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ASSUMPTIONS
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Abstract. We study, from a topological point of view, spaces of
semistar operations without the hypothesis that they are of finite
type. In particular, we analyze when the space of all semistar op-
erations, the space of spectral operations, and the set of stable
operations are spectral spaces.

1. Introduction

Semistar operations were introduced by Okabe and Matsuda in [18]
as a generalization of the previous concept of star operations, whose
origin traces back to Krull [16]. In [12] and [10], the set SStar(D)
of semistar operations on an integral domain D was endowed with
a Zariski-like topology, and thus considered from a topological point
of view. In particular, it was shown that some distinguished subsets of
SStar(D) are spectral spaces [13], that is, they are homeomorphic to the
prime spectrum of a commutative ring: more precisely, this was shown
for the set of finite-type operations [12, Theorem 2.13], of finite-type
spectral operations [10, Theorem 4.6] and of finite-type eab operations
[10, Theorem 5.11(3)] (the definitions will be recalled in Section 2).
These proofs were carried out by using an ultrafilter-theoretic criterion
for spectral spaces (introduced in [8]) and the possibility of writing the
supremum of a family of finite-type operations in a relatively explicit
way (proved in [2, p.1628] in the setting of star operations).

In this paper, we continue this study outside the finite-type case,
showing that several natural-looking spaces need not to be spectral,
and trying to characterize when they are spectral. More in detail, we
study the set of all semistar operations in Section 4, the set of stable
operations in Section 5, and the set of spectral operations in Section
6. While we use an ultrafilter-based proof in Theorem 3.2 (and sub-
sequently use this result in Theorems 4.10 and 5.5), we shall often
use a more bare-handed approach, based on the compactness of the
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constructible topology [13, Proposition 4] (on which also the ultrafil-
ter criterion is based), which is tested through the finite intersection
property of the closed sets.

2. Preliminaries

2.1. Semistar operations. In the paper, we shall always use D to
denote an integral domain, and K to denote its quotient field. We will
denote by F(D) the set of D-submodules of K, and by F(D) the set of
fractional ideals of D. For basic properties of semistar operations the
reader may consult [18].

A semistar operation onD is a map ? : F(D) −→ F(D), I 7→ I?, such
that, for every I, J ∈ F(D) and every z ∈ K, the following properties
hold:

• I ⊆ I? (? is extensive);
• (I?)? = I? (? is idempotent);
• if I ⊆ J , then I? ⊆ J? (? is order-preserving);
• z · I? = (zI)?.

The set of all semistar operations on D is denoted by SStar(D); it is a
complete lattice, where inf ∆ is the semistar operation such that

I inf ∆ =
⋂
?∈∆

I? for every I ∈ F(D),

and sup ∆ is the semistar operation ] such that I = I] if and only if
I = I? for every ? ∈ ∆.

Given a semistar operation ?, its quasi-spectrum (denoted by QSpec?(D))
is the set of prime ideals P of D such that P = P ? ∩D.

There are several distinguished subsets of semistar operations.
A semistar operation ? is said to be of finite type if, for every I ∈

F(D),

I? =
⋃
{J? | J ⊆ I, J is finitely generated};

the set of finite-type semistar operations is denoted by SStarf (D).
A semistar operation ? is stable if, for every I, J ∈ F(D), we have

(I ∩ J)? = I? ∩ J?;
that is, if ? distributes over (finite) intersections. The set of stable
operations is denoted by SStarst(D).

If ∆ ⊆ Spec(D), the semistar operation s∆ is defined by

s∆ : I 7→
⋂
{IDP | P ∈ ∆}.

A semistar operation that can be written as s∆, for some ∆, is called
spectral ; any spectral operation is stable, and any finite-type stable
operation is spectral [1, Corollary 4.2]. We denote by SStarsp(D) and
SStarf,sp(D), respectively, the sets of spectral operations and of spectral
operations of finite type.
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A semistar operation ? is eab if, for every G,H ∈ F(D) and every
finitely-generated F ∈ F(D), the inclusion (FG)? ⊆ (FH)? implies
that G? ⊆ H?. We denote by SStareab(D) and SStarf,eab(D), respec-
tively, the sets of eab operations and of eab finite-type operations.

In [12], the set SStar(D) was endowed with a topology, called the
Zariski topology, that has as a subbasis the family of the sets in the
form

VI := {? ∈ SStar(D) | 1 ∈ I?},
as I ranges in F(D). In the subspace topology, the spaces SStarf (D)
[12, Theorem 2.13], SStarf,sp(D) [10, Theorem 4.6] and SStarf,eab(D)
[10, Theorem 5.11(3)] are spectral spaces (see below for the definition).

2.2. Spectral spaces. A topological space X is said to be a spectral
space if it is homeomorphic to the prime spectrum of a (commutative,
unitary) ring. Spectral spaces can be characterized in a purely topo-
logical way (see [13] or [4]).

Given a topological space X, the constructible topology (or patch
topology) is the coarsest topology on the set X such that the open and
compact subsets of X are both open and closed. When X is a spectral
space, the set X endowed with the constructible topology (denoted by
Xcons) is itself a spectral space, which is also Hausdorff [13, Theorem
1]; furthermore, any subset of X which is closed in Xcons is a spectral
space when endowed with the original topology [5, 1.9.5(vi-vii)].

The constructible topology allows to characterize when X (with the
original topology) is a spectral space; the following is a very slight
generalization of Proposition 4 and of the Corollary to Proposition 7
of [13].

Lemma 2.1. Let X be a T0 topological space with a subbasis U of open
and compact subsets. Then, X is a spectral space if and only if Xcons

is compact.

Proof. If X is a spectral space, then any finite intersection of open and
compact subsets is again open and compact; hence, the set B of the
finite intersections of elements of U is a basis of open and compact
subsets closed by finite intersections. By [13, Proposition 4] (or [13,
Corollary to Proposition 7]), Xcons is compact.

Conversely, suppose Xcons is compact. Any U ∈ U is, by definition,
closed in Xcons; hence, every finite intersection B of elements of U is
closed in Xcons and, being Xcons compact, also B is compact. Moreover,
B is open in X (being a finite intersection of open sets); hence, the
family B of finite intersections of elements of U is a basis of open and
compact subsets that is closed by finite intersections. Furthermore, if
x, y ∈ X then (without loss of generality) there is a B ∈ B such that
x ∈ B while y /∈ B. Since B is open and closed in Xcons, it follows
that Xcons is Hausdorff. Again by [13, Proposition 4], X is a spectral
space. �
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A related criterion was proved in [8, Corollary 3.3]: a topological
space X is spectral if and only if it is T0 and there is a subbasis S such
that, for every ultrafilter U on X, the set

XS(U ) := {x ∈ X | ∀S ∈ S, x ∈ S ⇐⇒ S ∈ U }

is nonempty.
The inverse topology on X is the coarsest topology such that the

open and compact subsets of X are closed. When X is a spectral space,
the space X inv (i.e., X endowed with the inverse topology) is again
spectral, and a subset of X is closed in the inverse topology if and only
if it is compact and closed by generizations (where Y ⊆ X is closed by
generizations if, whenever y ∈ Y and y ∈ Cl(z) for some z ∈ X, then
also z ∈ Y ).

