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Abstract. We introduce an order on the set of non-divisorial
ideals of a numerical semigroup S, and link antichains of this or-
der with the star operations on S; subsequently, we use this order
to find estimates on the number of star operations on S. We then
use them to find an asymptotic estimate on the number of nonsym-
metric numerical semigroups with n or less star operations, and to
determine these semigroups explicitly when n = 10.

1. Introduction

Star operations are a class of closure operations originally defined on
integral domains as a generalization of the so-called divisorial closure
(or v-operation) [11, 3]; subsequently, they have been generalized to
the context of semigroups in order to generalize certain ring-theoretical
properties [9]. In recent years, a subject of study has been the cardinal-
ity of the set of star operations: precise countings have been obtained
for the cases of pseudo-valuation domains [12], h-local Prüfer domains
[4] and some classes of Noetherian one-dimensional domains [5, 7]. More
generally, it has been studied when the set of star operations is finite
[6].

This paper follows the approach of the previous papers [14] and [15],
where the main problem studied was to find ways to estimate (or, if pos-
sible, to count precisely) the number of star operations on an arbitrary
numerical semigroup, and to deterimine explicitly all the numerical
semigroups with exactly n star operations. More specifically, in [14] it
was proved that, if n > 1, then there are only a finite number of nu-
merical semigroups with exactly n star operations, while [15] provided
an explicit formula for the cardinality of the set of star operations on
S when S has multiplicity 3.

The goal of this paper is to improve the estimates proved in [14],
with the dual objective to obtain an asymptotic bound for the number
of nonsymmetric numerical semigroups with n or less star operations
and to determine explicitly such semigroups in the case n = 10. This
is accomplished by studying a natural order on the set of nondivisorial
ideals (introduced and sketched in [15]) and linking star operations with
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the antichains of this order; this allows to establish several inequalities
between the size of Star(S) and the invariants of S.

2. Notation and basic facts

In analogy with [14] and [15], we shall follow the notation of [1]. For
further informations about numerical semigroups, the interested reader
may consult [13].

A numerical semigroup is a subset S ⊆ N such that 0 ∈ S, a+ b ∈ S
for every a, b ∈ S and such that N \S is finite. If a1, . . . , an are natural
numbers, 〈a1, . . . , an〉 denotes the semigroup generated by a1, . . . , an,
or, more explicitly, the set {λ1a1 + · · ·+ λnan : λi ∈ N}. The notation
S = {0, b1, . . . , bn,→} indicates that S contains 0, b1, . . . , bn and all
the integers bigger than bn.

An ideal I of S is a nonempty subset I ⊆ S such that i + s ∈ I for
every i ∈ I, s ∈ S; the maximal ideal of S is MS := S\{0}. A fractional
ideal of S is an I ⊆ Z such that d+ I is an ideal of S for some d ∈ Z.
We denote by F(S) the set of fractional ideals of S, and by F0(S) the
set of fractional ideals contained between S and N or, equivalently, the
set of fractional ideals whose minimal element is 0. For every fractional
ideal I, we have I − min(I) ∈ F0(S). The intersection of a family of
fractional ideals, if nonempty, is a fractional ideal; the union of a family
of fractional ideals is a fractional ideal, provided that there is an integer
smaller than every element of every ideal of the family. In particular,
the union of a family of ideals contained in N is an ideal.

The Frobenius number g(S) of a numerical semigroup S is the biggest
element of Z \S, while the degree of singularity of S, denoted by δ(S),
is defined as the cardinality of N \ S. The multiplicity µ(S) of S is the
least positive integer in S, i.e., the least element of MS.

If I, J are ideals of S, then (I−J) := {x ∈ Z : x+J ⊆ I} is an ideal
of S. The set (S−MS) \S is denoted by T (S), and its cardinality t(S)
is called the type of S. For every numerical semigroup S, g(S) ∈ T (S),
and hence t(S) is positive.

In analogy with integral domains, we define a star operation on S
as a map ∗ : F(S) −→ F(S), I 7→ I∗, such that, for any I, J ∈ F(S),
a ∈ Z, the following properties hold:

(a) I ⊆ I∗;
(b) if I ⊆ J , then I∗ ⊆ J∗;
(c) (I∗)∗ = I∗;
(d) a+ I∗ = (a+ I)∗;
(e) S∗ = S.

An ideal I such that I = I∗ is said to be ∗-closed. The set of ∗-closed
ideals is denoted by F∗(S), or F∗ if S is understood from the context.
We indicate with Star(S) the set of star operations of S; for every
numerical semigroup S, Star(S) is finite. If n > 1, then there are only
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a finite number of numerical semigroups S such that |Star(S)| = n [14,
Theorem 4.15].

The set of star operations has a natural ordering, where ∗1 ≤ ∗2 if
and only if I∗1 ⊆ I∗2 for every ideal I or, equivalently, if and only if
F∗1(S) ⊇ F∗2(S). Endowed with this ordering, the minimum of Star(S)
is the identity star operation (usually denoted by d), while the maxi-
mum is the star operation I 7→ (S − (S − I)), usually denoted by v.
Ideals that are v-closed are commonly called divisorial. We denote by
G0(S) the set of nondivisorial ideals I such that min I = 0, that is,
G0(S) := F0(S) \ Fv(S).

3. Ordering and antichains

Let I be an ideal of S. Then, I defines a star operation ∗I such that,
for every ideal J of S,

(1) J∗I := Jv ∩ (I − (I − J)) = Jv ∩
⋂

α∈(I−J)

(−α + I).

(For the equivalence of the two representations, see [14, Proposition
3.6].) Equivalently, ∗I can be defined as the biggest star operation ∗
such that I is ∗-closed. This definition allows to define a preorder on
the set of fractional ideals.

Definition 3.1. Let S be a numerical semigroup and let I, J ∈ F(S).
We say that I is ∗-minor than J , and we write I ≤∗ J , if ∗I ≥ ∗J or,
equivalently, if I is ∗J-closed.

However, ≤∗ is not an order on F(S). Indeed, if a ∈ Z, then a+ I is
∗-closed if and only if I is; therefore, ∗I = ∗a+I , so that I ≤∗ a+ I and
a+I ≤∗ I. Moreover, if I is a divisorial ideal, then ∗I = v. These are the
unique possibilities: that is, if I, J are nondivisorial ideals and ∗I = ∗J ,
then I = a + J for some a ∈ Z [14, Corollary 3.9]. In particular, if
I, J ∈ G0(S) and I 6= J , then ∗I 6= ∗J ; therefore, (G0(S),≤∗) is a
partially ordered set.

Let g = g(S) and let Mg := {a ∈ N : g − a /∈ S} =
⋃
{I ∈ F0(S) :

g /∈ I}. By [14, Corollary 4.5] (see also [8, Satz 4 and Hillsatz 5]), every
ideal I of S is ∗Mg -closed; in terms of the order, this means that Mg

is the maximum of (G0(S),≤∗). On the other hand, (G0,≤∗) does not
have (in general) a minimum, since the biggest star operation is v, and
we are considering only operations generated by nondivisorial ideals.
However, since G0 is finite, there are always minimal elements; these
are the ideals I such that F∗I = Fv ∪ {n + I : n ∈ Z}. For example,
if S = {0, µ,→}, then every ideal in the form I = {0, a,→} (with
1 < a < µ) is a minimal element of (G0,≤∗).
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More generally, if ∆ is a set of ideals of S, we can define a star
operation ∗∆ as ∗∆ := infI∈∆ ∗I , or more explicitly as

(2) J∗∆ :=
⋂
I∈∆

J∗I = Jv ∩
⋂
I∈∆

(I− (I−J)) = Jv ∩
⋂
I∈∆

⋂
α∈(I−J)

(−α+ I)

As before, ∗∆ can also be defined as the biggest star operation ∗ such
that every element of ∆ is ∗-closed; in particular, for any star oper-
ation ∗, we have ∗ = ∗F∗ , and thus this construction yields all star
operations. We call ∗∆ the star operation generated by ∆. However,
the order relation ≤∗ cannot be easily generalized to the power set of
G0(S), because, in general, it is possible that ∗∆ = ∗Λ while ∆ 6= Λ:
for example, if J is nondivisorial and ∗I-closed, then {I} and {I, J}
define the same star operation. To avoid this problem, we introduce
the following definition.

Definition 3.2. Let (P ,≤) be a partially ordered set. An antichain of
P is a set ∆ ⊆ P such that no two members of ∆ are comparable. We
denote by Ω(P) the set of antichains of P, and by ω(P) its cardinality.

Thus, we would hope that, if ∆ 6= Λ are antichains of (G0(S),≤∗),
then ∗∆ 6= ∗Λ. However, we will show in Example 3.3 that this is not
always true; before showing the example, we need some notation.

We denote by A and ∗ the two maps

A : Star(S) −→ Ω(G0(S))

∗ 7−→ max ∗(F∗ ∩ G0),

(where max ∗(∆) indicates the maximal elements of ∆ in the ∗-order)
and

∗ : Ω(G0(S)) −→ Star(S)

∆ 7−→ ∗∆.

