
DECOMPOSITION AND CLASSIFICATION OF
LENGTH FUNCTIONS

DARIO SPIRITO

Abstract. We study decompositions of length functions on inte-
gral domains as sums of length functions constructed from over-
rings. We find a standard representation when the integral do-
main admits a Jaffard family, when it is Noetherian and when it
is a Prüfer domains such that every ideal has only finitely many
minimal primes. We also show that there is a natural bijective
correspondence between singular length functions and localizing
systems.

1. Introduction

The concept of a (generalized) length function on the category Mod(R)
of modules over a ring R was introduced by Northcott and Reufel [12]
as a generalization of the classical length of a module: more precisely,
they defined a length function as a map from Mod(R) to the set of non-
negative real numbers (plus infinity) that is additive on exact sequences
and such that the length of a module is the supremum of the length
of its finitely generated submodules. In particular, they were interested
in classifying all the possible length functions on a valuation domain;
their results were later deepened and expressed in a different form by
Zanardo [20]. Shortly after [12], Vámos [19] distinguished the two prop-
erties used to define a length functions (which he called additivity and
upper continuity), showed that they were independent from each other,
and classified all length function on Noetherian rings. Ribenboim [13]
subsequently considered length functions with values in an arbitrary
ordered abelian group, though he needed to restrict the definition to
a smaller class of modules (constructible modules) due to the possible
non-completeness of the group (more precisely, due to the possible lack
of suprema). More recently, length functions have been linked to the
concept of algebraic entropy [14, 15, 2], the study of which also involves
invariants satisfying a weaker form of additivity [16].

The purpose of this paper is to investigate two closely related prob-
lems: the first is the possibility of “decomposing” a length function ` on
an integral domain D as a sum of length functions defined on overrings
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of D (in particular, localizations of D); the second is the possibility of
expressing the set L(D) of length functions on D (and/or some distin-
guished subset) as a product of the set of length functions on a family
of overrings of D. Both problems can be seen, more generally, as asking
for a way to find all length functions on D by reducing to “simpler”
domains and cases.

In Section 3 (which can be seen as a generalization the case of
Dedekind domains treated in [12, Section 7]), we start by analyzing
ways to construct a length function on an overring of D from a length
function on D and, conversely, to construct a length function on D
from a length function on an overring (or, more generally, from a fam-
ily of overrings) and how these two operations relate one to each other.
We show that the best results are obtained when we consider a Jaffard
family of D, i.e., a family Θ of flat overrings of D that is complete,
independent and locally finite (see Section 2 for a precise definition):
in particular, we show that every length function ` is equal to the sum∑

T∈Θ `⊗ T (where `⊗ T sends a module M to `(M ⊗D T ); Theorem
3.10) and that the set L∞(D) of length functions such that `(D) =∞
is order-isomorphic to the product

∏
T∈Θ L∞(T ).

In Section 4, we study primary ideals; in particular, using Vámos’
results, we show that any length function ` on a Noetherian domain D
can be written as

∑
P∈Σ(`) ` ⊗DP (where Σ(`) is a subset of Spec(D)

depending on `; Proposition 4.5) and that if I is an ideal (of an arbitrary
domain D) with a primary decomposition, then `(D/I) is the sum of
`(D/Q), as Q ranges among the primary components of I (Proposition
4.4).

In Section 5, we study length function on Prüfer domains, in par-
ticular on those such that every ideal has only finitely many minimal
primes. As in the Noetherian case, we show that we can always write
` =

∑
P∈Σ(`) ` ⊗ DP (Theorem 5.4) and we use this representation to

prove that, for these class of domains, the set L(D) depends only on
the topological structure of Spec(D) and on which prime ideals are
idempotent (Theorem 5.12).

In Section 6, we characterize singular length functions (i.e., length
functions such that `(M) can only be 0 or∞) on an integral domain D
by finding a natural bijection between their set and the set of localizing
systems on D (Theorem 6.5). We also consider the relationship between
singular length functions and stable semistar operations.

2. Background and notation

Let R≥0 denote the set of nonnegative real numbers, and let Γ :=
R≥0 ∪ {∞}. Then, Γ has a natural structure of (commutative) ordered
additive semigroup, where, for every r ∈ Γ, r +∞ = ∞ + r = ∞ and
r ≤ ∞.
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If Λ ⊆ Γ is a (not necessarily finite) set, we define the sum of Λ as
the supremum of all the finite sums λ1 + · · ·+λn, as {λ1, . . . , λn} ranges
among the finite subset of Λ. Since all elements of Λ are nonnegative,
this notion coincides with the usual sum if Λ is finite.

Let R be a ring, and let Mod(R) be the category of R-modules. A
map ` : Mod(R) −→ Γ is a length function on R if:

• `(0) = 0;
• ` is additive: for every short exact sequence

0 −→M1 −→M2 −→M3 −→ 0,

we have `(M2) = `(M1) + `(M3);
• ` is upper continuous : for every R-module M ,

`(M) = sup{`(N) | N is a finitely generated submodule of M}.

Note that the first hypothesis is adopted by Northcott and Reufel
[12] and by Vámos [19], but not by Zanardo [20]. The only function
it excludes is the map `∞ sending every module to ∞. We call the
length function `0 such that `0(M) = 0 for every module M the zero
length function; in [20, Section 3.1], `0 and `∞ are called trivial length
function, but we shall not use this terminology.

If ` is different from the zero length function, then `(R) > 0.
It is easily seen from the definition that if M1 and M2 are isomorphic

then `(M1) = `(M2), and that if N is a submodule or a quotient of M
then `(N) ≤ `(M).

Three examples of length functions on a ring R are:

• the “usual” length function (i.e., the Jordan-Hölder length of a
module): we denote it by lengthR;
• the function ` such that `(M) = 0 if M is a torsion R-module,

while `(M) =∞ otherwise;
• if R is an integral domain, the rank function: rank(M) :=

dimK(M ⊗K), where K is the quotient field of R.

If R is an integral domain, then the rank function is, up to multiplica-
tion by a constant, the only length function ` such that `(R) <∞ [12,
Theorem 2].

Let Im(`) denote the image of `, i.e., the set of `(M) as M ranges in
Mod(R). We say that a length function ` is:

• singular if Im(`) = {0,∞};
• discrete if Im(`) is discrete in Γ.

