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Abstract. We study the cardinality of the set Star(S) of star op-
erations of a numerical semigroup S; in particular, we study ways
to estimate Star(S) and to bound the number of nonsymmetric
numerical semigroups such that |Star(S)| ≤ n. We also study this
problem in the setting of analytically irreducible, residually ratio-
nal rings whose integral closure is a fixed discrete valuation ring.

1. Introduction

A star operation on an integral domain D is a particular closure op-
eration on the set of fractional ideals of D; this notion was defined to
generalize the divisorial closure [13, 5] and has been further general-
ized to the notion of semistar operation [16]. Star operations have also
been defined on cancellative semigroups in order to obtain semigroup-
theoretic analogues of some ring-theoretic (multiplicative) definitions
[11]. A classical result characterizes the Noetherian domainsD in which
every ideal is divisorial or, equivalently, which Noetherian domains ad-
mit only one star operation: this happens if and only if D is Gorenstein
of dimension one [2]. Recently, this result has been a starting point of a
deeper investigation on the cardinality of the set Star(D) of the star op-
erations on D, obtaining a precise counting for h-local Prüfer domains
[7] (and, more generally, an algorithm to calculate their number for
semilocal Prüfer domains [25]), some pseudo-valuation domains [17, 24]
and some Noetherian one-dimensional domains [8, 9, 23]. In particu-
lar, for Noetherian domains, a rich source of examples are numerical
semigroup rings, that is, rings in the form K[[S]] := K[[Xs | s ∈ S]],
where K is a field and S is a numerical semigroup.

Inspired by this example, the study of star operations on numerical
semigroups (and, in particular, of their cardinality) was initiated in
[20]. In particular, the main problem that was tackled was the follow-
ing: given a (fixed) integer n, how many numerical semigroups have
exactly n star operations? By estimating the cardinality of Star(S), it
was shown that this number is always finite, and that the same holds
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for residually rational rings (see Section 10 for a precise statement).
Subsequently, in [26], better estimates on |Star(S)| allowed to give a
much better bound the number of semigroups with at most n star op-
erations, while in [21] the set Star(S) was described in a very precise
way when the semigroup S has multiplicity 3.

In this paper, we give a unified treatment of the study of Star(S),
surveying the main results of [20], [21], [26] and [22] and deepening
them. In particular, we give a rather precise asymptotic expression
for the number of semigroups of multiplicity 3 with less than n star
operations (Theorem 6.4), an O(nε) bound for the semigroups of prime
multiplicity (Theorem 7.4), we list all nonsymmetric numerical semi-
groups with 150 or less star operations (Table 4), and prove an explicit
bound for residually rational rings (Theorem 10.5).

The structure of the paper is as follows: Sections 2 and 3 present
basic material; Sections 4 and 5 present estimates already present in
[20] and [26]; Section 6 deepens the analysis of [21] on semigroups
of multiplicity 3; Section 7 studies the case where the multiplicity is
prime (and bigger than 3); Section 8 introduces the concept of linear
families (one example of which was analyzed in [22]); Section 9 is
devoted to algorithms to calculate |Star(S)| and to determine all the
nonsymmetric semigroups with at most n star operations; Section 10
studies the domain case, and contains analogues of the results of Section
4 for residually rational domains.

2. Notation

For all unreferenced results on numerical semigroups we refer the
reader to [19].

A numerical semigroup is a set S ⊆ N that contains 0, is closed
by addition and such that N \ S is finite. If a1, . . . , an are coprime
positive integers, the numerical semigroup generated by a1, . . . , an is
〈a1, . . . , an〉 := {

∑n
i=1 tiai | ti ∈ N}. The notation S = {0, b1, . . . , bn,→

} indicates that S is the set containing 0, b1, . . . , bn and all integers
bigger than bn.

To any numerical semigroup S are associated some natural numbers:

• the genus of S is g(S) := |N \ S|;
• the Frobenius number of S is F (S) := sup(N \ S);
• the multiplicity of S is m(S) := inf(S \ {0}).

A hole of S is an integer x ∈ N \ S such that F (S) − x /∈ S. A
semigroup S is symmetric if it has no holes, while it is pseudosymmetric
if g(S) is even and g(S)/2 is its only hole.

An integral ideal of S is a nonempty subset I ⊆ S such that I+S ⊆ I,
i.e., such that i + s ∈ I for all i ∈ I, s ∈ S. A fractional ideal of S
is a subset I ⊆ Z such that d + I is an integral ideal for some d ∈ Z,
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or equivalently an I ( Z such that I + S ⊆ I. We shall use the term
“ideal” as a shorthand for “fractional ideal”.

If {Iα}α∈A is a family of ideals, then its intersection (if nonempty) is
an ideal, while its union is an ideal if and only if there is a d ∈ Z such
that d < i for all i in the union. If I, J are ideals, the set (I − J) :=
{x ∈ Z | x+ J ⊆ I} is still an ideal of S.

We denote by F(S) the set of fractional ideals of S, and by F0(S)
the set of fractional ideals contained between S and N; equivalently,
F0(S) = {I ∈ F(S) | 0 = inf(I)}. For every ideal I, there is a unique
d such that −d+ I ∈ F0(S) (namely, d = inf(I)).

If a, b are integers, we use (a, b) to indicate their greatest common
divisor. If f, g are functions of n, we use f = O(g) to mean that there
is a constant C such that f(n) ≤ C · g(n) for all n ≥ 0.

3. Star operations

Definition 3.1. [20, Definition 3.1] A star operation is a map ∗ :
F(S) −→ F(S), I 7→ I∗, that satisfies the following properties:

• ∗ is extensive: I ⊆ I∗;
• ∗ is order-preserving: if I ⊆ J , then I∗ ⊆ J∗;
• ∗ is idempotent: (I∗)∗ = I∗;
• ∗ fixes S, that is, S∗ = S;
• ∗ is translation-invariant: d+ I∗ = (d+ I)∗.

We denote by Star(S) the set of star operations on S.

If I = I∗, we say that I is ∗-closed ; we denote the set of ∗-closed
ideals by F∗(S).

The set Star(S) can be endowed with a natural partial order: we
say that ∗1 ≤ ∗2 if I∗1 ⊆ I∗2 for every ideal I, or equivalently if
F∗2(S) ⊆ F∗1(S). Under this order, Star(S) is a complete lattice:
its minimum is the identity, while its maximum is the v-operation (or
divisorial closure) v : I 7→ (S − (S − I)).

Since N is v-closed, any star operation restricts to a map ∗0 : F0(S) −→
F0(S); furthermore, ∗0 uniquely determines ∗ (since every ideal can be
translated into F0(S)). We define G0(S) := F0(S) \ Fv(S), that is,
G0(S) is the set of ideals I of S such that 0 = inf I and I 6= Iv.

Since F0(S) is finite, Star(S) is a finite set for all numerical semigroup
S [20, Proposition 3.2]. Furthermore, |Star(S)| = 1 if and only if v is
the identity, which happens if and only if S is symmetric [1, Proposition
I.1.15].

4. Estimates through the genus

Our main interest in this paper will be the function Ξ(n) that asso-
ciates to every integer n > 1 the number of numerical semigroups S
such that 2 ≤ |Star(S)| ≤ n. More generally, if S is a set of numerical
semigroups, we define ΞS(n) as the number of semigroups S ∈ S such
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that 2 ≤ |Star(S)| ≤ n. We will mainly be interested in the asymptotic
growth and in asymptotic bounds of Ξ and ΞS , for some distinguished
set S of semigroups.

