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Abstract. We study the sets of semistar and star operations on
a semilocal Prüfer domain, with an emphasis on which proper-
ties of the domain are enough to determine them. In particular,
we show that these sets depend chiefly on the properties of the
spectrum and of some localizations of the domain; we also show
that, if the domain is h-local, the number of semistar operations
grows as a polynomial in the number of semistar operations of its
localizations.

1. Introduction

Starting from the works of Krull [24], Gilmer [16, Chapter 32] and
Okabe and Matsuda [26], the study of star and semistar operations
has usually followed the route of studying properties holding for some
classes of these operations, or of some particular cases: for example,
studying the properties of stable, spectral [2, 1, 13] or eab operations
(see e.g. [14] and [9, Section 4]), or studying the t- [28, 6] or the
b-operation [23].

More recently, there has been interest in studying these closures from
a global perspective, that is, in studying the properties of the whole
set: for example, studying a natural topology on the set of semistar
operations [11, 10], or studying the relationship between semistar and
semiprime operations [8]. In particular, Houston, Mimouni and Park
have been interested in the study of the cardinality of the set of star
operations in the Noetherian setting [20, 22], as well as in the inte-
grally closed case (with special interest in the case of Prüfer domains)
[19, 21, 18]: in [21] they showed that there is a strong link between the
spectrum of a semilocal Prüfer domain D and the number of star op-
erations on D, while in [18, Theorem 4.3] they calculated the number
of star operations when the spectrum of D is Y-shaped. With different
methods, Elliott showed that the structure of the set of semistar oper-
ations on a Dedekind domain D (in particular, its cardinality) depends
only on the number of maximal ideals of D [7].

In this paper, we deepen this study, linking it to Jaffard families
(whose tie with star operations was established in [29]) and extending
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it to semistar operations. In particular, we focus on which information
about a Prüfer semilocal domain D is sufficient to determine the sets
SStar(D) and Star(D) of, respectively, semistar and star operations;
we do not require the rings to be finite-dimensional. We show in The-
orem 4.3 that SStar(D) can be determined by joining some geometric
data (the spectrum of D, or more precisely the homeomorphically ir-
reducible tree underlying Spec(D)) and some algebraic data (the set
of semistar operations on some valuation rings of the form DP/QDP ).
We then show (Theorem 5.2) that, to determine Star(D), we must also
add some information about the maximal ideals of D (namely, if they
are principal). We also show (Corollary 6.9) that the cardinality of
SStar(D), when D is an h-local domain with n maximal ideals, is a
polynomial of degree n · 2n−1 in the number of semistar operations on
the localizations DP .

2. Notation and preliminaries

2.1. Closures and semistar operations. Let (P ,≤) be a partially
ordered set. A closure operation on P is a map c : P −→ P such that:

(1) c is extensive: x ≤ c(x) for every x ∈ P ;
(2) c is order-preserving : if x ≤ y, then c(x) ≤ c(y);
(3) c is idempotent : c(c(x)) = c(x) for every x ∈ P .

If x ∈ P is such that x = c(x), then x is said to be c-closed.
Let now D be an integral domain with quotient field K; let F(D) be

the set of D-submodules of K, and let F(D) be the set of fractional
ideals of D, i.e., of the I ∈ F(D) such that xI ⊆ D for some x ∈ K,
x 6= 0.

If ∗ : I 7→ I∗ is a closure operation on F(D) or F(D), let (S) be the
following property:

(S): x · I∗ = (xI)∗ for every x ∈ K and every I where ∗ is defined.

This property is usually used to define the following three classes of
closure operations:

• semistar operations are closure operations on F(D) with prop-
erty (S);
• (semi)star operations are semistar operations ∗ such that D =
D∗;
• star operations are closure operations ∗ on F(D) with property

(S) and such that D = D∗.

We denote the sets of these closures, respectively, as SStar(D), (S)Star(D)
and Star(D).

We shall need a fourth class of closure operations:

Definition 2.1. A fractional star operation on D is a closure operation
on F(D) with property (S). We denote their set by FStar(D).
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These four sets are all partially ordered, with ∗1 ≤ ∗2 if I∗1 ⊆ I∗2

for every I (belonging to F(D) or F(D), according to the case).
The identity map, I 7→ I, is a closure operation, and it is denoted

by d both in the semistar and in the star setting.

2.2. Localizations of star operations. Let ∗ ∈ Star(D) and let T
be a flat overring of D. Then, ∗ is said to be extendable to T if the
map

∗T : F(T ) −→ F(T )

IT 7−→ I∗T

is well-defined (where I is a fractional ideal of D) [29, Definition 3.1].
In this case, ∗T is a star operation. The same definition can be given in
the case of fractional star operations and semistar operations; it works
well in the former case, but poorly in the latter [29, Remark 5.12].

2.3. Jaffard families and localizations. Let D be an integral do-
main with quotient field K. An overring of D is a ring between D
and K; the set of overrings of D is denoted by Over(D). A set Θ of
overrings of D is a Jaffard family of D if the following properties hold
[29, Proposition 4.3]:

• I =
⋂
{IT | T ∈ Θ} for every ideal I of D;

• Θ is locally finite (i.e., for every x ∈ K, x is not invertible in at
most a finite number of T ∈ Θ);
• K /∈ Θ;
• TS = K for every T 6= S in Θ;
• every T ∈ Θ is flat over D.

(This is only one possible definition; see [12, beginning of Section 6.3
and Theorem 6.3.5] for two different characterizations.) In particular,
if Θ is a Jaffard family of D, then [12, Theorem 6.3.1]:

• for every prime ideal P of D there is exactly one T ∈ Θ such
that PT 6= T ; in particular, Θ induces a partition on Max(D);
• I =

⋂
{IT | T ∈ Θ} for every I ∈ F(D).

If Θ is a Jaffard family of D, then, for every T ∈ Θ, each star
operation on D is extendable to T ; moreover, the map

λΘ : Star(D) −→
∏
T∈Θ

Star(T )

∗ 7−→ (∗T )T∈Θ,

is an order isomorphism [29, Theorem 5.4]. An inspection of the proof
of this result shows that the same reasoning also gives a bijection from
FStar(D) to

∏
{FStar(T ) | T ∈ Θ}. On the other hand, the analogue

of this result does not hold for semistar operations [29, Remark 5.12].
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2.4. The standard decomposition. Let D be a Prüfer domain. Two
maximal ideals M and N are dependent if there is a nonzero prime ideal
P ⊆ M ∩ N , or equivalently if DMDN 6= K. Since the spectrum of
a Prüfer domain is a tree, dependence is an equivalence relation. Let
{∆λ | λ ∈ Λ} be the set of equivalence classes of this relation, and
define Tλ :=

⋂
{DP | P ∈ ∆λ}; we call the set {Tλ | λ ∈ Λ} the

standard decomposition of D. If D is semilocal, or more generally if
Max(D) is a Noetherian space, then the standard decomposition of D
is a Jaffard family of D [29, Proposition 6.2].

2.5. Semistar operations and quotients. Let D be a Prüfer do-
main, and suppose there is a nonzero prime ideal P contained in
the Jacobson radical Jac(D) of D. Then, PDP = P , and so DP is
a fractional ideal of D; it follows that every overring of D, except
the quotient field K, is a fractional ideal of D. Hence, in this case
FStar(D) = SStar(D)\{∧{K}} and (S)Star(D) = Star(D), where ∧{K}
is the semistar operation sending every nonzero I ∈ F(D) to K.

Let ϕ : DP −→ DP/P =: k be the quotient map; then, A := D/P
is a subring of k with quotient field k. Let ∗ ∈ SStar(D) be a semistar
operation such that P = P ∗. Then, DP = (P : P ) is also ∗-closed, and
thus, for every I ∈ F(D) such that P ⊆ I ⊆ DP , we have P ⊆ I∗ ⊆ DP .
Following [15] and [21], we define a semistar operation ∗ϕ on D/P by

I∗ϕ := ϕ
(
ϕ−1(I)∗

)
for every I ∈ F(D/P ).

Conversely, if ] ∈ SStar(D/P ), then we can define a map ]ϕ from F(D)
to itself in the following way: let vP be the valuation relative to DP ,
and let I ∈ F(D). Then, we set I]

ϕ
:= I if vP (I) has no infimum in

vP (K); otherwise, if vP (α) = inf vP (I), then P ⊆ α−1I ⊆ DP , and we
put

I]
ϕ

:= α · ϕ−1
[
(ϕ(αI))]

]
.

We have the following.

Proposition 2.2. Let D,P,A, ϕ as above; let ∆1 := {∗ ∈ SStar(D) |
P = P ∗} and ∆2 := {∗ ∈ SStar(D) | P 6= P ∗}. Then:

(a) The maps

∆1 −→ SStar(D/P )

∗ 7−→ ∗ϕ
and

SStar(D/P ) −→ ∆1

] 7−→ ]ϕ

are well-defined order isomorphisms, inverses one of each other,
that restrict to isomorphisms between (S)Star(D) = Star(D)
and (S)Star(D/P ).