We denote by:

• L(R) the set of length functions on R;
• L∞(R) the set of length functions such that `(R) =∞;
• Lsing(R) the set of singular length functions;
• Ldisc(R) the set of discrete length functions.
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The set L(R) has a natural order structure, where `1 ≤ `2 if and only
if `1(M) ≤ `2(M) for every R-module M . In this order, L(R) has both
a minimum (`0) and a maximum (the function sending all non-zero
modules to ∞).

We shall often use the following result.

Proposition 2.1. [20, Proposition 3.3] Let `1, `2 be length functions of
R. If `1(R/I) = `2(R/I) for every ideal I of R, then `1 = `2.

Let D be an integral domain with quotient field K; an overring of
D is a ring comprised between D and K. A Jaffard family of D is a
family Θ of overrings of D such that [18, Proposition 4.3]:

• every T ∈ Θ is flat;
• K /∈ Θ;
• I =

⋂
{IT | T ∈ Θ} for every ideal I of D (i.e., Θ is complete);

• TS = K for every T 6= S belonging to Θ (i.e., Θ is independent);
• for every x ∈ K, there are only finitely many T ∈ Θ such that
x is not a unit in T (i.e., Θ is locally finite).

Note that this is not the original definition; see [4, beginning of Section
6.3 and Theorem 6.3.5] for two other characterizations.

In particular, if Θ is a Jaffard family of D and P ∈ Spec(D) is
nonzero, then there is exactly one T ∈ Θ such that PT 6= T [4, Theorem
6.3.1(1)].

A Prüfer domain is an integral domain such that the localization at
every prime ideal is a valuation domain. If V is a valuation domain
and P ∈ Spec(V ), we say that P is branched if P is minimal over a
principal ideal; equivalently, if the union of all the prime ideals properly
contained in P is different from P . A prime ideal that is not branched
is called unbranched. If D is a Prüfer domain, we say that P ∈ Spec(D)
is branched if PDP is branched in DP .

All rings considered are commutative and unitary. All unreferenced
results on Prüfer and valuation domains are standard; see for example
[7] for a general reference.

3. Jaffard families

The following section is a generalization of [12, Section 7], of which
we follow and generalize the method.

Let D be an integral domain and T be a D-algebra. Then, every
T -module is also (in a canonical way) a D-module; thus, given any
` ∈ L(D), we can define a function `T by

`T (M) := `(M) for every M ∈ Mod(T ).

Proposition 3.1. Let D,T, ` as above.

(a) `T is a length function on T .
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(b) If ` is singular, so is `T .
(c) If ` is discrete, so is `T .

Proof. (a) Let 0 −→ M1 −→ M2 −→ M3 −→ 0 be an exact sequence
of T -modules. Then, it is also an exact sequence of D-modules; hence,

`T (M2) = `(M2) = `(M1) + `(M3) = `T (M1) + `T (M3).

Thus, `T is additive. Suppose now `T (M) > x for some x ∈ R. Then,
`(M) > x, and thus there is a finitely generated D-submodule N of
M such that `(N) > x; let N := e1D + · · · + ekD. Then, NT =
e1T + · · ·+ enT is a submodule of M containing N , and thus

`T (NT ) = `(NT ) ≥ `(N) > x.

Hence, `T (M) = sup{`T (N ′) | N ′ ⊆ M is finitely generated over T},
and thus `T is upper continuous. Therefore, `T is a length function on
T .

(b) and (c) are obvious. �

In general, it is possible for `T to be the zero length function even if
` is not: for example, if `(D/I) = 0 and T = D/I, then `T (M) will be
0 for all T -modules M .

Proposition 3.2. Let D be an integral domain and T be a D-algebra.

(a) If T is torsion-free over D, then `(T ) 6= 0 for all nonzero ` ∈
L(D).

(b) If T is torsion-free over D and ` ∈ L∞(D), then `T ∈ L∞(T ).
(c) If T is torsion-free over D and rankD(T ) <∞, then ` ∈ L∞(D)

if and only if `T ∈ L∞(T ).
(d) If T is an overring of D, then ` ∈ L∞(D) if and only if `T ∈
L∞(T ).

Proof. (a) If T is torsion-free, then the canonical map D −→ T is
injective; hence, it ` is an arbitrary nonzero length function, `T (T ) =
`(T ) ≥ `(D) > 0.

(b) As above, for every ` ∈ L∞(D) we have `T (T ) = `(T ) ≥ `(D) =
∞, and thus `T ∈ L∞(T ).

(c) Suppose T is torsion-free and rankD(T ) <∞, and let ` ∈ L(D).
If ` ∈ L∞(D) then `T ∈ L∞(T ) by the previous point. On the other
hand, if ` /∈ L∞(D), then by [12, Theorem 2], `(M) = α · rankD(M) for
every D-module M , where α := `(D); in particular, `T (T ) = `(T ) =
rankD(T ) <∞ by hypothesis, and thus `T /∈ L∞(T ).

(d) follows from the previous point, since T ⊗D K ' D (where K is
the quotient field of D) and so rankD(T ) = 1. �

Hence, if T is a torsion-free D-algebra then by the previous proposi-
tion we have a map

Λ̂D,T : L(D) −→ L(T )

` 7−→ `T ,
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that restricts to a map

ΛD,T : L∞(D) −→ L∞(T )

` 7−→ `T .

Clearly, both Λ̂D,T and ΛD,T are order-preserving.

A more interesting question is if (and how) we can construct a length
function on D from a length function on a D-algebra T . We shall mainly
be interested in the case when T = DP is a localization of D, but there
is no harm in working more generally with a flat algebra.

Let thus T be a flat D-algebra, and let ` ∈ L(T ). We define `D as
the map such that

`D(M) := `(T ⊗D M) for all M ∈ Mod(D).

This construction behaves similarly to the construction `T .

Proposition 3.3. Let D,T, ` as above.

(a) `D ∈ L(D).
(b) `D ∈ L∞(D) if and only if ` ∈ L∞(T ).