Let X (X) be the set of the nonempty subsets of X that are closed
in the inverse topology. In [11] and [9, Section 4], X (X) was endowed
with a natural topology, defined by taking, as a subbasis of open sets,
the sets of the form

U(Ω) := {Y ∈ X (X) | Y ⊆ Ω},

as Ω ranges among the compact open subsets of X. This topology
coincides with the upper Vietoris topology [11, Proposition 3.1], and
in particular it makes X (X) a spectral space [11, Theorem 3.4(1)].

2.3. Overrings. Let D be an integral domain with quotient field K.
An overring ofD is a ring comprised betweenD andK; the set Over(D)
can be endowed with a topology (called the Zariski topology) whose
subbasic open sets are the sets of the form

BF := {T ∈ Over(D) | F ⊆ T},

as F ranges among the finite subsets of K. A distinguished subset
of Over(D) is Zar(D), the set of all overrings of D that are valua-
tion domains. The space Over(D) can be topologically embedded into
SStarf (D) by the map that sends every T ∈ Over(D) to the semistar
operation ∧{T} : I 7→ IT [12, Proposition 2.5].

Under this topology, both Over(D) [8, Proposition 3.5] and Zar(D)
[6, 7] are spectral spaces.

3. Sup-normal subsets

Definition 3.1. Let D be an integral domain, and let X ⊆ SStar(D).
We say that X is sup-normal if, for all ∆ ⊆ X and every I ∈ F(D),
we have

Isup ∆ =
⋃
{I?1◦···◦?n | ?1, . . . , ?n ∈ ∆},

where ◦ denotes the composition of functions.
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Note that the definition is inherited by smaller subsets: that is, if
X1 ⊆ X2 and X2 is sup-normal, so is X1. Maybe the most important
example of sup-normal set is the family of finite-type semistar opera-
tions (this is essentially proved in [2, p.1628]).

The following proof is an abstraction of the proof of [12, Theorem
2.13], whose method was also used in proving [10, Theorem 4.6].

Theorem 3.2. Let D be an integral domain, and let X ⊆ SStar(D).
Suppose there is a family A ⊆ F(D) such that:

(a) S := {VI ∩X | I ∈ A} is a subbasis of the Zariski topology on
X;

(b) inf(VI ∩X) ∈ X for all I ∈ A;
(c) X is sup-normal and sup ∆ ∈ X for every ∆ ⊆ X.

Then X, endowed with the Zariski topology, is a spectral space.

Proof. Clearly X is T0. Let now U be an ultrafilter on X. By [8, Corol-
lary 3.3], to show that X is spectral it is enough to show that

XS(U ) := {x ∈ X | for all B ∈ S, B ∈ U ⇐⇒ x ∈ B}
is nonempty. Let

? := sup{inf(B) | B ∈ U ∩ S};
we claim that ? ∈ XS(U ).

If B = VI ∩X ∈ U ∩ S, then ? ≥ inf(B) and thus ? ∈ B.
Conversely, suppose ? ∈ B = VI ∩ X and let ∆ be the set formed

by the inf(B), as B ranges in U ∩ S. Then, 1 ∈ I?, and by sup-
normality there are B1, . . . , Bn ∈ U ∩ S such that 1 ∈ I?1◦···◦?n , where
?i := inf(Bi). For any ] ∈ B1∩ · · · ∩Bn, we have ] ≥ ?i for every i, and
thus

I?1◦···◦?n ⊆ I]◦···◦] = I],

so that 1 ∈ I], i.e., ] ∈ VI ∩X. It follows that B1 ∩ · · · ∩Bn ⊆ B; since
U is an ultrafilter, this means that B ∈ U .

Hence, ? ∈ XS(U ), as claimed, and X is a spectral space. �

As a corollary, we can obtain again [12, Theorem 2.13] and [10, The-
orem 4.6].

Corollary 3.3. Let X be the set of finite-type semistar operation or
the set of finite-type spectral semistar operations on D. Then, X is a
spectral space.

Proof. If X = SStarf (D), then it is enough to take A to be the set
of finitely generated D-submodules of K; the fact that A satisfies the
hypotheses of the theorem follows from [12, Remark 2.2(d) and Propo-
sition 2.11(b)] and [2, p.1628].

If X = SStarf,sp(D), then take A to be the set of finitely generated
ideals of D; the needed properties follows from the references given in
the previous case, with the addition of [10, Lemma 4.4(2)]. �
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4. The set of all semistar operations

We start with a slight improvement of [12, Propositions 3.4 and 3.5].

Proposition 4.1. Let D be an integral domain.

(a) If T ∈ Over(D), then SStar(T ) is homeomorphic to a closed set
of SStar(D)cons.

(b) If SStar(D) is a spectral space, then SStar(T ) is spectral for all
T ∈ Over(D).

Proof. Let ι : SStar(T ) ↪→ SStar(D) be the map such that, for every
? ∈ SStar(T ),

ι(?) : F(D) −→ F(D)

I 7−→ (IT )?.

By [12, Proposition 3.5], ι is a topological embedding; thus, SStar(T )
is homeomorphic to ι(SStar(T )). By [12, Proposition 3.4], moreover,
ι(SStar(T )) = {? ∈ SStar(D) | T ⊆ D?}; hence,

ι(SStar(T )) =
⋂
{Vx−1D | x ∈ T}.

Each Vx−1D is an open and compact set of SStar(D), and thus is closed
in the constructible topology. Therefore, the right hand side is closed
in SStar(D)cons.

The second claim is immediate. �

Proposition 4.2. Let D be an integral domain. If SStar(D) is a spec-
tral space, then SStarf (D) is closed in SStar(D)cons.

Proof. Given a semistar operation ?, let ?f be the map sending an
I ∈ F(D) to

I?f :=
⋃
{J? | J ⊆ I, J is finitely generated}.

Then, ?f is a semistar operation of finite type; furthermore, the map

Ψf : SStar(D) −→ SStar(D)

? 7−→ ?f

is continuous and spectral in the Zariski topology, and its image is
SStarf (D) [12, Proposition 2.4]. Hence, Ψf is a closed map in the con-
structible topology, and so SStarf (D) is closed in SStar(D)cons. �

The main tool of this section is the following theorem, that shows
how the spectrality of SStar(D) implies a very strong condition on the
structure of the set of overrings.

Theorem 4.3. Let D be an integral domain with quotient field K, and
suppose that SStar(D) is a spectral space. Let T 6= K be an overring of
D.

(a) There are x1, . . . , xn ∈ T and y ∈ D \ {0} such that yT ⊆
D[x1, . . . , xn].
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(b) There is a b ∈ D \ {0} such that T ⊆ D[b−1].

Proof. (a) Suppose there is a T that does non verify this property; fix
a z ∈ K \ T . Let X := SStar(D), and consider the family

G := {Vw−1D | w ∈ T} ∪ {Vz−1T , X \ Vz−1D}.