(b) The map

ιP : ∆2 −→ SStar(DP ) \ {d}
∗ 7−→ ∗|F(DP )

is a well-defined order isomorphism.
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(c) If ∗1 ∈ ∆1 and ∗2 ∈ ∆2 then ∗1 ≤ ∗2.

Proof. (a) The proof is entirely analogous to the proof of [21, Lemmas
2.3 and 2.4].

(b) It is clear that ιP is well-defined and order-preserving; to see that
it is bijective, it is enough to note that the map ρP : SStar(DP ) −→
SStar(D) such that IρP (∗) := (IDP )∗ is well-defined, sends SStar(DP )\
{d} to ∆2, and is the inverse of ιP .

(c) The overring DP is ∗1-closed for every ∗1 ∈ ∆1; hence, ∗1|F(DP )

is a (semi)star operation on DP which closes P . Since DP a valuation
domain, this implies that ∗1|F(DP ) is the identity; therefore, I∗1 ⊆ IDP

for every I ∈ F(D). But, if ∗2 ∈ ∆2, then ∗2 = ρP (ιP (∗2)), so that
I∗2 ⊇ IDP for every I. Hence, ∗1 ≤ ∗2. �

2.6. Product and sum of posets. Let P1,P2 be two partially or-
dered sets. The product of P1 and P2, denoted by P1 × P2, is the
partial order on the Cartesian product such that (x1, y1) ≤ (x2, y2) if
and only if x1 ≤ x2 and y1 ≤ y2.

The ordinal sum of P1 and P2, denoted by P1 ⊕ P2, is the partial
order on the disjoint union of P1 and P2 such that the order on each
Pi is the same, while if x ∈ P1 and y ∈ P2 then x ≤ y [4, Chapter 1,
§8].

Under this terminology, Proposition 2.2 can be rewritten as saying
that SStar(D) is isomorphic to the ordinal sum of SStar(D/P ) and
SStar(DP ) \ {d}.

2.7. Homeomorphically irreducible trees. Let T be a finite tree.
Then, T is said to be homeomorphically irreducible (or series-reduced)
if no vertex has valence 2 (where the valence of x is the number of
elements of P directly linked to x) [3, 17]. When T is a rooted tree, we
allow the root to have valence 2 (this is in contrast with the definition
in [17] and [3], but is needed for our applications).

If T is a (possibly infinite) rooted tree, with root r, T has a natural
structure of a partially ordered set, where x ≤ y if the (unique) path
from r to y passes through x. Call x ∈ T a branching point if x = r or
if there is a family ∆ ⊆ T of pairwise incomparable elements such that
x /∈ ∆ but x is the infimum of ∆; we say that T is homeomorphically
irreducible if each element of T is a branching point. If T is finite, it
is not hard to see that this definition coincides with the previous one.

Let T be a rooted tree. Then, the set of all branching points of T
is an homeomorphically irreducible tree, which we call the underlying
homeomorphically irreducible tree associated to T .

3. The support of a semistar operation

In the paper, D will always indicate a Prüfer domain, and K its
quotient field. We shall study only semilocal Prüfer domains, that
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is, domains with only a finite number of maximal ideals; while many
definitions do make sense even in a more general setting, many results
do not hold outside the semilocal case. In particular, the two results we
shall continuously use are the existence of a standard decomposition Θ
and the following Proposition 3.2.

Definition 3.1. Let D be a semilocal Prüfer domain, and let Θ be
its standard decomposition. The skeleton of Over(D), indicated by
SkOver(D), is the set of all intersections of elements of Θ.

In particular, SkOver(D) contains D (the intersection of all elements
of Θ) and the quotient field K (the empty intersection), as well as the
elements of Θ. We note that the structure (as a partially ordered
set) of SkOver(D) depends uniquely on the cardinality of Θ, and that
SkOver(D) is closed under intersections.

The main use of SkOver(D) passes though the following proposition,
which can be seen as a variant of [21, Lemma 4.2].

Proposition 3.2. Let D be a semilocal Prüfer domain. Then, F(D)
is the disjoint union of F(A), as A ranges in SkOver(D).

Proof. Let Θ be the standard decomposition of D, let I ∈ F(D), and
consider the set supp(I) := {T ∈ Θ | IT 6= K} (which we call the
support of I); we claim that I is a fractional ideal of A :=

⋂
{T | T ∈

supp(I)}.
Indeed, since Θ is a Jaffard family we have I =

⋂
{IT | T ∈ Θ}.

Moreover, we can throw away the elements of Θ outside the support, so
that I =

⋂
{IT | T ∈ supp(I)}; hence, I is an A-module. Each T ∈ Θ

is semilocal, and by the definition of the standard decomposition there
is a nonzero prime ideal P contained in the Jacobson radical Jac(T ) of
T . Then, P = PTP ; in particular, pTP ⊆ T for every p ∈ P , so that
TP is a fractional ideal of T and (IT )TP 6= K. Since TP is a valuation
domain, it follows that IT is a fractional ideal of TP , or equivalently
aIT ⊆ TP for some a 6= 0. Hence, apIT ⊆ T for any p ∈ P ; choose
one, and let dT := ap. Since supp(I) is finite, we can define d as the
product of such dT ; hence

dI = d
⋂
T∈Θ

IT =
⋂
T∈Θ

dIT ⊆
⋂
T∈Θ

T = A.

Therefore, I ∈ F(A), as claimed.
Suppose now that F(A)∩F(B) 6= ∅ for some A 6= B in SkOver(D).

We can suppose that A ( B (just substitute A with A ∩B), and thus
we can take T ∈ Θ containing A but not B. Each overring of A is flat
over D, and supp(B) is finite; hence, by [5, I.2.6, Proposition 6],

BT =

 ⋂
S∈supp(B)

S

 · T =
⋂

S∈supp(B)

ST = K.
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Let now I ∈ F(A)∩F(B); then, for every i ∈ I, i−1I is a B-module
containing 1, and thus B ⊆ i−1I. Since i−1I is also an A-fractional
ideal, it means that dB ⊆ A for some d 6= 0. Hence, dB ⊆ T , and so
dBT ⊆ TT = T ; however, BT = K, and thus we would have dK ⊆ T ,
a contradiction. Hence, the union is disjoint. �

Remark 3.3.

(1) SkOver(D) is the unique subset of Over(D) which allows us
to split F(D) into sets of fractional ideals. Indeed, if F(D) =⊔
{F(A) | A ∈ A} for some other A, then clearly A cannot

properly contain SkOver(D), and thus there is aB ∈ SkOver(D)\
A. Thus, B ∈ F(A) for some A ∈ A, and A ∈ F(B′) for some
B′ ∈ SkOver(D); this means that B ∈ F(B′), which implies
that B = B′ = A. But, for any two overrings R1 and R2,
F(R1) = F(R2) implies R1 = R2; hence B ∈ SkOver(D), a
contradiction.

(2) Proposition 3.2 cannot be extended outside the semilocal case.
For example, if D = Z, let P be the set of prime numbers, and
define I :=

∑
p∈P

1
p
Z. Then, supp(I) = {DM | M ∈ Max(D)},

so A should be Z itself; however, if dI ⊆ D then d should be
divisible by every prime number, which cannot happen.

We want to use Proposition 3.2 to decompose any semistar operation
∗ into fractional star operations. We need another definition.

Definition 3.4. Let D be a semilocal Prüfer domain, and let SkOver(D)
be the skeleton of Over(D). Let ∗ ∈ SStar(D). The support of ∗ is the
set

supp(∗) := {A ∈ SkOver(D) | A∗ ∈ F(A)}.
We denote the set of semistar operations on D with support ∆ as
SStar∆(D).

Note that supp(∗) is always closed under intersections, since if A∗ ∈
F(A) and B∗ ∈ F(B) then (A∩B)∗ ⊆ A∗∩B∗ ∈ F(A∩B). Moreover,
the quotient field K is always included in supp(∗).

An equivalent definition of supp(∗) is that it is the set of elements A
of SkOver(D) such that ∗ restricts to a fractional star operation on A.
Hence, given any set ∆ such that SStar∆(D) 6= ∅, we have a map

γ∆ : SStar∆(D) −→
∏
{FStar(A) | A ∈ ∆}

∗ 7−→ (∗|F(A))A∈∆.

Proposition 3.5. Let D be a semilocal Prüfer domain, ∆ ⊆ SkOver(D),
and let γ∆ be defined as above. Then, γ∆ is injective.

