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1. Introduction

The notion of star operation was born in the context of the multi-
plicative theory of ideals, as a generalization of the divisorial closure
(or v-operation) [11, 6]. The problem of counting the number of star
operations on a given domain has been recently solved in some special
cases, such as h-local Prüfer domains [7], pseudo-valuation domains [13]
and some classes of one-dimensional Noetherian domains [8, 9]. In the
latter case, there is often much interplay between local rings and their
value semigroups (see e.g. [4, 12, 2, 3]); in particular, semigroup rings
in the form K[[XS]] := K[[{Xs : s ∈ S}]] (where K is a field and S is a
numerical semigroup) are a rich source of examples, either for studying
star operations [8, 9] or the related case of semiprime operations [19].

Star operation were subsequently defined on semigroups as a way to
generalize certain ring-theoretic definitions [10]. The study of the case
of numerical semigroups was undergone in [18], where it was shown
that, if n > 1, there are only a finite number of numerical semigroups
with exactly n star operations; however, this result was obtained not
through a precise counting, but through estimates. Like in other cases
[14, 15, 5], the problem of obtaining an exact counting becomes simpler
if we fix a low multiplicity: since the cases of multiplicity 1 and 2 are
trivial (the former containing only N and the latter consisting only of
symmetric semigroups, which have only one star operation), the goal of
this paper is to tackle semigroups of multiplicity 3. We prove (Theorem
7.6) a direct formula for the number of star operations in terms of
the generators of the semigroup. which in particular allows, for any
integer n, to obtain fairly quickly an explicit list of the semigroups of
multiplicity 3 with exactly n star operations.

The structure of the paper is as follows: Section 3 introduces an order
on the set of non-divisorial ideals of a numerical semigroup S; in Section
4 is introduced a graphical representation of the ideals between S and
N, which is used in Section 6 to find explicitly the set of ideals closed
by a principal star operations. Section 7 contains the main theorem of
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the paper, while Section 8 presents some estimates on the number of
numerical semigroups with exactly n star operations.

2. Background and notation

Like [18], the notation and the terminology of this paper follow [4];
for further informations about numerical semigroups, the reader may
consult [16].

A numerical semigroup is a subset S ⊆ N such that 0 ∈ S, a+ b ∈ S
for every a, b ∈ S and such that N \S is finite. If a1, . . . , an are natural
numbers, ⟨a1, . . . , an⟩ denotes the semigroup generated by a1, . . . , an,
i.e., the set {λ1a1 + · · ·+ λnan : λi ∈ N}.

A fractional ideal (or simply an ideal) of S is a nonempty subset
I ⊆ S such that i+s ∈ S for every i ∈ I, s ∈ S, and such that d+I ⊆ S
for some d ∈ Z. We denote by F(S) the set of fractional ideals of S,
and by F0(S) the set of fractional ideals contained between S and N
or, equivalently, the set of fractional ideals whose minimal element is 0.
Note that, if I is an ideal, Iis bounded below and I −min(I) ∈ F0(S).
The intersection of a family of ideals, and the union of a finite family
of ideals, is an ideal. If I, J are ideals of S, then (I − J) := {x ∈ Z :
x+ J ⊆ I} is an ideal; moreover, if I, J ∈ F0(S) then (I − J) ⊆ N.

The Frobenius number g(S) of a numerical semigroup S is the biggest
element of Z \ S, while the degree of singularity δ(S) is the cardinality
of N \ S. The multiplicity µ(S) is the smallest positive integer in S.

A star operation on S is a map ∗ : F(S) −→ F(S), I 7→ I∗, such
that, for any I, J ∈ F(S), a ∈ Z, the following properties hold:

(a) I ⊆ I∗;
(b) if I ⊆ J , then I∗ ⊆ J∗;
(c) (I∗)∗ = I∗;
(d) a+ I∗ = (a+ I)∗;
(e) S∗ = S.

An ideal I such that I = I∗ is said to be ∗-closed. The set of ∗-closed
ideals is denoted by F∗(S); ∗ is uniquely determined by F∗(S), and
even by F∗(S) ∩ F0(S). The set of star operation on S is denoted by
Star(S).

Star(S) has a natural ordering, where ∗1 ≤ ∗2 if and only if I∗1 ⊆ I∗2

for every ideal I or, equivalently, if and only if F∗1 ⊇ F∗2 . With this
ordering, its minimum is the identity star operation (usually denoted
by d), while the maximum is the star operation I 7→ (S − (S − I)),
usually denoted by v. Ideals that are v-closed are commonly said to
be divisorial. We denote by G0(S) the set of nondivisorial ideals I such
that min I = 0, that is, G0(S) := F0(S) \ Fv(S).
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3. Ordering and antichains

Every set ∆ of ideals of S defines a star operation ∗∆ such that, for
every ideal J of S,

(1) J∗∆ := Jv ∩
∩
I∈∆

(I − (I − J)) = Jv ∩
∩
I∈∆

∩
α∈(I−J)

(−α+ I).

(For the equivalence of the two representations, see [18, Proposition
3.6 ].) Equivalently, ∗∆ can be defined as the biggest star operation ∗
such that every element of ∆ is ∗-closed. We call ∗∆ the star operation
generated by ∆. Denoting ∗{I} as ∗I , we see that ∗∆ = infI∈∆ ∗I . It
is rapidly seen that ∗I = ∗a+I for every ideal I and every integer a,
so that we can always suppose ∆ ⊆ F0(S), or even ∆ ⊆ G0(S), since
∗I = v when I is divisorial.

A major problem is to find conditions under which two different sets
of ideals generate different star operations. In general, it is possible
that ∗∆ = ∗Λ while ∆ ̸= Λ: the simplest example is maybe the case
Λ = ∆ \ {J}, where J is a divisorial ideal. The non-unicity persists
even if we discard divisorial ideals: in fact, whenever J is ∗I-closed,
both {I} and {I, J} define the same star operation.

Definition 3.1. Let S be a numerical semigroup and let I, J ∈ G0(S).
We say that I is ∗-minor than J , and we write I ≤∗ J , if ∗I ≥ ∗J or,
equivalently, if I is ∗J-closed.

By [18, Theorem 3.8], if I, J ∈ G0(S) and I ̸= J then ∗I ̸= ∗J . In
particular, ≤∗ is antisymmetric, and so it is an order on G0(S).