Each element of G is closed in the constructible topology: indeed, VI is
always open (by definition) and compact (since it has a minimum) and
thus VI and X \ VI are always closed in the constructible topology.

Then,
⋂
G = ∅: indeed, suppose ? ∈

⋂
G. Then, 1 ∈ (w−1D)? for all

w ∈ T , and thus T ⊆ D?; furthermore, since 1 ∈ (z−1T )? we have

z ∈ T ? ⊆ (D?)? = D?.

However, this contradicts the fact that 1 /∈ (z−1D)?. Hence, ? cannot
exist and

⋂
G = ∅.

Suppose now that H ⊆ G is finite, and let

F̃(D) :=
⋃
{F(D[x1, . . . , xn]) | x1, . . . , xn ∈ T}.

We want to show that
⋂
H 6= ∅: therefore, without loss of generality, we

can suppose that H = {Vw−1
1 D, . . . , Vw−1

n D, Vz−1T , X \ Vz−1D} for some

w1, . . . , wn ∈ T . Define ? as the map such that

I? =

{
ID[w1, . . . , wn] if I ∈ F̃(D)

IT [z] if I ∈ F(D) \ F̃(D).

We first note that ? is well-defined, since by hypothesis T is not a
fractional ideal over D[w1, . . . , wn]. Moreover, ? is obviously extensive

and (xI)? = x · I? for every x ∈ K and every I. If I ∈ F̃(D) then
I ∈ F(D[y1, . . . , ym]) for some y1, . . . , ym ∈ K, and

I? ∈ F(D[y1, . . . , ym, w1, . . . , wn]) ⊆ F̃(D);

hence, ? is idempotent. If now I ⊆ J , then either I, J ∈ F̃(D), I, J /∈
F̃(D) or I ∈ F̃(D) while J /∈ F̃(D). In the first two cases, we clearly
have I? ⊆ J?; in the last case,

I? = ID[w1, . . . , wn] ⊆ IT ⊆ IT [z] ⊆ JT [z] = J?.

Hence, ? is order-preserving. Therefore, ? is a semistar operation; we
claim that ? ∈

⋂
H.

Since D? = D[w1, . . . , wn], we have ? ∈ Vw−1
i D for i ∈ {1, . . . , n};

moreover, T ? = T [z] and thus ? ∈ Vz−1T . On the other hand,D[w1, . . . , wn] ⊆
T ( T [z], and thus ? /∈ Vz−1D, i.e., ? ∈ X \ Vz−1D. Therefore, ? ∈

⋂
H.

Hence, G is a family of closed set of Xcons that verifies the finite
intersection property, but with empty intersection; hence, Xcons cannot
be compact and X is not spectral.



8 DARIO SPIRITO

(b) By the previous point, there are x1, . . . , xn ∈ T , y ∈ D \{0} such
that yT ⊆ D[x1, . . . , xn]. There are ai, bi ∈ D \{0} such that xi = ai/bi
for every i; then,

T ⊆y−1D[x1, . . . , xn] ⊆ D[x1, . . . , xn, y
−1] = D

[
a1

b1

, . . . ,
an
bn
,

1

y

]
⊆

⊆D[b−1
1 , . . . , b−1

n , y−1] = D[(b1 · · · bny)−1].

Taking b := b1 · · · bny we have our claim. �

Our first application involves the complete integral closure. Recall
that, if D is a domain and K its quotient field, an element x ∈ K is
almost integral over D if there is a c ∈ D, c 6= 0 such that cxn ∈ D for
every n ∈ N. The set of elements of K that are almost integral over D
is a ring, called the complete integral closure of D.

Proposition 4.4. Let D be an integral domain with quotient field K,
and let T be its complete integral closure. If K 6= T and T is not a
fractional ideal over D, then SStar(D) is not a spectral space.

Proof. If SStar(D) were a spectral space, by the previous theorem there
would be x1, . . . , xn ∈ T , y ∈ D \ {0} such that yT ⊆ D[x1, . . . , xn].
By definition, each xi is almost integral over D; let ci ∈ D \ {0} be
such that cix

k
i ∈ D for every k ∈ N. Then, cxki ∈ D for every i and

k, where c := c1 · · · cn; hence, cD[x1, . . . , xn] ⊆ D. But this implies
that ycT ⊆ D, i.e., that T is a fractional ideal over D, against the
hypothesis. �

To prove Proposition 4.4, we needed part (a) of Theorem 4.3, and
it would not be enough to use part (b). For example, if D is a one-
dimensional local ring with complete integral closure T , then T satisfies
condition (b) (since K = D[b−1] for any b in the maximal ideal of D);
however, if T is different from K and not a fractional ideal of D, then
it does not satisfy condition (a). This happens, for example, if D is a
Noetherian one-dimensional local domain whose integral closure is not
finitely generated over D.

However, (b) is quite useful, as the next result shows.

Proposition 4.5. Let D be an integral domain, and suppose there is
a set ∆ of pairwise uncomparable prime ideals of D such that

⋂
{P |

P ∈ ∆} = (0). Then, SStar(D) is not a spectral space.

Proof. Take any Q ∈ ∆. If SStar(D) is spectral, there is a b ∈ D \ {0}
such that DQ ⊆ D[b−1]; in particular, PD[b−1] = D[b−1] for every
P ∈ ∆ \ {Q}, and thus b ∈ P for every such P . Therefore,

bD ∩Q ⊆
⋂

P∈∆\{Q}

P ∩Q =
⋂
P∈∆

P = (0).

However, neither bD nor Q are equal to (0); since D is an integral
domain, this is a contradiction. Hence, SStar(D) is not spectral. �
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Corollary 4.6. Let D be an integral domain which is not a field and
whose Jacobson radical is (0). Then, SStar(D) is not a spectral space.

Proof. Apply Proposition 4.5 with ∆ = Max(D). �

4.1. The Noetherian case. In the Noetherian context, Proposition
4.5 has a straightforward consequence.

Proposition 4.7. Let D be a Noetherian or a Krull domain. If dim(D) >
1, or if D has infinitely many maximal ideals, then SStar(D) is not a
spectral space.

Proof. Under both hypotheses, we can apply Proposition 4.5 to the set
of height-one prime ideals of D. Thus, SStar(D) cannot be spectral. �

Let now D be a Noetherian domain of dimension 1. Then, the Zariski
space Zar(D) of D consists exactly of the quotient field K and the
localizations of the integral closure D of D. For any I ∈ F(D), define

R(I) := {V ∈ Zar(D) | IV 6= K}.
This set can be characterized in a different way.

Lemma 4.8. Preserve the notation and the hypothesis above. Then,
V ∈ R(I) if and only if (I : I) ⊆ V .

Proof. If V ∈ R(I), then

(I : I) ⊆ (IV : IV ) = V,

with the last equality coming from the fact that IV is a fractional ideal
of the one-dimensional valuation domain V .