Note that, if I ∈ A(∗) and J ≤∗ I, then J is ∗I-closed, and thus ∗-
closed; therefore, since F∗ uniquely determines ∗, the set A(∗) uniquely
determines ∗, and thus A is injective. Moreover, it is clear that ∗A(∗∆) =
∗∆ for every ∆ ⊆ G0(S); therefore, ∗◦A is the identity on Star(S), and
∗ is a surjective map. In particular, |Star(S)| ≤ ω(G0(S)). Note also
that ω(G0) is finite, because G0 is finite.

If ∆ = ∅, then ∗∅ = v; if ∆ = {I} is a single ideal, then F∗I = Fv ∪
{J ∈ G0(S) : J ≤∗ I} and thus A(∗I) = {I}. With this terminology,
asking if ∗∆ 6= ∗Λ whenever ∆ 6= Λ are antichains of G0(S) amounts to
asking ifA is a surjective map, or, equivalently, if A◦∗ is the identity on
Ω(G0(S)). The answer is in general negative, as the following example
shows.

Example 3.3. Let S := 〈5, 6, 7, 8, 9〉 = {0, 5,→}, I := S ∪ {3, 4},
J := S ∪ {1, 3}, L := S ∪ {4}. Calculations show that ∆ := {I, J} is
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an antichain of G0, and that L∗I = L∪{3} = I, L∗J = L∪{2}, so that
L is nor ∗I nor ∗J -closed. However,

L∗∆ = L∗I ∩ L∗J = L

and hence A(∗∆) must contain an ideal ≥∗ L. Therefore, A◦∗(∆) 6= ∆,
i.e., A ◦ ∗ is not the identity on Ω(G0(S)) (and actually ∆ 6= A(∗) for
every ∗ ∈ Star(S)).

4. Prime star operations and atoms

Definition 4.1. A star operation ∗ is prime if, whenever ∗ ≥ ∗1 ∧ ∗2,
we have ∗ ≥ ∗1 or ∗ ≥ ∗2.

Proposition 4.2. A prime star operation is principal, i.e., ∗ = ∗I for
some ideal I.

Proof. Suppose it is not, and consider the antichainA(∗) := {I1, . . . , In}.
Then, ∗ = ∗I1 ∧ · · · ∧ ∗In , and in particular ∗ ≤ ∗Ii for every i ∈
{1, . . . , n}.

However, an inductive argument applied to the definition of prime
star operation shows that ∗ ≥ ∗I for some I ∈ A∗; hence, ∗I ≤ ∗ ≤ ∗I ,
and ∗ = ∗I , that is, ∗ is a principal star operation. �

Definition 4.3. If I ∈ F0(S) is an ideal of S such that ∗I is prime,
we say that I is an atom of G0(S).

Note that every divisorial ideal I ∈ F0(S) is an atom, since ∗I = v
is prime.

Proposition 4.4. Let S be a numerical semigroup and I ∈ G0(S). The
following are equivalent:

(i) I is an atom of G0(S);
(ii) for every ∗1, ∗2 ∈ Star(S), I is ∗1 ∧ ∗2-closed if and only if I is
∗1- or ∗2-closed;

(iii) for every J1, J2 ∈ F0(S) such that ∗I ≥ ∗J1 ∧ ∗J2, we have
∗I ≥ ∗J1 or ∗I ≥ ∗J2;

(iv) if I = J1 ∩ J2, then I is ∗J1- or ∗J2-closed;
(v) for every ∗1, . . . ∗n ∈ Star(S), I is ∗1 ∧ · · · ∧ ∗n-closed if and

only if I is ∗i-closed for some i ∈ {1, . . . , n};
(vi) for every ∆ ⊆ F(S), I = I∗∆ if and only if I ≤∗ J for some

J ∈ ∆.

Proof. (ii) is just a restatement of the definition of atom, so it is equiv-
alent to (i). Clearly (ii =⇒ iii), while (iii =⇒ iv) since if I = J1∩J2 then
∗I ≥ ∗J1 ∧ ∗J2 . Suppose (iv) holds and suppose that I is ∗1 ∧ ∗2-closed.
Then, I = I∗1∧∗2 = I∗1 ∩ I∗2 , and thus, if Ji := I∗i , then I is ∗J1- or
∗J2-closed. However, ∗Ji ≥ ∗i, and thus I is ∗1- or ∗2-closed. Hence, (iv
=⇒ ii).
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(ii =⇒ v) follows by induction; to show (v =⇒ vi), we can suppose
∆ ⊆ F0(S); since F0(S) is finite, so is ∆. Hence, since ∗∆ = infJ∈∆ ∗J ,
if I = I∗∆ then I is ∗J -closed for some J ∈ ∆.

(vi =⇒ i) Suppose ∗I ≥ ∗1∧∗2, and let ∆1 := {J ∈ G0(S) : J = J∗1},
∆2 := {J ∈ G0(S) : J = J∗2}, ∆ := ∆1 ∪∆2. Then I = I∗∆ , and thus
I ≤∗ J for some J ∈ ∆: if J ∈ ∆1 (say), then ∗I ≥ ∗1, and I is an
atom. �

Corollary 4.5. Let S be a numerical semigroup and Γ ⊆ G0(S) a set of
atoms of G0(S). If ∆ 6= Λ are nonempty antichains of Γ, then ∗∆ 6= ∗Λ.

Proof. Suppose ∗∆ = ∗Λ; without loss of generality, there is a L ∈
Λ \∆. Then, L = L∗∆ ; since L is an atom, by Proposition 4.4(vi) there
is a J ∈ ∆ such that L ≤∗ J .

Since J = J∗Λ , with the same reasoning we obtain a L1 ∈ Λ such
that J ≤∗ L1; therefore, L ≤∗ L1. Since Λ is an antichain, with respect
to the ∗-order, we must have L = L1, and thus L = J . But J ∈ ∆
while L /∈ ∆; this is a contradiction, and ∗∆ 6= ∗Λ. �

Corollary 4.6. Let S be a numerical semigroup and Γ ⊆ G0(S) be the
set of atoms of G0(S). Then, |Star(S)| ≥ ω(Γ).

Proof. Apply Corollary 4.5: every nonempty antichain generates a dif-
ferent star operation, and the empty antichain generates the v-operation.

�

Thus, a way to estimate |Star(S)| is through finding atoms. The next
proposition estabilishes a useful criterion.

Proposition 4.7. Let S be a numerical semigroup and I ∈ G0(S).

(a) If, for every ∗1, ∗2 ∈ Star(S), we have I∗1 ⊆ I∗2 or I∗2 ⊆ I∗1,
then I is an atom.

(b) If I∗ is an atom for every ∗ ∈ Star(S), then I∗1 and I∗2 are
comparable for every pair ∗1, ∗2 of star operations.

Proof. (a) Suppose I is not an atom. Then, there are star operations
∗1, ∗2 such that ∗I ≥ ∗1 ∧ ∗2 but ∗I � ∗1 and ∗I � ∗2. Then, I 6= I∗1

and I 6= I∗2 , but I = I∗1∧∗2 = I∗1 ∩ I∗2 , so that I∗1 and I∗2 are not
comparable.

(b) If I∗1 and I∗2 are not comparable, let J := I∗1 ∩ I∗2 = I∗1∧∗2 .
Then, I∗i ⊆ J∗i ⊆ (I∗i)∗i = I∗i , and thus I∗i = J∗i =: Ji. By hypothe-
sis, J is an atom; by Proposition 4.4(iv), J is ∗Ji-closed for some i (say
i = 1). Then, since J1 is ∗1-closed, we have ∗1 ≤ ∗J1 and

J1 = J∗1 ⊆ J∗J1 = J,

and thus J = J1. In particular, J1 ⊆ J2, and I∗1 and I∗2 are comparable.
�

A result similar to the next result will be Proposition 5.3.
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Proposition 4.8. Let S be a numerical semigroup and I ∈ F0(S). If
|Iv \ I| = 1, then I is an atom of G0(S).

Proof. Immediate from Proposition 4.7(a), since I∗ is contained be-
tween I and Iv, and there are no ideals properly inbetween. �

Proposition 4.9. Let S be a numerical semigroup. The following are
equivalent:

(i) every ideal of S in F0(S) is an atom;
(ii) for every ideal I and every ∗1, ∗2 ∈ Star(S), the ideals I∗1 and

I∗2 are comparable;
(iii) the map A : Star(S) −→ Ω(G0(S)), ∗ 7→ A(∗), is bijective;
(iv) A ◦ ∗ is the identity on Ω(G0(S));
(v) for every antichain ∆ of G0(S), A(∗∆) = ∆;

(vi) |Star(S)| = ω(G0(S)).

Proof. (i =⇒ ii) follows from Proposition 4.7(b), since each I∗ is an
atom; (ii =⇒ i) is a direct consequence of Proposition 4.7(a).