Proof. (a) follows in the same way of [12, Proposition 2], using the
flatness of T . (b) is immediate because `D(D) = `(T⊗DD) = `(T ). �

Therefore, we can define a map Ψ̂T,D by setting

Ψ̂T,D : L(T ) −→ L(D)

` 7−→ `D;

by part (b) of the previous proposition also its restriction

ΨT,D : L∞(T ) −→ L∞(D)

` 7−→ `D

is well-defined.

Proposition 3.4. Let D be an integral domain and T be a flat overring

of D. Then, Λ̂D,T ◦ Ψ̂T,D is the identity on L(T ).

Proof. Let ` ∈ L(T ). Then, for every M ∈ Mod(T ), we have

(Λ̂D,T ◦ Ψ̂T,D)(`)(M) = (`D)T (M) = `D(M) = `(M ⊗D T ).

Since T is a flat overring of D, the inclusion D ↪→ T is an epimorphism
(being D ↪→ K an epimorphism; see [9, Chapitre IV, Corollaire 3.2] or
[8, Proposition 4.5]); hence, for every T -module D, we have

T ⊗D M ' T ⊗D (T ⊗T M) ' (T ⊗D T )⊗T M ' T ⊗T M 'M

as T -modules, with the second-to-last equality coming from the fact
that the inclusion is an epimorphism (see [9, Lemma 1.0] or [8, Lemma
A.1]). Thus, (`D)T (M) = `(M); since M was arbitrary, (`D)T = `, i.e.,

Λ̂D,T ◦ Ψ̂T,D is the identity. �
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Remark 3.5. The previous proposition does not work for arbitrary
flat D-algebras. For example, if T = M = D[x] is the polynomial ring
over D, then M ⊗D T ' D[x, y] = T [y] as T -modules; hence, if ` is the
rank function of T , we have `(M) = 1 while (`D)T (M) =∞.

Let now ` be a length function on D, and let T be a flat D-algebra.
We set

`⊗ T := (Ψ̂T,D ◦ Λ̂D,T )(`).

This notation comes from the fact that, if M is a D-module, then

(`⊗ T )(M) = (`T )D(M) = `T (M ⊗D T ) = `(M ⊗D T ).

The construction `⊗T is easily seen to satisfy an associative-like prop-
erty: if T1, T2 are flat D-algebras, then

(`⊗ T1)⊗ T2 = `⊗ (T1 ⊗D T2).

In general, `⊗T is different from `; for example, if I is a proper ideal
of D such that IT = T , then

(`⊗ T )(D/I) = `(D/I ⊗D T ) = `(T/IT ) = `(0) = 0,

but clearly there may be length functions such that `(D/I) 6= 0.

Hence, if we want to construct an isomorphism from Λ̂D,T and Ψ̂T,D,
we need to consider more rings, and to do so we must define the sum
of a family of length functions.

Definition 3.6. Let Λ := (`α)α∈A be a family of length functions on
D. The sum of Λ, which we denote by

∑
α∈A `α, is the map∑

α∈A

`α : Mod(D) −→ Γ

M 7−→
∑
α∈A

`α(M).

Recall that the sum of an arbitrary family of elements of Γ is defined
as the supremum of the set of the finite sums (see the beginning of
Section 2).

Lemma 3.7. The sum of a family Λ of length functions on D is a
length function, and is the supremum of Λ in L(D).

Proof. Just apply the definitions. �

Lemma 3.8. Let {Mα}α∈A be a family of D-modules, and let ` be a
length function on D. Then,

`

(⊕
α∈A

Mα

)
=
∑
α∈A

`(Mα).
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Proof. If the family is finite, the claim follows immediately from addi-
tivity and induction on the cardinality of A.

If A is an arbitrary family, set N to be the direct product of the Mα;
then, `(N) ≥ `(Mα1) + · · · + `(Mαn) for all finite subsets α1, . . . , αn.
Furthermore, every finitely generated submodule of N is contained in
Mα1 ⊕ · · · ⊕Mαn for some α1, . . . , αn; by upper continuity, it follows
that `(N) must be exactly the supremum. The claim is proved. �

The following lemma is a (partial) generalization of a property of
h-local domains; see [11, Theorem 22].

Lemma 3.9. Let D be an integral domain and Θ be a Jaffard family
of D. If M is a torsion D-module, then

M '
⊕
T∈Θ

M ⊗D T.

In particular, if I 6= (0) is an ideal of D, then

D

I
'
⊕
T∈Θ

T

IT
'
⊕
T∈Θ

(
D

I
⊗D T

)
.

Proof. We shall follow the proof of [11, Theorem 22, 3 =⇒ 4]; we start
by showing that K/D '

⊕
T∈ΘK/T . Indeed, consider the natural map

Φ: K −→
⊕
T∈Θ

K/T

d 7−→ d+ T.

Note that Φ is well-defined since Θ is locally finite.
The kernel of Φ is

⋂
T∈Θ T = D. Hence, we need only to show that

Φ is surjective, and to do so it is enough to show that every element
of the form e(α, U) := (0, . . . , 0, α + U, 0, . . . , 0) is in the image of Φ;
i.e., we need to show that for every U ∈ Θ and every α ∈ K there is
an α′ ∈ K such that α′ − α ∈ U while α′ ∈ T for every T ∈ Θ \ U .

Let U ′ :=
⋂
T∈Θ\U T ; by [18, Proposition 4.5(b)], U ′U = K. Hence,

we have

U + U ′ =
⋂
T∈Θ

(U + U ′)T = (U + UU ′) ∩
⋂

T∈Θ\U

(UT + U ′T ) = K.

In particular, α = β + α′ for some β ∈ U , α′ ∈ U ′; since α′ − α = β ∈
U , we have e(α, U) = Φ(α′), as required. Hence, Φ is surjective and
K/D '

⊕
T∈ΘK/T .
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Let now M be a torsion D-module; then, since every T is flat we
have (see e.g. [11, p.9-10])

M ' TorD1 (K/D,M) ' TorD1

(⊕
T∈Θ

K/T,M

)
'

'
⊕
T∈Θ

TorT1 (K/T,M) '
⊕
T∈Θ

M ⊗D T,

as claimed. The “in particular” statement follows from the fact that
D/I ⊗D T ' T/IT . �

Theorem 3.10. Let D be an integral domain, and let Θ be a Jaffard
family of D. For every length function ` ∈ L∞(D), we have

` =
∑
T∈Θ

`⊗ T.