Conversely, suppose (I : I) ⊆ V . Since I is a fractional ideal over
(I : I), IV is a fractional ideal over (I : I)V = V ; in particular,
IV 6= K. �

Lemma 4.9. Let D be a one-dimensional Noetherian domain with
|Zar(D)| <∞, let I ∈ F(D) and let T :=

⋂
{V | V ∈ R(I)}. Then:

(a) T is the integral closure of (I : I);
(b) there is a x ∈ K \ {0} such that xI ⊆ T ;
(c) if U ∈ Over(D) is integrally closed and yI ⊆ U for some y ∈

K \ {0}, then T ⊆ U .

Proof. (a) follows directly from Lemma 4.8 (and holds even without the
assumption that |Zar(D)| <∞). To prove (b), letR(I) := {V1, . . . , Vn};
then, for every i there is a yi ∈ D, yi 6= 0 such that yiIV ⊆ V . Thus,
y1 · · · ynIVi ⊆ Vi for each i, and so

y1 · · · ynI ⊆
n⋂
i=1

y1 · · · ynIVi ⊆ V1 ∩ · · · ∩ Vn = T.

Suppose now that yI ⊆ U : if T * U , then there is a V ∈ Zar(D)
such that U ⊆ V but T * V . Hence, yIV ⊆ UV = V , and thus
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IV 6= K; however, this would mean that V ∈ R(I) and thus T ⊆ V , a
contradiction. (c) is proved. �

We are ready to characterize when SStar(D) is spectral.

Theorem 4.10. Let D be a Noetherian integral domain. Then, SStar(D)
is a spectral space if and only if D is semilocal, dim(D) = 1 and the
integral closure of D is finite over D.

Proof. If dim(D) > 1, or if D is not semilocal, then SStar(D) is not
spectral by Proposition 4.7. Moreover, if D is Noetherian and D is
its integral closure, then by Theorem 4.3 there are x1, . . . , xn ∈ D and
y ∈ D\{0} such that yD ⊆ D[x1, . . . , xn]. Since each xi is integral over
D, D[x1, . . . , xn] is a finitely-generated module over D; in particular,
also D must be finitely generated, as claimed.

Conversely, suppose thatD verifies the three hypotheses. Then, every
overring T of D satisfies the same properties: indeed, every overring of
D is Noetherian of dimension 1 [15, Theorem 93], and it is semilocal
because its integral closure is an overring of the semilocal Dedekind
domain D. Furthermore, its integral closure is finite over T : indeed,
if D = D[x1, . . . , xn] then T [x1, . . . , xn] is an overring of T which is
integral over T (the xi are integral over D, so are integral over T )
and integrally closed (being also an overring of D, which is a Dedekind
domain); hence, T [x1, . . . , xn] is the integral closure of T and is a finitely
generated T -module.

For every T ∈ Over(D), let now

F̂(T ) :=
{
I ∈ F(D) | T =

⋂
{V | V ∈ R(I)}

}
.

Clearly, F(D) is the disjoint union of F̂(T ), as T ranges in Over(D).
Furthermore, R(I) = R(xI) for every x 6= 0, and thus I and xI belong

to the same F̂(T ).

Take now a ? ∈ SStar(D), and suppose that I? ∈ F̂(T ) for some
I ∈ F(D) and T ∈ Over(D); we claim that T = T ?. Consider the
ring R := (I? : I?): then, R is ?-closed, and by Lemma 4.9(a) the
integral closure of R is T . By hypothesis, T is finite over R, and thus a
fractional ideal of R; since R = R?, also T ? is a fractional ideal over R.
However, T is maximal among the elements of Over(R) (or Over(D))
that are also R-fractional ideals; hence, it must be T ? = T . Conversely,

if T = T ? then ? restricts to a map from F̂(T ) to itself.

Let now ∆ be a family of semistar operations on D, and let ? :=
sup ∆. Suppose that x ∈ I?, and let T1, T2 ∈ Over(D) be such that

I ∈ F̂(T1) and I? ∈ F̂(T2). Then, T1 ⊆ T2: if xI ⊆ T1 and yI? ⊆ T2,
take a d ∈ D such that dxy−1 ∈ D; then,

dxI ⊆ dxI? = dxy−1yI? ⊆ dxy−1T2 ⊆ T2,
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and thus T1 ⊆ T2 by Lemma 4.9(c). No ring T such that T1 ⊆ T ( T2

can be ?-closed: if xI ⊆ T1, then

T ? ⊇ T ?1 ⊇ (xI)? = xI? ∈ F̂ (T2),

and thus T = T ? would imply T ∈ F̂ (T2), a contradiction. Therefore,
for each such T there must be a ?T ∈ ∆ such that T 6= T ?T . However,
there are only a finite number of rings comprised between T1 and T2;

hence, we can find ?1, . . . , ?m ∈ ∆ such that J := I?1◦···◦?m ∈ F̂(T2).
Let now R := (J : J)?. Then, by the previous reasoning, each ] ∈ ∆

restricts to a map from F(R) to itself, and each of these maps fixes
R; therefore, all the restrictions are star operations on R. Since R
is Noetherian, they are all of finite type; by [2, p.1628], we can find
?m+1, . . . , ?n ∈ ∆ such that x ∈ J?m+1◦...◦?n . This means that

x ∈ (I?1◦···◦?m)?m+1◦...◦?n = I?1◦···◦?n .

Hence, SStar(D) is sup-normal. By Theorem 3.2, applied with A =
F(D), it follows that SStar(D) is a spectral space. �

Corollary 4.11. Let D be a Krull domain. Then, SStar(D) is a spec-
tral space if and only if D is semilocal and dim(D) = 1.

Proof. If D is not semilocal, or if dim(D) > 1, then SStar(D) is not
spectral by Lemma 4.8. Conversely, if D is semilocal of dimension 1
then D is Noetherian and we can apply Theorem 4.10. �

4.2. Prüfer domains. The case of Prüfer domains is considerably
more complex than the case of Noetherian domains. The first result
involves quotients, and has a rôle similar to Proposition 4.1.

Proposition 4.12. Let D be a Prüfer domain.

(a) If P ∈ Spec(D), then SStar(D/P ) is homeomorphic of a closed
set of SStar(D)cons.

(b) If SStar(D) is a spectral space, then SStar(D/P ) is spectral for
every P ∈ Spec(D).

Proof. Let T :=
⋂
{DQ | Q ∈ V (P )}. Since D is Prüfer, T is an overring

of D such that every ideal is comparable with P ; moreover, D/P '
T/P . By Proposition 4.1, SStar(T ) is closed in SStar(D)cons; hence, the
claim will follow if we can prove that SStar(T/P ) is homeomorphic to
a closed set of SStar(T )cons.

By [20, Proposition 2.2] (which uses the proofs of [14, Lemmas 2.3
and 2.4]), there is an isomorphism of partially ordered set Ψ between
SStar(T/P ) and the set ∆ := {? ∈ SStar(T ) | P = P ?}, defined as
follows. Let ϕ : T −→ T/P be the quotient map, let ] ∈ SStar(T/P )
and I ∈ F(T ). If vP (I) has no infimum in vP (K) (where vP is the
valuation relative to TP ), then IΨ(]) := I; if inf vP (I) is attained at α
then

IΨ(]) := α · ϕ−1[(ϕ(α−1I))]].
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Conversely, if ? ∈ SStar(T ) then

IΨ−1(?) := ϕ(ϕ−1(I)?) for I ∈ F(T/P ).