(i =⇒ iii) Since A is injective, it is enough to show that it is surjec-
tive. Let ∆ be a nonempty antichain of G0(S), and consider the star
operation ∗∆: if A(∗∆) = Λ 6= ∆, then ∗Λ = ∗∆, against Corollary 4.5.

(iii ⇐⇒ iv ⇐⇒ v) follows from the discussion after Definition 3.2.
(iv =⇒ i) Suppose I ∈ F0(S) is not an atom: then I is not divisorial,

and there are ideals J1, J2 such that I = J1 ∩ J2 but I is not ∗J1- nor
∗J2-closed. The ideals J1 and J2 are not ∗-comparable: if J1 ≤∗ J2 (say),
then J1 = J

∗J2
1 and thus I would be ∗J2-closed, which is impossible.

Hence, ∆ := {J1, J2} is an antichain, and thus A(∗∆) = ∆ (since iv
⇐⇒ v).

Since I is ∗∆-closed, ∗∆ = ∗∆ ∧ ∗I = ∗∆∪{I}, and thus ∆ ∪ {I}
cannot be an antichain. However, I is not ∗-minor than each Ji, and
thus I ≥∗ Ji for some i. This would imply that Ji is not ∗-maximal in
F∗∆ , that is, Ji /∈ A(∗∆), a contradiction; therefore, I is an atom.

(iii ⇐⇒ vi) is a simple consequence of the finiteness of Star(S) and
Ω(G0(S)). �

5. The sets Qa
Probably the most important property of prime star operation is ex-

pressed in Corollary 4.5: different antichains, composed of atoms, gen-
erate different star operations. The goal of this section is to determine
other sets enjoying this property.

Definition 5.1. Let S be a numerical semigroup. For every a ∈ N \S,
let Qa(S) := {I ∈ F0(S) : a = sup(N \ I), a ∈ Iv}.

For every a ∈ N \ S, we define Ma as

Ma := {x ∈ N : a− x /∈ S} =
⋃
{I ∈ F0(S) : a /∈ I}.
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or, equivalently, as the biggest ideal in F0(S) that does not contain a
[14, Definition 4.1 and Lemma 4.2].

Proposition 5.2. Let S be a numerical semigroup and Qa := Qa(S).
Then:

(a) Qa is nonempty if and only if Ma is not divisorial;
(b) if Qa is nonempty, Ma is its ∗-maximum;
(c) if b ≤ a, then Mb ≤∗ Ma;
(d) if Qa = ∅ then Qb = ∅ for every b ≤ a;
(e) if a, g − a /∈ S, then Qa 6= ∅.

Proof. (a) If Ma is not divisorial, a ∈M v
a (by virtue of the maximality

of Ma), and thus Ma ∈ Qa. Conversely, if Ma is divisorial, let I ∈ F0(S)
be an ideal such that a /∈ I. Then, I ⊆ Ma, and thus Iv ⊆ M v

a = Ma,
and in particular a /∈ Iv. Hence, I /∈ Qa, which therefore must be
empty.

(b) follows from noting that I =
⋂
b∈N\IMb, and that each Mb is ∗Ma-

closed when b ≤ a; (c) follows from the equality Mb = (b−a+Ma)∩N
[14, Lemma 4.2].

(d) If Qa = ∅, then Ma is divisorial, and ∗Mb
≥ ∗Ma = v. Thus,

∗Mb
= v, Mb is divisorial and Qb = ∅ by point (a).

Finally, (e) follows from [14, Lemma 4.7]. �

A numerical semigroup S is said to be symmetric if g − a ∈ S for
every a ∈ N \ S. By [2, Proposition 2], S is symmetric if and only if
t(S) = 1, and by [1, Proposition I.1.15] this happens if and only if every
ideal of S is divisorial (equivalently, if and only if |Star(S)| = 1).

If a ∈ T (S) and S is not symmetric, then a ∈M v
a , and thus Qa 6= ∅.

Proposition 5.3. Let S be a numerical semigroup, and suppose that
I ∈ Qa. If |Ma \ I| ≤ 1, then I is an atom of G0(S).

Proof. Suppose I = J1 ∩ J2. Since a /∈ I, without loss of generality
we can suppose a /∈ J1; moreover, if b > a then b ∈ I, and so b ∈ J1.
Therefore, I ⊆ J1 ⊆ Ma, and since |Ma \ I| ≤ 1 we have J1 = I or
J1 = Ma. In the former case I is trivially ∗J1-closed; in the latter, we
have I ≤∗ Ma by Proposition 5.2(b), and thus I is again ∗J1-closed.
The claim follows applying condition (iv) of Proposition 4.4. �

When |Ma \I| ≥ 2, even if I ∈ Qa, it is possible that ∗I is not prime.
We digress to estabilish a general lemma.

Lemma 5.4. Let S, U be numerical semigroups, and I be an ideal of
S such that S ⊆ I ⊆ U ; let v be the divisorial closure of the S-ideals.
Then, I∗U = Iv ∩ U .
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Proof. Suppose I ⊆ −α + U . Then, α ∈ U ; however, since U is a
semigroup, U = (U − U), and thus U ⊆ −α + U . Therefore,

I∗U = Iv ∩
⋂

α∈(U−I)

(−α + U) ⊇ Iv ∩ U.

Since I∗U ⊆ U∗U = U , we have I∗U ⊆ U ∩ Iv, and thus the two sides
are equal. �

Example 5.5. Consider the semigroup S := 〈4, 6, 7, 9〉 = {0, 4, 6,→},
and let I := S ∪ {5}. Then, I is a semigroup and Iv = (S −M) =
S ∪{2, 3, 5}; in particular, I ∈ Q3. Let J1 := I ∪{2} and J2 := I ∪{3}:
both J1 and J2 are semigroups containing I, so that I∗Ji = Ji, and in
particular I is not ∗J1- nor ∗J2-closed. However, J1 ∩ J2 = I, and thus
I is (∗J1 ∧ ∗J2)-closed. Hence, I is not an atom of S.

This example could be generalized.

Corollary 5.6. Let S be a numerical semigroup, t := t(S), µ := µ(S),
g := g(S); suppose t ≥ 3 and g ≤ 2µ− 2. Then, S ∪ {g} is an atom of
S if and only if S = 〈4, 5, 6, 7〉.
Proof. If S = 〈4, 5, 6, 7〉, then M2 = S ∪ {1, 3}, and thus S ∪ {g} =
S ∪ {3} is an atom by Proposition 5.3 (see Example 5.21 for a deeper
analysis of this semigroup).

Suppose S 6= 〈4, 5, 6, 7〉, and let I := S ∪ {g}. Since µ > t ≥ 3, we
have µ ≥ 4. If g < µ (i.e., S = {0, µ,→} and g = µ− 1), consider the
ideals T2 := S ∪ {µ − 1, µ − 2} and T3 := S ∪ {µ − 1, µ − 3}: since
S 6= 〈4, 5, 6, 7〉, µ > 4, so that 2(µ − 3) ≥ µ − 1 and both T2 and T3

are semigroups. By Lemma 5.4, I∗Ti = Iv ∩ Ti = N ∩ Ti = Ti, while
I = T2 ∩ T3; by Proposition 4.4, I is not an atom of S.

Suppose µ < g < 2µ − 2. Then, µ − 1, µ − 2 ∈ T (S); let T1 :=
S ∪ {g, µ− 1} and T2 := S ∪ {g, µ− 2, 2µ− 4}. Then, both T1 and T2

are semigroups, T1∩T2 = I but I∗Ti = Ti∩ (S−M) contains µ− i and
thus it is different from I. Hence, I is not an atom of S.

Suppose g = 2µ − 2. If {µ + 1, . . . , 2µ − 3} ⊆ S, then T (S) =
{g, µ − 1}, and thus t = 2; therefore, under our hypothesis, there is a
τ ∈ {µ + 1, . . . , 2µ − 3} \ S. Then, τ ∈ T (S) and 2τ > g, and thus
T1 := S ∪ {g, τ} is a semigroup contained in S ∪ T (S) = (S −M), and
the same happens for T2 := S ∪ {µ − 1, g}. Again, I = T1 ∩ T2 but
I∗Ti = Ti, so that I is not an atom of S. �

We resume the analysis of the ∗-order on Qa.
Proposition 5.7. Let S be a numerical semigroup and Qa := Qa(S).
Let I, J ∈ Qa and ∆ ⊆ Qa.

(a) If I * J then a ∈ I∗J .
(b) If I * J for every J ∈ ∆ then a ∈ I∗∆.
(c) The ∗-order on Qa is coarser than the inclusion, i.e., if I ≤∗ J

then I ⊆ J .
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(d) Let ∆ 6= Λ be two nonempty subsets of Qa that are antichains
with respect to inclusion. Then, ∗∆ 6= ∗Λ.

Proof. (a) By definition,

I∗J = Iv ∩
⋂

γ∈(J−I)

(−γ + J).

If I * J , then 0 /∈ (J − I). Thus, for each γ ∈ (J − I), a ∈ −γ+J and,
since I ∈ Qa, a ∈ Iv. Therefore, a ∈ I∗J .