It is very difficult to determine precisely the number of star opera-
tions on a numerical semigroup S, while it is easier to find estimates
for |Star(S)|: for this reason, we work with Ξ instead of the function
that counts the number of semigroups with exactly n star operations.
Most of the bounds proven in the paper will be obtained in a two-step
process:

(1) find a function φ (depending on some of the invariants of S)
such that |Star(S)| ≥ φ(S) for all S ∈ S;

(2) estimate the number of S ∈ S satisfying φ(S) ≤ n.

In this way, we obtain an estimate on the number of semigroups S ∈ S
satisfying |Star(S)| ≤ n: indeed, if |Star(S)| ≤ n then we must also
have φ(S) ≤ n.

The first important result is to prove that Ξ is actually well-defined,
that is, that there are only a finite number of numerical semigroups
satisfying 2 ≤ |Star(S)| ≤ n. To do so, the first estimate involves the
genus of S.

Theorem 4.1. [26, Proposition 8.1] Let S be a nonsymmetric numer-
ical semigroup. Then, |Star(S)| ≥ g(S) + 1.

Sketch of proof. For every ideal I ∈ G0(S), we define ∗I as the largest
star operation ∗ such that I = I∗; equivalently, ∗I is the map such that

J∗I = Jv ∩ (I − (I − J))

for every ideal J [20, Proposition 3.6]. Then, ∗I = ∗J if and only if
I = J [20, Theorem 3.8]. Let τ be an hole of S (which exists since
S is nonsymmetric), and let λ := min{τ, g − τ}. If x ∈ N \ S, let
Mx := {z ∈ N | x− z /∈ S}; then, Mx is an ideal (which is not always
divisorial). We associate to each x ∈ N \ S a non-divisorial ideal Ix:

• if x < λ and λ−x /∈ S, then Ix := S ∪{z ∈ N | z > x, z ∈Mλ};
• if x < λ and λ−x ∈ S, then Ix := S∪{z ∈ N | z > g−(λ−x)};
• if x ≥ λ, then Ix := Mx.

Each Ix is non-divisorial, and Ix 6= Iy if x 6= y. Hence, they generate
g(S) different star operations, all different from the divisorial closure.
Thus, |Star(S)| ≥ g(S) + 1. �

We now translate this estimate to a bound on Ξ.

Theorem 4.2. [26, Section 8] Preserve the notation above.

(a) Ξ(n) <∞ for every n > 1.

(b) If ϕ :=
√

5+1
2

is the golden ratio, then

Ξ(n) = O(ϕn) = O(exp(n logϕ)).
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Proof. By [30], the number of numerical semigroups of genus at most
n is O(ϕn). The claim follows from Theorem 4.1. �

5. Estimates through the multiplicity

The proof of Theorem 4.1 involves star operations generated by a
single ideal (called principal star operations). In general, not all star
operations have this form; to work more generally we define, given
∆ ⊆ G0(S), the star operation induced by ∆ as

∗∆ := inf{∗I | I ∈ ∆}.
Every star operation can be represented in this form [26, Section 3],
but in general it may be ∗∆ = ∗Λ even if ∆ 6= Λ. To obtain better esti-
mates, we want to identify special subsets of G0(S) that induce pairwise
different star operations. We introduce the following definitions.

Definition 5.1. [26, Definition 3.1] Let I, J ∈ G0(S). We say that I
is ∗-minor than J , and we write I ≤∗ J , if ∗I ≥ ∗J ; equivalently, if I
is ∗J-closed.

Definition 5.2. Let (P ,≤) be a partially ordered set. An antichain of
P is a subset of pairwise noncomparable elements.

Definition 5.3. Let a ∈ N\S. Then, Qa is the set of ideals I ∈ G0(S)
such that a = sup(N \ I) and such that a ∈ Iv.

The set Qa is nonempty if and only if Ma is nondivisorial (in which
case Ma ∈ Qa) [26, Proposition 5.2].

Proposition 5.4. [26, Proposition 5.11] Let a, b ∈ N \ S, and let ∆ ⊆
Qa, Λ ⊆ Qb two nonempty sets of ideals that are antichains with respect
to set inclusion. If ∆ 6= Λ, then ∗∆ 6= ∗Λ.

As a corollary, we get:

Corollary 5.5. [26, Corollary 5.12] Denote by ωi(P) the number of
antichains of P with respect to set inclusion. Then, for every numerical
semigroup S, we have

|Star(S)| ≥ 1 +
∑
a∈N\S

(ωi(Qa)− 1).

This corollary allows a relatively quick estimate of Star(S) when
S is a fixed semigroup, since finding Qa and counting the antichains
with respect to inclusion is much quicker than determining and con-
fronting star operations. From a theoretical point of view, it can be
used through the following construction.

Suppose a is a hole of S. Let J := S ∪ {x ∈ N | x > a}, and
let Z(a) := {a − m + 1, . . . , a − 1} \ S. For every A ⊆ Z(a), the set
IA := J ∪ A is an ideal of S, and it belongs to Qa since g − a /∈ S [20,
Lemma 4.7]. Furthermore, IA ⊆ IB if and only if A ⊆ B; hence, the
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set of the IA (under the containment order) is isomorphic to the power
set of Z(a). The number of antichains of the power set of a set with n
elements is called the n-th Dedekind number, and we denote it by ω(n).
The sequence {ω(n)} grows extremely quickly (as an exponential of an
exponential), and for this reason it is known only up to n = 8 [12, 29].

A similar construction can be done if a < m(S) is not an hole, but
there is an hole b < a; in this case, we consider Z(a) = {1, . . . , a− 2},
and the best estimate is obtained with a = m(S) − 1. Using these
constructions (and some variants), we can prove the following.

Proposition 5.6. [26, Propositions 5.19 and 5.21] Let S be a nonsym-

metric numerical semigroup, and let ν(S) :=
⌈
m(S)−1

2

⌉
. Let a ∈ N \ S.

(a) If m(S) < a ≤ g/2 and g − a /∈ S then ωi(Qa) ≥ ω(ν(S)).
(b) If 2m(S) < a ≤ g/2 and g−a /∈ S then ωi(Qa) ≥ 2ω(ν(S))−2.
(c) If a < m(S) and g − a /∈ S then ωi(Qa) ≥ ω(a− 1).
(d) If a < m(S) and there is an hole b < a of S, then ωi(Qa) ≥

ω(a− 2).

In particular, |Star(S)| ≥ ω(ν(S)).

As in Section 4, we can use the last estimate to obtain a bound on
Ξ.

Theorem 5.7. [26, Theorem 8.4] For every ε > 0,

Ξ(n) = O

[
exp

((
2

log 2
+ ε

)
log(n) log log(n)

)]
.

Sketch of proof. Let Aε := 2
log 2

+ ε. Using Proposition 5.6 and the

estimates in [12], we have that if |Star(S)| ≤ n then (for any ε′ > 0
and n ≥ n0(ε′))

n ≥ ω(ν(S)) ≥ 2( ν(S)
dν(S)/2e) ≥ 22(1−ε

′)ν(S)

when ν(S) is large. Writing it as a function of m(S), we get m(S) ≤
Aε log log n.