We claim that this bijection is also a homeomorphism. Indeed, sup-
pose I ∈ F(T ). If vP (I) has no infimum, then Ψ−1(VI ∩ ∆) is either
empty (if 1 /∈ I) or the whole SStar(T ) (if 1 ∈ I), and in both cases it is
an open set. On the other hand, if vP (α) = inf vP (I), then ] ∈ Ψ−1(I)
if and only if

1 ∈ α · ϕ−1[(ϕ(α−1I))]];

applying ϕ, this is equivalent to

1 ∈ ϕ(α)(ϕ(α−1I))],

i.e., ] ∈ VJ , where J := ϕ(α)ϕ(α−1I). In particular, it is open, and Ψ
is continuous.

Likewise, if I ∈ F(T/P ), then Ψ(VI) = Vϕ−1(I), and thus Ψ is also
an open map. Hence, Ψ is a homeomorphism.

Now ∆ is a closed set of SStar(T ): indeed, it is equal to
⋂
{X\Vw−1P |

w ∈ K\P}. In particular, it is a closed set of the constructible topology
of SStar(T ) and SStar(D), as requested.

The second claim is immediate. �

In order to apply Theorem 4.3, we need to look at the prime ideals
that survive in a finitely-generated algebra over D. We denote by D(I)
the open set of Spec(D) associated to I, i.e., D(I) := {P ∈ Spec(D) |
I * P}.

Lemma 4.13. Let D be a Prüfer domain with quotient field K, P ∈
Spec(D), x1, . . . , xn ∈ K. Then, PD[x1, . . . , xn] 6= D[x1, . . . , xn] if and
only if P ∈ D((D :D x1) ∩ · · · ∩ (D :D xn)).

Proof. Let T := D[x1, . . . , xn]. We have PT 6= T if and only if T ⊆
DP , i.e., if and only if x1, . . . , xn ∈ DP . Now x ∈ DP if and only if
(DP :DP x) = DP , i.e., if and only if (D :D x)DP = DP , which is
equivalent to (D :D x) * P , i.e., to P ∈ D((D :D x)). Hence, PT 6= T
if and only if P ∈ D((D :D xi)) for every i; the claim follows from
the fact that, for any ideal I1, . . . , In of D, we have D(I1 ∩ · · · ∩ In) =
D(I1) ∩ · · · ∩ D(In). �

Given a prime ideal P , we say that Q1, Q2 ∈ V (P ) \ {P} are de-
pendent with respect to P , and we write Q1 ∼P Q2, if there is a
P ′ ∈ Spec(D) such that P ( P ′ ⊆ Q1 ∩ Q2. If D is a Prüfer domain
(more generally, if D is a treed domain), then ∼P is an equivalence
relation on V (P ) \ {P}. When P = (0), we simply denote ∼(0) with ∼.

Lemma 4.14. Let D be a Prüfer domain, and let K be its quotient
field; let V be a valuation overring of D with maximal ideal m. If yV ⊆
D for some y ∈ K \ {0}, then (m ∩ D) ∼ M for every maximal ideal
M of D.
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Proof. Suppose not: then, there is a maximal ideal M of D such that
M and P := m ∩D are not dependent, i.e., such that M ∩ P does not
contain nonzero prime ideals. Hence, the product DMV is equal to K;
however, yV ⊆ D implies yV DM ⊆ DM , i.e., yK ⊆ DM . Since y 6= 0,
this is impossible. �

Theorem 4.15. Let D be a Prüfer domain. If SStar(D) is a spectral
space, then for every P ∈ Spec(D) the relation ∼P has only finitely
many equivalence classes.

Proof. If SStar(D) is spectral, by Proposition 4.12 so is SStar(D/P ),
for every P ∈ Spec(D); hence, without loss of generality we can suppose
P = (0). For T ∈ Over(D), let ∆(T ) be the set of equivalence classes
of Spec(T ) \ {(0)} with respect to ∼.

Let Q be a nonzero prime ideal of D. By Theorem 4.3, there are
x1, . . . , xn ∈ DQ, y ∈ D \ {0} such that yDQ ⊆ D[x1, . . . , xn] =: T .
By construction, T ⊆ DQ: hence, QT 6= T , and thus, by Lemma 4.13,
Q is contained in the open set ΩQ := D((D :D x1) ∩ · · · ∩ (D :D xn)).
Moreover, by Lemma 4.14, the ideal P := QDQ∩T is dependent (with
respect to (0)) from every maximal ideal of T . Hence, Q ∼M0 for every
nonzero prime ideal M0 of D surviving in T . Applying again Lemma
4.13, this means that ΩQ \ {(0)} is contained into the equivalence class
of Q modulo ∼.

However, the containmentQ ∈ ΩQ implies that {ΩQ | Q ∈ Spec(D), Q 6=
(0)} is an open cover of Spec(D); by compactness, there is a finite
subcover. By the previous reasoning, this implies that ∼ admits only
finitely many equivalence classes, as claimed. �

Proposition 4.16. Let D be a finite-dimensional Prüfer domain. Then,
SStar(D) is a spectral space if and only if Spec(D) is finite.

Proof. If Spec(D) is finite, so is SStar(D) [14, Theorem 4.5], and since
it is a T0 space it is also a spectral space. Conversely, suppose that
SStar(D) is spectral, and let Speci(D) := {P ∈ Spec(D) | h(P ) = i}. If
Spec(D) were infinite, there would be a n such that Specn−1(D) is finite
while Specn(D) is not: in particular, there would be a P ∈ Specn−1(D)
which is below infinitely many primes of Specn(D). However, this would
imply that ∼P has infinitely many equivalence classes, contradicting
Theorem 4.15. Hence, Spec(D) is finite. �

When the dimension of D is infinite, things are not so clear. If D = V
is a valuation domain, for example, every star operation is stable; in
particular, if Spec(V ) is Noetherian then the following Theorem 5.5
implies that SStar(V ) is a spectral space. On the other hand, adding
more maximal ideals we can lose the spectrality.

Proposition 4.17. Let D be a Prüfer domain with quotient field K,
and suppose there are a chain ∆ of prime ideals and a N ∈ Spec(D)
such that:
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•
⋂
{P | P ∈ ∆} = Q /∈ ∆;

• DPDN = K for every P ∈ ∆;
• Q ⊆ N .

Then, SStar(D) is not a spectral space.

Proof. Suppose SStar(D) is a spectral space. By Proposition 4.12, also
SStar(D/Q) is spectral; since Q contains both N and every P ∈ ∆, it
follows that, without loss of generality, we can suppose Q = (0).

By Theorem 4.3, there is a b ∈ D \ {0} such that DN ⊆ D[b−1];
hence, for every P ∈ ∆,

K = DNDP ⊆ D[b−1]DP = DP [b−1].