Proof. Let `] :=
∑

T∈Θ `⊗ T ; by Lemma 3.7, `] is a length function on
D. To show that ` = `], it is enough to show that `(D/I) = `](D/I)
for every ideal I of D.

If I = (0) then `(D/I) = ∞ = `](D/I). Suppose I 6= (0). By
Lemmas 3.8 and 3.9, we have

`(D/I) = `

(⊕
T∈Θ

D

I
⊗ T

)
=
∑
T∈Θ

`

(
D

I
⊗ T

)
=
∑
T∈Θ

(`⊗T )(D/I) = `](D/I).

The claim is proved. �

Theorem 3.11. Let Θ be a Jaffard family of D, and let ΛΘ and ΨΘ

be the maps

ΛΘ : L∞(D) −→
∏
T∈Θ

L∞(T )

` 7−→ (`T )T∈Θ

and

ΨΘ :
∏
T∈Θ

L∞(T ) −→ L∞(D)

(`(T ))T∈Θ 7−→
∑
T∈Θ

(`(T ))
D.

Then, the following hold.

(a) ΛΘ and ΨΘ are order-preserving bijections between L∞(D) and∏
T∈Θ L∞(T ), inverse one of each other.

(b) ΛΘ restricts to a bijection from Lsing(D) to
∏

T∈Θ Lsing(T ).
(c) If Θ is finite, ΛΘ restricts to a bijection from Ldisc(D) to

∏
T∈Θ Ldisc(T ).

Proof. (a) By Propositions 3.1, 3.3 and Lemma 3.7, ΛΘ and ΨΘ are
well-defined.

By definition,

ΨΘ ◦ ΛΘ(`) =
∑
T∈Θ

(`T )D =
∑
T∈Θ

`⊗ T,

which is equal to ` by Theorem 3.10. Hence, ΨΘ ◦ΛΘ is the identity on
L(D).
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Take now (`(T ))T∈Θ ∈
∏

T∈Θ L∞(T ). Fix U ∈ Θ, and let `′ be the
component with respect to U of (ΛΘ ◦ ΨΘ)(`T ). As in the proof of
Theorem 3.10, we need to show that `(U)(U/J) = `′(U/J) for every
ideal J of U . If J = (0) then both sides are infinite; suppose J 6= (0).
Then,

`′(U/J) = `(U)

(∑
T∈Θ

(U/J)⊗D T

)
=
∑
T∈Θ

`(T )((U/J)⊗D T ).

If U 6= T , then

U

J
⊗D T '

D

J ∩D
⊗D U ⊗D T '

T

(J ∩D)T
⊗ U = (0),

since (J ∩ D)T = T ; hence, `′(U/J) reduces to `(U)((U/J) ⊗D U) =
`(U)(U/J). Therefore, `′ = `(U), and so ΛΘ ◦ ΨΘ is the identity, as
claimed.

(b) If ` is singular, then so is every `T , by Proposition 3.1(b). Con-
versely, if every `T is singular, then

∑
T `T (M ⊗ T ) is always zero or

infinite, and thus ` is singular.
(c) If ` is discrete, so is every `T , by Proposition 3.1(c). On the other

hand, if Θ is finite, say Θ := {T1, . . . , Tn}, then

Im(`) = {a1 + · · ·+ an | ai ∈ Im(`Ti)}.
Since each Im(`Ti) is discrete, so is Im(`). The claim is proved. �

The fact that every infinite length function ` can be “decomposed” as
a sum of `⊗T is a rather special property, which puts some constraints
on the family Θ.

Proposition 3.12. Let D be an integral domain, and let Θ be a nonempty
family of flat overrings of D.

(a) If, for every ` ∈ L(D), we have ` =
∑

T∈Θ `⊗T , then Θ = {D}.
(b) If, for every ` ∈ L∞(D), we have ` =

∑
T∈Θ ` ⊗ T , then for

every nonzero prime P of D there is exactly one T ∈ Θ such
that PT 6= T .

Proof. Given a length function ` on D, let `] :=
∑

T∈Θ `⊗ T .
(a) Let ` be the rank function on D. Then, `(D) = `(T ) = 1 for

every overring T of D, and in particular (`⊗ T )(D) = 1 for every flat
overring T . Hence, `](D) =

∑
T∈Θ 1 = |Θ|; since by hypothesis ` = `]

we must have |Θ| = 1; let Θ = {T}.
Suppose T 6= D: then, since T is flat there must be a prime ideal P

of D such that PT = T . Let ` := (lengthDP )D: then,

`(D/P ) = lengthDP (D/P ⊗D DP ) = lengthDP (DP/PDP ) = 1.

On the other hand,

`](D/P ) = (`⊗ T )(D/P ) = `(D/P ⊗ T ) = `(T/PT ) = `(0) = 0,
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against the hypothesis. Hence, T must be equal to D and Θ = {D}, as
claimed.

(b) Fix a nonzero prime ideal P of D, and let Θ′ := {P ∈ Θ |
PT 6= T}. Let ` := (lengthDP )D; then, ` ∈ L∞(D), and with the
same calculation of the previous point we see that `(D/P ) = 1 while
`](D/P ) = |Θ′|, which means that |Θ′| = 1. The claim is proved. �

Remark 3.13.

(1) Under the hypotheses of part (b) of the previous proposition,
the only property needed to show that Θ is a Jaffard family is
the local finiteness of Θ. We shall see in Example 6.9 that, at
least for singular length functions, this is not actually necessary;
on the other hand, we shall present in Example 6.10 the case
of a one-dimensional domain having a length function ` that
cannot be written as

∑
`⊗DM (with the sum ranging among

the maximal ideals).
(2) If Θ is an infinite Jaffard family, there could be elements in∏

T Ldisc(T ) that does not come from discrete length functions.
For example, suppose Θ = {T1, . . . , Tn, . . .} is countable and
that for every i there is a discrete length function `i on Ti such
that `i(Mi) 6= {0,∞} for some torsion Ti-module Mi. By possi-
bly multiplying for some constant, we can suppose `i(Mi) = 1

2i

for every i. Let ` := ΨΘ(`i). Then, `(Mi) = 1
2i

for every i; hence,

we have `
(⊕

i≤kMi

)
= 1 − 1

2k
and `

(⊕
i∈NMi

)
= 1. In par-

ticular, Im(`) is not discrete, since 1 is not an isolated point of
Im(`).