By [18, Corollary 4.5], (G0,≤∗) has a maximum, Mg := {x ∈ N :
g − x /∈ S}, but it has not (in general) a minimum, since the biggest
star operation is v, and we are considering only operations generated
by non-divisorial ideals. However, since the set G0 is finite, there are
always minimal elements: more precisely, I is a minimal element if and
only if F∗I = Fv∪{n+I : n ∈ Z}. For example, if S = {0, µ, . . .}, then
every ideal in the form I = {0, a, . . .} (with 1 < a < µ) is a minimal
element of (G0,≤∗).

If a star operation ∗ closes an ideal I, then each ideal ∗-minor than
I is ∗-closed. It follows that the set A(∗) := max∗(F∗ ∩G0) is uniquely
determined by ∗ (where max∗ denotes the maximum with respect to
the ≤∗-ordering). The set A(∗) is an example of antichain:

Definition 3.2. Let (P ,≤) be a partially ordered set. An antichain of
P is a set ∆ ⊆ P such that no two members of ∆ are comparable.

Let Ω(P) be the set of antichains of P . By the previous observations,
we have an injective map A : Star(S) −→ Ω(G0(S)), given by ∗ 7→
A(∗); conversely, (1) defines a map ∗ : Ω(G0(S)) −→ Star(S) which
sends ∆ into ∗∆. It is clear that ∗A(∗∆) = ∗∆ for every ∆ ⊆ G0(S);
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therefore, ∗ ◦ A is the identity on Star(S), and ∗ is a surjective map.
We shall show in Corollary 6.5 that, when µ = 3, A and ∗ are bijective.

4. The graphical representation

The remainder of this article will deal excusively with semigroups of
multiplicity 3. The following trivial observation is the basis of all our
method.

Proposition 4.1. Let S be a numerical semigroup of multiplicity 3,
and I a fractional ideal of S. Then, there are uniquely determined
a, b, c ∈ Z such that I = (3a + 1 + 3N) ∪ (3b+ 2 + 3N) ∪ (3c + 3N). If
I ∈ F0(S), then c = 0.

Proof. Since I is a fractional ideal of S, I is bounded below. Let a′, b′, c′

be the minimal element of I congruent (respectively) to 1, 2 and 0
modulo 3: defining a, b, c as the integers such that a′ = 3a+1, b′ = 3b+2
and c′ = 3c we obtain what we need, since 3 ∈ S implies that if x ∈ I
then also x + 3 ∈ I. If moreover I ∈ F0(S), then 0 ∈ I, so that c ≤ 0,
but I ⊆ N, and thus c ≥ 0. �

In particular, the above proposition applies when I = S: in this case,
we use α and β instead of a and b, that is, we shall put S = (3α+ 1+
3N)∪ (3β+2+3N)∪3N. In particular, we have S = ⟨3, 3α+1, 3β+2⟩.

Let I ∈ F0(S). If I = (3a + 1 + 3N) ∪ (3b + 2 + 3N) ∪ 3N, then we
set [a, b] := I. We note that N = [0, 0] and S = [α, β].

Proposition 4.2. Let S = ⟨3, 3α+1, 3β+2⟩ be a numerical semigroup
of multiplicity 3, and suppose that α ≤ β.

(a) If I = [a, b] ∈ F0(S), then 0 ≤ a ≤ α, 0 ≤ b ≤ β and −α ≤
b− a ≤ α.

(b) Conversely, if a, b are integers, 0 ≤ a ≤ α, 0 ≤ b ≤ β and
b− a ≤ α, then I = [a, b] for some I ∈ F0(S).

Proof. (a) Suppose I = [a, b]. Since I ⊆ N, a, b ≥ 0 and, since S ⊆ I,
we have 3α + 1, 3β + 2 ∈ I, and thus a ≤ α, b ≤ β. In particular,
b− a ≥ 0− α = −α. If b− a > α, then

3a+ 1 + 3α + 1 = 3(a+ α) + 2 < 3(a+ b− a) + 2 < 3b+ 2

and thus 3a+ 1 + 3α+ 1 /∈ I, while we should have 3a+ 1 + 3α+ 1 ∈
3a+ 1 + S ⊆ I + S ⊆ I. Hence b− a ≤ α.

(b) Let I := (3a+1+3N)∪ (3b+2+3N)∪N; we have to prove that
I is indeed an ideal, and to do this it is enough to show that I + 3,
I + 3α + 1 and I + 3β + 2 belong to I. Clearly I + 3 ⊆ I; for 3α + 1,
note that

3b+ 2 + 3N+ 3α + 1 = 3(b+ α + 1) + 3N ⊆ S
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since b + α + 1 ≥ α + 1 ≥ 0, while 3α + 1 + 3N ⊆ I since a ≥ α.
Moreover,

3a+ 1 + 3N+ 3α + 1 = 3(a+ α) + 2 + 3N ⊆ I

since a+α ≥ a+ b− a = b. Analogously, 3a+1+3N+3β+2 ⊆ I and
3N+ 3β + 2 ⊆ I, while

3b+ 2 + 3N+ 3β + 2 = 3(b+ β + 1) + 1 + 3N ⊆ I

since b+ β + 1 ≥ β ≥ α ≥ a. �
Simmetrically, we have:

Proposition 4.3. Let S = ⟨3, 3α+1, 3β+2⟩ be a numerical semigroup
of multiplicity 3, and suppose that α ≥ β.

(1) If I = [a, b] ∈ F0(S), then 0 ≤ a ≤ α, 0 ≤ b ≤ β and −β ≤
a− b ≤ β + 1.

(2) Conversely, if a, b are integers, 0 ≤ a ≤ α, 0 ≤ b ≤ β and
a− b ≤ β + 1, then I = [a, b] for some I ∈ F0(S).

Proof. It is enough to repeat the proof of Proposition 4.2. �
Suppose S is a numerical semigroup of multiplicity 3. If I = [a, b] ∈

F0(S), then we can represent I by the point (a, b) in the lattice Z×Z of
the integral points of the plane, and Propositions 4.2 and 4.3 determines
the image of F0(S): firstly, the bounds 0 ≤ a ≤ α and 0 ≤ b ≤ β shows
that it will be contained in the rectangle whose vertices are [0, 0], [0, β],
[α, 0] and [α, β]. Moreover, since each “ascending” diagonal (i.e., each
diagonal going from the lower left to the upper right of the rectangle) is
characterized by the quantity b−a, we see that if α ≤ β then the image
of F0(S) will lack the upper left corner of the rectangle (the points with
b− a > α) while if α ≥ β then we have to “cut” the lower right corner.
In the case α = β, F0(S) will be represented by the whole rectangle
(that will, indeed, be a square). Thus, F0(S) will be represented by a
polygon vaguely similar to a trapezoid, like the one showed in Figure
4; we shall often indentificate an ideal with the point corresponding to
it in this graphical representation.