(b) is immediate from the above point, since I∗∆ =
⋂
J∈∆ I

∗J ; (c) is
just a reformulation of point (a).

(d) Suppose ∗∆ = ∗Λ; without loss of generality there is a I ∈ ∆ \Λ.
If I * J for every J ∈ Λ, then a ∈ I∗Λ , which is different from I = I∗∆ .
Otherwise, let J ∈ Λ such that J ⊇ I. Similarly, if there is no I ′ ∈ ∆
containing J , then a ∈ J∗∆ , which is different from J = J∗Λ . Thus, we
have I ⊆ J ⊆ I ′ for some I ′ ∈ ∆. Since ∆ is an antichain with respect
to the containment, we must have I = I ′, and thus I = J . But this is
impossible, since I /∈ Λ. �

Remark 5.8. Note that the ∗-order on Qa may really be different
from the containment: for example, consider S := {0, 5,→} and let
I := S ∪ {1}, J := S ∪ {1, 3}. Both I and J are in Q4, and I ⊆ J ; we
claim that I 6≤∗ J .

Indeed, Iv = N; suppose I ⊆ −γ + J . Then, γ ∈ J , and thus γ ∈
{0, 1, 3} or γ ≥ 5. If γ = 1 or γ = 3, then 1 /∈ −γ + J ; but if γ ≥ 5,
then N ⊆ −γ + J . It follows that I∗J = N ∩ J = J 6= I.

We shall denote by ωi(Qa) the number of antichains of (Qa,⊆), that
is, the number of antichains of Qa with respect to inclusion.

When P is the power set P({1, . . . , n}) of the finite set with n ele-
ments, ordered by inclusion, we denote the number of antichains of P
simply as ω(n). These numbers are called Dedekind numbers ; their
sequence grows super-exponentially, since each family of subsets of
{1, . . . , n} of size bn/2c is an antichain. More precisely, ω(n) is bounded
as follows (see [10]):(

n

bn/2c

)
≤ log2 ω(n) ≤

(
n

bn/2c

)(
1 +O

(
log n

n

))
.

If n is small, ω(n) can be calculated by hand: if n = 0, then the
antichains of P(∅) are the empty antichain and the antichain {∅} com-
posed of the only empty set. If n = 1, then P({1}) = {∅, {1}}, and thus
the antichains are the empty antichain, {∅} and the one formed by the
set {1}. If n = 2, then we have the empty antichain, {∅}, {{1}}, {{2}},
{{1}, {2}} and {{1, 2}}. Hence, ω(0) = 2, ω(1) = 3 and ω(2) = 6.

Corollary 5.9. Let S be a numerical semigroup and t = t(S). Then,
|Star(S)| ≥ ω(t− 1)− 1.
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Compare the similar Corollary 4.10 of [14], where it was proved the
bound |Star(S)| ≥ 2t − 1.

Proof. Consider the ideals IA := S∪A, with A ⊆ T (S)\{g}. If A 6= ∅,
then IA 6= S, and so T (S) ⊆ IvA; it follows that, in this case, IA ∈ Qg. By
Proposition 5.7(d), each nonempty antichain (with respect to inclusion)
of {IA : A ⊆ T (S) \ {g}, A 6= ∅} generates a different star operation;
however, the inclusion order is nothing but the order of the power set of
T (S) \ {g}, which has ω(t− 1) antichains. We must exclude the empty
antichain and the antichain corresponding to the empty set, so that we
have ω(t− 1)− 2 star operations. Moreover, each of these operations is
different from the v-operation, and thus |Star(S)| ≥ ω(t− 1)− 1. �

We cannot go much further by considering each Qa separetely; to
obtain better estimates, we must compare star operations generated
by ideals in different Qa.

Lemma 5.10. Let S be a numerical semigroup, and let I, J ∈ G0(S)
such that J ≤∗ I. If I ∈ Qa and J ∈ Qb, then a ≥ b.

Proof. The proof is the same as the proof of Proposition 5.7(a): if
a < b, then b belongs to both Jv and −α + I (for every α ∈ I − J),
and so b ∈ J∗I , and in particular J 6= J∗I , against the hypothesis
J ≤∗ I. �

The following is a generalization of Proposition 5.7(d).

Proposition 5.11. Let S be a numerical semigroup. Let ∆ ⊆ Qa, Λ ⊆
Qb two nonempty sets which are antichains with respect to inclusion.
If ∆ 6= Λ (in particular, if a 6= b) then ∗∆ 6= ∗Λ.

Proof. The case a = b is just Proposition 5.7. Suppose (without loss
of generality) that a > b.

Let I ∈ ∆, and let γ ∈ N, J ∈ Λ such that I ⊆ −γ + J . Since
γ + a ≥ a > b, we have a ∈ −γ + J , and thus a ∈ I∗Λ \ I, and
I∗Λ 6= I = I∗∆ . �

Corollary 5.12. Let S be a numerical semigroup. Then,

|Star(S)| ≥ 1 +
∑
a∈N\S

(ωi(Qa)− 1) ≥ 1 +
∑
a∈N\S

|Qa|.

Proof. It is enough to apply Proposition 5.11 to the nonempty an-
tichains of the Qa, and then add the v-operation. For the second in-
equality, note that every ideal of Qa is an antichain of Qa (in every
order). �

We can also prove a limited form of the above results for “mixed”
antichains, i.e., antichains whose elements come from different Qa.

Proposition 5.13. Let S be a numerical semigroup, and let x < y be
two positive integers such that:
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(1) x, y /∈ S;
(2) every integer w such that x < w < y is in S;
(3) Mx and My are not divisorial.

Let Λ,∆ be nonempty subsets of Qy that are antichains with respect to
inclusion, and suppose My /∈ Λ. Then:

(a) ∗Λ∪{Mx} 6= ∗∆;
(b) if Λ 6= ∆ then ∗Λ∪{Mx} 6= ∗∆∪{Mx}.

Proof. Claim 1 : y − x is the minimal element of My \ {0}.
Indeed, y− x ∈My because y− (y− x) = x /∈ S; on the other hand,

if 0 < β < y − x, then y > y − β > y − (y − x) = x, and thus, by
hypothesis, y − β ∈ S, so that β /∈My.

Claim 2 : Let I ∈ Qy \ {My}. Then, x ∈M∗I
x .

Suppose x /∈M∗I
x . Then, there is an α such that Mx ⊆ −α+ I while

x /∈ −α + I. We distinguish four cases:

(1) α = 0: then, Mx ⊆ I, against the fact that y ∈Mx \ I;
(2) 0 < α < y − x: then, x < x + α < y; however, x + α ∈ S ⊆ I,

contradicting x+ α /∈ I;
(3) α > y−x: then, x would be contained in −α+I, since I contains

each element bigger than y, but this is absurd;
(4) α = y − x: in this case,

x = sup(N \ (−α + I)) = sup(N \ ((−α + I) ∩ N)),

so that (−α+ I)∩N ⊆Mx; since Mx ⊆ −α+ I, it follows that
(−α+ I)∩N = Mx = (−α+My)∩N. Since I 6= My, there is a
β ∈My \ I; if β > α, then

−α + β ∈ [(−α +My) ∩ N] \ [(−α + I) ∩ N],

against the hypothesis. Thus α > β; this means that y > y−β >
y − α = x, and thus y − β ∈ S. But this contradicts the fact
that β ∈My while y /∈My.

We are now ready to prove (a). Since Λ is a nonempty antichain of
Qy \ {My}, we have x ∈ M∗Λ

x =
⋂
I∈ΛM

∗I
x . If ∆ does not contain My,

then by Claim 2 we have x ∈ M∗∆
x , while M

∗Λ∪{Mx}
x = Mx; assume

now that My ∈ ∆. Then, My is ∗-bigger than Mx and than every
I ∈ Qy \ {My}, and thus My is not ∗I-closed for every I ∈ Λ ∪ {Mx}.
Since My is an atom, it follows that My is not ∗Λ∪{Mx}-closed, while it
is ∗∆-closed. Therefore, ∗Λ∪{Mx} 6= ∗∆.

To show (b) we can proceed like in the proof of Proposition 5.7(d),
using the fact that y ∈ I∗Mx for every I ∈ Qy. �

To apply more clearly Propositions 5.11 and 5.13, we introduce the
following notation. For each star operation ∗, let qm(∗) be the biggest
integer x such that there is an I ∈ Qx such that I is ∗-closed; if x does
not exist, set qm(∗) := 0. Moreover, for an integer x, let Starx(S) be



13

the set of star operations such that qm(∗) = x. The following lemma
points out the main properties of qm.

Lemma 5.14. Let S be a numerical semigroup.

(a) If ∗ ∈ Star(S), then either qm(∗) = 0 or qm(∗) ∈ N \ S.
(b) If ∆ ⊆

⋃
x∈X Qx for some set X, then qm(∗∆) = max{x :

Qx ∩∆ 6= ∅}.
(c) If ∆ ⊆ Qx and ∆ 6= ∅, then qm(∗∆) = x.
(d) qm(v) = 0.