Example 3.14. Let D be a one-dimensional locally finite domain.
Then, {DM | M ∈ Max(D)} is a Jaffard family of D. By Theorem
3.11, it follows that a length function ` on D is completely determined
by the restrictions `DP . In turn, this means that ` is completely deter-
mined by its values at `(DP/QDP ), where Q is a P -primary ideal; as
we shall see in Proposition 4.4 below, this means that ` is determined
by the values `(D/Q), as Q ranges among the primary ideals of D.

Similarly, if D is an h-local domain (meaning that D is a locally
finite domain such that every nonzero prime ideal is contained in only
one maximal ideal) then {DM |M ∈ Max(D)} is a Jaffard family, and
thus every length function ` is determined at the local level.

4. Primary ideals

As shown by Proposition 3.12, the possibility of decomposing every
length function ` as a sum of `⊗ T , as T ranges in a (fixed) family Θ,
is a quite special property, since it is usually not easy to find Jaffard
families of an integral domain D. In this section, and in the next one,
we shall try to see when a decomposition ` =

∑
T∈Θ ` ⊗ T can be
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reached if we allow Θ to be dependent on `; to do so, we must treat
length functions in a more intrinsic way.

Lemma 4.1. Let ` be a length function of D, and let M be a D-module.
Then, `(M) = 0 if and only if `(D/Ann(x)) = 0 for all x ∈M .

Proof. If `(M) = 0, then `(N) = 0 for all submodules N of M . In
particular, this happens for N = xD, for every x ∈M ; however, xD '
D/Ann(x), and thus `(D/Ann(x)) = 0.

Conversely, suppose `(D/Ann(x)) = 0 for all x ∈M . By upper con-
tinuity, it is enough to prove that `(N) = 0 for all finitely generated
submodule N of M . Let thus N = 〈x1, . . . , xn〉; then, by [20, Proposi-
tion 2.2], `(N) =

∑
i `(Ni+1/Ni), where Nk := 〈x1, . . . , xk〉. However,

Ni+1/Ni is a cyclic D-module, generated by y := xi+1 +Ni; in particu-
lar, it is isomorphic to D/Ann(y). However, Ann(y) ⊇ Ann(xi+1), and
thus `(D/Ann(y)) ≤ `(D/Ann(xi+1)) = 0. Therefore, `(N) = 0, and
the claim is proved. �

The following is a slight generalization of [12, Lemma 2], of which
we follow the proof.

Lemma 4.2. Let R be a ring (not necessarily an integral domain); let
α, β ∈ R. Then, the following hold.

(a) `(R/αβR) ≤ `(R/αR) + `(R/βR).
(b) If β is not a zero-divisor in R, then `(R/αβR) = `(R/αR) +

`(R/βR).
(c) If `(R) <∞ and β is not a zero-divisor, then `(R/βR) = 0.

Proof. Consider the exact sequence

0 −→ βR/αβR −→ R/αβR −→ R/βR −→ 0.

Then, by additivity,

`(R/αβR) = `(R/βR) + `(βR/αβR);

furthermore, `(βR/αβR) ≤ `(R/αR) since multiplication by β induces
a surjection R/αR � βR/αβR. (a) is proved.

If β is not a zero-divisor, then multiplication by β is an isomorphism,
and thus (b) holds. In particular, if α = 0 we have

`(R) = `(R/βR) + `(R),

and if `(R) is finite then `(R/βR) must be 0. Thus, (c) holds. �

Lemma 4.3. Let D be an integral domain and ` be a length function
on D. Let Q be a P -primary ideal such that `(D/Q) <∞, and let I be
an ideal such that Q ( I * P . Then, `(D/I) = 0.

Proof. Let x ∈ I \ P : then, (Q : x) = Q since Q is P -primary [1,
Lemma 4.4(iii)], and in particular x is not a zero-divisor in D/Q =: R.
By Lemma 4.2, it follows that `R(R/xR) = 0; however, by definition,
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`R(R/xR) = `(D/(Q, x)). Since I ⊇ (Q, x), it follows that `(D/I) ≤
`(D/(Q, x)) = 0, as claimed. �

Proposition 4.4. Let D be an integral domain, and let ` be a length
function on D. Let P ′ ⊆ P be two prime ideals, and let Q be a P ′-
primary ideal. Then,

`(D/Q) = `(DP/QDP ) = `DP (DP/QDP ) = (`⊗DP )(D/Q).

Proof. Since Q is P ′-primary and P ′ ⊆ P , we have Q = QDP ′ ∩D =
QDP ∩D, and thus there is an exact sequence

0 −→ D/Q
ι−−→ DP/QDP

π−−→ N −→ 0

for some D-module N . If `(D/Q) =∞, then also `(DP/QDP ) =∞ and
we are done. Suppose `(D/Q) < ∞, and let z = π(x) ∈ N . Consider
I := Ann(z): then, I contains Q since Q ⊆ Ann(x). Furthermore, if
x = x′ + QDP ∈ DP/QDP , there is an s ∈ D \ P such that sx′ ∈ D;
hence, sx ∈ ι(D/Q), or equivalently 0 = π(sx) = sz. Therefore, I * P ,
and thus I * P ′; by Lemma 4.3, we have `(D/I) = 0. By Lemma 4.1,
it follows that `(N) = 0, and thus `(D/Q) = `(DP/QDP ), as claimed.

The second and the third equalities come from the definitions. �

In particular, we can obtain a version of Vámos’ results in the vein
of Theorem 3.10.

Proposition 4.5. Let D be a Noetherian domain, let ` be a length
function on D and let Σ(`) := {P ∈ Spec(D) | `(D/P ) > 0}. Then,

` =
∑

P∈Σ(`)

`⊗DP .

Proof. Let `] :=
∑

P∈Σ(`) `⊗DP ; then, `] is a length function. By [19,

Corollary to Lemma 2], to show that ` = `] it is enough to show that
`(D/Q) = `](D/Q) for every prime ideal Q of D.

