, and choosing (for example) P = (2, 2, 1, . . . , 1, 2)
it will also be tight.

Theorem 6.3. . Let S := {0, µ, µ + 3, . . . , 2µ + 1, 2µ + 3,→}. Then,
dim(G0(S)) = dimt(G0(S)) = µ− 2.

Proof. It is enough to repeat the proof of Theorem 6.2. �

We further note that every ideal of S is an atom (since |Iv\I| = 1 for
every I [17, Proposition 4.8]); hence, this description allow, in principle,
to calculate the number of star operations on T . Since this seems to
be quite hard to do, we just note that, since A = Qτ and C = Qτ+1,
by [17, Proposition 5.11] we have

|Star(S)| ≥ ω(µ− 2) + ω(µ− 3),

and in particular |Star(S)| grows super-exponentially in µ.
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Figure 6. The embedding of G0({0, 5, 8, 9, 10, 11, 13,→
}) into N3. White circle ares elements of B, gray circles
are elements of A, and black circles are elements of C.
The striped circle is MF (S).

7. Two individual examples

In this section we collect two examples of G0(S) for numerical semi-
groups S outside the families considered in the previous sections; both
highlight behaviour not found in the other cases we considered. Both
calculations – of which we present only the end result – were carried
out by using GAP, and in particular its package numericalsgps.

Example 7.1. Let S := 〈5, 6, 13〉 = {0, 5, 6, 10, 11, 12, 13, 15,→}. Then,
S is a pseudosymmetric numerical semigroup with multiplicity 5 and
Frobenius number 14. If x1, . . . , xk ∈ N \ S, denote by I(x1, . . . , xk)
the ideal S ∪ {x1, . . . , xk}. Then, the ∗-order on G0(S) is the following
(arrows goes from bigger to smaller):

I(7)

I(2, 7, 8, 14) I(1, 2, 7, 8, 14)

I(3, 8, 9, 14) I(3, 4, 8, 9, 14) I(1, 4, 7, 9, 14)

I(8, 14) I(8, 9, 14) I(4, 8, 9, 14) I(1, 7, 9, 14)

I(14) I(9, 14) I(4, 9, 14) I(1, 7, 14)

In particular, dim(G0(S)) = dimt(G0(S)) = 2.
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We also note that G0(S) is isomorphic (as a partially ordered set)
to G0(〈4, 9, 11〉) (see Figure 3). Moreover, as in that case the ideals of
Qτ (where τ := F (S)/2) form a square: in this case, it is composed
by the ideals I(3, 4, 8, 9, 14), I(4, 8, 9, 14), I(3, 8, 9, 14) and I(8, 9, 14).
However, the dimension and the position of the square differs in the
two cases.

Example 7.2. Let S := 〈4, 10, 15, 21〉. Then, S is the prototype of
the family of semigroups of the form Sl := 〈4, 10, 15 + 4 · l, 21 + 4 · l〉,
whose behaviour seems similar to the family considered in Section 5:
for example, experimentally we have

|Star(Sl)| = 1368 + 400 · l for 0 ≤ l ≤ 8.

Let

J := [0, 2, 2] := S∪(1+4N)∪(11+4N) = 4N∪(1+4N)∪(10+4N)∪(11+4N).

There is an embedding of G0(S) into N3 with the following image:

x

y

z

I1

I2

I3

L1

L2

In particular, using the same proof of Theorem 5.7, we have dim(G0(S)\
{J}) = 2 and dimt(G0(S) \ {J}) = 4.

On the other hand, J cannot be easily put in this picture: we have
I1 ≥∗ J ≥∗ I2 and J ≥∗ I3, and in the ∗-order there are no ideals
between I1 and J , nor between J and I2 or J and I3.

Indeed, G0(S) cannot even be tightly embedded in any Nn: the subset
{I1, L1, L2, J, I3} is a sublattice of G0(S) that is isomorphic to N5 (see
Figure 2), and thus the tight dimension of G0(S) is infinite.
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8. Further questions

The families we analyzed in the previous sections are, obviously, a
rather tiny section of all the numerical semigroups, and the two ex-
amples in Section 7 show more pathological behaviour. There are a
number of questions that can be posed on the general properties of the
∗-order of G0(S) with respect to S; the following list collects some.

• Is the dimension (and the tight dimension, when not infinite)
of G0(S) bounded by some function of the multiplicity?
• Which semigroups S satisfy dimt(G0(S)) <∞?
• Beyond semigroups of multiplicity 3 and pseudosymmetric semi-

groups of multiplicity 4, which are the other semigroups S with
dimt(G0(S)) = 2?
• Which semigroups S satisfy dim(G0(S)) = 2?
• If S is pseudosymmetric, is it true that dim(G0(S)) = dimt(G0(S))?
• If S is pseudosymmetric, does the inequality dimt(G0(S)) ≤
µ− 2 hold?
• Let µ ≥ 4. For which integers k there is a numerical semigroup

with multiplicity µ and dimt(G0(S)) = k? For which k it can
be chosen to be pseudosymmetric?
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