Proof. Suppose γ∆(∗1) = γ∆(∗2) = γ, and let I ∈ F(D). By Proposi-
tion 3.2, I ∈ F(A) for a unique A ∈ SkOver(D). If A ∈ ∆, then I∗1
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and I∗2 are equal to IγA , where γA is the component of γ∆ with respect
to A; hence I∗1 = I∗2 .

On the other hand, if A /∈ ∆, let B be the smallest element of ∆
containing A; it exists since ∆ is closed under intersections. Then,
I∗ = (IA)∗ = (IA∗)∗ = (IB)∗ for every ∗ ∈ SStar∆(D); in particular,
I∗ = (IB)γ∆(∗)B . Since γ∆(∗1) = γ∆(∗2), this again implies that I∗1 =
I∗2 .

Therefore, I∗1 = I∗2 in every case, and ∗1 = ∗2. �

While γ∆ is injective, it is usually very far from being surjective. For
example, let D be a one-dimensional Prüfer domain with exactly two
maximal ideals, M and N ; then, Θ = {DM , DN}, and SkOver(D) =
{D,DM , DN , K} = Over(D). Suppose that DM is discrete while DN

is not; then, by [16, Chapter 31, Exercise 12] and [19, Theorem 3.1],
FStar(D) = Star(D) is composed of two elements, the identity and the
v-operation. Consider the element (vD, dDM

, dDN
, dK) of FStar(D) ×

FStar(DM)×FStar(DN)×FStar(K), where dA indicates the identity on
A and vA the v-operation on A. Then, N vD = D, while (NDN)dDN =
NDN ; in particular, N v * NDN , and thus (vD, dDM

, dDN
, dK) cannot

come from a semistar operation.
An inspection of this example shows that the problem lies in the fact

that vD is “not smaller” than dDN
; in terms of the γ∆, we would like to

impose the condition that γ∆(∗)|A ≤ γ∆(∗)|B whenever A ⊆ B. How-
ever, this condition doesn’t really make sense as stated, since γ∆(∗)|A
and γ∆(∗)|B live in different sets of closure operations. There are two
possible approaches to this problem, both involving localizations of
fractional star operations.

The first one uses localizations from one member of SkOver(D) to
another. Indeed, if A,B ∈ SkOver(D) and A ⊆ B, then B belongs to a
Jaffard family of A (explicitly, {B, T1, . . . , Tk}, where T1, . . . , Tk are the
elements of Θ that contain A but not B). Hence, there is a localization
map λA,B : FStar(A) −→ FStar(B), and the condition becomes

λA,B(γ∆(∗)A) ≤ γ∆(∗)B.

The second approach, instead, uses localizations from A to the mem-
bers of the standard decomposition of T , and it is the one we will follow
(mainly in view of the second part of Section 6).

Let ∆ ⊆ SkOver(D), and let T ∈ Θ. The component of ∆ with
respect to T is

∆(T ) := {A ∈ ∆ | A ⊆ T}.
Clearly, if ∆ 6= Λ then there is a T ∈ Θ such that ∆(T ) 6= Λ(T ).
A special case is ∆ = {K}: in this case, each ∆(T ) is empty, and
SStar∆(D) = {∧{K}}.

Let now A ∈ ∆(T ). Since T belongs to a Jaffard family of A, there is
a localization map λA,T : FStar(A) −→ FStar(T ). Therefore, for every
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∗ ∈ SStar∆(D) we get a map

ΓT (∗) : ∆(T ) −→ FStar(T )

A 7−→ λA,T (∗|F(A)).

Proposition 3.6. Let D,Θ,∆ as above; let T ∈ Θ and ∗ ∈ SStar∆(D),
and define ΓT (∗) as above. Then, ΓT (∗) is order-preserving.

Proof. Let A,B ∈ ∆(T ), A ⊆ B, and take any ∗ ∈ SStar∆(D). Let I
be any integral ideal of T , and let J := I ∩ A; then, JT = I, and also
JBT = I. Hence, by definition,

IλA,T (∗|F(A)) = J∗A ⊆ (JB)∗A = IλB,T (∗|F(B)).

Thus, λA,T (∗|F(A)) ≤ λB,T (∗|F(B)), as requested. �

IfQ1 andQ2 are partially ordered sets, we denote by hom(Q1, Q2) the
set of order-preserving maps between Q1 and Q2. This set is partially
ordered; if φ, ψ ∈ hom(Q1, Q2), then φ ≤ ψ whenever φ(x) ≤ ψ(x) for
every x ∈ Q1.

Theorem 3.7. Let D be a semilocal Prüfer domain with quotient field
K, and let Θ be its standard decomposition; let ∆ 6= {K} be a subset of
SkOver(D) containing K that is closed under intersections. The map

Γ∆ : SStar∆(D) −→
∏
{hom(∆(T ),FStar(T )) | T ∈ Θ,∆(T ) 6= ∅}

∗ 7−→ (ΓT (∗))T∈Θ

is an order isomorphism.

Proof. By Proposition 3.6, Γ := Γ∆ is well-defined and order-preserving.
To show that it is an isomorphism, we define an inverse.

For every T ∈ Θ such that ∆(T ) 6= ∅, let ϕT ∈ hom(∆(T ),FStar(T )).
Take an I ∈ F(D); by Proposition 3.2, there is an A ∈ SkOver(D) such
that I ∈ F(A), and there is a B ∈ ∆ such that A∗ ∈ F(B). Then, we
define

I∗ :=
⋂
T∈Θ

∆(T )6=∅

(IBT )ϕT (B) =
⋂
T∈Θ
T⊇B

(IT )ϕT (B).

We first claim that the map ∗ so defined is a semistar operation.
Clearly, ∗ is extensive and (xI)∗ = x·I∗ for every x and every I (since

I ∈ F(A) implies xI ∈ F(A)). To see that it is order-preserving, let
I, J ∈ F(D), I ⊆ J . If I, J ∈ F(A) for some A ∈ SkOver(D) the claim
is trivial. If I ∈ F(A) and J ∈ F(A′), then A ⊆ A′; if A∗ ∈ F(B)
and A′∗ ∈ F(B′), then also B ⊆ B′, and thus IBT ⊆ JB′T . Since
ϕT is order-preserving, we have (IBT )ϕT (B) ⊆ (JB′T )ϕT (B′); since this
happens for all T , we have I∗ ⊆ J∗, and ∗ is order-preserving.

We need to show that ∗ is idempotent. We note that, if T ⊇ B, then
IT 6= K; therefore, by the proof of Proposition 3.2, I∗ is a fractional
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ideal over B. Thus,

(I∗)∗ =
⋂
T∈Θ
T⊇B


⋂
U∈Θ
U⊇B

(IU)ϕU (B)

 · T

ϕT (B)

=
⋂
T∈Θ
T⊇B

 ⋂
U∈Θ
U⊇B

(IU)ϕU (B)T


ϕT (B)

,

with the last equality holding since the innermost intersection is finite
and each T ∈ Θ is flat. Each (IU)ϕU (B) is a U -module; thus, if U 6= T ,
then (IU)ϕU (B)T = K. Hence, the calculation above reduces to⋂

T∈Θ
T⊇B

[
(IT )ϕT (B)

]ϕT (B)
=
⋂
T∈Θ
T⊇B

(IT )ϕT (B) = I∗

since each ϕT (B) is idempotent. Hence, ∗ is idempotent, and thus a
semistar operation. Also, a direct computation shows that the support
of ∗ is exactly ∆.

Therefore, we have a map

Φ := Φ∆ :
∏
{hom(∆(T ),FStar(T )) | T ∈ Θ,∆(T ) 6= ∅} −→ SStar∆(D)

sending (ϕT )T∈Θ to the map ∗ defined as above.
We need to show that Φ◦Γ and Γ◦Φ are the identity (on SStar∆(D)

and the product, respectively).
Let ∗ ∈ SStar∆(D). Then, if I ∈ F(A) and A∗ ∈ F(B), the map

Φ ◦ Γ(∗) sends I to⋂
T∈Θ
T⊇B

(IT )ΓT (∗)(B) =
⋂
T∈Θ
T⊇B

(IT )λB,T (∗|F(B)) =
⋂
T∈Θ
T⊇B

(IB)∗T = (IB)∗ = I∗,

with the second to last equality coming from the fact that {T ∈ Θ |
T ⊇ B} is a Jaffard family on B; hence, Φ ◦ Γ(∗) = ∗.

On the other hand, let ϕ = (ϕT )T∈Θ be an element of the product,
and fix a U ∈ Θ. The component with respect to U of Γ ◦ Φ(ϕ) sends
a B ∈ ∆(U) to λB,U(Φ(ϕ)|F(B)). Let I = JU be a fractional ideal of
U , where J is a fractional ideal of D; by definition, this map sends I
to

JΦ(ϕ)U =

⋂
T∈Θ
T⊇B

(JT )ϕT (B)

U =
⋂
T∈Θ
T⊇B

(JT )ϕT (B)U = (JU)ϕU (B),

again by flatness, the finiteness of the intersection and the equality
TU = K for T 6= U . Hence, Γ ◦ Φ(ϕ) acts on F(B) as ϕ. Since this
happens for each B, we have Γ ◦ Φ(ϕ) = ϕ.