Proof. (a) If x := qm(∗) 6= 0, then there is an I ∈ Qx such that I = I∗;
however, Qx is nonempty if and only if Mx is nondivisorial (Proposition
5.2) and in particular x ∈ N \ S.

(b) Let y := max{x : Qx ∩ ∆ 6= ∅}. If I ∈ ∆ ∩ Qy, then I = I∗,
so qm(∗∆) ≥ y; on the other hand, if J ∈ Qz for some z > y, then
z ∈ J∗∆ , since z ∈ Jv (by definition of Qz) and z ∈ (−α + I) for any
I ∈ Qx with x < z and every α ≥ 0.

(c) follows directly from the previous point. For (d) it is enough to
note that, if I ∈ Qx, then by definition I 6= Iv. �

To simplify the statement of the next corollary, we say that a nonempty
subset Λ ⊆ G0(S) is good if one of the following two conditions holds:

(1) Λ is an antichain, with respect to inclusion, of Qy (for some
y ∈ N \ S);

(2) Λ = ∆∪ {Mx}, where ∆ is a nonempty antichain of Qy \ {My}
with respect to inclusion, and x, y are as in Proposition 5.13.

Corollary 5.15. Let S be a numerical semigroup, and let Λ1,Λ2 ⊆
G0(S) be two good sets. If ∗Λ1 = ∗Λ2, then Λ1 = Λ2.

Proof. The case in which both Λi are antichains of some Qyi is Propo-
sition 5.11.

Suppose Λ1 = ∆1 ∪ {Mx}, with ∆1 ⊆ Qy \ {My}; then, by Lemma
5.14(b), qm(∗∆1∪{Mx}) = sup{x, y} = y. Since ∗Λ1 = ∗Λ2 , it must be
qm(∗Λ2) = y; since Λ2 is good, still by Lemma 5.14, either Λ2 ⊆ Qy or
Λ2 = ∆2 ∪ {Mx} for some antichain ∆2 of Qy \ {My}. By Proposition
5.13, the former case is impossible, while the latter implies ∆2 = ∆1,
i.e., Λ2 = Λ1. The claim is proved. �

Corollary 5.15 can not be further extended to cover the case of the
antichains ∆ that are composed of arbitrary ideals in different Qa.
Indeed, let S := 〈5, 6, 7, 8, 9〉 = {0, 5,→}. For every I ∈ G0(S), Iv = N,
and thus G0(S) = Q4 ∪Q3 ∪Q2 ∪Q1. However, S ∪{4} is not an atom
(Corollary 5.6) and so, by Proposition 4.9, there are antichains ∆ 6= Λ
such that ∗∆ = ∗Λ.

Proposition 5.16. Let S be a numerical semigroup and let T (S) =
{τ1 < · · · < τt}; let x, y, a ∈ N \ S.
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(a) If x < y and Mx is not divisorial, then |Stary(S)| ≥ 2ωi(Qy)−3.
(b) If i 6= 1, t, then |Starτi(S)| ≥ 2ω(i− 1)− 3.
(c) |Starg(S)| ≥ 2ω(t− 1)− 5.
(d) If µ < a < g and g − a /∈ S, then ωi(Qa) ≥ ω(t− 1).
(e) |Star0(S)| ≥ 1.

Proof. (a) The existence of x implies the existence of an x′ ∈ N \ S
such that x′ < y and all integers between x′ and y are in S. We have
ωi(Qy)−1 nonempty antichains (with respect to inclusion) of Qy, each
of which induces a different star operation; by Proposition 5.13 and
Corollary 5.15, if Λ 6= {My} is one of these, then Λ∪{Mx′} gives a new
star operation ∗ with qm(∗) = y, so we can add other ωi(Qy)− 2 star
operations.

(b) Consider the ideals of the form S ∪ {x ∈ N : x > τi} ∪ A, for
A ⊆ {τ1, . . . , τi−1}. Since τi 6= g, all these are strictly bigger than S
and so are not divisorial, and they are in Qτi ; therefore, by Proposition
5.7, ωi(Qτi) ≥ ω(i− 1). By part (a), |Starτi(S)| ≥ 2ω(i− 1)− 3.

(c) We can use the same proof of the previous point, only noting that
the antichain composed of A = ∅ generates the v-operation, which is
not in Starg(S) but rather in Star0(S). In the same way, {∅} ∪ {Mx′}
generates a star operation in Starx′(S) rather than a star operation in
Starg(S).

(d) Suppose µ < a. Let i be such that τi−1 < a ≤ τi (with τ0 := 0).
If j < i, define ηj := τj. If j > i, define ηj := τj − kjµ, where kj ∈ N
is such that a − µ < τj − kjµ < a. For every A ⊆ {η1, . . . , ηt}, the set
IA := A ∪ S ∪ {x ∈ N : x > a} is an ideal, IA ∈ Qa and IA ⊆ IB if and
only if A ⊆ B; therefore, ωi(Qa) ≥ ω(t− 1).

(e) follows from the fact that v ∈ Star0(S). �

Corollary 5.17. Let S be a numerical semigroup. Then,

(3) |Star(S)| ≥ 2

[
t−1∑
i=1

ω(i)

]
− 3(t− 1).

Proof. If t = 2, then the right hand side of (3) is equal to 2ω(1)−3 = 3;
since S admits the three (different) star operations v, ∗Mg and ∗Mτ , the
inequality is proved.

Suppose t > 2 and let T (S) := {τ1, . . . , τt = g}. If 1 < i < t,
then by the previous proposition we have |Starτi(S)| ≥ 2ω(i − 1) − 3,
while |Starτt(S)| ≥ 2ω(t−1)−5. Moreover, Starτ1(S) and Star0(S) are
nonempty, so that

|Star(S)| ≥
∑
x

|Starx(S)| ≥ |Star0(S)|+|Starτ1(S)|+|Starg(S)|+
t−1∑
i=2

|Starτi(S)| ≥

≥ 2+2ω(t−1)−5+
t−1∑
i=2

(2ω(i−1)−3) = 2ω(t−1)−3+
t−2∑
i=1

(2ω(i)−3).



15

After a rearrangement, we obtain our claim. �

The proof above shows that the previous corollary does not give an
useful estimate in the case t = 2. However, yet when t = 3 we get

|Star(S)| ≥ 2(ω(2) + ω(1))− 3 · 2 = 2(6 + 3)− 6 = 12,

and when t = 4 we already have |Star(S)| ≥ 49.

Corollary 5.18. Let S be a numerical semigroup, and let t := t(S). If
τ > µ for every τ ∈ T (S), then

|Star(S)| ≥ (2t− 1) · ω(t− 1)− 3t+ 1.

Proof. Let T (S) := {τ1, . . . , τt = g}, with τ1 being the smallest ele-
ment. As in the proof of Corollary 5.17, we have

|Star(S)| ≥ |Star0(S)|+
t∑
i=1

|Starτi(S)|.

Clearly, |Star0(S)| ≥ 1, while |Starg(S)| ≥ 2ω(t−1)−5 by Proposition
5.16(c). If i 6= t, then by Proposition 5.16(d) we have ωi(Qτi) ≥ ω(t−1);
hence, |Starτ1(S)| ≥ ω(t − 1) − 1 by Proposition 5.7(d). On the other
hand, if i 6= 1, then Proposition 5.16(a) implies that |Starτi(S)| ≥
2ωi(Qτi)− 3 ≥ 2ω(t− 1)− 3. Therefore,

|Star(S)| ≥ 1 + [ω(t− 1)− 1] + [2ω(t− 1)− 5] + (t− 2)[2ω(t− 1)− 3] =

= (1 + 2 + 2t− 4)ω(t− 1)− 5− 3t+ 6 = (2t− 1)ω(t− 1)− 3t+ 1.

The claim is proved. �

The estimates in t, despite being useful, are not quite enough to
restrict the range of possible semigroups with a low number of star
operations; we would like instead to have estimates that depend on
µ or on g. The following propositions, analyzing different cases, tackle
this problems, mirroring and strenghtening [14, Propositions 4.11-4.14].
In the following, we will not give any direct estimate on the size of
Star(S), since they can be obtained patching together various results.
However, we will use the bounds we obtain here in Section 7, where we
will determine the semigroups with a small number of star operations.

Proposition 5.19. Let S be a numerical semigroup, and let ν :=⌈
µ−1

2

⌉
; let a ≤ g/2 be a positive integer such that a, g − a /∈ S.

(a) If a > µ, then ωi(Qa) ≥ ω(ν).
(b) If a > 2µ, then ωi(Qa) ≥ 2ω(ν)− 2.

Proof. Let X := {x1, . . . , xη} be the set of integers not belonging to
S and comprised between a − µ and a (extremes excluded). By [14,
Lemma 4.13], |X| ≥ ν.