Let Ξµ(n) be the number of nonsymmetric numerical semigroups of
multiplicity µ with at most n star operations: then, using Theorem
4.1 Ξµ(n) is at most equal to the number of numerical semigroups of
multiplicity µ of genus ≤ n, which is at most (n−1)µ−1. It follows that

Ξ(n) ≤
Aε log logn∑

µ=3

(n− 1)µ−1 ≤ nAε log log(n) ≤ exp(Aε log(n) log log(n)),

as claimed. �

6. Multiplicity 3

In the last passage of the proof of Theorem 5.7, we needed to estimate
the function Ξµ(n) counting the nonsymmetric numerical semigroups of
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multiplicity µ with at most n star operations. While a very crude bound
was enough to obtain the theorem, it is reasonable to ask for more
precise estimates: in this section we analyze the case of multiplicity 3,
while in the next one we study the case where m(S) > 3 is prime.

The case of numerical semigroups of multiplicity 3 can be analyzed
very thoroughly, obtaining a complete solution to the problem of find-
ing the set of star operations on S.

Theorem 6.1. Let S := 〈3, 3α + 1, 3β + 2〉 be a numerical semigroup
of multiplicity 3, where Ap(S) = {3, 3α + 1, 3β + 2}.

(a) [21, Theorem 7.4] (G0(S),≤∗) is order-isomorphic to the direct
product {1, . . . , 2α− β} × {1, . . . , 2β − α + 1}.

(b) [21, Corollary 6.5] Star(S) is order-isomorphic to the set of an-
tichains of (G0(S),≤∗).

(c) [21, Theorem 7.6] |Star(S)| =
(
α + β + 1

2α− β

)
=

(
α + β + 1

2β − α + 1

)
=

(
g(S) + 1

F (S)− g(S) + 2

)
.

Using Proposition 5.4, we can also improve [21, Proposition 7.8].

Proposition 6.2. Let S be a nonsymmetric numerical semigroups.
Then, the following are equivalent:

(i) S is a pseudosymmetric semigroup of multiplicity 3;
(ii) (G0(S),≤∗) is linearly ordered;

(iii) Star(S) is linearly ordered.

Proof. If m(S) = 3, the result is exactly [21, Proposition 7.8]. Suppose
thusm(S) > 3; we need to show that (G0(S),≤∗) is not linearly ordered,
and to do so it is enough (by Proposition 5.4) to find two ideals J1, J2

in some Qa that are not comparable. Let τ be a hole of S such that
τ ≤ g/2 (it exists because S is not symmetric). We distinguish several
cases.

If τ ≥ 3, then by [20, Lemma 4.13] we can find a1, a2 ∈ ({τ −m +
1, . . . , τ − 1} ∩ N) \ S; then, we set Ji := S ∪ {x ∈ N | x > τ} ∪ {ai}.

If τ < 3 and m(S) > 4, consider b := 4: then, the set {1, 2, 3}\{3−τ}
contains two different elements, say x1 and x2, and we take Ji :=
S ∪ {x ∈ N | x > 3} ∪ {3 − τ, xi} (they belong to Q3 by the proof of
[26, Proposition 5.20]).

Suppose m(S) = 4 and τ ≤ 2. If τ = 1 then one between g := g(S)
and g− 1 is even; call it e. Then, e/2 is a hole of S which is not bigger
then g/2; in particular, if e

2
≥ 3 we are in the case above. If e

2
≤ 2,

then g ≤ 5, and so either g = 3 or g = 5. In the latter case we would
have g− 1 = 4 /∈ S, a contradiction; in the former case, S = 〈4, 5, 6, 7〉,
and by direct inspection G0(S) is not linearly ordered (see [26, Example
5.21]).

If τ = 2, consider J1 := S ∪ {g − 2} and J2 := S ∪ (2 + S). Then,
both are elements of Qg, and g− 2 /∈ J2 (otherwise g− 2− 2 = g− 4 =
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g − m ∈ S, which is absurd); furthermore, J1 6= J2 since otherwise
2 = g − 2, i.e., g = 4, a contradiction, and so they are noncomparable.

Therefore, if m(S) > 3 the ∗-order on G0(S) is not total, as claimed.
�

We now want to use Theorem 6.1 to calculate Ξ3(n). The idea is
to divide the set of semigroups of multiplicity 3 in sets defined by the
relation 2α− β = k (if α ≤ β) or 2β − α + 1 = k (if α > β), and then
estimate ΞS(n) for each of these families.

Lemma 6.3. Let k, n be integers, and define

pk,n(X) :=
X(X − 1) · · · (X − k + 1)

k!
− n.

Then:

(a) pk,n has a unique zero xk,n that satisfies xk,n > k − 1;
(b) for all k, there is a n0(k) such that, for all n ≥ n0(k),

(k!n)1/k − 1 < xk,n < (k!n)1/k + k − 1.

Proof. (a) Let p̃k,n(X) := pk,n(X + k− 1) = X(X+1)···(X+k−1)
k!

− n: then,
p̃k,n is a polynomial whose coefficients are all positive, and thus p̃k,n is
increasing for X > 0, i.e., pk,n is increasing for X > k−1. Furthermore,
pk,n(k− 1) = p̃n(0) = −n, and thus pk,n has a unique zero xk,n > k− 1.

(b) We have

pk,n((k!n)1/k + k − 1) = p̃k,n((k!n)1/k) >
((k!n)1/k)k

k!
− n = n− n = 0,

and thus xk,n < (k!n)1/k+k−1. On the other hand, write k!p̃k,n(X) =
k∑
t=0

λtX
t:

then, λk = 1 and λ0 = −k!n. We have

λt · ((k!n)1/k − k)t = λt

t∑
i=0

(
t

i

)
(−1)t−i(k!n)i/kk(t−i)/k.

Adding all these terms, we see that k!p̃k,n(X) is a sum of monomials
(with fractional exponent) in n. The maximal exponent is 1, which
appears twice: for t = k = i and for t = 0. The former is equal to k!n
and the latter to −k!n, and so their sum is zero. The next term is the
one with exponent (k − 1)/k, and again we have two monomials: for
t = k and i = 1 and for t = k − 1 = i. Hence, the leading term of
k!p̃k,n((k!n)1/k − k), as a function of n, is

−
(
k

1

)
(k!n)(k−1)/k ·k+λk−1(k!n)(k−1)/k = k!(k−1)/k(−k2 +λk−1)n(k−1)/k.



STAR OPERATIONS ON NUMERICAL SEMIGROUPS 9

We have λk−1 = 1 + 2 + · · · + k − 1 = k(k−1)
2

; hence, the sign of

k!p̃n((k!n)1/k − k) is equal to the sign of

−k2 + λk−1 = −k2 +
k(k − 1)

2
= −k

2 + k

2
< 0.

Therefore, for large n we have xk,n > (k!n)1/k−k+(k−1) = (k!n)1/k−1,
as claimed. �

Theorem 6.4. For every integer t > 1, we have

Ξ3(n) =
2

3

(
t−1∑
k=1

(k!)1/k · n1/k

)
+O(n1/t log2 n).

Proof. Given a numerical semigroup S = 〈3, 3α+1, 3β+2〉 of multiplic-
ity 3, let p(S) := α + β + 1 and q(S) := 2α− β. Then, p(S) + q(S) =
3α + 1; we have p(S) > q(S) for all nonsymmetric semigroups, and
furthermore p(S) 6= 2q(S) for all S, which means that p(S) < 2q(S) or
p(S) > 2q(S).

Given an integer k ≥ 1, define the following sets: Sk is the set of
numerical semigroups with p(S) < 2q(S) and q(S) = k, while S−k is
the set of semigroups with p(S) > 2q(S) and p(S) − q(S) = k. Then,
each nonsymmetric semigroup belongs to exactly one Sk or S−k, and
thus

Ξ3(n) =
∑
k≥1

ΞSk(n) + ΞS−k(n).