Hence, b ∈ P for every P ∈ ∆; however, since
⋂
P∈∆ P = (0), this

means that b = 0, a contradiction. Therefore, SStar(D) cannot be
spectral. �

For example, suppose that D has only two maximal ideals M and N ,
and suppose that M∩N does not contain any nonzero prime ideal, and
that

⋂
{P ∈ Spec(D) | (0) 6= P ⊆ M} = (0). Then, by the previous

proposition, SStar(D) is not a spectral space. Note that, in this case,
Spec(D) is a a Noetherian space.

5. Stable operations

We start with an analogue of Proposition 4.1.

Proposition 5.1. Let D be an integral domain.

(a) SStarst(D) is a closed set of SStar(D)cons.
(b) If SStar(D) is a spectral space, so is SStarst(D).

Proof. For every I, J ∈ F(D), let V(I, J) be the union of the four sets

V1(I, J) := VI∩J ∩ VI ∩ VJ ,
V2(I, J) := VI \ (VI∩J ∪ VJ),

V3(I, J) := VJ \ (VI∩J ∪ VI) and

V4(I, J) := X \ (VI∩J ∪ VI ∪ VJ).

We claim that

SStarst(D) =
⋂

I,J∈F(D)

V(I, J).

Indeed, suppose ? ∈ SStarst(D), and take I, J ∈ F(D). There are
four possibilities:

• if 1 ∈ I? and 1 ∈ J? then 1 ∈ I? ∩ J? = (I ∩ J)?, and thus
? ∈ V1(I, J);
• if 1 ∈ I? but 1 /∈ J?, then 1 /∈ (I ∩ J)? and thus ? ∈ V2(I, J);
• if 1 /∈ I? but 1 ∈ J?, symmetrically, ? ∈ V3(I, J);
• if 1 /∈ I? and 1 /∈ J? then ? ∈ V4(I, J).
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In all cases, ? ∈ V(I, J); hence, ? ∈
⋂
V(I, J).

Suppose now ? is in the intersection, and take I, J ∈ F(D). We
always have (I∩J)? ⊆ I?∩J?; suppose x ∈ I?∩J?. Then, ? ∈ Vx−1I and
? ∈ Vx−1J ; since ? ∈ V(x−1I, x−1J), we must have ? ∈ V1(x−1I, x−1J),
and thus x ∈ (I ∩ J)?. Hence, (I ∩ J)? = I? ∩ J?. Since this holds for
every I and J , ? is stable.

Now each Vi(I, J) is closed in SStar(D)cons (since each VI is open
and compact in SStar(D)), and thus V(I, J) is always closed in the
constructible topology. Therefore, their intersection is closed too, and
SStarst(D) is closed in SStar(D)cons.

The second claim follows easily. �

Contrary to Section 4.1, for stable operations the case of Noetherian
domains is essentially trivial.

Proposition 5.2. Let D be a Noetherian domain. Then, SStarst(D) is
a spectral space.

Proof. Let ? be a stable semistar operation on D. By [10, Proposition
3.4], ? is uniquely determined by ] := ?|F(D); since D is Noetherian,
] is of finite type, and thus so is ?. Hence, ? is spectral [1, Corollary
4.2], and thus SStarst(D) = SStarsp(D) = SStarf,sp(D). The latter is
spectral by [10, Theorem 4.6], and thus SStarst(D) is spectral. �

In general, it is possible that SStarst(D) is not a spectral space.
For example, let D be an almost Dedekind domain such that all the
maximal ideals are principal except for one, sayM ; suppose also thatM
is not finitely generated (i.e., that D is not a Dedekind domain). Such a
domain exist; see e.g. [17]. For any I ∈ F(D), let UI := VI∩SStarst(D),
and let

U0 := {UP | P ∈ Max(D)};
we claim that

⋂
U0 = {∧{K} = s{(0)}}.

Indeed, suppose that ? ∈
⋂
U0, and let T := D?. If P = (p) is a

principal prime ideal, then

1 ∈ (pD)? = pD? = pT,

and thus p−1 ∈ T ; hence, the only maximal ideal of D that could
survive in T is M , and so T ∈ {DM , K}. However, ? ∈ UM , and
thus 1 ∈ M? ⊆ (MDM)?; in particular, MDM is not ?-closed. But
MDM = mDM for some m ∈ K, and thus neither DM is ?-closed; it
follows that T must be K, and ? must be ∧{K}.

Let J be a nonzero ideal of D contained in infinitely many maximal
ideals, and consider U := U0 ∪ {SStarst(D) \ UJ}. Clearly,

⋂
U = ∅.

On the other hand, if G := {UP1 , . . . , UPn , UM , SStarst(D) \ UJ} is a
finite subfamily of U , consider ∆ := Max(D) \ {P1, . . . , Pn,M}. Then,
1 ∈ P s∆

i , as well as 1 ∈ M s∆ ; on the other hand, there is at least a
minimal prime of J contained in ∆, and thus 1 /∈ Js∆ . Hence, s∆ ∈

⋂
G.
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Therefore, U is a family of closed sets of Xcons with the finite in-
tersection property but with empty intersection; hence, Xcons is not
compact, and X cannot be spectral.

We shall consider one case where we can prove that the space SStarst(D)
is spectral: namely, the case when D is a Prüfer domain where every
ideal has only finitely many minimal primes. To this aim, we shall use
the following characterization, proved in [19]: under this hypothesis, if
? is a stable semistar operation, then

(1) I? =
⋂

P∈∆1(?)

IDP ∩
⋂

P∈∆2(?)

(IDP )vDP

for every I ∈ F(D), where

• ∆1(?) := {P ∈ Spec(D) | 1 /∈ P ?} = QSpec?(D),
• ∆2(?) := {P ∈ Spec(D) | 1 ∈ P ?, 1 /∈ Q? for some P -primary

ideal Q}.
We first need a result of independent interest.

Proposition 5.3. Let D be a domain. The supremum of a family of
stable semistar operations on D is stable.

Proof. For any semistar operation ?, consider the semistar operation ?
defined by

I? :=
⋃
{(I : E) | E ⊆ D, E] = D]};

then, ? is the biggest stable semistar operation smaller than ? [3, The-
orem 2.14]. In particular, ? = ? if and only if ? is stable [3, Theorem
2.6].

Let now A be a family of stable semistar operations, and let ] be
its supremum in SStar(D). If ] is not stable, then in particular ] < ],
and thus there is a ? ∈ A such that ? 6≤ ]. Let now I ∈ F(D). Since
? is stable, ? = ?; thus, for every x ∈ I?, there is an E ⊆ D such that
E? = D? and x ∈ (I : E). But this implies (since ? ≤ ]) that E] = D],

and thus x ∈ I]; it would follow that I? ⊆ I]. Since this holds for every
I, we would have ? ≤ ], a contradiction. Hence, ] is a stable semistar
operation. �

Lemma 5.4. Let V be a valuation domain, let ∆ ⊆ SStar(V ) and let
? := sup ∆. Take an I ∈ F(V ). If 1 ∈ I?, then 1 ∈ I] for some ] ∈ ∆.