Therefore, Γ∆ and Φ∆ are inverses one of each other, and the theorem
is proved. �

Corollary 3.8. Let D be a semilocal Prüfer domain with quotient
field K, and let ∆ ⊆ SkOver(D). Then, ∆ = supp(∗) for some
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∗ ∈ SStar(D) if and only if K ∈ ∆ and ∆ is closed uner intersec-
tions.

Proof. The conditions are clearly necessary. If ∆ = {K}, then ∆ =
supp{∧{K}}; if ∆ 6= {K}, by the previous theorem SStar∆(D) is iso-
morphic to a product of nonempty sets, and thus is nonempty. �

By definition, SStar(D) is the disjoint union of SStar∆(D), as ∆
ranges among the subsets of SkOver(D); or, equivalently, among those
subsets that are closed under intersections. Therefore, in light of The-
orem 3.7, we can view SStar(D) as the union of products of sets of
order-preserving maps. To fully reconstruct the set of semistar opera-
tions from this union, we need also to consider the order structure.

Proposition 3.9. Let D be a semilocal Prüfer domain, let Θ be its
standard decomposition, and let ∗1, ∗2 ∈ SStar(D). Then, ∗1 ≤ ∗2 if
and only if

(1) supp(∗1) ⊇ supp(∗2); and
(2) for any A ∈ supp(∗2) and every T ∈ Θ such that T ⊇ A, we

have ΓT (∗1)(A) ≤ ΓT (∗2)(A).

Proof. Suppose first that ∗1 ≤ ∗2. If A ∈ supp(∗2), then A∗1 ⊆ A∗2 ,
and thus A∗1 is a fractional ideal of A; hence, A ∈ supp(∗1) and
supp(∗1) ⊇ supp(∗2). Moreover, ∗1|F(A) ≤ ∗2|F(A); since the local-
ization to T preserves the order, ΓT (∗1) ≤ ΓT (∗2).

Conversely, suppose that the two conditions hold. If supp(∗2) =
{K}, then ∗2 = ∧{K} and the claim holds; suppose supp(∗2) 6= {K},
so that in particular supp(∗2)(T ) 6= ∅ for some T ∈ Θ. Let I be
a D-submodule of the quotient field K; then, I ∈ F(B) for some
B ∈ SkOver(D). Let Ai be the element of SkOver(D) such that B∗i is
a fractional ideal over Ai; since supp(∗1) ⊇ supp(∗2), we have A1 ⊆ A2.
Then,

I∗1 = (IA1)∗1 ⊆ (IA2)∗1

and (IA2)∗2 = I∗2 , so we need only to show that (IA2)∗1 ⊆ (IA2)∗2 ;
equivalently, we can suppose that A2 = B ∈ supp(∗2).

Since, by the proof of Theorem 3.7, the inverse of Γ is Φ, we have

I∗1 =
⋂
T∈Θ
T⊇B

(IT )ΓT (∗1)(B) ⊆
⋂
T∈Θ
T⊇B

(IT )ΓT (∗2)(B) = I∗2 ,

since by hypothesis ΓT (∗1)(A) ≤ ΓT (∗2)(A) for every T . Hence, ∗1 ≤
∗2, as requested. �

4. Prüfer domains with the same semistar operations

Theorem 3.7 and Proposition 3.9, taken together, show that the
structure of SStar(D) (both as a set and as a partially ordered set)
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depends exclusively on the sets hom(∆(T ),FStar(T )); or rather, ex-
clusively on the FStar(T ).

More precisely, let D1 and D2 be two semilocal Prüfer domains, and
let Θ1 and Θ2 be their standard decompositions. As was observed after
Definition 3.1, if Θ1 and Θ2 have the same cardinality then the structure
of SkOver(D1) and SkOver(D2) is the same; that is, there is an order
isomorphism ν : SkOver(D1) −→ SkOver(D2). Moreover, a subset
∆ ⊆ SkOver(D1) is closed under intersections if and only if ν(∆) is as
well, since the intersection of the elements of ∆ is exactly its infimum in
the natural order of SkOver(D1) (that is, the inclusion). In particular,
the subsets of D1 that can be a support of a ∗ ∈ SStar(D1) correspond
bijectively to the subsets of D2 that can support a semistar operation
on D2. Besides, ν restricts to a bijection (which, for simplicity, we still
call ν) between ∆(T ) and ν(∆)(ν(T )).

Suppose now that, besides ν, we have an order-preserving map νT :
FStar(T ) −→ FStar(ν(T )), for some T ∈ Θ1. Then, for every ∆ ⊆
SkOver(D1) (not containing only the quotient field K1) closed under
intersections, we have a map

ν̂T : hom(∆(T ),FStar(T )) −→ hom(ν(∆)(ν(T )),FStar(ν(T )))

ψ 7−→ νT ◦ ψ ◦ ν−1,

which is bijective whenever νT is bijective. Hence, if we are given a
bijection νT for every T ∈ Θ, for every ∆ we can build a map

ν :
∏
T∈Θ1

∆(T )6=∅

hom(∆(T ),FStar(T )) −→
∏
U∈Θ2

∆(U) 6=∅

hom(ν(∆)(U),FStar(U))

(ϕT ) 7−→ (ν̂T (ϕT )).

By composing ν with the bijections Γ∆ and Γν(∆), we therefore obtain

a bijective and order-preserving map SStar∆(D1) −→ SStarν(∆)(D2).

Since also SStar{K1}(D1) = {∧{K1}} is isomorphic to SStar{K2}(D2) =
{∧{K2}}, we can join all the supports to obtain a bijection SStar(D1) −→
SStar(D2), which (by Proposition 3.9) respects the order. We have
proved the following.

Proposition 4.1. Let D1 and D2 be two semilocal Prüfer domains, and
let Θ1 and Θ2 be their standard decompositions. If there is a bijection
ν : Θ1 −→ Θ2 and, for every T ∈ Θ1, an order isomorphism νT :
FStar(T ) −→ FStar(ν(T )), then SStar(D1) and SStar(D2) are order
isomorphic.

Obviously, the problem with this result is that it is difficult to check
the hypothesis that FStar(T ) and FStar(ν(T )) are isomorphic; in par-
ticular, if the standard decomposition of D1 is exactly {D1} (and so
Θ2 = {D2}) the theorem is essentially a vacuous statement. To get a
better version, we need to consider the structure of the spectrum.
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Let D be a Prüfer domain. It is well-known that its spectrum
Spec(D) is a rooted tree, with root (0); in particular, we can con-
struct the underlying homeomorphically irreducible tree associated to
Spec(D) (see Section 2.7), which we denote by Spechi(D). In particular,
(0) and the maximal ideals of D belong to Spechi(D).

IfD is semilocal, then Spechi(D) is finite: indeed, if V (P )∩Max(D) =
V (Q) ∩ Max(D), then at least one of P and Q is not in Spechi(D).
Therefore, for any P ∈ Spechi(D), P 6= (0), there is a Q ∈ Spechi(D)
such that Q ( P and no element of Spechi(D) lies between Q and P ;
i.e., Q is directly below P in Spechi(D). We denote by Z(P ) the ring
DP/QDP ' (D/Q)P/Q; when P = (0), we set Z(P ) as the quotient
field of D. Clearly, Z(P ) is a valuation domain.

Proposition 4.2. Let D1, D2 be semilocal Prüfer domains, and let
Θ1,Θ2 be, respectively, the standard decompositions of D1 and D2.
Suppose there is an order isomorphism ν : Spechi(D1) −→ Spechi(D2).
Then, there is an order isomorphism ν : SkOver(D1) −→ SkOver(D2)
such that:

(1) ν restricts to a bijection from Θ1 to Θ2;
(2) for every P ∈ Spechi(D1) and every T ∈ Θ1, PT = T if and

only if ν(P )ν(T ) = ν(T ).

Proof. Let D be a Prüfer domain. By [29, Proposition 6.2], the ele-
ments of Θ are in bijective correspondence with the equivalence classes
of the dependence relation on Max(D). Moreover, if D is semilo-
cal, for every equivalence class ∆, there is a P ∈ Spec(D) such that
T =

⋂
{DM | P ⊆ M}; in particular, if P is maximal with respect to

this property, P ∈ Spechi(D) and, in fact, P is a minimal element of
Spechi(D) \ {(0)}.