Proposition 4.4. Let S be a numerical semigroup of multiplicity 3 and
let [a, b], [a′, b′] be ideals in F0(S). Then:

(a) [a, b] ⊆ [a′, b′] if and only if a ≥ a′ and b ≥ b′;
(b) [a, b] ∩ [a′, b′] = [max{a, a′},max{b, b′}];
(c) [a, b] ∪ [a′, b′] = [min{a, a′},min{b, b′}].

Proof. Straightforward. �
Definition 4.5. Let S = ⟨3, 3α + 2, 3β + 2⟩.

• Σ0 is the ascending diagonal that contains S = [α, β], i.e., the
diagonal such that b− a = β − α.

• Σ+ := {[a, b] ∈ F0(S) : b− a > β − α}
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Figure 1. Graphical representation of the ideals of a
semigroup of multiplicity 3: above, the case α ≤ β; below,
the case α ≥ β.

• Σ− := {[a, b] ∈ F0(S) : b− a < β − α}

The notation Σ+ and Σ− is chosen to highlight the position of the
two sets in the graphical representation.

Lemma 4.6. Let S be a numerical semigroup of multiplicity 3. The
sets Σ+, Σ−, Σ0, Σ+ ∪ Σ0 and Σ− ∪ Σ0 are closed by intersections.

Proof. Σ0 is linearly ordered, so this case is trivial.
Let [a, b], [a′, b′] ∈ Σ+, and suppose without loss of generality a ≤ a′,

b ≥ b′ (if b ≤ b′, then [a, b] ⊇ [a′, b′]). Then [a, b] ∩ [a′, b′] = [a, b′], and
b′ − a ≥ b′ − a′ > β − α, and thus [a, b′] ∈ Σ+.

For Σ−, in the same way, if [a, b] ∩ [a′, b′] = [a, b′], then b′ − a ≤
b− a < β − α and [a, b′] ∈ Σ−.

If [a, b] ∈ Σ+ and [a′, b′] ∈ Σ0, then b′ = a′+β−α and b > a+β−α;
hence min{b, b′} ≥ min{a, a′}+ β − α and [a, b] ∩ [a′, b′] ∈ Σ+ ∩ Σ0.



STAR OPERATIONS ON NUMERICAL SEMIGROUPS: THE MULTIPLICITY 3 CASE7

Figure 2. Action of the shifts.

Analogously, if [a, b] ∈ Σ− and [a′, b′] ∈ Σ0, then min{b, b′} ≤
min{a, a′}+ β − α and [a, b] ∩ [a′, b′] ∈ Σ− ∩ Σ0. �

5. Shifting ideals

Definition 5.1. If I ∈ F0(S) and k ∈ I, the k-shift of I, denoted by
ρk(I), is the ideal (I − k) ∩ N.

It is clear that, if ρk(I) is defined, then it is contained in F0(S), since
0 belongs to ρk(I). Since 3k ∈ S ⊆ I for every k ∈ N, the 3k-shift (and
in particular the 3-shift) is always defined.

It is straightforward to see that, if a, a + b ∈ I, then ρb(ρa(I)) =
ρa+b(I). Therefore, applying repeatedly the 3-shift, we can always write
ρk(I) as ρr◦ρq3(I), where r ∈ {0, 1, 2} is congruent to k modulo 3. Hence,
the study of the shifts reduces to the study of ρ1, ρ2 and ρ3.

Lemma 5.2. Let S be a numerical semigroup of multiplicity 3 and let
I = [a, b] be an ideal in F0(S).

(a) ρ3(I) = [max{0, a−1},max{0, b−1}]; in particular, if a, b > 0,
then ρ3(I) = [a− 1, b− 1].

(b) ρ1(I) is defined if and only if a = 0, and in this case ρ1(I) =
[b, 0].

(c) ρ2(I) is defined if and only if b = 0, and in this case ρ2(I) =
[0, a− 1].

In terms of the graphical representation, this means that ρ1 and
ρ2 swap the x-axis {[a, 0] : 0 ≤ a ≤ min{α, β + 1}} and the y-axis
{[0, b] : 0 ≤ b ≤ min{α, β}}. On the other hand, ρ3 moves the ideals
one step closer to the origin.

Proof. Write I = 3N ∪ (3a+ 1 + 3N) ∪ (3b+ 2 + 3N). Then,
• I − 3 = (−3 + 3N) ∪ (3(a− 1) + 1 + 3N) ∪ (3(b− 1) + 2 + 3N),
• I − 1 = 3aN ∪ (3b+ 1 + 3N) ∪ (2 + 3N),
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Figure 3. Divisorial and nondivisorial ideals. Black cir-
cles represent ideals of Σ0, gray circles other ideals in the
form ρx(S), striped circles are intersections of black and
gray ideals. White circles represent non-divisorial ideals.

• I − 2 = 3bN ∪ (1 + 3N) ∪ (3(a− 1) + 2 + 3N).
If ρ1(I) (respectively, ρ2(I)) is defined, then we must have 0 ∈ 3aN,
and thus a = 0 (resp., 0 ∈ 3bN, and thus b = 0). The lemma now
follows from the definition of [x, y]. �

6. Principal star operations

Lemma 6.1. Let S be a numerical semigroup of multiplicity 3 and
∆ ⊆ F0(S). Then ∆ + Z := {d + I : d ∈ Z, I ∈ ∆} is the set of
closed ideals of a star operations if and only if S ∈ ∆, ∆ is closed by
intersections and ρk(I) ∈ ∆ whenever I ∈ ∆ and ρk(I) is defined.

Proof. It is merely a restatement of [18, Lemma 3.3]. �

We state separetely a corollary to underline a property which we will
use many times:

Corollary 6.2. Let S be a numerical semigroup of multiplicity 3, I ∈
F0(S), k ∈ I and ∗ ∈ Star(S). If I is ∗-closed, so is ρk(I).

Proposition 6.3. Let S = ⟨3, 3α+1, 3β+2⟩ be a numerical semigroup
of multiplicity 3. Then:

(a) if α ≤ β, then Fv(S)∩F0(S) = Σ0 ∪ {[a, b] ∈ Σ− : a ≤ β − α};
(b) if α ≥ β, then Fv(S)∩F0(S) = Σ0∪{[a, b] ∈ Σ+ : b ≤ α−β−1}.
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Figure 4. Divisorial closure of ideals.