If Q /∈ Σ(`), then `(D/Q) = 0 (by definition of Σ(`)). Furthermore,
any ideal I properly containing Q satisfies `(D/I) = 0 (by [19, Lemma
3] or Lemma 4.3), and thus no prime ideal containing Q belongs to
Σ(`). However, if Q * P then

(`⊗DP )(D/Q) = `(D/Q⊗DP ) = `(DP/QDP ) = `(0) = 0,

and thus also `](D/Q) = 0.
Suppose now that Q ∈ Σ(`). Then, using the previous reasoning we

have

`](D/Q) =
∑

P∈Σ(`)
P⊇Q

(`⊗DP )(D/Q) =
∑

P∈Σ(`)
P⊇Q

`(DP/QDP ) =
∑

P∈Σ(`)
P⊇Q

`(D/Q),

with the last equality coming from Proposition 4.4.
If Q is a maximal element of Σ(`), then `](D/Q) = `(D/Q), as

claimed. Suppose Q is not maximal in Σ(`); then, `(D/Q) =∞, since
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`(D/Q) > 0 (being Q ∈ Σ(`)) and `(D/Q) cannot be finite (using
again [19, Lemma 3]/Lemma 4.3). Hence, both `(D/Q) and `](D/Q)
are infinite.

Therefore, `(D/Q) = `](D/Q) for every prime ideal Q, and thus
` = `], as claimed. �

More generally, Proposition 4.4 shows that, for a P -primary ideal Q,
the value of `(D/Q) depends only on `DP , which is a length function
over DP . We now want to extend this result to ideals having a primary
decomposition; we premise a lemma, which already appeared, without
proof, in [19].

Lemma 4.6. Let I, J be ideals of a ring R (not necessarily a domain),
and let ` be a length function on R. Then,

`(R/I) + `(R/J) = `(R/(I + J)) + `(R/(I ∩ J)).

Proof. To simplify the notation, let τ(A) := `(R/A) for every ideal A.
From the two exact sequences

0 −→ I

I ∩ J
−→ D

I ∩ J
−→ D

I
−→ 0

and

0 −→ I + J

J
−→ D

J
−→ D

I + J
−→ 0

and additivity, we have{
τ(I ∩ J) = τ(I) + `(I/(I ∩ J))

τ(J) = τ(I + J) + `((I + J)/J).

Hence,

τ(I) + τ(J) + `(I/(I ∩ J)) = τ(I ∩ J) + τ(I + J) + `((I + J)/J).

Since I/(I ∩ J) ' (I + J)/J , the claim follows if `(I/(I ∩ J)) <∞. If
not, then τ(J) ≥ `((I + J)/J) = ∞, and thus τ(I ∩ J) ≥ τ(J) = ∞;
hence, both sides are infinite, and the claim again follows. �

Proposition 4.7. Let D be an integral domain, and let ` be a length
function on D. Let I be an ideal of D having a primary decomposition
Q1 ∩ · · · ∩Qn. Then,

`(D/I) =
n∑
i=1

`(D/Qi).

Proof. Set τ(A) := `(D/A) for every ideal A of D.
If τ(Qi) = ∞ for some i, then τ(I) = ∞ and we are done. Suppose

τ(Qi) < ∞ for every i: we proceed by induction on the number n of
components of I. If n = 1 the claim is obvious. Suppose the claim holds
up to n−1; without loss of generality, P1 := rad(Q1) is a minimal prime
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of I. Then, I = Q1 ∩ J , where J := Q2 ∩ · · · ∩Qn. By Lemma 4.6, we
have

τ(I) + τ(Q1 + J) = τ(Q1) + τ(J).

The ideal Q1 + J is not contained in P1, for otherwise J ⊆ P1, which
is impossible since no primary component of J is contained in P1. By
Lemma 4.3, this implies that τ(Q1 + J) = 0, and thus τ(I) = τ(Q1) +
τ(J); the claim now follows by induction. �

5. Prüfer domains

In this section, we obtain a standard representation for length func-
tions on Prüfer domains where every ideal has only finitely many min-
imal primes; the groundwork for it is the following extension of Propo-
sition 4.4.

Proposition 5.1. Let D be a Prüfer domain, and let ` be a length
function on D. Let I be an ideal of D such that P := rad(I) is prime.
Then, `(D/I) = `(DP/IDP ) = (`⊗DP )(D/I).

Proof. Let J := IDP ∩D; then, J is a P -primary ideal, and by Propo-
sition 4.4 we have `(D/J) = `(DP/JDP ) = `(DP/IDP ), with the last
equality coming from the fact that JDP = IDP . Thus, we must prove
that `(D/I) = `(D/J).

If `(D/J) = ∞ then `(D/I) ≥ `(D/J) = ∞ and we are done.
Suppose `(D/J) <∞, and consider the exact sequence

0 −→ J/I −→ D/I −→ D/J −→ 0.

Then, `(D/I) = `(D/J) + `(J/I), and thus we need to show that
`(J/I) = 0.

Let x ∈ J , and let A := (I : x); we claim that P ( A. Indeed, let
M ∈ Max(D): if I *M (equivalently, if J *M) then ADM = (IDM :
x) = DM contains PDM = DM . Suppose I ⊆ M : then, ADM =
(IDM : xDM). If ADM + PDM , then ADM ( PDM ; localizing further
at DP , we have ADP ⊆ PDP . However, ADP = (IDP : x) = DP , a
contradiction. Hence, P ⊆ A; but since ADP 6= PDP , we must also
P 6= A and so P ( A.

Since `(D/J) <∞, we can now apply Lemma 4.3, obtaining `(D/A) =
0; by Lemma 4.1, we have `(J/I) = 0 (since (I : x) is equal to the an-
nihilator of x+ I in J/I) and thus `(D/I) = `(D/J), as claimed. �

Definition 5.2. Let D be a Prüfer domain, and let ` be a length func-
tion on D. The total spectrum of ` is

Σ(`) := {P ∈ Spec(D) | `(D/Q) > 0 for some P -primary ideal Q}.

Lemma 5.3. Let D be a Prüfer domain, ` a length function on D, and
let P ′ ( P be prime ideals such that P ∈ Σ(`). Then, `(D/P ′) = ∞,
and in particular P ′ ∈ Σ(`).
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Proof. Let L be a P -primary ideal. Then,

P ′ = P ′DP ∩D ⊆ LDP ∩D = L.