Thus, coming back to the notation of the statement, the map

ν0 : Θ1 −→ Θ2⋂
M∈Max(D1)

P⊆M

(D1)M 7−→
⋂

N∈Max(D2)
ν(P )⊆N

(D2)N =
⋂

M∈Max(D1)
P⊆M

(D2)ν(M)

is a well-defined bijection; we can subsequently extend it to the whole
of SkOver(D) by putting ν(T1∩· · ·∩Tn) = ν(T1)∩· · ·∩ν(Tn) for every
T1, . . . , Tn ∈ Θ1, obtaining again a bijection.

The last point is a direct consequence of the construction. �

With this notation, we can state one of the main theorems of the
paper.

Theorem 4.3. Let D1, D2 be semilocal Prüfer domains, and suppose
that there is an order isomorphism ν : Spechi(D1) −→ Spechi(D2)
such that, for every P ∈ Spechi(D1), there is an order isomorphism
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νP : FStar(Z(P )) −→ FStar(Z(ν(P ))). Then, there are order isomor-
phisms

ν : SStar(D1) −→ SStar(D2)

and

νF : FStar(D1) −→ FStar(D2)

such that, for every ∆ ⊆ SkOver(D1),

ν(SStar∆(D1)) = SStarν(∆)(D2),

where ν : SkOver(D1) −→ SkOver(D2) is the bijection found in Propo-
sition 4.2.

Proof. We proceed by induction on the cardinality of Spechi(D). For
every k ∈ N, k > 0, let:

(SSk): ν exists whenever the hypotheses hold and |Spechi(D1)| ≤ n;
(FSk): νF exists whenever the hypotheses hold and |Spechi(D1)| ≤ n.

(Note that the existence of ν guarantees that |Spechi(D1)| = |Spechi(D2)|.)
We will show that (FS2) is true and that (FSn) =⇒ (SSn) =⇒
(FSn+1); by induction, this will prove (FSn) and (SSn) for every n.
Note that (FS1) and (SS1) are trivial, since they correspond to the
case where D1 and D2 are fields.

(FS2). If |Spechi(D1)| = 2, then D1 and D2 are valuation do-
mains; hence, Spechi(D1) = {(0),M} (where M is the maximal ideal
of D1) and Z(M) = D1. Hence, the claim is just the hypothesis
FStar(Z(P ))↔ FStar(Z(ν(P ))).

(FSn) =⇒ (SSn) can be proved by following the reasoning of the
proof of Proposition 4.1, since if T is in the standard decomposition of
D then |Spechi(T )| ≤ |Spechi(D)|.

(SSn) =⇒ (FSn+1). Suppose first that Θ1 is a singleton, i.e., that
Θ1 = {D1}. Then, there is a P ∈ Spechi(D1) contained in every maxi-
mal ideal of D1, and every overring of D1 (except for the quotient field
K1), is a fractional ideal of D1: therefore, FStar(D1) = SStar(D1) \
{∧{K1}}. By Proposition 2.2, FStar(D1) is order-isomorphic to the
ordinal union of SStar(D1/P ) and SStar((D1)P )\{d,∧{K1}}, and anal-
ogously FStar(D2) ' SStar(D2/ν(P ))⊕ (SStar((D2)ν(P )) \ {d,∧{K2}}).

We have |Spechi(D1/P )| = |Spechi(D)| − 1 and |Spechi((D1)P )| =
2; by inductive hypothesis, and since the hypotheses of the theorem
descend to these cases, we have order isomorphisms SStar(D1/P ) '
SStar(D2/ν(P )), while SStar((D1)P ) ' SStar((D2)ν(P )). Hence, there
is an order isomorphism ν : FStar(D1) −→ FStar(D2).

Suppose now that Θ1 is not a singleton. By Proposition 2.2, there is
an order isomorphism between FStar(D1) and

∏
{FStar(T ) | T ∈ Θ},

and analogously for D2; moreover, as in the previous case, FStar(T ) =
SStar(T )\{∧{K1}}. Since Θ1 is not a singleton, |Spechi(T )| < |Spechi(D1)|
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for every T ∈ Θ; applying the inductive hypothesis, we have order iso-
morphisms νT : SStar(T ) −→ SStar(ν(T )), which (by the previous
part of the proof) descend to order isomorphisms ν ′T : FStar(T ) −→
FStar(ν(T )). Therefore, we get an order isomorphism νF : FStar(D1) −→
FStar(D2) just by taking the product of the ν ′T .

By induction, the claim is proved. �

5. Star and (semi)star operations

Theorem 4.3 shows that the sets SStar(D) and FStar(D) of (respec-
tively) the semistar operations and the fractional star operations on D
depend exclusively on Spechi(D) and the semistar operations on the
rings Z(P ). However, these properties are not enough to determine
which operations close D, i.e., which closures are star or (semi)star
operations.

For example, let (V,MV ) be a one-dimensional valuation domain
with MV not principal, and let (W,MW ) be a two-dimensional valua-
tion domain such that MW is principal, as well as PWP (where P is the
other nonzero prime of W ). Then, Spechi(V ) = {0,MV } corresponds
bijectively to Spechi(W ) = {0,MW}; moreover, both FStar(V ) and
FStar(W ) are linearly ordered sets with three elements, so that they are
order-isomorphic. However, there are two semistar operations closing V
(the identity and the v-operation) while only one closing W (the iden-
tity). Hence, the bijection ν : SStar(V ) −→ SStar(W ) given by Theo-
rem 4.3 does not restrict to a bijection ν : (S)Star(V ) −→ (S)Star(W ).
In this section, we determine which hypothesis we have to add to obtain
an analogous result.

We start with characterizing (semi)star operations through the map
Γ.

Proposition 5.1. Let D be a semilocal Prüfer domain, Θ its standard
decomposition, ∗ ∈ SStar(D); for each T ∈ Θ, let ΓT (∗) be the map
defined before Proposition 3.6. Then, D = D∗ if and only if D ∈
supp(∗) and ΓT (∗)(D) ∈ Star(T ) for every T ∈ Θ.

Proof. If D = D∗, then D ∈ supp(∗) (since D is always in SkOver(D)),
and thus D ∈ ∆(T ) for every T ∈ Θ. By definition, ΓT (∗)(D) =
λD,T (∗|F(D)); however, D = D∗|F(D) , and thus

T ΓT (∗)(D) = (DT )ΓT (∗)(D) = D∗T = T,

and ΓT (∗)(D) ∈ Star(T ).
Conversely, suppose the two properties hold, and let ∆ := supp(∗).

By the proof of Theorem 3.7, we have

D∗ = DΦ∆◦Γ∆(∗) =
⋂
T∈Θ

(DT )ΓT (∗)(D),
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noting that each ∆(T ) contains D and thus is nonempty. By hypoth-
esis, each ΓT (∗)(D) closes T ; thus, D∗ =

⋂
T∈Θ T = D. The claim is

proved. �

If D ∈ ∆(T ), let us thus denote by h̃om(∆(T ),FStar(T )) the set
of order-preserving maps ψ from ∆(T ) to FStar(T ) such that ψ(D) ∈
Star(D). The previous proposition can thus be rewritten as follows:
given a ∆ ⊆ SkOver(D) closed under intersections and containing

D and K, there is a bijection between (S)Star∆(D) (i.e., the set of

(semi)star operations with support ∆) and the product
∏
{h̃om(∆(T ),FStar(T )) |

T ∈ Θ}.
We thus obtain immediately an analogue of Proposition 4.1: ifD1, D2

are semilocal Prüfer domains, with standard decompositions Θ1,Θ2,
and there are bijections ν : Θ1 −→ Θ2 and νT : FStar(T ) −→ FStar(ν(T )),
for every T ∈ Θ, and if νT (Star(T )) = Star(ν(T )), then the order iso-
morphism ν : SStar(D1) −→ SStar(D2) restricts to a bijection from
(S)Star(D1) to (S)Star(D2). We can actually say more.

Theorem 5.2. Let D1, D2 be semilocal Prüfer domains, and suppose
that there is an order isomorphism ν : Spechi(D1) −→ Spechi(D2) such
that:

(1) for every P ∈ Spechi(D1), there is an order isomorphism νP :
FStar(Z(P )) −→ FStar(Z(ν(P )));

(2) for every M ∈ Max(D1), M(D1)M is principal if and only if
ν(M)(D2)ν(M) is principal.

Then, the maps ν : SStar(D1) −→ SStar(D2) and νF : FStar(D1) −→
FStar(D1) found in Theorem 4.3 restrict to order isomorphisms ν(S) :
(S)Star(D1) −→ (S)Star(D2) and νS : Star(D1) −→ Star(D2).

Proof. By Theorem 4.3, the hypothesis guarantee that ν and νF are
order isomorphisms.

The proof follows the same reasoning as the proof of Theorem 4.3:
for every k ∈ N, k > 0, let:

(Ssk): ν(S) exists whenever the hypotheses hold and |Spechi(D1)| ≤ n;
(Sk): νS exists whenever the hypotheses hold and |Spechi(D1)| ≤ n.