Proof. We will prove only the case α ≤ β; the proof for α ≥ β is entirely
analogous.

Let ∆ be the set on the right hand side. We will show that ∆ verifies
the hypotheses of Lemma 6.1 (so that ∆ = F∗(S) ∩ F0(S) for some
star operation ∗), and that each I ∈ ∆ is divisorial: since v ≥ ∗ for
every ∗ ∈ Star(S), the claim will follow.

If [a, b] ∈ Σ0, then [a, b] = [α − k, β − k] = ρ3k(S) for some k ∈ N,
so that [a, b] is divisorial. In particular, [0, β − α] ∈ Fv(S). Therefore,
[0, β − α − x] = ρ3x([0, β − α]) is divisorial for every x ≥ 0, and so is
[β−α−x, 0] = ρ1([0, β−α−x]). Let [a, b] ∈ Σ− such that a ≤ β−α. If
b ≤ β−α, then [a, b] = [a, 0]∩ [0, b] is the intersection of two divisorial
ideals; if b > β − α, then [a, b] = [a, 0] ∩ [b− (β − α), b], and the latter
is divisorial since it belongs to Σ0. Hence Fv ⊆ ∆.

Let now [a, b], [a′, b′] ∈ ∆; if they are both in Σ0 they are comparable,
and thus the intersection is in ∆. If [a, b] ∈ Σ−, then by Lemma 4.6 its
intersection with [a′, b′] is in Σ−∪Σ0; moreover, min{a, a′} ≤ a ≤ β−α,
and thus [a, b] ∩ [a′, b′] ∈ ∆.

It is clear that ρ3(I) ∈ ∆ whenever I ∈ ∆, since ρ3([a, b]) ∈ Σ0 if
[a, b] ∈ Σ0 and a > 0, while ρ3([0, β − α]) = [0, β − α − 1] ∈ ∆; if
[a, b] ∈ ∆ \ Σ0, then ρ3([a, b]) = [max{a − 1, 0},max{b − 1, 0}], and
max{a− 1, 0} ≤ a, so that ρ3([a, b]) ∈ ∆.

By the discussion in Section 5, we only need to show that ρ1([0, c]), ρ2([c, 0]) ∈
∆ if [0, c] or [c, 0] are in ∆. However, excluding the case c = 0 (which
is trivial), we have ρ1([0, c]) = [c, 0] and ρ2([c, 0]) = [0, c− 1], and since
c ≤ β − α we have [c, 0], [0, c− 1] ∈ ∆. �
Lemma 6.4. Let S be a semigroup of multiplicity 3, and let I ∈ F(S).
Then, the set of ideals between I and Iv is linearly ordered.

Proof. If [a, b] ∈ Σ0, then it is divisorial.
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Suppose [a, b] ∈ Σ+. Then, ρ3(α−a)([α, β]) = [a,min{β − α + a, 0}].
However, β−α+a ≤ b−a+a = b, and thus [a, b] ⊆ [a, b′] = ρ3(α−a)(S).
However, the ideals between [a, b] and [a, b′] are linearly ordered, and
ρ3x(S) is always divisorial (by Corollary 6.2); hence [a, b]v ⊆ [a, b′] and
the ideals between [a, b] and [a, b]v are linearly ordered.

If [a, b] ∈ Σ−, then in the same way [a, b]v ⊆ ρ3(β−b)([α, β]) = [a′, b]
for some a′ ≤ a, and the claim follows. �
Corollary 6.5. Let S be a semigroup of multiplicity 3. Then, the maps
A and ∗ (defined at the end of Section 3) are bijections, and |Star(S)|
is equal to the number of antichains of (G0(S),≤∗).

Proof. We need to show that, given two antichains ∆ ̸= Λ of G0(S), we
have ∗∆ ̸= ∗Λ. Suppose not, and suppose (without loss of generality)
that there exists an I ∈ ∆ \Λ. Then, I = I∗∆ = I∗Λ =

∩
L∈Λ I

∗L . Since
I ⊆ I∗ ⊆ Iv for every ∗ ∈ Star(S), and the set of ideals between I and
Iv is linearly ordered, there is an J ∈ Λ such that I∗J = I; it follows
that I ≤∗ J . Analogously, since J = J∗Λ = J∗∆ , there is a I ′ ∈ ∆
such that J ≤∗ I

′. Since ∆ is an antichain in the ∗-order, it follows
that I = I ′ = J , and thus I ∈ Λ, against the hypothesis. Therefore,
∗∆ ̸= ∗Λ. �
Corollary 6.6. Let S be a semigroup of multiplicity 3 and let I, J ∈
F0(S) ∩ F∗(S) for some ∗ ∈ Star(S). Then, I ∪ J is ∗-closed.

Proof. Let I = [a, b] and J = [a′, b′]. Without loss of generality, we can
suppose a < a′ and b > b′ (if b ≤ b′, then I ⊇ J and I ∪ J = J). Then,
I ∪ J = [a, b′].

Suppose I∪J ∈ Σ+. Then, since a−b < a−b′, it follows that I ∈ Σ+.
Hence, [a, b′] = ρ3(b−b′)(I) ∩ Iv, and thus [a, b′] ∈ Σ+. Analogously, if
I ∪ J ∈ Σ−, then J ∈ Σ− and [a, b′] = ρ3(a′−a)(J) ∩ Jv. In both cases,
I ∪ J is ∗I- or ∗J -closed, and in particular, since ∗ ≤ ∗I ∧ ∗J , it is
∗-closed. �

Note that the hypothesis I, J ∈ F0(S) is necessary: for example, if
S = ⟨3, 5, 7⟩, I = S, J = 4 + N, then both I and J are divisorial, but
I ∪ J = S ∪ {4} while (I ∪ J)v = (S −M) = S ∪ {2, 4}.

Lemma 6.7. Let S be a numerical semigroup of multiplicity 3, and
let I, J ∈ F(S) such that J is ∗I-closed. There are γ0, γ1, γ2 ∈ N,
γi ≡ i mod 3, such that J∗I = Jv ∩ (−γ0 + I) ∩ (−γ1 + I) ∩ (−γ2 + I).
In particular, if I, J ∈ F0(S), then there are γi such that J∗I = Jv ∩
ργ0(I) ∩ ργ1(I) ∩ ργ2(I).