We claim that ΞSk(n) = (k!)1/k · n1/k +O(1) for each k.
Indeed, ΞSk(n) is equal to the number of integer solutions to the

system 
(
X
k

)
≤ n

X + k ≡ 1 mod 3

X ≥ 2k

In the notation of Lemma 6.3, the first equation is exactly pk,n(X) ≤ 0;
hence, the number of solutions is 1

3
(xk,n − 2k) + ε for some |ε| ≤ 1

(depending on k and n). For large n, using Lemma 6.3(b) this is equal
to

1

3
k!1/kn1/k − 2

3
k +O(1) =

1

3
k!1/kn1/k +O(1)

for k fixed, as claimed. A completely analogous reasoning holds for
S−k, since also

(
X

X−k

)
= pk,n(X).

Take any integer t and let S :=
⋃
k<t Sk ∪ S−k. Then,

ΞS(n) =
t−1∑
i=1

ΞSk(n)+ΞS−k(n) =
t−1∑
i=1

(
2

3
k!1/kn1/k +O(1)

)
=

2

3

(
t−1∑
i=1

k!1/kn1/k

)
+O(t).

Let S ′ be the complement of S in the set of all numerical semigroups
of multiplicity 3, and consider ΞS′(n). Let Gr(n) be the number of
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binomial coefficients
(
a
b

)
such that

(
a
b

)
≤ n, b ≥ t and a ≥ 2b; then,

since a binomial coefficient arises from at most one semigroup, we have

(1) ΞS′(n) ≤ 2
∞∑
r=t

Gr(n).

If k > log2(n), then(
2k

k

)
≥ 4log2(n)√

4 log2(n)
≥ n2√

4 log2(n)
> n

for large n. Thus, it is enough to consider the sum in (1) only for k
going from t to log2(n).

By Lemma 6.3, if
(
a
t

)
≥ n then a ≤ (k!n)1/k; hence, Gk(n) ≤ (k!n)1/k

and

ΞS′(n) ≤ 2

log2(n)∑
k=t

(k!n)1/k ≤ 2n1/t

log2 n∑
k=t

(k!)1/k = O(n1/t log2 n).

since (k!)1/k ≤ k. The claim is proved. �

Note that we cannot write Ξ3 as the series

Ξ3(n) =
2

3

∞∑
k=1

(k!)1/k · n1/k,

because at fixed n the terms have limit 1, and so the series does not
converge. When n is fixed, a good approximation for Ξ3(n) is obtained
stopping the series at k = log2(n); an even better approximation can
be obtained stopping it at k = 1

2
(log2 n+log2 log2 n), since also for this

value we have
(

2k
k

)
> n.

7. Prime multiplicity

The formula for |Star(S)| in the previous section was based on an
explicit (and very regular) description of G0(S). For semigroups of big-
ger multiplicity, both listing all non-divisorial ideals and understanding
the ∗-order becomes much more complicated (see the examples in [22]),
and so we need to rely on estimates. In this section, we shall obtain
good estimates for some particular classes of semigroups.

The main idea is to generalize the reasoning used to obtain the
estimate |Star(S)| ≥ ω(ν(S)) by considering not only the elements
b ∈ {a − m(S) + 1, . . . , a − 1} \ S, but also the integers in the form
b− km.

Theorem 7.1. Let S be a nonsymmetric numerical semigroup of mul-
tiplicity m, and let a ∈ N \ S be an hole of S. Suppose that there are
b1, b2 ∈ (a−m, a) ∩ N and σ ∈ N such that:

• b1, b2 /∈ S;
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• for c ∈ {a − b1, a − b2, |b1 − b2|}, the element ac ∈ Ap(S,m)
congruent to c modulo m satisfies ac ≥ σm.

Then, |Star(S)| ≥
(

2σ

σ

)
.

Proof. For 0 ≤ j, k < σ, let I(j, k) be the ideal

I(j, k) := S ∪ {x ∈ N | x > a} ∪ (b1 − jm+ S) ∪ (b2 − km+ S).

We first prove that max(N\I(j, k)) = a. Clearly, every element larger
than a is in I(j, k). On the other hand, a /∈ S, while a ∈ b1 − jm + S
is equivalent to a − (b1 − jm) ∈ S, and the latter is impossible since
a− (b1 − jm) = (a− b1) + jm < σm; hence, a /∈ b1 − jm + S, and in
the same way a /∈ b2 − km+ S.

Furthermore, b1 − jm −m /∈ I(j, k): the only possibility would be
b1 − jm−m ∈ b2 − km+ S, but his would imply

b1 − jm−m− (b2 − km) = b1 − b2 + (k − j − 1)m ∈ S,

which is impossible since b1 − b2 + (k − j − 1)m < σm. Hence, the
Apéry set of I(j, k) contains a, b1 − jm and b2 − km; in particular,
these ideals all distinct.

Since a is an hole of S, all the I(j, k) belong toQa, and by Proposition
5.4 every nonempty antichain with respect to containment induces a
different star operation on S. Under the containment order, the set of
the I(j, k) is isomorphic to the direct product {1, . . . , σ} × {1, . . . , σ};
by [21, Lemma 7.5], the latter set has

(
2σ
σ

)
antichains. The claim now

follows from Corollary 5.5. �

When instead of b1 and b2 we have z elements, say b1, . . . , bz, in
(a − m, a) ∩ N but out of S, the same reasoning (with the natural
modifications to the hypothesis) can be applied, considering the set
containing the ideals in the form

I(j1, . . . , jz) := S ∪ {x ∈ N | x > a} ∪
z⋃
i=1

(bi − jim+ S},

which will be isomorphic to {1, . . . , σ}z. Numerically, this version gives
a much better bound on |Star(S)|, although there isn’t a simple formula
to express it; however, the version of the theorem with only b1 and b2

will suffice for our purpose.

Lemma 7.2. If a is an hole of a numerical semigroup S and a+m(S) /∈
S, then a+m(S) is an hole of S.

Proof. Immediate from the fact that F (S)−(a+m(S)) = (F (S)−a)−
m(S) can’t belong to S if F (S)− a /∈ S. �
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Lemma 7.3. Let S be a numerical semigroup with multiplicity m, and
let a ∈ Ap(S,m). If (a,m)|(F (S),m), then

a ≥ F (S) +m

m− 1

Proof. Suppose first that (a,m) = 1: then, S ′ := 〈m, a〉 is a numerical
semigroup, and F (S) ≤ F (S ′). However, F (S ′) = am − a − m =
a(m− 1)−m; solving for a we have our claim.

If (a,m) =: d > 1, we consider the semigroup S ′ := S/d := {x/d |
x ∈ S ∩ dN}: then, since d divides m and F (S), we have m(S ′) =
m(S)/d, F (S ′) = F (S)/d and a/d ∈ S ′. By the previous part of the
proof,

a

d
≥ F (S ′) +m(S ′)

m(S ′)− 1
=
F (S) +m(S)

d

d

m(S) + d
=
F (S) +m

m− d
≥ F (S) +m

m− 1
,

and the claim is proved. �

Theorem 7.4. Let m > 3 be a prime number. Then, for every ε > 0,

Ξm(n) = O(logm−1 n) = O(nε).

Proof. There are only finitely many numerical semigroups of multiplic-
itym satisfying F (S) < km, for every k ∈ N; hence, we can ignore them
and only consider (nonsymmetric) semigroups satisfying F (S) > m3.