Then, (S2) is true because, if V is a valuation domain, M is principal
if and only if |Star(D1)| = 1, while M is not principal if and only if
|Star(D1)| = 2; furthermore, (Sn) =⇒ (Ssn) follows from the reasoning
before the statement of the theorem.

To show (Ssn) =⇒ (Sn+1), we first suppose that Θ1 is a single-
ton: then, Star(D1) = (S)Star(D1), and the isomorphism between
FStar(D1) and SStar(D1/P )⊕(SStar((D1)P )\{d,∧{K1}}) (Proposition
2.2) restricts to an isomorphism between Star(D1) and (S)Star(D1/P )
; the inductive hypothesis shows that ν restricts to a bijection ν(S) :
Star(D1) −→ Star(D2).
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On the other hand, if Θ1 is not a singleton, we use [29, Theorem
5.4] to reduce Star(D1) to the product

∏
{Star(T ) | T ∈ Θ}, and then

apply the inductive hypothesis on each T .
The claim then follows by induction. �

Suppose now that D is a semilocal Prüfer domain whose standard
decomposition is {D}. As we have observed multiple times, there is a
unique element of Spechi(D) just above (0): call it P . Then, Star(D)
corresponds to (S)Star(D/P ); in particular, Star(D) cannot depend on
SStar(Z(P )), since it depends exclusively on D/P .

We can thus get the following results.

Theorem 5.3. Let D1, D2 be semilocal Prüfer domains, and suppose
that there is an order isomorphism ν : Spechi(D1) −→ Spechi(D2) such
that:

(1) for every P ∈ Spechi(D1) such that P is not minimal in Spechi(D1)\
{(0)}, there is an order isomorphism νP : FStar(Z(P )) −→
FStar(Z(ν(P )));

(2) for every M ∈ Max(D1), M(D1)M is principal if and only if
ν(M)(D2)ν(M) is principal.

Then, there is an order isomorphism νS between Star(D1) and Star(D2).

Proof. By [29, Theorem 5.4], Star(D1) '
∏
{Star(T ) | T ∈ Θ1} and

Star(D2) '
∏
{Star(U) | U ∈ Θ2} (where Θ1 and Θ2 are the standard

decompositions of D1 and D2). By the previous reasoning, Star(T ) '
(S)Star(T/PT ) (where PT is the minimal element of Spechi(T ) \ {(0)});
we can apply Theorem 5.2 to each T/PT , obtaining order isomorphisms
νS(T ) : Star(T ) −→ Star(ν(T )). To conclude, we just take νS to be
the product of all the νS(T ). �

Notice that, under the hypotheses of the last theorem, the isomor-
phisms ν and νF need not exist, and thus Theorem 5.2 cannot be
reduced to a corollary of Theorem 5.3.

6. The finite-dimensional case

The results in the previous two sections can be simplified if we work
in the finite-dimensional case. Indeed, suppose V is a finite-dimensional
valuation domain: then, V admits only a finite number of overrings
(its localizations) and each one admits a finite number of (semi)star
operations (at most two, the identity and the v-operation). There-
fore, SStar(V ) is finite; since it is also linearly ordered, it is actually
characterized by its cardinality.

Following this idea, we introduce the functions

ω : Spechi(D) −→ N+

P 7−→ |FStar(Z(P ))|
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and
ε : Spec(D) −→ {1, 2}

P 7−→ |Star(DP )|.
We note that ω can also be thought of as a function from the set of
the edges of Spechi(D) to N+: if E is an edge from Q to P , then ω(E)
would be defined as ω(P ). Note also that ω((0)) is always equal to 1.

The following propositions establish the properties of ω and ε and
their connection.

Proposition 6.1. Let V be a valuation domain with maximal ideal M .

(a) |SStar(V )| = ω(M) + 1.
(b) |(S)Star(V )| = ε(M).
(c) ε(M) = 1 if and only if M is principal.
(d) Let I be the set of nonzero idempotent prime ideals of V and N

be the set of nonzero nonidempotent prime ideals of V . Then,

(1) ω(M) =
∑

P∈Spec(V )
P 6=(0)

ε(P ) = |N |+ 2 · |I|.

Proof. (a) and (b) follow from the fact that every overring of V different
from K is both a localization of V and a fractional ideal of V , and they
also show the first equality of (1). (c) is well known. The second
equality of (1) follows from the fact that P is nonidempotent if and
only if PVP is principal, i.e., if and only if ε(P ) = 1. (d) is proved. �

Proposition 6.2. Let D be a semilocal finite-dimensional Prüfer do-
main, and let P ∈ Spechi(D) \ {0}; let Q be the element of Spechi(D)
directly below P . Let ∆ := {A ∈ Spec(D) | Q ( A ⊆ P}, and let I be
the set of idempotent prime ideals of D and N the set of nonidempotent
prime ideals of D. Then,

ω(P ) =
∑
A∈∆

ε(A) = |∆ ∩N|+ 2 · |∆ ∩ I|.

Proof. The claim follows directly from Proposition 6.1 and the fact that
a prime ideal A such that Q ( A ⊆ P is idempotent if and only if its
extension in Z(P ) is. �

With this terminology, Theorem 4.3 translates immediately to the
following statement.

Theorem 6.3. Let D1, D2 be semilocal Prüfer domain of finite dimen-
sion. Suppose there is an order-preserving map ν : Spechi(D1) −→
Spechi(D2) such that ω(P ) = ω(ν(P )) for every P ∈ Spechi(D1). Then,
there are order isomorphisms

ν : SStar(D1) −→ SStar(D2)

and
νF : FStar(D1) −→ FStar(D2)
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such that, for every ∆ ⊆ SkOver(D1) closed under intersections,

ν(SStar∆(D1)) = SStarν(∆)(D2),

where ν : SkOver(D1) −→ SkOver(D2) is the bijection found in Propo-
sition 4.2.

Proof. Since FStar(V ) is linearly ordered for every valuation domain
V , the condition ω(P ) = ω(ν(P )) implies that there is an isomorphism
between FStar(Z(P )) and FStar(Z(ν(P ))). Hence, we can apply The-
orem 4.3. �

In the same way, we have analogues of the results about (semi)star
operations.

Theorem 6.4. Let D1, D2 be semilocal Prüfer domains, and suppose
that there is an order isomorphism ν : Spechi(D1) −→ Spechi(D2) such
that ε(M) = ε(ν(M)) for every M ∈ Max(D1).

(a) If ω(P ) = ω(ν(P )) for P ∈ Spechi(D1), then the maps ν and
νF found in Theorem 4.3 restrict to order isomorphisms ν(S) :
(S)Star(D1) −→ (S)Star(D2) and νS : Star(D1) −→ Star(D2).

(b) If ω(P ) = ω(ν(P )) for every P ∈ Spechi(D) such that P is not
minimal in Spechi(D1) \ {(0)}, then there is an order isomor-
phism νS between Star(D1) and Star(D2).

Proof. (a) follows from Theorem 5.2, while (b) follows from Theorem
5.3. �

Let now P be a finite rooted tree which is also homeomorphically ir-
reducible. Then, there are finite-dimensional semilocal Prüfer domains
such that Spechi(D) ' P [25, Theorem 3.1]; by Theorem 6.3, the car-
dinality of SStar(D) depends only on ω(P ), as P ranges in Spechi(D).
Hence, if we label the elements of P as {(0), P1, . . . , Pk}, we can define
a function ΣP : Nk −→ N such that ΣP(a1, . . . , ak) is the cardinality of
SStar(D), where Spechi(D) ' P and ω(Pi) = ai for each i.

Similarly, if P ' Spechi(D) = {(0), P1, . . . , Pk,M1, . . . ,Mt}, where

M1, . . . ,Mt are the maximal ideals of D, we define Σ̃P as the function
Nk+t×{1, 2}t −→ N such that ΣP(a1, . . . , ak, b1, . . . , bt, c1, . . . , ct) is the
cardinality of (S)Star(D), where ω(Pi) = ai, ω(Mj) = bj and ε(Ml) = cl
for each i, j, l.

To study what kind of functions ΣP and Σ̃P are, we shall use the
following extension of [30, Theorem 1]; we will denote by n the set
{1, . . . , n}, endowed with the usual ordering.

Proposition 6.5. Let P ,Q be two partially ordered sets, and let HP,Q(n) :=
| hom(P ,Q⊕ n)|. Then, HP,Q is a polynomial of degree |P|.

Proof. For any order-preserving map ψ : P −→ Q⊕ n, let ↓ψ := {p ∈
P | ψ(p) ∈ Q} and ↑ψ := {p ∈ P | ψ(p) ∈ n}. Then, if p ∈ ↓ψ and
q ∈ ↑ψ, we have p ≤ q. We can see any ψ ∈ hom(P ,Q ⊕ n) as the
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union of a map ψ1 : ↓ψ −→ Q and a map ψ2 : ↑ψ −→ n, both of which
are order-preserving, that are independent one from the other.