If `(D/P ′) <∞, then by Lemma 4.3 (applied with Q = P ′) we would
have `(D/L) = 0. Since L was an arbitrary P -primary ideal, it would
follow that P /∈ Σ(`), against the hypothesis. Hence, `(D/P ′) =∞. �

The total spectrum of ` is exactly the set we are looking for.

Theorem 5.4. Let D be a Prüfer domain such that every ideal of D
has only finitely many minimal primes. For every length function ` on
D, we have

` =
∑

P∈Σ(`)

`⊗DP .

Proof. Let `] :=
∑

P∈Σ(`) `⊗DP ; then, `] is a length function by Lemma

3.7. To show that ` = `] it is enough to show that `(D/I) = `](D/I)
for every ideal I of D. Let thus I be an ideal of D, and let {P1, . . . , Pn}
be the minimal primes of I.

For each i, let Ti :=
⋂
{DQ | Q ∈ V(Pi)}, where V(A) := {P ∈

Spec(D) | A ⊆ P}; then, Ti is a Prüfer domain whose prime ideals are
the extension of the prime ideals comparable with Pi. Let Ji := ITi∩D;
then, rad(Ji) = Pi, and since every maximal ideal containing I survives
in some Ti, we have I = J1∩· · ·∩Jn. Fix i, and let Li :=

⋂
k 6=i Jk: then,

the minimal primes of Li are P1, . . . , Pi−1, Pi+1, . . . , Pn. In particular,
since rad(Ji) = Pi and Spec(D) is a tree, there are no prime ideals
containing both Ji and Li; thus, Ji +Li = D. By Lemma 4.6, it follows
that

`′(D/I) = `′(D/(Ji ∩ Li)) = `′(D/Ji) + `′(D/Li)

for every length function `′; by induction, it follows that `′(D/I) =∑
i `
′(D/Ji) for every `′. In particular, it holds for `′ = ` and for `′ = `];

hence, we need only to prove that `(D/Ji) = `](D/Ji) for every Ji, or
equivalently that `(D/J) = `](D/J) for every J such that rad(J) =
P ∈ Spec(D).

By Proposition 5.1, `(D/J) = (`⊗DP )(D/J). On the other hand,

`](D/J) =
∑

Q∈Σ(`)

(`⊗DQ)(D/J) =
∑

Q∈Σ(`)

`(DQ/JDQ).

If Q + P , then JDQ = DQ, and so `(DQ/JDQ) = 0. Hence,

(1) `](D/J) =
∑

Q∈Σ(`)
Q⊇P

`(DQ/JDQ) =
∑

Q∈Σ(`)
Q⊇P

(`⊗DQ)(D/J).

If P is maximal in Σ(`), then (1) reduces to `](D/J) = (`⊗DP )(D/J),
and so is equal to `(D/J). If P is not maximal, then by Lemma 5.3
`(D/P ) =∞, and so both `(D/J) and `](D/J) are infinite; in partic-
ular, they are equal. The claim is proved. �
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This theorem does not hold for general Prüfer domain. We shall see
an example at the end of the paper (Example 6.10).

Since ` ⊗ DP = (`′)D, where `′ is a length function on DP , the
previous theorem effectively reduces the study of the length functions
on D to the local case. If V is a valuation domain, the length functions
on V has been studied in [12] and [20]: they can be divided into the
following four classes.

• Torsion singular length functions: if P ∈ Spec(V ), we define tP
as

tP (M) :=

{
0 if M is a torsion V/P -module

∞ otherwise.

• Idempotent singular length functions: if P ∈ Spec(V ) is idem-
potent, we define iP as

iP (M) :=

{
0 if M is a V/P -module

∞ otherwise.

• L-rank functions: if P ∈ Spec(V ) is idempotent, and α ∈ R+,
then ` = α · rkP for some α ∈ R+, where

rkP (M) :=

{
rankV/P (M) if M is a V/P -module

∞ otherwise.

• Valuative length functions: let P ∈ Spec(D) be a branched
prime ideal. Let Q be the largest prime ideal contained in P ,
and let v be a valuation on DP/Q. We define Lv as the function

Lv(M) := sup
s∑
i=1

inf {v(α) | α ∈ Ann(Ei/Ei−1)} ,

where the supremum is taken over all finite chains of submod-
ules (0) = E0 ( E1 ( · · · ( Es = M .

Remark 5.5.

(1) The four classes of length functions are pairwise disjoint; how-
ever, the classes of idempotent singular length functions and of
L-rank functions could be merged by considering the functions
of type α · rkP for α ∈ R≥0, i.e., by allowing α = 0 in the defini-
tion of L-rank function (and using the convention 0 · ∞ =∞).
However, in view of the study of singular length functions (see
Corollary 5.8 and Section 6 from below Proposition 6.7 on-
wards) it is more useful to consider them separately.

(2) i(0) is the zero length function.
(3) The rank function on V is rk(0); on the other hand, if M is the

maximal ideal of V , then the “usual” length is rkM if M is idem-
potent, while if M = mV is principal (and thus, in particular,
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branched) it is equal to Lv, where v is a rank-one valuation on
V/Q normalized in such a way that v(m) = 1.

Suppose now that D is a Prüfer domain, P ∈ Spec(D), and let ` be
a length function on the valuation domain DP . Calculating `D(D/I)
(where I is an ideal of D) corresponds to calculating the values of
`(DP/IDP ), which can be done easily by considering the various classes
of length function of valuation domains; the results are the following.

• (tPDP )D(D/I) =

{
0 if PDP ( IDP

∞ otherwise;

• (iPDP )D(D/I) =

{
0 if PDP ⊆ IDP

∞ otherwise;

• (rkPDP )D(D/I) =

{
rankD

P

(
DP
IDP

)
if PDP ⊆ IDP

∞ otherwise
=


0 if PDP ( IDP

1 if PDP = IDP

∞ otherwise

• (Lv)
D(D/I) =


0 if I * P

inf v(IDP/QDP ) if P is minimal over I

∞ otherwise.