Proof. Since J is ∗I-closed, using (1) we have J = Jv∩
∩

γ∈(I−J) −γ+I;
separing the γ according to their residue class modulo 3 we have

J = Jv ∩
∩
γ∈Γ0

(−γ + I) ∩
∩
γ∈Γ1

(−γ + I) ∩
∩
γ∈Γ2

(−γ + I),
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where Γi := (I−J)∩(i+3Z); since (I−J) ⊆ N, each Γi has a minimum.
However, if γ, δ ∈ Γi, then either −γ+ I ⊆ −δ+ I or −δ+ I ⊆ −γ+ I;
therefore it is enough to take γi := minΓi.

For the “in particular” statement, note that both J and Jv are con-
tained in N, so that the intersection does not change substituing −γi+I
with −γi + I ∩ N = ργi(I). �
Proposition 6.8. Let S be a numerical semigroup of multiplicity 3,
and let I = [a, b] be an ideal.

• If [a, b] ∈ Σ+, then F∗I ∩ Σ+ = {[c, d] : d ≤ b, d− c ≤ b− a}.
• If [a, b] ∈ Σ−, then F∗I ∩ Σ− = {[c, d] : c ≤ a, d− c ≥ b− a}.

Proof. Suppose [a, b] ∈ Σ+, and let [c, d] ∈ Σ+ such that d ≤ b and
d−c ≤ b−a. Then, ρ3(b−d)([a, b]) = [a−(b−d), b−(b−d)] = [a−b+d, d]
is ∗[a,b]-closed; moreover, a − b + d ≥ c − d + d = c, and thus [c, d] =
[a− b+ d, d]∩ [c, c′], where c′ − c = β −α (i.e., c′ = c+ β −α), so that
[c, c′] ∈ Σ0 is divisorial, and [c, d] is ∗[a,b]-closed.

Conversely, let ∆ := (F∗I ∩ Σ+) \ {[c, d] : d ≤ b, d− c ≤ b− a} and
suppose ∆ ̸= ∅. Note that, by Proposition 6.3, Fv(R) ∩∆ = ∅. Let B
be the maximum b′ such that [a′, b′] ∈ ∆ for some a′, and let A be the
minimum a′ such that [a′, B] ∈ ∆. Let J := [A,B].

By Lemma 6.7, J = Jv∩I0∩I1∩I2, where Ii := ργi(I) = [ai, bi]. Since
Jv = [A, b′′] for some b′′ < B, at least one of the bi must be equal to B.
We have Ii ∈ Σ+: indeed, if I ∈ Σ0 it is divisorial, while if Ii ∈ Σ− then
L := [B − β + α,B] ∈ Σ0 is divisorial and is contained between J and
Ii: in both cases, Jv ⊆ Ii, so that Jv ⊆ [A, b′′] ∩ [ai, B] = [A,B] = J ,
and J is divisorial, against J ∈ ∆. Since J ⊆ [ai, B], we have ai ≤ A.
Suppose ai < A: then, by definition of A, Ii /∈ ∆. However, Ii is ∗I-
closed: hence, B ≤ b and B − ai ≤ b − a. But B − ai ≥ B − A, so
that B − A ≤ b − a; this would imply J /∈ ∆, against its definition.
Therefore ai = A, and J = Ii. However:

(1) if i = 0, then bi ≤ b, and bi − ai = b− a;
(2) if i = 1, then Ii ∈ Σ−;
(3) if i = 2, then [ai, bi] = [0, 0] (since J ∈ Σ+).

Therefore, ∆ = ∅.
If [a, b] ∈ Σ−, we can use the same method reversing the rôle of a

and b: we choose first A as the maximum a′ such that [a′, b′] ∈ ∆ for
some b′, and then B as the minimum b′ such that [A, b′] ∈ ∆. It follows
as above that [ai, bi] = [A,B] for some i, and Ii ∈ Σ−; moreover, if
i = 0 then [ai, bi] /∈ ∆, if i = 1 then [ai, bi] = [0, 0] and if i = 2 then
[ai, bi] ∈ Σ+. None of this cases is acceptable, and ∆ = ∅. �

Proposition 6.9. Let S be a numerical semigroup of multiplicity 3,
and let I = [a, b] be an ideal.

• If [a, b] ∈ Σ+, then F∗I ∩ Σ− = F∗[b−a,0] ∩ Σ−.
• If [a, b] ∈ Σ−, then F∗I ∩ Σ+ = F∗[0,b−a−1] ∩ Σ+
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Figure 5. The set of divisorial ideals (in black) and of
non-divisorial ∗I-closed ideals (in gray), where I is the
marked ideal.

In particular, both depends only on b− a.

Proof. Suppose [a, b] ∈ Σ+. Since [a, b] is closed, so is [0, b−a], and thus
also [b−a, 0] = ρ1([0, b−a]) is closed. Hence F∗[b−a,0] ∩Σ− ⊆ F∗I ∩Σ−.

Let ∆ := (F∗I ∩ Σ−) \ F∗[b−a,0] and suppose it is nonempty; as in
the proof of the previous proposition, let A be the maximum a′ such
that [a′, b′] ∈ ∆ for some b′ and let B be the minimum b′ such that
[A, b′] ∈ ∆. Observe that A > b − a since [a′, 0] is ∗[b−a,0]-closed for
every a′ ≤ b − a. Then J := [A,B] ∈ ∆, and J = ργ(I) for some
γ such that ργ(I) ∈ Σ−, and the unique possibility is γ ≡ 1 mod 3;
let γ = 3k + 1. Then ρ3k([a, b]) = [0, c] for some c ≤ b − a, and thus
ργ(I) = [c− 1, 0], with c− 1 ≤ b− a, which is impossibile.

The case [a, b] ∈ Σ− is treated in the same manner. �

7. The number of star operations

Let S = ⟨3, 3α + 1, 3β + 2⟩ be a numerical semigroup, and suppose
that α ≤ β; let k be an integer such that β − α ≤ k < α. We define:

• L+
k := {[k, β], [k − 1, β − 1], . . . , [0, β − k]};

• L−
k := {[β − k, 0], [β − k, 1], . . . , [β − k, 2β − α− k − 1]};

• Lk := L+
k ∪ L−

k .

Equivalently, L+
k is the set of ideals [a, b] such that b − a = β − k,

while L−
k is the set of ideals [a, b] ∈ Σ− such that a = β− k. Note that,

since k < α, each element of L+
k is in Σ+.