For any ∆, let hom∆(P ,Q⊕ n) := {ψ ∈ hom(P ,Q⊕ n) | ↓ψ = ∆}.
Clearly, hom(P ,Q⊕n) is the union of the various hom∆; moreover, by
the previous reasoning, if ∆ = ↓ψ for some ψ, we have

| hom∆(P ,Q⊕ n)| = | hom(∆,Q)| · | hom(P \∆, n)|.
For a fixed Q, the first factor depends uniquely on ∆. On the other
hand, by [30, Theorem 1], the second factor is a polynomial HP\∆
of degree |P \∆|. Since HP,Q(n) is the sum of the cardinalities of the
hom∆, also HP,Q is a polynomial; moreover, there is a unique summand

of maximal degree, namely | hom∅(P ,Q ⊕ n)| = | hom(P , n)|, whose
degree is |P|. Hence, HP,Q has degree |P|. �

Remark 6.6.

(1) If Q = ∅, the result above falls back to [30, Theorem 1].
(2) If P = k is linearly ordered, we denote Hk,∅ as Hk. Order-

preserving maps from k to n correspond to ways of dividing
n into k (possibly empty) segments, or equivalently to combi-
nations with repetition of k elements in {1, . . . , n}; therefore,

Hk =
(
n+k−1

k

)
. For example, H1(n) = n, while H2(n) = n(n+1)

2

and H3(n) = n(n+1)(n+2)
6

.

Theorem 6.7. Let P = {0, p1, . . . , pn} be a finite rooted homeomorphi-
cally irreducible tree, with root 0, and let {p1, . . . , pk} be the minimal
elements of P \ {0}. Then, for every bk+1, . . . , bn ∈ N, the function

πP(X1, . . . , Xk) := ΣP(X1, . . . , Xk, bk+1, . . . , bn)

is a polynomial of degree k · 2k−1.

Proof. LetD be a semilocal finite-dimensional domain such that Spechi(D) =
{(0), P1, . . . , Pn} ' P , with ω(Pi) = bi for k < i ≤ n. By definition,
the cardinality of SStar(D) is equal to the sum of the cardinalities of
SStar∆(D), as ∆ ranges among the possible supports. Let Θ be the
standard decomposition of D.

For every such ∆, by Theorem 4.3 we have

|SStar∆(D)| =
∏
{| hom(∆(T ),FStar(T ))| : T ∈ Θ,∆(T ) 6= ∅}|.

By Proposition 2.2, FStar(T ) is equal to the union of SStar(T/P ) and
FStar(TP ) \ {d}, where P is the minimal element of Spechi(T ) \ {(0)};
moreover, SStar(T/P ) has a maximum (namely ∧{k}, where k is the

quotient field of T/P ), and thus we can write FStar(T ) as Q(T )⊕ω(P ),

where Q(T ) := SStar(T/P ) \ {∧{k}}. Applying Proposition 6.5, we
see that | hom(∆(T ),FStar(T ))| = H∆(T ),Q(T )(ω(P )) is a polynomial

in ω(P ) of degree |∆(T )|; hence, each |SStar∆(D)| is a polynomial in
ω(P1), . . . , ω(Pk). In particular, πP is a polynomial.
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Moreover, the term of maximal degree of each |SStar∆(D)| has degree
|∆(T )| in ω(P ), where P is the minimal element of Spechi(T ) \ {(0)};
in particular, this degree is maximal when ∆(T ) is just the set of inter-
sections of the subsets of the standard decomposition Θ containing T ,
where it is 2k−1. Hence, the maximal term of πP comes from the case
∆ = SkOver(D), where each ω(P ) has degree 2k−1. It follows that the
total degree of πP is k · 2k−1. �

Theorem 6.8. Let P := {0, p1, . . . , pn,m1, . . . ,mt} be a finite rooted
homeomorphically irreducible tree, with root 0, and let {p1, . . . , pk} be
the minimal elements of P \ {0}. Then, for every bk+1, . . . , bn ∈ N,
c1, . . . , ct ∈ {1, 2} the function

π̃P(X1, . . . , Xk) := Σ̃P(X1, . . . , Xk, bk+1, . . . , bn, c1, . . . , ct)

is a polynomial of degree k(2k−1 − 1).

Proof. As in the proof of Theorem 6.7, we need only to show that each
|(S)Star∆(DP )| is a polynomial, and since we are considering (semi)star
operations, we can consider only sets ∆ containing D.

Consider a set ∆(T ), and let Λ(T ) = ∆(T ) \ {D}. For each ∗ ∈
Star(T ), set

h̃om∗(∆(T ),FStar(T )) := {ψ ∈ h̃om(∆(T ),FStar(T )) | ψ(D) = ∗}.

Then, the cardinality of h̃om∗(∆(T ),FStar(T )) is equal to the cardi-
nality of hom(Λ(T ), {] ∈ FStar(T ) | ] ≥ ∗}), which by Proposition 6.5
is a polynomial of degree |Λ(T )| = |∆(T )| − 1 in ω(P ), where P is the
minimal element of Spechi(T ) \ {(0)} (note that a star operation on T
corresponds to a star operation coming from SStar(T/P )).

Following the reasoning of Theorem 6.7, this is maximal when |∆(T )| =
2k−1; hence, π̃P is a polynomial of degree k(2k−1 − 1). �

A good measure of the complexity of the calculation of the polyno-
mials πP and π̃P is the height h(P) of P = Spechi(D), that is, the
maximal length among the chains of P . When the height is 0, D is a
field; hence, the first interesting case is when h(P) = 1. In algebraic
terms, this happens if and only if D is h-local, that is, if D is locally
finite (which is automatic when D is semilocal) and DMDN = K for
M 6= K in Max(D) (see e.g. [27] for a study of Prüfer h-local domains).

In this case, the calculation of star and fractional star operations does
not need the theory developed in this article; indeed, by [29, Theorem
5.4] (and Section 2.3), if D is h-local and Max(D) = {M1, . . . ,Mn},
then |Star(D)| = ε(M1) · · · ε(Mn) while |FStar(D)| = ω(M1) · · ·ω(Mn).
The case of semistar operations, on the other hand, is not so immediate,
but it is a mere consequence of Theorem 6.7.

Corollary 6.9. There is a symmetric polynomial πn ∈ Q[X1, . . . , Xn]
of degree n · 2n−1 such that, if D is a h-local Prüfer domain and
Max(D) = {M1, . . . ,Mn}, then |SStar(D)| = πn(ω(M1), . . . , ω(Mn)).
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Proof. If D is h-local, then Spechi(D) = {(0)} ∪Max(D). Then, πn is
a polynomial by Theorem 6.7, and it is obviously symmetric. �

The case of (semi)star operations is more interesting, since we can
actually make the numbers ε(Mi) variables, instead of parameters as it
was in Theorem 6.8.

Proposition 6.10. There is a polynomial π̃n ∈ Q[X1, . . . , Xn, Y1, . . . , Yn]
of degree n · 2n−1 such that, if D is a h-local Prüfer domain and
Max(D) = {M1, . . . ,Mn}, then |(S)Star(D)| = π̃n(ω(M1), . . . , ω(Mn), ε(M1), . . . , ε(Mn)).

Proof. As in the proof of Theorem 6.8, we must calculate the cardinality

of the sets h̃om∗(∆(T ),FStar(T )) := {ψ ∈ h̃om(∆(T ),FStar(T )) |
ψ(D) = ∗}, as T ranges in the standard decomposition of D and ∗ ∈
Star(T ).

Since D is h-local, each T is a localization at a maximal ideal of
D; hence, each T = DP is a valuation domain, and the possible star
operations ∗ are the identity and the v-operation. If ∗ is the identity
d, then

|h̃om∗(∆(DP ),FStar(DP ))| = | hom(Λ(DP ),FStar(DP ))| = HΛ(DP ),∅(ω(P ))

(where Λ(DP ) = ∆(DP ) \ {DP}). On the other hand, if ∗ = v, then

|h̃om∗(∆(DP ),FStar(DP ))| = | hom(Λ(DP ),FStar(DP )\{d})| = HΛ(DP ),∅(ω(P )−1).

The latter summand exists only when ε(P ) = 2; therefore, we have

|h̃om(∆(DP ),FStar(DP ))| = HΛ(DP ),∅(ω(P ))+(ε(P )−1)HΛ(DP ),∅(ω(P )−1).

Putting all together, we see that π̃n is a polynomial of degree 2n−1 − 1
in each Xi and 1 in each Yi; the total degree is thus n · 2n−1. �

We can use these results, along with Proposition 2.2, to study star
and fractional star operations when the height of Spechi(D) is 2.