Fix such a semigroup S, and let a be an hole of S satisfying a ≤
F (S)/2. Applying Lemma 7.2, we see that for any k ∈ N, the element
a + km is either an hole of S or belongs to S; let h be the largest of
such holes that is also smaller or equal than F (S)/2. By Lemma 7.3,

and since m > 3, we must have h ≥ F (S)+m
m−1

−m ≥ F (S)−m2

m−1
. Note that,

since F (S) > m3, we have h > m.
By [20, Lemma 4.13], since m < h ≤ F (S)/2, there are two elements

b1, b2 ∈ (a−m,m)\S; taking σ :=
⌊

1
m
F (S)+m
m−1

⌋
, we can apply Theorem

7.1, obtaining |Star(S)| ≥
(

2σ
σ

)
. Now⌊

1

m

F (S) +m

m− 1

⌋
≥ 1

m

F (S) +m

m− 1
− 1 =

F (S)

m(m− 1)
+

1

m− 1
− 1 ≥ F (S)

m2

using F (S) > m3. Setting σ′ :=
⌈
F (S)
m2

⌉
, for these semigroups we have

|Star(S)| ≥
(

2σ′

σ′

)
≥ 22σ′−1

√
σ′
≥ 2σ

′
.

If |Star(S)| ≤ n, this means that σ′ ≤ log2 n, i.e.,

F (S)

m2
< log2 n =⇒ F (S) < m2 log2 n.

Therefore,

Ξm(n) ≤ C+(m2 log2 n)m−1 = C+m2(m−1)(log2 n)m−1 = O(logm−1 n) = O(nε)
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for every ε > 0. �

Corollary 7.5. Let S be the set of all numerical semigroups whose
multiplicity is a prime number > 3. Then, for every ε > 0, we have

ΞS(n) = O(nε).

Proof. By [26, Proposition 8.2], we need to consider only semigroups
with multiplicity up to Aε log log n, where Aε := 2

log 2
+ ε.

There are at most (m2)m−1 = m2(m−1) semigroups of multiplicity m
with F (S) < m3; hence, by the proof of the previous theorem we have

Ξm(n) ≤ m2(m−1) +
2

log 2
m2(m−1) logm−1 n ≤ 4

log 2
logm+2 n

for large n, since m2(m−1) ≤ (Aε log log n)2Aε log logn ≤ log3 n. Therefore,

ΞS(n) =
∑

m>3 prime

Ξm(n) =

Aε log logn∑
m=5

m prime

Ξm(n) ≤ (Aε log log n)· 4

log 2
(log n)Aε log logn,

which is O(nε). The claim is proved. �

The proof above is based on the fact that if m(S) is prime then no
generator of S can be too small. The same happens if we consider only
the elements of the Apéry set that are coprime with m(S); however, in
this case, we also need to find a large hole. If F (S) is even, one easy
solution is using F (S)/2.

Theorem 7.6. Let S be the set of numerical semigroups of multiplicity
m ≥ 4 such that 3 - m and F (S) ≡ 0 mod 2. Then, for every ε > 0,

ΞS(n) = O(nε).

Proof. Let Sm be the set of numerical semigroup with (fixed) multiplic-
ity m satisfying F (S) ≡ 0 mod 2; for large n, by the proof Theorem
5.7 we have ΞSm(n) = 0 if m > 2 log log n.

As in the previous proof, there are at most m2m semigroups S of
multiplicity m with F (S) ≤ 2m2.

Fix a semigroup S such that F (S) > 2m2, and let τ := F (S)/2:
then, τ is an hole of S and, since F (S) > 2m2, we have τ > m2.
Consider the elements τ − 2 and τ − 1.

If τ1, τ2 /∈ S, then we can apply Theorem 7.1 with b1 = τ − 2,

b2 = τ −1 and σ =
⌊
F (S)
m2

⌋
, applying Lemma 7.3 (since both (1,m) and

(2,m) divide (m,F (S))).
If τ1, τ2 ∈ S, then τ + 1 and τ + 2 cannot belong to S (otherwise

τ − 1 + τ + 1 = 2τ = F (S) ∈ S, a contradiction, and analogously
for τ − 2). Hence, we can apply Theorem 7.1 with b1 = τ − m + 2,

b2 = τ −m+ 1 and σ =
⌊
F (S)
m2

⌋
.
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Suppose that τ − 2 ∈ S while τ − 1 /∈ S. As before, τ + 2 /∈ S, and
we take b1 := τ −m+ 2 and b2 := τ − 1. Then, b2− b1 = m− 3, and so
(m,m− 3) = 1 (since 3 - m). Using Lemma 7.3 we can apply Theorem

7.1 with σ =
⌊
F (S)
m2

⌋
. Analogously, if τ − 2 /∈ S and τ − 1 ∈ S we use

b1 := τ −m+ 1 and b2 := τ − 2.
In all cases, we have |Star(S)| ≥

(
2σ
σ

)
≥ 2σ. Hence, for large n, is

S ∈ Sm satisfies |Star(S)| ≥ n we must have F (S) < m2 log2 n; as in
the proof of Theorem 7.4 it follows that

ΞSm(n) ≤ m2m +
2

log 2
logm+2 n

for large n, and summing on m we have

ΞS(n) ≤ (2 log log n)4 log logn+1 +
2

log 2
(log n)Aε log logn = O(nε)

for every ε > 0. �

Proposition 7.7. Let S be the set of numerical semigroups of multi-
plicity m ≥ 4 such that F ≡ 0 mod 6. Then, for every ε > 0,

ΞS(n) = O(nε).

Proof. The proof is entirely analogous to the proof of Theorem 7.6. �

An interesting point to note is that, if we are interested in an asymp-
totic bound or expression for Ξ(n), the families considered in Theorems
7.4 and 7.6 or in Proposition 7.7 give a contribution of a lower order
than Ξ3 (for which Theorem 6.4 gives a linear term); hence, these
families are irrelevant when considering (the dominant term of) the
asymptotic growth for Ξ.

8. Linear families

In the previous section, Theorem 7.1 has been applied on families
where, while the Frobenius number increases, also the generators (or at
least some of them) increase; this is then used to prove an exponential
bound on |Star(S)|, which in turn gives a bound of type O(nε) on ΞS .
In general, however, it is possible to have a family of semigroups where
the Frobenius number increases, while some generators remain fixed.

Let S be a numerical semigroup and d > 1 be an integer dividing
m(S). Let {b1, . . . , bs} be integers such that bi ≥ d · (F (S)+m(S)) and
such that each bi is coprime with m(S). Then, T := 〈dS, b1, . . . , bs〉 is a
numerical semigroup. We can divide the Apéry set of T into two parts,
dAp(S) and a set A := {a1, . . . , at} where each ai is bigger than every
element of dAp(S).

For every k ≥ 0, let now Tk := 〈dS,A + kd〉; then, Tk is still a
numerical semigroup, and Tk = dS ∪ (A + kd + m(T )N). Considering
the family {Tk}k≥0, this means that one part of the semigroup remains
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fixed for every member of the family, while another part gets smaller
and smaller.

We call a family T := {Tk}k≥1 constructed in this way the linear
family constructed from S, d and {b1, . . . , bs}.