(a) Each set A ⊆ X generates an ideal S ∪ {x ∈ N : x > a} ∪A, and
all of these are in Qa (since g−a /∈ S). Thus, the number of antichains
in Qa, with respect to inclusion, is at least ω(η) ≥ ω(ν).
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(b) For every xi ∈ X, xi > µ, since a > 2µ. Let yi := a − xi; then,
yi < µ, so that yi /∈ S and X ∩ Y = ∅. Let Y := {y1, . . . , yη} and let
I := S ∪ {x ∈ N : x > a}. For each A ⊆ X (respectively, A ⊆ Y ),
IA := I∪(A+S) is an ideal which does not contain a, and thus IA ∈ Qa;
moreover, IA ∩ X = A (resp., IA ∩ Y = A), so that if IA ⊆ IB then
A ⊆ B.

Therefore, each antichain of the power set of X, and each antichain of
the power set of Y (both with respect to inclusion), give rise to an an-
tichain ofQa (with respect to inclusion). Moreover, the empty antichain
and the antichain composed of the empty set belong to both power
sets, while all the others are different; therefore, ωi(Qa) ≥ 2ω(η)− 2 ≥
2ω(ν)− 2. �

If a ∈ N \ S is smaller than µ, we have to adopt a slightly different
method.

Proposition 5.20. Let S be a numerical semigroup and a be a positive
integer such that a < µ and g − a /∈ S. Then:

(a) ωi(Qa) ≥ ω(a− 1);
(b) if a < s < µ, then ωi(Qs) ≥ ω(s− 2).

Proof. (a) Define I := {0} ∪ {x ∈ N : x > a}. For each subset A ⊆
{1, . . . , a− 1}, I ∪A is a nondivisorial ideal of S, and it belongs to Qa.
Hence, Qa has at least ω(a− 1) antichains (with respect to ordering).

(b) Let s ∈ N such that a < s < µ, and define As := {1, . . . , s −
1} \ {s − a} and Is := S ∪ {x ∈ N : x > s}. We claim that, for every
B ⊆ As, the ideal J := Is ∪B ∪ {s− a} belongs to Qs.

Indeed, suppose s /∈ Jv. Then, there is a γ ∈ N such that J ⊆ −γ+S
but s /∈ −γ+S. In particular, since s = sup(N\J), it must be γ = g−s;
thus, −γ + (g − a) = s − a /∈ −γ + S. However, this would imply
J * −γ + S, against the hypothesis. Therefore, J ∈ Qs.

It now follows from Proposition 5.7 that ωi(Qs) ≥ ω(s− 2). �

We end this section by using the methods we developed to calculate
the number of star operations in one particular case.

Example 5.21. The star operations of S := 〈4, 5, 6, 7〉 = {0, 4,→}.
The ideals of F0(S) are in the form S ∪ A, where A ⊆ {1, 2, 3}, and

every such A is acceptable. Moreover, S ∪A is divisorial if and only if
A = ∅ or A = {1, 2, 3}. To ease the notation, we set I(a) := S ∪ {a}
and I(a, b) := S ∪ {a, b}.

Since Iv = N if I ∈ F0(S) and I is not divisorial, every ideal of G0(S)
belongs to Qa, for some a: to be specific,

• Q3 = {I(1, 2), I(1), I(2)};
• Q2 = {I(1, 3), I(3)};
• Q1 = {I(2, 3)}.
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I(1, 2)

I(2) I(1, 3) I(1)

I(2, 3) I(3)

Figure 1. Hasse diagram of G0(〈4, 5, 6, 7〉).

Since Ma = N\{a}, we have I(1, 2) = M3, I(1, 3) = M2 and I(2, 3) =
M1. Hence, I(1, 2) is the maximum of G0(S) and I(1, 2) ≥∗ I(1, 3) ≥∗
I(2, 3). Since I(3) = I(2, 3) ∩ I(1, 3), we also have I(1, 3) ≤∗ I(3). If I
is equal either to I(2, 3) or to I(3), and 0 ∈ −a+ I, then either a = 0
or N ⊆ −a + I; therefore, I(2, 3) and I(3) are minimal elements of
(G0,≤∗).

By Proposition 5.7, I(1) and I(2) are not ∗-comparable. If (−a +
I(1)) ∩ N ∈ G0(S), then a is equal either to 0 or to 1; therefore
I(3) ≤∗ I(1), and since I(1) ∩ I(3) = S there are no other ∗I(1)-closed
ideals. In the same way, the unique ∗I(2)-closed ideals in G0(S) are I(2)
and I(2, 3). The last ideal to be considered is I(1, 3). By the proof of
Proposition 5.11, I(1, 3) is not ∗-bigger than I(1) and I(2) and, by the
above reasoning, nor is ∗-minor than them. In conclusion, we get the
Hasse diagram of (G0(S),≤∗), which is pictured in Figure 1.

Every I(a) is in Qb, for some b, and |Mb \ I(a)| = 1; therefore,
applying Proposition 5.3, every principal star operation is prime, and
by Proposition 4.9 the number of star operations on S is equal to
the number of antichains of (G0(S),≤∗). Counting, we see that G0(S)
contains 7 antichains with two or more elements: adding 6 principal star
operations and the empty antichain (corresponding to the v-operation),
we get |Star(S)| = 14.

6. The pseudosymmetric case

A semigroup S is called pseudosymmetric if g(S) is even and T (S) =
{g, g/2} or, equivalently, if g(S) is even and g−a ∈ S for every a ∈ N\S,
a 6= g/2.

Proposition 6.1. Let S be a pseudosymmetric semigroup. The unique
minimal element of G0(S) is S ∪ {g}.

Proof. Let I := S ∪ {g} and let τ := g/2. It is enough to show that
I is ∗J -closed for each nondivisorial ideal J ∈ F0(S). If g /∈ J , then
J = S ∪ {τ} = Mg is the maximum of (G0,≤∗).
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Suppose g ∈ J . If τ /∈ J , then I = J ∩ (S −M); since (S −M) is
divisorial, I is ∗J -closed. Suppose τ ∈ J and consider the ideal L :=
(J − (J − I)); note that it contains g since J contains all the integers
greater or equal than g. If τ /∈ L, then I = L ∩ (S −M) is ∗J -closed.
Otherwise, τ + (J − I) ⊆ J . However,

(J − I) = (J − (S ∪ {g})) = (J − S) ∩ (J − g) = J

(the last equality coming from (J − S) = J and g ∈ J); therefore,
τ + J ⊆ J . By [1, Proposition I.1.16], this would imply that J is
divisorial, against our assumption. Therefore, I must be ∗J -closed. �

Proposition 6.2. Let S be a pseudosymmetric semigroup, and let τ :=
g/2. Then:

(a) if I ∈ F0(S), I 6= S and τ /∈ I, then Iv = I ∪ {τ};
(b) if I, J ∈ Qτ , then I ≥∗ J if and only if I ⊇ J .

Proof. (a) By [1, Proposition I.1.16], and since τ ∈ T (S) (so that
I 6= Iv by [14, Proposition 3.11]), it is enough to show that τ + (I ∪
{τ}) ⊆ (I ∪ {τ}). However,

τ + (I ∪ {τ}) = τ + ({0} ∪M ∪ (I \ S) ∪ {τ}) =

= {τ, g} ∪ (τ +M) ∪ (τ + (I \ S)).

The first two sets are contained in I ∪ {τ} because τ ∈ (S −M). If
now x ∈ I \ S, then either x > τ (and so x + τ > g and x + τ ∈ S)
or x < τ , and so τ − x /∈ S (otherwise τ ∈ I); in the latter case,
g − (τ − x) ∈ S, but g − (τ − x) = τ + x, and thus x+ τ ∈ S ⊆ I.

(b) If I ≥∗ J , then I ⊇ J by Proposition 5.7. Suppose J ⊆ I. Then,

J∗I ⊆ Jv ∩ I = (J ∪ {τ}) ∩ I = J

since τ /∈ I. Hence, ∗J ≥ ∗I . �

A direct consequence of this proposition is a direct formula for the
number of star operations in a particular class of semigroups.

Proposition 6.3. Let S := {0, µ, µ+ 1, . . . , 2µ− 3, 2µ− 1,→}, where
µ ≥ 3. Then, |Star(S)| = 1 + ω(µ− 2).

Proof. It is clear that g := g(S) = 2µ− 2. Let τ := g/2 = µ− 1; then,
T (S) = {g, τ}, so that S is pseudosymmetric.

If I ∈ F0(S) is an ideal not containing g, then I is either S or S∪{τ}.
Moreover, if (S −M) ⊆ I, then every element greater than τ is in I
and thus τ + I ⊆ I, and it follows from [1, Proposition I.1.16] that any
such I is divisorial. By Proposition 6.2, if I contains g but not τ , then
Iv = I ∪ {τ}. Define IA := S ∪ A ∪ {g}. Then,

G0 = {S ∪ {τ}} ∪ {IA : A ⊆ {1, . . . , µ− 2}}.
By Propositions 5.3 and 4.8 every ideal is thus an atom; by Proposition
4.9, |Star(S)| = ω(G0).
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The ideal Mg = S ∪ {τ} generates the identity. Moreover, each IA is
in Qτ ; by Proposition 6.2(b), ∗IA ≥ ∗IB if and only if IA ⊇ IB, i.e., if
and only if A ⊇ B.