Proposition 7.1. Preserve the notation above. Then:
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Figure 6. A Lk.

(a) Lk ∩ Lj = ∅ if k ̸= j;

(b)
∪α−1

k=β−α Lk = G0(S);

(c) |Lk| = 2β − α + 1;
(d) each Lk is linearly ordered (in the ∗-order).

Proof. (a) Suppose [a, b] ∈ Lk ∩Lj. If [a, b] ∈ Σ+, then β− k = b− a =
β − j; if [a, b] ∈ Σ−, then β − k = a = β − j. In both cases, k = j.

(b) Suppose [a, b] ∈ Lk for some k. If [a, b] ∈ Σ+, then it is not
divisorial by Proposition 6.3; if [a, b] ∈ Σ−, then a = β − k > β − α
and thus [a, b] ̸= [a, b]v, again by Proposition 6.3.

Conversely, suppose [a, b] ̸= [a, b]v. If [a, b] ∈ Σ+, then β−α ≤ b−a <
α, and thus [a, b] ∈ Lβ−(b−a); if [a, b] ∈ Σ−, then by Proposition 6.3 we
have a > β − α, so that β − a < α and thus [a, b] ∈ Lβ−a.

(c) We have |L+
k | = k + 1 and |L−

k | = 2β − α − k; since L+
k and L−

k

are disjoint, |Lk| = 2β − α + 1.
(d) By Lemma 5.2, if j ≥ j′ then [k−j′, β−j′] = ρ3(j−j′)([k−j, β−j]),

so that L+
j is totally ordered, with minimum [0, β − k]; analogously, if

l ≥ l′, then [a, l] = [a, l′]∩ [a, l]v (see the proof of Lemma 6.4) and thus
[a, l] ≤∗ [a, l′], i.e., L−

j is linearly ordered, with maximum [β − k, 0].
Moreover, [β−k, 0] = ρ1([0, β−k]), and thus Lk is totally ordered. �

When α ≥ β, we can reason in a completely analogous way, but we
have to reverse the rôle of Σ+ and Σ−: we choose an integer k such that
α− β + 1 ≤ k < β, and define

• L−
k := {[α, k], [α− 1, k − 1], . . . , [0, α− k]};
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• L+
k := {[0, α−k−1], [1, α−k−1], . . . , [2α−β−k−2, α−k−1]};

• Lk := L+
k ∪ L−

k .

Then, the elements of L−
k are in Σ− and are characterized by b−a, while

the elements of L+
k are the ideals in Σ+ with the same b. Proposition

7.1 becomes:

Proposition 7.2. Preserve the notation above. Then:

(a) Lk ∩ Lj = ∅ if k ̸= j;

(b)
∪β−1

k=α−β+1 Lk = G0(S);

(c) |Lk| = 2α− β;
(d) each Lk is linearly ordered (in the ∗-order).

Corollary 7.3. Let S = ⟨3, 3α+ 1, 3β + 2⟩ be a numerical semigroup.
Then, |G0(S)| = (2α− β)(2β − α+ 1).

By a rectangle a× b, indicated with R(a, b), we denote the cartesian
product {1, . . . , a}×{1, . . . , b}, endowed with the reverse product order
(that is, (x, y) ≥ (x′, y′) if and only if x ≤ x′ and y ≤ y′).

Theorem 7.4. Let S = ⟨3, 3α + 1, 3β + 2⟩ be a numerical semigroup.
Then, (G0(S),≤∗) is isomorphic (as an ordered set) to R(2α− β, 2β−
α + 1).

Proof. Suppose α ≤ β, and let I ∈ G0(S). If I ∈ Lk, define ψ1(I) :=
k − (β − α) + 1. Moreover, if there are exactly j − 1 ideals in Lk

strictly bigger (in the ∗-order) than I, then define ψ2(I) := j. Explicitly,
if [a, b] ∈ Σ+ then ψ2([a, b]) = β − b + 1, while if [a, b] ∈ Σ− then
ψ2([a, b]) = k+1+ b = β+1+ b− a (using a = β− k). By Proposition
7.1, the map

Ψ :G0(S) −→R(2α− β, 2β − α+ 1)

[a, b] 7→(ψ1(I), ψ2(I))

is a bijection.
For a partially ordered set P, and a subset ∆ ⊆ P , denote by ∆ the

lower set of ∆: i.e., let ∆ := {x ∈ P : ∃y ∈ ∆ : x ≤ y}. To show that

Ψ is order-preserving, it is enough to show that Ψ
(
{I}

)
= Ψ(I) for

every ideal I ∈ G0(S). Since {I} = G0(S) ∩ F∗I , we need to show that
J is ∗I-closed if and only if Ψ(J) ≤ Ψ(I).

Let I = [a, b] and J = [c, d] be ideals. If I, J ∈ Σ+, then by Proposi-
tion 6.8 J is ∗I-closed if and only if d ≤ b and d− c ≤ b− a. We have
d ≤ b if and only if ψ2(J) ≥ ψ2(I); on the other hand, x− y = β − k if
[y, x] ∈ Lk, and thus ψ1([y, x]) = β−x+y. Therefore, d−c ≤ b−a if and
only if ψ1(J) ≥ ψ1(I). Hence (remember that the order on the rectan-

gle is the reverse product order), J ∈ {I} if and only if Ψ(J) ≤ Ψ(I).

On the other hand, if I, J ∈ Σ−, then J ∈ {I} if and only if c ≤ a and
d− c ≤ b− a; the first condition if equivalent to the requirement that
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ψ1(J) ≥ ψ1(I), while the second is equivalent to ψ2(J) ≥ ψ2(I). Again,

J ∈ {I} if and only if Ψ(J) ≤ Ψ(I).
Suppose I ∈ Σ+ and J ∈ Σ−. If J is ∗I-closed, then by Proposition

6.9 it is ∗[b−a,0]-closed, and, by the previous paragraph, this happens if
and only if Ψ(J) ≤ Ψ([b−a, 0]). However, [b−a, 0] and I belong to the
same Lk (since [b − a, 0] = ρ1ρ3(b−a)([a, b])), and thus Ψ([b − a, 0]) ≤
Ψ(I); hence Ψ(J) ≤ Ψ(I). Conversely, if Ψ(J) ≤ Ψ(I) then J = [c, d]
belongs to Lj for some j ≥ k (where I = [a, b] ∈ Lk) and thus c ≤ a,
and J is ∗I-closed (applying again Proposition 6.9). If I ∈ Σ− and

J ∈ Σ+, the same reasoning applies; therefore, in all cases, J ∈ {I} if

and only if Ψ(J) ≤ Ψ(I), that is, if and only if Ψ(J) ∈ Ψ(I). Hence Ψ
is an order isomorphism.