In particular, we have F (Tk) = F (T ) + kd; furthermore, if x ∈ N \S
and x + m(S) ∈ dS, then F (T ) − x ∈ T if and only if F (Tk) − x =
F (T ) + kd − x ∈ Tk. Suppose now that T has only two holes, x and
F (T )−x, and suppose that x+m(S) ∈ dS. Then, the only holes of Tk
will be x and F (T ) + kd− x; in particular, the method applied in the
previous section using Theorem 7.1 can fail badly, in the sense that the
integer σ will be the same for all members of the family. In particular,
the bound on |Star(S)| does not increase with k.

Example 8.1. Start from S = 〈2, 3〉 and take d = 2. Then, d(F (S) +
m(S)) = 6, so we can take {b1, b2} = {9, 11}. Hence, T := 〈4, 6, 9, 11〉,
while Tk := 〈4, 6, 9 + 2k, 11 + 2k〉. The only holes of T are 2 and 7, so
the holes of Tk are 2 and 7 + 2k. For the hole a = 2, the only possible
σ is 0, while for the hole a = 7 + 2k the set {a − m + 1, . . . , a − 1}
contains a unique element out of S, namely a −m + 2 = 5 + 2k, and
thus Theorem 7.1 cannot even be applied to 7 + 2k.

The only estimate we have is thus Theorem 4.1, which gives |Star(Tk)| ≥
g(Tk) + 1 = k + 5 and corresponds to a bound ΞT (n) ≤ n − 4, where
T := {Tk}k≥1.

For this particular family, [22, Proposition 5.8] gives the upper bound
|Star(Tk)| ≤ 65 + 30k, which in particular implies ΞT (n) ≥ 1

30
n− 65

30
.

A calculation of |Star(Tk)| for low k suggests that the behavior of
|Star(Tk)| is linear in k; more precisely, that |Star(Tk)| = 51 + 20k, and
thus that ΞT (n) = 1

20
n− 31

20
= 1

20
(n− 31).

In general, there will be linear families for which |Star(Tk)| does not
exhibit a linear behavior: for example, if m(S) is odd and coprime with
3 (and so d must be odd too) then F (Tk) will be alternatively even and
odd, and so for at least one half of the semigroups of the family we can
apply Theorem 7.6; the same happens if T has holes that are bigger
than the elements of dAp(S).

On the other hand, if the behavior of |Star(Tk)| is linear (as it seems
to happen in the example), then the contribution of ΞT to Ξ has the
same asymptotic growth of Ξ3, contrary to what happens for the fami-
lies of Section 7. In particular, the overall contribution of these families
will depend also on the precise value of the linear bounds on ΞT , which
seem difficult to calculate theoretically for all families.

In Table 1, we list the precise value of |Star(Tk)| for a few fami-
lies obtained with the above construction and for which the sequence
{|Star(Tk)|} exhibits (experimentally) a linear behavior.
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S d {b1, . . . , bs} Tk |Star(Tk)| Range checked
〈2, 3〉 2 {9, 11} 〈4, 6, 9 + 2k, 11 + 2k〉 51 + 20k 0 ≤ k ≤ 20
〈2, 5〉 2 {15, 21} 〈4, 10, 15 + 2k, 21 + 2k〉 1368 + 400k 0 ≤ k ≤ 15
〈2, 7〉 2 {21, 23} 〈4, 14, 21 + 2k, 23 + 2k〉 29800 + 6800k 0 ≤ k ≤ 4

Table 1. Linear behavior of |Star(S)|.

9. Algorithms and explicit data

A star operation ∗ is uniquely determined by its restriction ∗ :
F0(S) −→ F0(S). Since F0(S) is a finite set that can be computed
explicitly, the set of star operations (and, in particular, its cardinality)
can be determined just by listing all maps from F0(S) to itself and
checking which ones satisfy the properties of a star operation.

An easier way to work algorithmically is to consider the set of closed
ideals. Indeed, a star operation ∗ is also uniquely determined by the set
F∗0 (S) := {I ∈ F0(S) | I = I∗}; furthermore, a set ∆ ⊆ F0(S) is equal
to F∗0 (S) for some ∗ if and only if it satisfies the following conditions
[20, Lemma 3.3]:

• S ∈ ∆;
• if I, J ∈ ∆, then I ∩ J ∈ ∆;
• if I ∈ ∆ and k ∈ I, then (−k + I) ∩ N ∈ ∆.

In particular, since every star operations is smaller than the divisorial
closure, ∆ must also contain the set Fv0 (S) = {I ∈ F0(S) | I = Iv}.

Hence, we can write F∗0 (S) = Fv0 (S)∪G∗0(S), where G∗0(S) := G0(S)∩
F∗0 (S). By definition, G∗0(S) must be downward closed in the ∗-order:
thus, we need only to check the subsets of G0(S) that are downward
closed, and these can be constructed recursively (either directly or by
constructing the antichains Θ of G0(S) and then considering the sets
Θ↓ := {J | J ≤∗ I for some I ∈ Θ}). Furthermore, for any ideal I, the
ideals I ∩ J (for J divisorial) and (−k + I) ∩ N (for k ∈ I) are always
∗-smaller than I, and thus they do not need to be checked.

Therefore, we can write the following algorithm to calculate the car-
dinality of Star(S).

(1) Find all ideals in F0(S):
(a) find Ap(S) = {0 = a0, a1, . . . , am−1}, where m = m(S) and

ai ≡ i mod m;
(b) for each 1 ≤ i ≤ m− 1, let bi := bai/mc;
(c) for each vector v := [c1, . . . , cm−1] such that 0 ≤ ci ≤ bi for

all i, consider the set I(v) := S ∪
⋃
i(ci +mN);

(d) if I(v) is an ideal, store it into F0(S).
(2) Divide F0(S) into Fv0 (S) and G0(S) by checking whether I = Iv

or I 6= Iv for all I ∈ F0(S).
(3) Construct the ∗-order by checking if I ≤∗ J or J ≤∗ I for every

pair (I, J).
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(4) For all downward closed subset Λ of G0(S):
(a) consider ∆ := Λ ∪ Fv0 (S);
(b) check if I ∩ J ∈ ∆ for all I, J ∈ Λ;
(c) if this condition holds, ∆ = F∗0 (S) for some star operation
∗.

This algorithm has been implemented in GAP, using the functions
of the package numericalsgps [4, 3].

To calculate explicitly Ξ(n) (for some n ≥ 2), we can use Theorem
4.1 and Proposition 5.6 to limit the calculation to a finite number of
semigroups, and the estimates in Sections 5-7 to greatly shrink the
number of semigroups.

(1) Find the maximal m such that ω
(⌈

m−1
2

⌉)
≤ n (call it M);

(2) For m = 3, calculate how many binomial coefficients
(
a
b

)
satisfy

a+ b ≡ 1 mod 3 and
(
a
b

)
≤ n.

(3) For 4 ≤ m ≤M , find all numerical semigroups S of multiplicity
m with g(S) ≤ n− 1.

(4) For every such semigroup S:
(a) for every a ∈ N \ S, bound ωi(Qa) by using Proposition

5.6, Theorem 7.1 or an explicit calculation;
(b) if their sum is strictly larger than n, by Corollary 5.5 we

have |Star(S)| > n;
(c) if the sum is at most n, calculate explicitly |Star(S)|.

Remark 9.1.

(a) The number of numerical semigroups of multiplicity m and
genus up no n−1 grows polynomially, and M grows very slowly
with n (as a double logarithm of n, by [26, Proposition 8.2]/The-
orem 5.7 – for example, if n = 7000 we have only M = 7).

(b) Those semigroup can be efficiently found by solving linear in-
equalities, using the so-called Kunz polytope of S (see [18, 10]).