Therefore, if ∆ is an antichain of G0, then either ∆ = {Mg} or
∆ is an antichain of P({1, . . . , µ − 2}). Hence |Star(S)| = ω(G0) =
1 + ω(P{1, . . . , µ− 2}) = 1 + ω(µ− 2). �

7. Explicit calculation

In this section, we shall use the estimates we built in the previous
sections to determine explicitly all the numerical semigroups S such
that 2 ≤ |Star(S)| ≤ 10.

Case 1. µ(S) = 3.
We shall use the following.

Theorem 7.1[15, Theorem 7.6]. Let S = 〈3, 3α + 1, 3β + 2〉 be a nu-
merical semigroup. Then, |Star(S)| =

(
α+β+1
2α−β

)
.

Equivalently, numerical semigroups of multiplicity 3 with exactly n
star operations are in bijective correspondence with binomial coeffi-
cients

(
a
b

)
such that

(
a
b

)
= n and a+ b ≡ 1 mod 3 (see [15, Proposition

8.2]).
Suppose x :=

(
a
b

)
is a binomial coefficient such that x ≤ 10. Then,

a ≤ 10; the unique possibilities with a+ b ≡ 1 mod 3 are the following.

•
(
α+β+1
2α−β

)
=
(

3
1

)
= 3: then, α = 1 and β = 1, so S = 〈3, 4, 5〉.

•
(
α+β+1
2α−β

)
=
(

4
3

)
= 4: then, α = 2 and β = 1, so S = 〈3, 5, 7〉.

•
(
α+β+1
2α−β

)
=
(

5
2

)
= 10: then, α = 2 and β = 2, so S = 〈3, 7, 8〉.

•
(
α+β+1
2α−β

)
=
(

6
1

)
= 6: then, α = 2 and β = 3, so S = 〈3, 7, 11〉.

•
(
α+β+1
2α−β

)
=
(

7
6

)
= 7: then, α = 4 and β = 2, so S = 〈3, 8, 13〉.

•
(
α+β+1
2α−β

)
=
(

9
1

)
= 9: then, α = 3 and β = 5, so S = 〈3, 10, 17〉.

•
(
α+β+1
2α−β

)
=
(

10
9

)
= 10: then, α = 6 and β = 3, so S = 〈3, 11, 19〉.

Suppose now µ > 3. If |Star(S)| ≥ 2, S is not symmetric; therefore,
we can suppose t(S) > 1, and thus there is an τ such that τ, g− τ /∈ S
and 0 < τ ≤ g/2.

Case 2. τ 6= g/2 and µ > 3.
Let λ := g − τ ; by hypothesis, g > λ > g/2, and in particular

τ 6= λ. The set Qλ contains at least two elements: Mλ and Iλ :=
S ∪ {x ∈ N : x > λ} (which is indeed different from Mλ: if λ > µ
then g − kµ ∈ Mλ \ Iλ for some k, while if λ < µ <, since 1 < λ, we
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have λ− 1 ∈Mλ \ Iλ). Hence, ωi(Qλ) ≥ 3 and, by Proposition 5.16(a),
|Starλ(S)| ≥ 3. Moreover, also Qg contains at least two elements (S ∪
(τ+S) and S∪(λ+S)) and thus |Starg(S)| ≥ 3. Adding the v-operation
we get at least 7 star operations.

If τ > µ, then by Proposition 5.19 ωi(Qτ ) ≥ ω(ν) = ω(2) = 6, so we
get 5 = 6−1 new star operations; suppose τ < µ. If τ = µ−1, then we
have (by Proposition 5.20) ωi(Qτ ) ≥ ω(µ− 2) ≥ ω(2) and again 5 new
star operations; if τ < µ−1, then ωi(Qµ−1) ≥ ω(µ−3) and thus (again
by Proposition 5.16(a)) we have |Starµ−1(S)| ≥ 2ω(1)− 3 = 3 new star
operations, for a total of 10. To them we must add ∗Mτ , putting the
total to 11.

Therefore, no semigroups arise from this case.

Case 3. τ = g/2 and µ > 3.
We can suppose that no other couple {b, g− b} is out of S, for other-

wise we fall in the previous case; therefore, S must be pseudosymmetric.
By Propositions 5.19 and 5.20, |Star(S)| is bigger than at least one

between ω(ν)− 1 and ω(µ− 3)− 1 (where ν :=
⌈
µ−1

2

⌉
); if µ ≥ 6, then

both ν and µ − 3 are at least 3, and thus |Star(S)| ≥ ω(3) − 1 = 19.
Hence, we can suppose µ equals to 4 or 5.

If τ < µ − 1, then g < 2µ − 2, and thus µ − 1 ∈ T (S). But this
contradicts the pseudosymmetricity of S.

If τ = µ−1, then we can apply Proposition 6.3 to obtain |Star(S)| =
1 + ω(µ− 2). If µ = 4 we have |Star(S)| = 1 + ω(2) = 7, while if µ = 5
we have |Star(S)| = 1 + ω(3) = 21.

If τ > 2µ, then by Proposition 5.19 ωi(Qτ ) ≥ 2ω(ν)− 2 ≥ 2 · 6− 2 =
10; hence, we get 9 star operations, which becomes 11 if we count
d = ∗Mg and the v-operation. Therefore, τ < 2µ.

Thus, we need to consider the case µ + 1 ≤ τ ≤ 2µ − 1. If τ =
2µ−1 then the same proof of Proposition 5.19(b) shows that ωi(Qτ ) ≥
2ω(ν)− 2 ≥ 2 · 6− 2 = 10, and as before |Star(S)| ≥ 11.

Suppose µ = 5. Let X := {b ∈ N \ S : τ − µ < b < τ} and
Y := {b ∈ N \ S : τ < b < τ + µ}; we have |X| ≥ 2, and since S is
pseudosymmetric |X|+|Y | = µ−1 = 4. If |X| = 3, then by the proof of
Proposition 5.19 |Starτ (S)| ≥ ω(3)− 1 = 19 and |Star(S)| > 10. Hence
|X| = |Y | = 2; let Y = {b, b′}, with b < b′. If Ia := S∪{x ∈ N : x > a},
then Iτ ∪ A is a non-divisorial ideal for every A ⊆ X; moreover, Ib′ ,
Ib′ ∪ {b} and Mb′ are non-divisorial (and different because τ ∈ Mb′),
and likewise Ib and Mb are different. Adding also Mg (note that g > b′

since g− τ = τ > µ), we have 10 non-divisorial ideals and thus 11 star
operations.

Suppose µ = 4; we have to check the cases τ = 5 and τ = 6. The
latter case is impossibile since it would imply g = 2τ = 12; hence, sup-
pose τ = 5. An easy calculation shows that S must be equal to 〈4, 7, 9〉,
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and that N \ S = {1, 2, 3, 5, 6, 10}. As before, Q5 has 6 antichains, and
induces 5 star operations; moreover, Q6 has two elements (S∪{1, 5, 10}
and S∪{1, 3, 5, 10}) and thus it generates 3 (different) star operations.
Adding the identity (generated by Mg) and the v-operation we get 10
star operations. Finally, I := S∪{g} = S∪{10} is not in any Qx (since
Iv = I ∪{5}), and by Proposition 6.1 it is a minimal element of G0(S);
it follows that ∗I 6= ∗∆ for every ∆ ⊆ G0(S), ∆ 6= {I}. Hence we get
also an eleventh star operation.

Therefore, the pseudosymmetric case yields we get the unique pos-
sibility µ = 4 and τ = µ− 1, that is, S = 〈4, 5, 7〉.

We have proved the following:

Theorem 7.2. Let S be a numerical semigroup which is not symmet-
ric. Then, |Star(S)| ≤ 10 if and only if one of the following holds:

(a) S = 〈3, 4, 5〉, and |Star(S)| = 3;
(b) S = 〈3, 5, 7〉, and |Star(S)| = 4;
(c) S = 〈3, 7, 11〉, and |Star(S)| = 6;
(d) S = 〈3, 8, 13〉, and |Star(S)| = 7;
(e) S = 〈4, 5, 7〉, and |Star(S)| = 7;
(f) S = 〈3, 10, 17〉, and |Star(S)| = 9;
(g) S = 〈3, 7, 8〉, and |Star(S)| = 10;
(h) S = 〈3, 11, 19〉, and |Star(S)| = 10.

8. Estimates

The work done in Section 7 can, in principle, be replicated to find
explicitly, given an arbitrary n, the number of numerical semigroups
whose number of star operations is comprised between 2 and n. How-
ever, the efficiency of this enterprise decreases with the increase of n,
partly due to the increase of the number of the different cases we have
to consider, and partly due to the fact that we must consider more
and more different special cases, each one requiring a different way
to find “good” estimates. In this section, we use a different point of
view, concentrating on finding an asymptotic estimate on the number
of semigroups with n or less star operations.