Proof. Let P be the minimal prime of I. By the representation (1),
1 ∈ I? if and only if 1 ∈ (IVP )?: thus, without loss of generality P is
the maximal ideal of V and I is P -primary.

Since 1 ∈ I?, there is a ] ∈ ∆ such that I is not ]-closed; hence, I] is
a V -module properly containing V . However, if 1 /∈ I], then, again by
the representation (1), I ( P and ] = vV , which would imply I] = I.
This is a contradiction, and 1 ∈ I]. �
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Theorem 5.5. Let D be a Prüfer domain such that every ideal has only
finitely many minimal primes. Then, SStarst(D) is a spectral space.

Proof. The space SStarst(D) is closed by infima and by suprema (Propo-
sition 5.3); to apply Theorem 3.2 (with A = F(D)) it is enough to show
that SStarst(D) is sup-normal.

Let thus Λ ⊆ SStarst(D), and let ? := sup Λ. Suppose that x ∈ I?;
by substituting I with x−1I, we can suppose x = 1, and by substituting
I with I ∩D we can suppose I ( D (this is possible since stable opera-
tions, by definition, distribute over finite intersections). By hypothesis,
I has only a finite number of minimal primes, P1, . . . , Pk; let Vi := DPi .
Then, 1 ∈ (IVi)

?; since the restriction of ? to F(Vi) is the supremum
of the set {]|F(Vi) | ] ∈ Λ}, by Lemma 5.4 there is a ]i ∈ Λ such that
1 ∈ (IVi)

]i .
Let now Ti :=

⋂
{DP | P ∈ Spec(D), P ⊇ Pi}. Then, every maximal

ideal of Ti contains Pi, and thus every prime ideal of Ti is comparable
with Pi. Furthermore, rad(ITi) = PiTi. Since ]i does not closes PiTi,
by the representation (1) the fact that 1 ∈ (IVi)

]i = (ITiVi)
]i implies

that 1 ∈ (ITi)
]i .

Since every maximal ideal containing I survives in some Ti, we have
I = IT1 ∩ · · · ∩ ITn ∩D; hence,

I]1◦···◦]n =
n⋂
i=1

(ITi)
]1◦···◦]n ∩D]1◦···◦]n ⊇

n⋂
i=1

(ITi)
]i ∩D 3 1.

Therefore, SStarst(D) is sup-normal, and by Theorem 3.2 it is a spectral
space. �

In this context, a space closely related to SStarst(D) is the space

SStarsv(D) := {? ∈ SStar(D) | D? ∈ Zar(D)}.

The previous theorem immediately yields the following.

Proposition 5.6. Let D be a Prüfer domain such that every ideal
has only finitely many minimal primes. Then, SStarsv(D) is closed in
SStarst(D)cons, and in particular it is a spectral space.

Proof. Clearly, SStarsv(D) is closed by generizations. Moreover, it is
compact, since a family U of open sets is a cover of SStarsv(D) if and
only if it is a cover of {∧{V } | V ∈ Zar(D)}, and the latter space is
compact since it is homeomorphic to Zar(D). �

More interestingly, SStarsv(D) can be used to represent SStarst(D);
the following result is a topological version of [19, Proposition 4.10].

Theorem 5.7. Let D be a Prüfer domain such that every ideal has only
finitely many minimal primes. Then, SStarst(D) ' X (SStarsv(D)).



18 DARIO SPIRITO

Proof. First, note that the construction X (SStarsv(D)) makes sense
since SStarsv(D) is a spectral space by Proposition 5.6. Consider the
map

π : X (SStarsv(D)) −→ SStarst(D)

Λ 7−→ inf Λ.

We claim that π is a homeomorphism.
To show that it is surjective, consider the set X (D) formed by all

the subspaces of SStarsv(D) that are closed by generizations. Then, we
can factorize π as

X (SStarsv(D))
ι−−−−→X (D)

π′−−−−→ SStarst(D),

where ι is the natural inclusion map and π′ sends Λ to inf Λ.
By [19, Proposition 4.10], π′ is surjective. Moreover, we claim that,

for every Λ ⊆ SStarsv(D), we have inf Λ = inf Λ, where Λ is the closure
in the inverse topology of Λ. Indeed, obviously inf Λ ≥ inf Λ. On the
other hand, if ? ≤ inf Λ, then Λ ⊆ {?}↑. But {?}↑ is the closure of
{?} in the inverse topology of SStarst(D); in particular, it is closed in
the constructible topology, and thus so is {?}↑ ∩ SStarsv(D). Hence,
Λ ⊆ {?}↑∩SStarsv(D), and ? ≤ inf Λ; hence, inf Λ ≤ inf Λ and the two
infima are equal. Therefore, if ? = π′(Λ) then ? = π(Λ), and thus π is
surjective.

We now show that π is injective. Suppose inf Λ1 = inf Λ2 for some
distinct Λ1,Λ2 ∈ X (SStarsv(D)). In this case, inf Λ1 = inf(Λ1 ∪ Λ2):
hence, without loss of generality, we can suppose Λ2 = Λ1 ∪ {?} for
some ? ∈ SStarsv(D). Let V := D?; identifying SStar(V ) = SStarsv(V )
with its image in SStar(D) under the topological embedding ι (see the
proof of Proposition 4.1), consider Λ′i := Λi∩SStar(V ). Since SStar(V )
is closed in the constructible topology of SStar(D), Λ′1 and Λ′2 are
closed in the inverse topology; hence, it is enough to prove that if
inf Λ′1 = inf Λ′2 then Λ′1 = Λ′2.

Suppose ? /∈ Λ′1: there is a closed set C of the inverse topology of
SStar(V ) such that Λ′1 ⊆ C but ? /∈ C. Without loss of generality,
C = VI ∩SStar(V ) for some ideal I of V ; hence, 1 ∈ I] for every ] ∈ Λ′1
but 1 /∈ I?. Let Q be a nonmaximal prime ideal of V : then,

Qinf Λ′1 = Qinf Λ′1 ∩Q? ⊆ Q? = Q;

hence, 1 /∈ Q] for some ] ∈ Λ′1. In particular, Q ( I, and thus I must
be M -primary (where M is the maximal ideal of V ).

If ? = dV , then in the same way M ( I, and thus I = V ; but then,
1 ∈ I?, a contradiction.

If ? = vV , then in the same way I contains every M -primary ideal
of V different from M ; hence, M ⊆ I. However, in this case 1 ∈ M?,
again a contradiction.

Therefore, inf Λ′1 6= inf Λ′2, and so inf Λ1 6= inf Λ2; hence, π ◦ ι is
injective, and thus bijective.
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To prove that π is continuous, take an F ∈ F(D) and let UF :=
VF ∩ SStarst(D). Then,

(π ◦ ι)−1(UF ) = {∆ ⊆ X (SStarsv(D)) | 1 ∈ F inf ∆} =
= {∆ ⊆ X (SStarsv(D)) | 1 ∈ F ? ∀? ∈ ∆} =
= {∆ ∈ X (SStarsv(D)) | ∆ ⊆ UF} = U(UF ∩ SStarsv(D))

which is open since UF ∩ SStarsv(D) is compact. Moreover, it is clear
that π(U(UF ∩ SStarsv(D))) = UF , and thus π is open. Hence, π is a
homeomorphism, as claimed. �

Corollary 5.8. Let D be a Prüfer domain with Noetherian spectrum.
Then, SStarsv(D) is a Noetherian space.