(c) Step 4 of the algorithm is very flexible, because it allows to use
any kind of estimate on |Star(S)| before calculating it explic-
itly. For example, it is possible to use first Proposition 5.6 to
obtain a quick estimate, and then, for those semigroups whose
estimate is below n, calculate explicitly all of the sets Qa (which
is slower, but gives a better bound). It can also be used with
other estimates, not necessarily depending on Qa.

Using this algorithm, I calculated Ξ(n) and Ξm(n) for all n ≤ 150,
and Ξm(n) for m ∈ {3, 5, 7} and for all n ≤ 2000 (for m = 4 and
m = 6, the fact that m is not prime introduces linear families, which
slow down considerably the calculation). Tables 2 and 3 show these
values, and Table 4 lists those semigroups for m(S) > 3.
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Table 2. Ξ(n) for n ≤ 150.

n Ξ(n) Ξ3(n) Ξ4(n) Ξ5(n) Ξ6(n) Ξ7(n)
10 8 7 1 0 0 0
20 18 14 4 0 0 0
30 27 22 4 1 0 0
40 40 31 6 3 0 0
50 46 37 6 3 0 0
60 57 46 8 3 0 0
70 69 54 9 6 0 0
80 76 60 10 6 0 0
90 83 67 10 6 0 0
100 93 75 11 7 0 0
110 101 82 12 7 0 0
120 111 90 13 8 0 0
130 122 98 15 9 0 0
140 131 105 17 9 0 0
150 141 112 17 12 0 0

Table
3. Ξm(n)
for
n ≤
2000
and
m
∈ {3,
5, 7}.

n Ξ3(n) Ξ5(n) Ξ7(n)
100 75 7 0
200 148 13 0
300 220 16 0
400 290 21 0
500 361 21 0
600 431 22 0
700 500 22 0
800 570 22 0
900 639 24 0
1000 709 24 0
1100 776 25 0
1200 845 25 1
1300 914 25 1
1400 982 28 1
1500 1050 28 1
1600 1120 28 1
1700 1186 29 1
1800 1257 30 1
1900 1326 30 1
2000 1393 30 1

10. The ring version

Suppose D is an integral domain with quotient field K. A star
operation on D is a map ∗ : F(D) −→ F(D) that is extensive, order-
preserving, idempotent, satisfies D = D∗ and such that x · I∗ = (xI)∗

for all x ∈ K and all I ∈ F(D) (where F(D) is the set of fractional
ideals of D, i.e., of the D-submodules I of the quotient field K of D
such that xI ⊆ D for some x 6= 0).

The concepts of principal star operations and of the ∗-order can be
introduced also for rings; however, in general, there is no set corre-
sponding to F0(S) (and so to G0(S)). Furthermore, it can be ∗I = ∗J
even if I, J are nondivisorial and I 6= xJ for all x.
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Table 4. Numerical semigroups with few star opera-
tions (with |Star(S)| in parentheses).

m(S) = 4, |Star(S)| ≤ 150

• 〈4, 5, 7〉 (7)
• 〈4, 5, 6, 7〉 (14)
• 〈4, 5, 11〉 (14)
• 〈4, 7, 9〉 (15)
• 〈4, 9, 11〉 (31)
• 〈4, 6, 7, 9〉 (32)
• 〈4, 6, 9, 11〉

(51)
• 〈4, 7, 17〉 (57)

• 〈4, 11, 13〉 (63)
• 〈4, 6, 11, 13〉

(71)
• 〈4, 6, 13, 15〉

(91)
• 〈4, 7, 10, 13〉

(105)
• 〈4, 6, 15, 17〉

(111)

• 〈4, 13, 15〉
(127)
• 〈4, 7, 13〉 (129)
• 〈4, 6, 17, 19〉

(131)
• 〈4, 7, 9, 10〉

(131)

m(S) = 5, |Star(S)| ≤ 2000

• 〈5, 6, 7, 9〉 (21)
• 〈5, 6, 13〉 (31)
• 〈5, 6, 7〉 (32)
• 〈5, 7, 16〉 (63)
• 〈5, 7, 13〉 (65)
• 〈5, 6, 8〉 (68)
• 〈5, 8, 9, 11〉

(96)
• 〈5, 7, 8〉 (117)
• 〈5, 8, 19〉 (127)
• 〈5, 8, 11, 12〉

(141)
• 〈5, 7, 9〉 (147)
• 〈5, 6, 8, 9〉

(148)

• 〈5, 6, 7, 8, 9〉
(163)
• 〈5, 6, 14〉 (206)
• 〈5, 9, 22〉 (255)
• 〈5, 6, 19〉 (275)
• 〈5, 7, 9, 13〉

(340)
• 〈5, 9, 16〉 (351)
• 〈5, 7, 8, 11〉

(369)
• 〈5, 6, 9, 13〉

(387)
• 〈5, 9, 12, 13〉

(400)
• 〈5, 7, 11〉 (539)

• 〈5, 7, 8, 9, 11〉
(824)
• 〈5, 8, 11〉 (867)
• 〈5, 11, 28〉

(1023)
• 〈5, 6, 13, 14〉

(1331)
• 〈5, 8, 9〉 (1356)
• 〈5, 11, 12, 14〉

(1363)
• 〈5, 7, 23〉

(1685)
• 〈5, 8, 9, 12〉

(1726)

m(S) = 7, |Star(S)| ≤ 2000

• 〈7, 8, 9, 19〉 (1116)

In this section, we want to study star operations on a class of domains
which is close to numerical semigroup. In particular, we shall study
domains R satisfying the following conditions:

• R is Noetherian, one-dimensional and local;
• its integral closure V is a discrete valuation ring (DVR);
• the conductor ideal (R : V ) is nonzero;
• the extension of residue fields R/mR ⊆ V/mV induced by the

extension R ⊆ V is an isomorphism.
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Note that, in the previous conditions, we could have dropped “one-
dimensional” and “local”, since they follow from the fact that the in-
tegral closure is a DVR. An equivalent characterization is that the
domains we study are one-dimensional local Noetherian domains that
are analytically irreducible and residually rational.

From now on, fix a discrete valuation ring V , and denote by R(V ) the
domains of this form whose integral closure is V ; R will be a domain in
R(V ) and m its maximal ideal. We shall use v to denote the normalized
valuation relative to V : then, the set v(R) := {v(r) | r ∈ R} is a
numerical semigroup.

The question we want to answer in this case are the same of the
numerical semigroup case: is the number of rings in R(V ) with exactly
n star operations finite? how many have less than n star operations?
how to bound |Star(R)|, for R ∈ R(V )? For n = 1, the answer is well-
known: |Star(R)| = 1 if and only if R is Gorenstein, which happens
if and only if v(R) is symmetric, i.e., if and only if |Star(v(R))| = 1
[2, 14].

Define F0(R) := {I ∈ F(R) | R ⊆ I ⊆ V }: then, every fractional
ideal I is isomorphic to an element of F0(R) (just take x−1I, where
x ∈ I satisfies v(x) = min v(I)). However, unlike the semigroup case,
this ideal is not unique: that is, if y ∈ I is another element of minimal
valuation, it may be that x−1I 6= y−1I. In particular, we can have
∗x−1I = ∗y−1I even if x−1I 6= y−1I. However, if I and J are in F0(S) and
not divisorial, then ∗I = ∗J implies that v(I) = v(J) [20, Proposition
6.4]. We can thus prove an analogue to Theorem 4.1.

Proposition 10.1. Let R ∈ R(V ), and suppose that R is not Goren-
stein. Then, |Star(R)| ≥ g(v(R)) + 1.