Proposition 6.11. Let D be a semilocal Prüfer domain, and let Spechi(D) =
{(0)} t A tMax(D); suppose that the elements of A are pairwise not
comparable. For any P ∈ A, let M(P ) := {M ∈ Max(D) | P ⊆ M} =
{MP,1, . . . ,MP,|M(P )|}. Let ω, ε, πn and π̃n as above. Then,

|FStar(D)| =
∏
P∈A

[π|M(P )|(ω(MP,1), . . . , ω(MP,|M(P )|)) + ω(P )− 1],

and

|Star(D)| =
∏
P∈A

π̃|M(P )|(ω(MP,1), . . . , ω(MP,|M(P )|), ε(MP,1), . . . , ε(MP,|M(P )|)).

Proof. For every P ∈ A, let T (P ) :=
⋂
{DM | M ∈ M(P )}. Then,

{T (P ) | P ∈ A} is the standard decomposition ofD; hence, |FStar(D)| =∏
{|FStar(T (P ))| : P ∈ A}, and likewise for |Star(D)|.
By Proposition 2.2, for each P the set FStar(T (P )) is equal to the

ordinal sum of SStar(T/P ) and FStar(T (P )PTP ) \ {d}; the cardinality
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of the former is π|M(P )|(MP,1, . . . ,MP,|M(P )|) (by Theorem 6.7) while the
cardinality of the latter is ω(P )− 1, since T (P )PTP = Z(P ). The first
claim follows.

Analogously, Star(T (P )) corresponds bijectively to (S)Star(T/P ),
whose cardinality is given by π̃n (by Theorem 6.8). The second claim
follows. �

We end the paper by calculating two of the polynomials πP and π̃P .

Example 6.12. The calculation of π2 and π̃2.
Let D be a semilocal Prüfer domain with Spechi(D) = {(0),M,N}.

Then, SkOver(D) = {D,DM , DN , K}; let ∆ ⊆ SkOver(D) be a pos-
sible support for a semistar operation on D. Then, K ∈ ∆, and if
DM , DN ∈ ∆ then also D ∈ ∆, Hence, there are seven acceptable ∆.

∆ = {K}: In this case, ∆(M) = ∆(N) = ∅, and we have a single
semistar operation.

∆ = {D,K}: In this case, ∆(M) = ∆(N) = {D} are both isomorphic
to 1.

∆ = {DM , K}: In this case, ∆(M) = {DM} ' 1 while ∆(N) = ∅.
∆ = {DN , K}: Symmetrically, ∆(M) = ∅ while ∆(N) = {DN} ' 1.
∆ = {D,DM , K}: In this case, ∆(M) = {D,DM} ' 2 while ∆(N) =

{D} ' 1.
∆ = {D,DN , K}: Symmetrically, ∆(M) = {D} ' 1 while ∆(N) =

{D,DN} ' 2.
∆ = {D,DM , DN , K}: In this case, ∆(M) = {D,DM} ' 2 and ∆(M) =

{D,DN} ' 2.

Let now a := ω(M) and b := ω(N). Adding all the cases, Star(D) is
equal to

1 +H1(a)H1(b) +H1(a) +H1(b) +H2(a)H1(b) +H1(a)H2(b) +H2(a)H2(b) =

= 1 + ab+ a+ b+
1

2
a(a+ 1)b+

1

2
ab(b+ 1) +

1

4
a(a+ 1)b(b+ 1) =

= 1 + a+ b+
9

4
ab+

3

4
(a2b+ ab2) +

1

4
a2b2

and the last line represents exactly π2(a, b).
For the (semi)star operations, we must not consider the supports
{K}, {DM , K} and {DN , K}. Let ε1 := ε(M) and ε2 := ε(N).

The possible ∆(·) are, as above, 1 and 2; in the former case, we have
H ′1(n, ε) = ε possibilities, while in the latter we have, following the
proof of Theorem 5.2,

H ′2(n, ε) = H1(n) + (ε−1)(H1(n−1)) = n+ (ε−1)(n−1) = εn− ε+ 1.
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Thus the cardinality of (S)Star(D) is equal to:

H ′1(a, ε1)H ′2(b, ε2) +H ′2(a, ε1)H ′1(b, ε2) +H ′1(a, ε1)H ′2(b, ε2) +H ′2(a, ε) +H ′2(b, ε) =

= ε1ε2 + (ε1a− ε1 + 1)ε2 + ε1(ε2b− ε2 + 1) + (ε1a− ε1 + 1)(ε2b− ε2 + 1) =

= (1 + ε1a)(1 + ε2b),

i.e., π̃2(a, b, ε1, ε2) = (1 + ε1a)(1 + ε2b).
Using Proposition 6.11, this provides a different proof of [18, The-

orem 4.3]. Indeed, suppose that A is a Prüfer domain with Y-shaped
spectrum: that is, suppose that Max(A) = {M1,M2} and that the
largest prime ideal in M1∩M2 is P 6= 0. Under these hypothesis, using
the previous calculation,

|Star(A)| = (1 + ε(M1)ω(M1))(1 + ε(M2)ω(M2)).

In the notation of [18, Theorem 4.3], let mi (respectively, ni) be the
number of nonidempotent (respectively, idempotent) prime ideals strictly
between Mi and P . Then, ω(Mi) = mi + 2ni + ε(Mi); substituting this
expression in the previous one, and considering the cases ε(Mi) = 1
and ε(Mi) = 2, we obtain exactly the statement of [18, Theorem 4.3].

Remark 6.13. The previous example shows that π̃2 splits nicely into
two factors, each one containing quantities relative to a single maximal
ideal. This is most likely a phenomenon restricted to the case n = 2.
Indeed, by [18, Theorem 4.6], π̃3(1, 1, 1, 1, 1, 1) = 45; if π̃3 would have
three factors, each one relative to one maximal ideal, by symmetry we
should expect 45 to be the cube of a rational number, and this is clearly
not the case.

It is also possible to repeat the calculation of Example 6.12 for three
maximal ideals; the resulting polynomials π3 and π̃3 turn out to be
several lines long.

Example 6.14. Let D be a Prüfer domain such that Spechi(D) is the
following set:

M1 M2 N

P

(0)

Suppose ω(M1) = ω(M2) = 1 and let ω(P ) = a, ω(N) = b. We want
to calculate |SStar(D)|.

We have Θ := {DN , D{P}}, where D{P} := DM1 ∩ DM2 . As in the
previous example, we obtain

|SStar(D)| = 1+R1(a)H1(b)+R1(a)+H1(b)+R2(a)H1(b)+R1(a)H2(b)+R2(a)H2(b),
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where R1(a) and R2(a) denotes the number of order-preserving maps
from (respectively) 1 and 2 to FStar(D{P}).

Let A := D{P}/PD{P}, and let k be its quotient field. By Proposition
2.2, there is a bijection FStar(D{P})↔ SStar(A)⊕ (FStar(DP ) \ {d}).
Since ω(M1) = ω(M2) = 1, the set SStar(A) corresponds to the subsets
of SkOver(A) \ {k} that are closed under intersections; if Z and W are
the maximal ideals of A, we have seven possibilities, namely ∅, {A},
{AZ}, {AW}, {A,AZ}, {A,AW} and {A,AZ , AW}. Hence, the order
on SStar(A) \ {∧{k}} corresponds to the following:

{A,AZ} {A,AW}

{AZ} {A} {AW}

{A,AZ , AW}

It follows that R1(a) = 6 + a, while

R2(a) = 15 + 6a+
a(a+ 1)

2
=

1

2
a2 +

13

2
a+ 15,

and thus (at the end of the calculation) we have

|SStar(D)| = 1

4
a2b2 +

3

4
a2b+

15

4
ab2 +

21

2
b2 +

45

4
ab+ a+

65

2
b+ 7.

References

[1] D. D. Anderson and Sharon M. Clarke. Star-operations that distribute over
finite intersections. Comm. Algebra, 33(7):2263–2274, 2005.

[2] D. D. Anderson and Sylvia J. Cook. Two star-operations and their induced
lattices. Comm. Algebra, 28(5):2461–2475, 2000.

[3] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial Species and Tree-
Like Structures, volume 67 of Encyclopedia of Mathematics and its Applica-
tions. Cambridge University Press, Cambridge, 1998. Translated from the 1994
French original by Margaret Readdy, With a foreword by Gian-Carlo Rota.

[4] Garrett Birkhoff. Lattice Theory. American Mathematical Society Colloquium
Publications, vol. 25, revised edition. American Mathematical Society, New
York, N. Y., 1948.

[5] Nicolas Bourbaki. Commutative Algebra. Chapters 1–7. Elements of Mathe-
matics (Berlin). Springer-Verlag, Berlin, 1989. Translated from the French,
Reprint of the 1972 edition.

[6] Alain Bouvier and Muhammad Zafrullah. On some class groups of an integral
domain. Bull. Soc. Math. Grèce (N.S.), 29:45–59, 1988.
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