Proof. Keep the notation of the previous proof. By [19, Proposition
4.10], π′ is actually bijective; since ι is injective and π = π′ ◦ ι is
bijective, it follows that also ι is bijective. But this implies that every
subset of SStarsv(D) closed by generizations is compact; however, this
can happen only if SStarsv(D) is a Noetherian space. The claim is
proved. �

It is worthwhile to note that, for an arbitrary domain D, the space
SStarsv(D) is actually very close to Zar(D); indeed, there is a topo-
logical embedding Zar(D) ↪→ SStarsv(D) (given by V 7→ dV ) and a
continuous surjection SStarsv(D) −→ Zar(D) (given by ? 7→ D?), and
the latter is (at most) two-to-one. Therefore, it is quite natural to ask
the following question: is SStarsv(D) always a spectral space?

6. Spectral operations

The case of the set SStarsp(D) of the spectral operations of D is
slightly different from the cases considered in the previous two sections.
One of the reasons is that spectral operations do not mesh well with
the constructible topology.

Proposition 6.1. Let D be an integral domain. Then, the following
are equivalent:

(a) SStarsp(D) = SStarf,sp(D);
(b) SStarf,sp(D) is closed in SStarsp(D)cons;
(c) Spec(D) is Noetherian.

Furthermore, if SStar(D) is a spectral space, the previous properties are
equivalent to the following:

(d) SStarsp(D) is closed in SStar(D)cons.

Proof. (a) =⇒ (b) is obvious, while (a) ⇐⇒ (c) follows from [12,
Corollary 4.4].

To prove (b) =⇒ (c), suppose that Spec(D) is not Noetherian, and
let ∆ := {Pα}α∈A be an ascending chain of prime ideals of D that does
not stabilize. Let ? := s∆: then, ∆ is not compact, and by [12, Corollary
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4.4] ? is not of finite type. If SStarf,sp(D) is closed in SStarsp(D)cons,
there are ideals I1, . . . , In, J1, . . . , Jn such that{

SStarf,sp(D) ⊆
⋃n
i=1 VIi ∩ (X \ VJi),

? /∈
⋃n
i=1 VIi ∩ (X \ VJi).

The first condition implies that, for every α ∈ A, there is an i such that
Ii * Pα and Ji ⊆ Pα; since ∆ is an ascending chain, this means that
there is a k such that Jk ⊆ Pα and Ik * Pα for all large α. However,
this means that 1 /∈ J?k , while 1 ∈ I?k ; hence, ? ∈ VIk ∩ (X \ Jk). This is
a contradiction, and thus SStarf,sp(D) is not closed in SStarsp(D)cons

Suppose now SStar(D) is spectral. Then, SStarf,sp(D) is closed in
SStar(D)cons, since it is the intersection of SStarf (D) (which is closed
by Proposition 4.2) and SStarst(D) (which is closed by Proposition
5.1). In particular, (a) implies (d). Furthermore, if (d) holds then (b)
holds, since SStarf,sp(D) would be closed in the topology induced by
SStar(D)cons on SStarsp(D), which is exactly SStarsp(D)cons. The claim
is proved. �

Despite the previous proposition, we can actually fully characterize
when the space is spectral. We denote by Min(I) the set of minimal
primes of an (integral) ideal I of D.

Theorem 6.2. Let D be an integral domain. Then, SStarsp(D) is a
spectral space if and only if every ideal of D has only finitely many
minimal primes.

Proof. Let X := SStarsp(D), and let UI := VI ∩ X for each ideal I of
D.

Suppose that Min(I) is finite for every ideal I of D. Since UI = UI∩D
for every I ∈ F(D), a subbasis of closed sets of Xcons is

S := {UI | I ∈ I(D)} ∪ {X \ UH | H ∈ I(D)},

where I(D) is the set of integral ideals ofD. (Compare [10, Propositions
3.2(1) and 4.3(1)].)

We want to show that any family G of closed sets of Xcons with the
finite intersection property has nonempty intersection; by Alexander’s
Subbasis Theorem (considered on the closed sets) we can suppose that
G ⊆ S. Hence, suppose

G := {UFα | α ∈ A} ∪ {X \ UGβ | β ∈ B}

has the finite intersection property. Each UFα has an infimum, say s∆α ,
with ∆α = ∆↓α. Let ∆ :=

⋂
{∆α | α ∈ A}. Then, ? := s∆ ≥ s∆α for

each α, and thus ? ∈
⋂
α UFα . We claim that ? /∈ UGβ for each β ∈ B.

Suppose this is not true, and let G := Gβ be such that ? ∈ UG; let
Min(G) = {P1, . . . , Pn}. Then, 1 ∈ G?, and thus Pi /∈ ∆ for each i; in
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particular, there is a ∆i = ∆αi such that Pi /∈ ∆αi . Consider the family

G0 := {UFα1
, . . . , UFαn} ∪ {X \ UG}.

Being a finite subfamily of G, there is a ] ∈
⋂
G0; let ] := sΛ with

Λ = Λ↓. Then, ] ≥ s∆i
for each i, and thus Λ ⊆ ∆i for each i, i.e., Λ ⊆⋂

i ∆i. But this means that P /∈ Λ for each P ∈ Min(G); thus, 1 ∈ P ]

for every such P , and 1 ∈ G], i.e., ] ∈ UG. This is a contradiction, and
thus ? /∈ UGβ for every β.

But this means that ? ∈
⋂
β(X \ UGβ); hence, ? ∈

⋂
G. It follows

that Xcons is compact, and thus X is a spectral space.

Conversely, suppose that there is an ideal I of D having infinitely
many minimal primes. Let

G := {UP | P ∈ Min(I)} ∪ {X \ UI}.

If ? ∈
⋂
G, then 1 /∈ I?, and thus (being ? spectral) 1 /∈ P ? for some

P ∈ Min(I), i.e., ? /∈ UP ; this contradicts UP ∈ G, and thus
⋂
G must

be empty.
Let now H be a proper subset of G; we claim that

⋂
H 6= ∅, and we

can suppose that X \UI ∈ H. Let ∆ := {Q ∈ Spec(D) | UQ ∈ G \H}↓;
then, the hypotheses imply that ∆ is not empty.

Consider ? := s∆; then, 1 /∈ Q? for every Q ∈ ∆ and thus 1 /∈ I?,
i.e., ? ∈ X \ UI . On the other hand, if UQ ∈ H, then Q /∈ ∆, and thus
1 ∈ Q?, i.e., ? ∈ UQ. It follows that ? ∈

⋂
H.

Since G is infinite, this means that G is a set with the finite intersec-
tion property but with empty intersection. Moreover, G is a family of
closed subsets of Xcons; hence, Xcons cannot be compact, and X is not
a spectral space. �
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