Proof. Let S := v(R), let τ ∈ T (S) \ {g} and let λ := min{τ, g − τ}.
For any positive a ∈ N, let Ta := R ∪ {φ ∈ V | v(φ) > a}; then,
Ta is a ring in R(V ) and v(Ta) = v(R) ∪ {x ∈ N | x > a}, so that
F (v(Ta)) = a. We let Ωa be a canonical ideal of Ta; in particular, v(Ωa)
is the canonical ideal of v(Ta), i.e., v(Ωa) = {t ∈ N | a− t ∈ v(Ta)}.

Let x ∈ N \ S. We distinguish three cases.
If x < λ and λ− x /∈ S, let Ix := R+ {φ ∈ Ωλ | v(φ) > x}. Then, Ix

is an R-module, and v(Ix) = v(R)∪{t ∈ v(Ωλ) | t > x}; in particular,
λ /∈ v(Ix), and thus v(Ix) is not divisorial over S, which implies that
Ix is not divisorial over R [1, Lemma II.1.22].

If x < λ and λ − x ∈ S, let y := g(S) − λ + x = g(S) − (λ − x),
and define Ix := R ∪ {φ ∈ V | v(φ) > y}. Then, v(Ix) is not divisorial
since it contains g(S) but not g(S)− λ, and so Ix is not divisorial.

If x ≥ λ and x 6= g(S), let Ix := Ωx: then, Ix is not divisorial since
otherwise Tx = (Ωx : Ωx) would be divisorial, against the fact that
v(Tx) contains g(S) but not λ (if x = g, then Ωx is not divisorial since
otherwise S would be symmetric).
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It is straightforward to see that v(Ix) 6= v(Iy) for x 6= y; hence, each
one generates a different star operation, and |Star(R)| ≥ g(v(R)) +
1. �

We also note that Proposition 5.6 carries over to the domain case,
and in particular |Star(R)| ≥ ω(ν(v(R))). We now prove an analogue
of Theorem 4.2, but we have to add an important additional hypothesis.

Theorem 10.2. Let V be a DVR with finite residue field.

(a) Every R ∈ R(V ) has only finitely many star operations.
(b) For every n > 1, the set {R ∈ R(V ) | 2 ≤ |Star(R)| ≤ n} is

finite.

Proof. The first claim is a special case of [8, Theorem 2.5]. (It follows,
for example, from the fact that F0(R) is finite.)

For the second claim, we see that if 2 ≤ |Star(R)| ≤ n, then v(R)
is not symmetric and g(v(R)) ≤ n − 1; hence, there are only finitely
many possible v(R). Furthermore, since the residue field of V is finite,
for any S there are only finitely many R such that v(R) = S [20,
Lemma 5.13(a)]; hence, there are only finitely many R ∈ R(V ) with
|Star(R)| ≤ n. The claim is proved. �

In the previous theorem, the restriction to a finite residue field is not
really restricting, since otherwise Star(R) is very often infinite.

Proposition 10.3. Let R ∈ R(V ), and suppose that the residue field F
of R is infinite; suppose also that R is not Gorenstein. If m(v(R)) > 3,
then Star(R) is infinite.

Proof. Let A := (m : m); then, A is a ring, and it is local since its
integral closure is V . Since R is not Gorenstein, dimF (A/m) > 2 [2,
Theorem 6.3]. If dimF (A/m) ≥ 4, then |Star(R)| =∞ by [8, Corollary
2.8]. If dimF (A/m) = 3, then following [9] let N be the maximal ideal
of A and let B := (N : N); by [9, Theorem 2.15], if Star(R) is finite
then B = V and dimF (B/mB) = 3. By [15],

dimF (B/mB) = |v(B) \ v(mB)| = m(v(R))

since mB contains all elements of valuation m(v(R)) or more. Hence,
if m(v(R)) > 3 then Star(R) is infinite, as claimed. �

We can also obtain an explicit version of Theorem 10.2.

Lemma 10.4. Let F be a finite field of cardinality q, and let W be a
vector space over F of dimension n. Then, W has at most 2nqn(n−1)/2

vector subspaces.

Proof. The number of vector subspaces of W of dimension k is the
q-binomial coefficient (or Gaussian binomial coefficient)(

n

k

)
q

:=
(qn − 1)(qn−1 − 1) · · · (qn−t+1 − 1)

(qt − 1)(qt−1 − 1) · · · (q − 1)
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(see e.g. [27, Proposition 1.3.18] or [6, Chapter 13, Proposition 2.1]).
Using the q-binomial theorem [27, Chapter 3, Exercise 45] with y =
z = 1 we have

n∑
k=0

(
n

k

)
q

≤
n∑
k=0

qk(k−1)/2

(
n

k

)
q

=
n−1∏
k=0

(1 + qk) ≤ 2nqn(n−1)/2,

as claimed. �

Theorem 10.5. There is a constant C such that, for all discrete val-
uation rings V with residue field F of finite cardinality q and for all
n,

ΞV (n) := |{R ∈ R(V ) | 2 ≤ |Star(R)| ≤ n}| ≤ C(4ϕ)nqn(2n−1)

where ϕ := 1+
√

5
2

is the golden ratio.

Proof. If |Star(R)| ≤ n, then by Theorem 10.2 we have g(v(R)) ≤ n−1,
and by [30] there are at most C ′ϕn−1 semigroups with this property, for
some constant C ′. If S is a numerical semigroup, then as in the proof
of [20, Lemma 5.13(a)] the R ∈ R(V ) such that v(R) = S correspond

to certain F -vector subspaces of V/m
F (S)+1
V ; since F (S) ≤ 2g(S), using

Lemma 10.4 we see that each S gives at most 22nqn(2n−1) rings. Hence,

ΞV (n) ≤ C ′ϕn−1 · 22nqn(2n−1) = C(4ϕ)nqn(2n−1)

with C := C ′/ϕ. �

In this bound, the term ϕn can be substituted by a better bound,
using (the analogue of) Proposition 5.6; however, the main term is
qn(2n−1), whose lowering hinges on a more precise grasp of how many
rings correspond to a given semigroup.

In general, the cardinality of Star(R) does not depend only on S =
v(R) and on the residue field of V , but also on the precise nature of
R itself; as a consequence, while it is possible to calculate explicitly
|Star(R)| for a fixed R, in general there will not be a general formula
(valid for each R). Sometimes, however, knowing S and the residue
field is everything we need.

Proposition 10.6. Let V be a DVR with residue field F , and let q :=
|F |. Let R ∈ R(V ). Then:

(a) [8, Theorem 3.8] if v(R) = 〈3, 4, 5〉, then |Star(R)| = 3;
(b) [8, Example 3.10] if v(R) = 〈3, 5, 7〉, then |Star(R)| = 4;
(c) [23, Proposition 3.4] if v(R) = 〈4, 5, 7〉, then |Star(R)| = 22q+3;
(d) [28, Corollary 4.1.2] if v(R) = 〈4, 5, 6, 7〉, then |Star(R)| =

22q+1 + 2q+1 + 2.
Remark 10.7.

(a) If q =∞, then the last two cases should be interpreted as saying
that Star(R) is infinite.
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(b) The proofs given in [8, Example 3.10] and [28, Corollary 4.1.2]
for v(R) = 〈3, 5, 7〉 and v(R) = 〈4, 5, 6, 7〉 (respectively) were
given only in the case R = K[[S]]. However, their proofs can
be applied also to the general case.
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