If α ≥ β, then we can apply the same method: we define a map

Ψ :G0(S) −→R(2β − α + 1, 2α− β)

[a, b] 7→(ψ1(I), ψ2(I))

where, if I ∈ Lk, then ψ1(I) = k−(α−β+1)+1, and ψ2(I) = j if there
are exactly j−1 elements of Lk ∗-bigger than I. Proposition 7.2 shows
that Ψ is a bijection, and (as before) the use of Propositions 6.8 and 6.9
shows that it is an order isomorphism. Since R(2β − α+ 1, 2α− β) ≃
R(2α− β, 2β − α + 1), the theorem is proved. �

Lemma 7.5. The number of antichains in R(a, b) is

(
a+ b

a

)
=

(
a+ b

b

)
.

Proof. Let A := {1, . . . , a} and B := {1, . . . , b}.
For each antichain ∆, let ∆ be the lower set of ∆; clearly ∆ = max∆,

so that the number of antichains is equal to that of the sets that are
downward closed (i.e., sets Λ such that Λ = Λ). When restriced to a
single row A× {c}, ∆ becomes a segment {ac, . . . , a} × {c}; moreover,
if d ≤ c, then ad ≤ ac. Thus the number of antichains is equal to the
number of sequences {1 ≤ a1 ≤ · · · ≤ ab ≤ a + 1} (where ai = a + 1
if and only if (A× {i}) ∩∆ = ∅), that in turn is equal to the number
of combinations with repetitions of b elements of {1, . . . , a + 1}. This
is equal to

(
a+1+b−1

b

)
=

(
a+b
b

)
=

(
a+b
a

)
. �

Theorem 7.6. Let S = ⟨3, 3α + 1, 3β + 2⟩ be a numerical semigroup
of multiplicity 3, g := g(S), δ := δ(S). Then,

|Star(S)| =
(
α + β + 1

2α− β

)
=

(
α + β + 1

2β − α + 1

)
=

(
δ + 1

g − δ + 2

)
.

Proof. By Corollary 6.5, |Star(S)| is equal to the number of antichains
of G0(S), which is equal (by Theorem 7.4) to the number of antichains
of R(2α− β, 2β − α + 1). Lemma 7.5 now completes the reasoning.

To show the last equality, note that an element in N \ S can be
written as 3a + 1 or 3b + 2, where 0 ≤ a < α or 0 ≤ b < β, and
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thus δ = α + β. On the other hand, if α > β then g = 3α − 2, and
thus 2α − β = g − δ + 2, while if α ≤ β then g = 3β − 1, and again
2β − α+ 1 = g − δ + 2. �
Remark 7.7. We can compare the explicit counting supplied by Theo-
rem 7.6 with the three main estimates obtained in [18].

(1) The most general one (assuming only that S is not symmetric)

is |Star(S)| ≥
⌈

g
2µ

⌉
. If α > β, then (using the proof of Theorem

7.6) in the case of multiplicity 3 we can translate it as

|Star(S)| ≥
⌈
3α− 2

6

⌉
≥ 1

2
α− 1

3
.

Being linear, this estimate is very far from the actual numer of
star operation, which grows as a binomial coefficient. This is
especially evident when α is close to β: for example, if α = β,
then |Star(S)| =

(
2α+1
α

)
∼ c · 4α (where c = 2√

π
). The same

phenomenon happens, simmetrically, when β ≥ α (but we will
have a linear estimate in β instead of α).

(2) A second estimate, valid only in some cases, is |Star(S)| ≥
2⌈

µ−1
2 ⌉ which obviously, if we fix µ = 3, gives only |Star(S)| ≥ 2.

(3) A third estimate was |Star(S)| ≥ δ + 1, which is valid when S
has an hole a < µ (a is said to be an hole of S if a, g − a /∈ S).
When g ≡ 1 mod 3, the only possible hole smaller than µ is
2: in this case, the elements of N \ S are {1, 2, 4, 5, . . . , 3(β −
1) + 1, 3(β − 1) + 2, g = 3β + 1}, and thus δ = 2β + 1; hence,
|Star(S)| =

(
2β+2
β+2

)
, which is much bigger than δ + 1 = 2β + 2.

Analogously, when g ≡ 2 mod 3, the only possibile hole a < µ
is 1: in this case, we obtain δ = 2α, g = 3α− 1 and |Star(S)| =(
2α+1
α+1

)
, which is much bigger than δ + 1 = 2α + 1.

A numerical semigroup is called pseudosymmetric if g is even and
(S −M) = S ∪ {g, g/2}.

Proposition 7.8. Let S be a numerical semigroup of multiplicity 3
such that G0(S) ̸= ∅. Then, the following are equivalent:

(i) S is pseudosymmetric;
(ii) α = 2β or β = 2α− 1;
(iii) (G0(S),≤∗) is linearly ordered;
(iv) Star(S) is linearly ordered.
(v) every star operation on S is principal.

Proof. (i ⇐⇒ ii) Let a := 3α+ 1− 3 = 3α− 2 and b := 3β + 2− 3 =
3β−1: then, a, b /∈ S but a+3, b+3 ∈ S. Hence, S is pseudosymmetric
if and only if a = 2b or b = 2a.

If α ≥ β, then a ≥ b, and thus S is pseudosymmetric if and only
if 3α − 2 = 2(3β − 1), that is, if and only if α = 2β. Analogously, if
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β ≥ α, S is pseudosymmetric if and only if 3β − 1 = 2(2α − 2), that
is, if and only if β = 2α + 1.

(ii ⇐⇒ iii) G0(S) is linearly ordered if and only if R(2α − β, 2β −
α + 1) is linearly ordered; but this happens if and only if one of the
sides of the rectangle has length 1, that is, if and only if 2α − β = 1
(i.e., β = 2α− 1) or 2β − α + 1 = 1 (i.e., α = 2β).

(iv =⇒ iii) is obvious.
(iii =⇒ iv,v) Let ∗ be a star operation. Then, ∗ = ∗I1 ∧ · · · ∧ ∗In

for some I1, . . . , In; since G0(S) is linearly ordered, ∗ = ∗Ij for some j.
Hence each star operation is principal, and Star(S) is linearly ordered.