Let ξ(n) denote the number of numerical semigroups with exactly
n star operations: by [14, Theorem 4.15], ξ(n) < ∞ for every n > 1.
Denote also by Ξ(n) the number of numerical semigroups S with 2 ≤
|Star(S)| ≤ n; i.e., Ξ(n) =

∑n
i=2 ξ(i). Recall also that, given two func-

tions f and g, the notation f(n) = O(g(n)) means that lim supn→∞
f(n)
g(n)

<
∞.

We start with an improvement of Propositions 4.11 and 4.12 of [14].

Proposition 8.1. Let S be a non-symmetric semigroup. Then, |G0(S)| ≥
δ(S), and thus |Star(S)| ≥ δ(S) + 1.
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Proof. Let g := g(S). Since S is not symmetric, there is a τ ∈ T (S) \
{g}; let λ := min{τ, g − τ} (note that it may be τ = g − τ , and that
both λ and g − λ are not in S). Consider the three sets

A := {x ∈ N \ S : x < λ, λ− x /∈ S},

B := {x ∈ N \ S : x < λ, λ− x ∈ S},

C := {x ∈ N \ S : x ≥ λ}.
Since N\S = A∪B∪C, we have δ(S) = |A|+ |B|+ |C|; we will define
for every x ∈ N \ S a different non-divisorial ideal Ix, whose definition
depends on whether x ∈ A, x ∈ B or x ∈ C.

If x ∈ C, then define Ix := Mx; since x ≥ λ and g − λ /∈ S, by
Proposition 5.2 Ix ∈ G0(S).

If x ∈ A, then x ∈ Mλ [14, Lemma 4.2]; we define Ix := S ∪ {z ∈
N : z > x, z ∈Mλ}; then, sup(N \ Ix) = λ, and thus Ix is not divisorial
by [14, Lemma 4.7]. Moreover, sup(Mλ \ Ix) = x, and thus Ix 6= Iy if
x 6= y are in A.

If x ∈ B, consider y := g − λ + x. Then, y = g − (λ − x), and
since λ − x ∈ S, we have y /∈ S; moreover, g − λ < y < g. Let
Ix := S ∪ {z ∈ N : z > y}; then, g belongs to Ix while τ does not, and
thus Ix is not divisorial. Moreover, sup(N \ Ix) = y (so that Ix 6= Iw if
x 6= w are in B) and My contains g− λ (since x /∈ S); hence, Ix 6= My.

It is straightforward to see that Ix 6= Iy if x and y belong to different
subsets; therefore, {Ix : x ∈ N\S} is a set of δ(S) non-divisorial ideals.
In particular, |G0(S)| ≥ δ(S), and |Star(S)| ≥ δ(S) + 1 (since we can
also consider the v-operation). �

Let d(n) be the number of numerical semigroups such that δ(S) = n.
It has been proved that there is a constant C such that

lim
n→∞

d(n)

φn
= C,

where φ = 1+
√

5
2

is the golden ratio [16]; thus, there is a constant D
such that d(n) ≤ Dφn. Hence,

Ξ(n) ≤
n−1∑
i=1

d(i) ≤
n−1∑
i=1

Dφi ≤ Dφ

φ− 1
φn−1 = D′φn.

Thus, Proposition 8.1 implies Ξ(n) = O(φn) = O(en log φ).
A more effective way to find estimates is to separate semigroups by

multiplicity; that is, instead of working directly with Ξ(n), we will use
instead the functions Ξµ(n) that count the numerical semigroups S
with multiplicity µ and 2 ≤ |Star(S)| ≤ n. The two needed steps are,
thus, to find a bound on Ξµ(n) and for the maximum admissible µ. We
start from the latter.
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Proposition 8.2. For every ε > 0 there is an integer n0 such that, for
every n ≥ n0, if S is a nonsymmetric numerical semigroup such that
|Star(S)| ≤ n, then

(4) µ(S) ≤
[

2

log(2)
+ ε

]
log log(n).

Proof. Let S be a nonsymmetric semigroup; then, there is a x such that
x, g − x /∈ S: if x < µ we have |Star(S)| ≥ ω(µ − 3) (by Proposition
5.20), while if x > µ, we have |Star(S)| ≥ ω(ν) (by Proposition 5.19),
where ν :=

⌈
µ−1

2

⌉
.

The quantity on the right hand side of (4) goes to infinity; therefore,
for large n, we can restrict ourselves to µ(S) ≥ 5, so that ν ≤ µ − 3
and |Star(S)| ≥ ω(ν).

For any integer k, no two subset of {1, . . . , k} of cardinality dk/2e
are comparable; therefore, every family of such subsets is an antichain
of P({1, . . . , k}). Hence,

log2 ω(k) ≥
(

k

dk/2e

)
.

For large a, the binomial coefficient
(

2a
a

)
is asymptotic to 22a

√
πa

; in par-

ticular, for every ε0 and large enough a (where “large enough” depends
on ε0) we have

(
2a
a

)
> 2a(2−ε0). Thus, for every ε1 there is a ν0 such that,

if ν1 ≥ ν0, we have

log2(ω(ν1)) ≥ 2
ν1
2

(2−2ε1) = 2ν1(1−ε1).

Fix an ε, and take an ε1 <
ε

A+ε
, where A := 2

log(2)
; find ν0 as above,

let n′0 := ω(ν0), and take a n ≥ n′0. Moreover, choose the maximal µ
such that n ≥ ω

(
µ−1

2

)
, so that ν := µ−1

2
≥ ν0. For any semigroup S

such that |Star(S)| ≤ n, we must have µ(S) ≤ µ and ν(S) ≤ ν. Hence,

log2(n) ≥ log2(ω(ν)) ≥ 2ν(1−ε1),

i.e., log(n) ≥ log(2) · 2ν(1−ε1). Taking logarithms,

log log(n) ≥ log(2)·
[
log2(log(2) · 2ν(1−ε1))

]
= log log(2)+log(2)(ν(1−ε1)).

Isolating ν, we have

ν ≤ 1

(1− ε1) log(2)
(log log(n)− log log(2)),

and substituing ν with µ−1
2

we have

µ(S) ≤ µ ≤ 2

log(2)(1− ε1)
(log log(n)− log log(2)) + 1 =

=
A

1− ε1
log log(n) +

[
1− A

1− ε1
log log(2)

]
.
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The inequality ε1 <
ε

A+ε
implies that

ε > ε1(A+ ε) =⇒ ε >
ε1A

1− ε1
;

therefore,

A+ ε− A

1− ε
> A+

ε1A

1− ε1
− A

1− ε
= A+

ε1 − 1

1− ε1
A = 0,

or equivalently A + ε > A
1−ε . Hence, there is a n0 ≥ n′0 such that,

whenever n ≥ n0, we have

(A+ ε) log log(n) ≥ A

1− ε1
log log(n) +

[
1− A

1− ε1
log log(2)

]
.

In particular, for n ≥ n0, we have

µ(S) ≤ (A+ ε) log log(n) =

[
2

log(2)
+ ε

]
log log(n),

as claimed. �

Proposition 8.3. Let n and µ be integers. Then,

Ξµ(n) ≤
(
n− 1

µ− 1

)
≤ (n− 1)µ−1.

Proof. A semigroup S of multiplicity µ can be described by its Apéry
set Ap(S, µ) := {0, a1, . . . , aµ−1}, where ai := kiµ + i is the minimal
element of S congruent to i modulo µ (see for example [13, Chapter
1] for a deeper discussion of Apéry sets). In particular, it is uniquely
described by the ordered sequence (k1, . . . , kµ−1).

Each ki is a positive integer (since there are no elements in S smaller
than µ) and the sum k1 + · · ·+kµ−1 is equal to δ(S): indeed, if x ∈ N\S
then x = yiµ+i, with 0 ≤ yi < ki. The number of sequences (k1, . . . , kq)
such that k1 + · · ·+kq ≤ δ is equal to the number of ordered partitions
of δ + 1 into q + 1 positive integers, or equivalently to the number of
ways to divide a line of δ + 1 points into q + 1 nonempty lines, which
in turn is equal to the number of ways to place q separators among δ
holes; that is, it is equal to the number of subsets of {1, . . . , δ} with q
elements, i.e., it is equal to

(
δ
q

)
.

Since |Star(S)| ≥ δ(S) + 1, we have our claim. �

We are ready to prove our best estimate.

Theorem 8.4. For any ε > 0,

Ξ(n) = O

[
exp

((
2

log(2)
+ ε

)
log(n) log log(n)

)]
.
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Proof. Let Aε := 2
log(2)

+ ε. For every ε, and large enough n, we have

Aε log log(n) > 4; therefore, for large n,

Ξ(n) =
∞∑
µ=3

Ξµ(n) =

Aε log log(n)∑
µ=3

Ξµ(n).

Using Proposition 8.3, this becomes

Ξ(n) ≤
Aε log log(n)∑

µ=3

Ξµ(n) ≤
Aε log log(n)∑

µ=3

nµ−1 ≤ nAε log log(n).

Since this holds for large n, the claim follows by writing nAε log log(n) =
exp (Aε log(n) log log(n)). �
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