(v =⇒ ii) Suppose α ̸= 2β and β ̸= 2α− 1. Then, the length of both
sides of the rectangle R(2α−β, β−2α+1) is 2 or more; consider the set
∆ composed by (1, 2) and (2, 1). Then, ∆ is an antichain; therefore, so is
Ψ−1(∆), where Ψ is the isomorphism defined in the proof of Theorem
7.4. By hypothesis, ∗Ψ−1(∆) is principal, i.e., ∗Ψ−1(∆) = ∗I for some
I ∈ G0(S); however, by Corollary 6.5, this would imply Ψ−1(∆) = {I},
which is absurd. Hence S is pseudosymmetric. �

8. Quantitative estimates

Let ξ3(n) denote the number of numerical semigroups of multiplicity
3 with exactly n star operations.

Proposition 8.1. If n ≡ 0, 1 mod 3, n > 1, then there is a unique
pseudosymmetric semigroup of multiplicity 3 such that |Star(S)| = n;
if n ≡ 2 mod 3, there is no such S.

Proof. Let S be a pseudosymmetric semigroup of multiplicity 3.
If α ≥ β, then by Proposition 7.8 we have β = 2α − 1; hence

|Star(S)| =
(
α+β+1
2β−α+1

)
= α + β + 1 = 3β + 1; for each n ≡ 1 mod 3

there is a unique β and thus a unique pseudosymmetric semigroup.
Analogously, if β ≥ α, then α = 2β, and |Star(S)| =

(
α+β+1
2β−α+1

)
=

α + β + 1 = 3α, and every n ≡ 0 mod 3 can be (uniquely) obtained
this way. �

Proposition 8.2. ξ3(n) = |{
(
a
b

)
:
(
a
b

)
= n, a+ b ≡ 1 mod 3}|.

Proof. If S = ⟨3, 3α+1, 3β+2⟩, then |Star(S)| =
(
α+β+1
2α−β

)
and α+β+

1 + 2α − β = 3α + 1 ≡ 1 mod 3; conversely, if a + b ≡ 1 mod 3, then
the linear system {

α+ β + 1 = a

2α− β = b

has solutions α = a+b−1
3

, β = 2a−2b−1
3

which are integers if a + b ≡
1 mod 3, and verify α ≤ 2β + 1 and β ≤ 2α. Hence to each semigroup
we can attach a binomial coefficient and to each coefficient a semigroup,
these maps are inverses and the two sets have the same cardinality. �
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Thus, to find all numerical semigroups of multiplicity 3 with exactly
n star operations, we only need to determine the binomial coefficients(
a
b

)
equal to n. Since

(
a
b

)
≥ a if

(
a
b

)
̸= 1, this means that we only need

to inspect the case a ≤ n.
Removing the congruence condition, we get the function η(n) :=

|{
(
a
b

)
:
(
a
b

)
= n}|, that has been studied in [17] and [1]. It is straight-

forward to see that η(n) is finite for every n > 1, and it is also quick to
show (quantifying the previous reasoning) that η(n) ≤ 2+2 log2 n [17].
A deeper analysis, using results about the distribution of the primes,
proves that η(n) = O(log n/ log log n) [1]; these results are however
weaker than the expected, since in [17] it is conjectured that η is
bounded for n > 1.

Clearly, ξ3(n) ≤ η(n), and thus we get another proof (independent
from [18]) that ξ3(n) < ∞ for every n > 1. Note also that ξ3(1) = ∞,
because |Star(S)| = 1 whenever α = 2β + 1 or β = 2α.

Proposition 8.3. For every n ∈ N, ξ3(n) ≤ η(n)
2
.

Proof. If n = 1, then both sides of the equality are infinite; suppose

n > 1. Then, η(n) = ξ3(n) + ξ
(0)
3 (n) + ξ

(2)
3 (n), where ξ

(i)
3 is the number

of binomial coefficients
(
a
b

)
such that

(
a
b

)
= n and a+ b ≡ i mod 3. We

will show that ξ3(n) = ξ
(2)
3 , from which the claim follows.

Suppose
(
a
b

)
= n and a + b ≡ 1 mod 3. Then also

(
a

a−b

)
= n, and

a + (a − b) = 2a − b ≡ 2a + 2b mod 3 ≡ 2 mod 3. Therefore, ξ3(n) =

ξ
(2)
3 (n). �
Proposition 8.4. Let Z(x) := {n : 1 < n ≤ x, ξ3(n) > 1}.

(a) |Z(x)| = O(
√
x).

(b) There are an infinite number of integers n such that ξ3(n) = 0.

Proof. Following the proof of [1, Theorem 1], let g(x) := {n : 1 <
n ≤ x, η(n) > 2}. If ξ3(n) > 1, then η(n) ≥ 2ξ3(n) > 2. Therefore,
Z(x) ≤ g(x) = O(

√
x), applying again the proof of [1, Theorem 1].

Take an n ∈ N such that η(n) = 2. Then, the only binomial coeffi-
cients such that

(
a
b

)
= n are

(
n
1

)
and

(
n

n−1

)
. It follows that ξ3(n) = 1 if

n+1 or n+(n−1) are congruent to 1 modulo 3, i.e., if n ≡ 0 mod 3 or
n ≡ 1 mod 3, while ξ3(n) = 0 otherwise, i.e., if n ≡ 2 mod 3. (Compare
Proposition 8.1.)

Suppose that ξ3(n) = 0 only for n ∈ {n1, . . . , nk}. For every m ≡
2 mod 3 such that m ̸= ni for every i, there is a binomial coefficient(
a
b

)
such that

(
a
b

)
= m and a+ b ≡ 1 mod 3. The last condition implies

that a− b ̸= b (otherwise, a+ b = a− b+ 2b = 3b ≡ 0 mod 3); if b = 1
or b = a − 1, then

(
a
b

)
= a = m, and so a + b ≡ m + 1 ≡ 0 mod 3 or

a+b ≡ 2m−1 ≡ 0 mod 3, against the congruence condition. Therefore,(
a
b

)
=

(
a

a−b

)
=

(
m
1

)
=

(
m

m−1

)
= m, and the four coefficients are different

from each other, so that η(m) ≥ 4. Thus, g(x) ≥ 1
3
x − k, against the

fact that g(x) = O(
√
x). Hence, ξ3(n) = 0 infinitely often. �
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