Let now ` be a length function on the Prüfer domain D (not nec-
essarily satisfying the hypothesis of Theorem 5.4). To each class of
length functions on valuation domains we can associate a subset of the
spectrum of D:

• Σt(`) := {P ∈ Spec(D) | `DP = tPDP };
• Σi(`) := {P ∈ Spec(D) | `DP = iPDP };
• Σr(`) := {P ∈ Spec(D) | `DP = αrkPDP for some α ∈ R+};
• Σv(`) := {P ∈ Spec(D) | `DP = Lv for some rank-one valuation
v on DP/QDP}.

Lemma 5.6. Let D be a Prüfer domain, ` a length function.

(a) The four sets Σt(`), Σi(`), Σr(`) and Σv(`) are pairwise disjoint.
(b) Σ(`) = Σt(`) ∪ Σi(`) ∪ Σr(`) ∪ Σv(`).
(c) If P,Q ∈ Spec(D) are such that P ∈ Σ(`) and Q ( P , then

Q ∈ Σt(`).

Proof. (a) follows from the fact that the four classes of length functions
on valuation domains are disjoint; (b) follows from the calculations of
`D(D/I). (c) is another version of Lemma 5.3, since `(D/Q) = ∞ if
and only if Q ∈ Σt(`). �
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With this terminology, we get a restatement of Theorem 5.4 and a
way to characterize singular and discrete length functions.

Corollary 5.7. Let D be a Prüfer domain such that every ideal of D
has only finitely many minimal primes, and let ` be a length function
on D. Then,

` =
∑

P∈Σt(`)

(tPDP )D+
∑

P∈Σi(`)

(iPDP )D+
∑

P∈Σr(`)

`(D/P )(rkPDP )D+
∑

P∈Σv(`)

(LvP )D,

where vP is a rank-one valuation on DP/QDP (and Q is the prime
ideal directly below P ).

Corollary 5.8. Let D be a Prüfer domain such that every ideal of D
has only finitely many minimal primes, and let ` be a length function
on D.

(a) ` is singular if and only if Σr(`) = Σv(`) = ∅.
(b) ` is discrete if and only if Σv(`) does not contain any idempotent

prime and the family {`(D/P ) | P ∈ Σr(`)∪Σv(`)} is discrete.

The representation of Corollary 5.7 can also be seen as a way to
define a length function: given Σ1,Σ2,Σ3,Σ4 ⊆ Spec(D), αP ∈ R+ and
a valuation on DP/LDP , we can define a length function ` by

` :=
∑
P∈Σ1

(tPDP )D +
∑
P∈Σ2

(iPDP )D +
∑
P∈Σ3

αP (rkPDP )D +
∑
P∈Σ4

(LvP )D.

In general, there is no guarantee that this representation is the same
as the one obtained in the corollary, i.e., the conditions Σ1 = Σt(`),
Σ2 = Σi(`), etc. need not to be satisfied; indeed, being arbitrary, the
sets Σj usually do not satisfy conditions (a) and (c) of Lemma 5.6.
For example, if P * Q are two prime ideals, the families Σ1 = {Q},
Σ2 = Σ3 = Σ4 = ∅ and Σ′1 = {Q,P}, Σ′2 = Σ′3 = Σ′4 = ∅ give rise to
the same `.

However, we can obtain uniqueness just by excluding the more obvi-
ous problems. To express it in a slightly less unwieldy way, we introduce
the following definition.

Definition 5.9. Let (P ,≤) be a partially ordered set. A family {X1, . . . , Xn}
of subsets of P is a layered family with core Xk if:

• Xi ∩Xj = ∅ if i 6= j;
• if x ∈

⋃
iXi and y < x, then y ∈ Xk.

Under this terminology, parts (a) and (c) of Lemma 5.6 can be
reparaphrased by saying that {Σt(`),Σi(`),Σr(`),Σv(`)} is a layered
family with core Σt(`).

Proposition 5.10. Let D be a Prüfer domain. Let {Σ1,Σ2,Σ3,Σ4}
and {Σ′1,Σ′2,Σ′3,Σ′4} be layered families of Spec(D) with core Σ1 and
Σ′1, respectively, and suppose that:
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• each prime in Σ2, Σ3, Σ′2 and Σ′3 is idempotent;
• each prime in Σ4 and Σ′4 is branched;
• if P is unbranched and every prime properly contained in P

belongs to Σ1 (respectively, Σ′1), then P ∈ Σ1 ∪ Σ2 ∪ Σ3 (resp.,
P ∈ Σ′1 ∪ Σ′2 ∪ Σ′3).

Furthermore, for every P ∈ Σ3 (resp., P ∈ Σ′3), let αP ∈ R+ (resp.,
α′P ∈ R+), and for every P ∈ Σ4 (resp., P ∈ Σ′4) let vP (resp., v′P ) be
a valuation relative to DP/QDP , where Q is the largest prime properly
contained in P . Let ` and `′ be the length functions

` =
∑
P∈Σ1

(tPDP )D +
∑
P∈Σ2

(iPDP )D +
∑
P∈Σ3

αP (rkPDP )D +
∑
P∈Σ4

(LvP )D,

and

`′ =
∑
P∈Σ′1

(tPDP )D +
∑
P∈Σ′2

(iPDP )D +
∑
P∈Σ′3

α′P (rkPDP )D +
∑
P∈Σ′4

(Lv′P )D.

Then, ` = `′ if and only if the following hold:

• Σj = Σ′j for j = 1, 2, 3, 4;
• αP = α′P for all P ∈ Σ3;
• vP = v′P for all P ∈ Σ4.

Proof. If the three properties hold, then clearly ` = `′. Suppose now
that ` = `′. Let Σ :=

⋃
j Σj and Σ′ :=

⋃
j Σ′j.

Let P be a prime ideal of D. Then, a direct calculation shows that

`(D/P ) =


0 if P ∈ Σ2 ∪ Σ4 or P /∈ Σ

αP if P ∈ Σ3

∞ if P ∈ Σ1

and analogously (mutatis mutandis) for `′. In particular, `(D/P ) =∞
if and only P ∈ Σ1 and `′(D/P ) = ∞ if and only if P ∈ Σ′1; since
` = `′ it follows that Σ1 = Σ′1. Likewise, `(D/P ) /∈ {0,∞} if and only
if P ∈ Σ3, and analogously for `′; hence, Σ3 = Σ′3 and αP = α′P for all
P ∈ Σ3.

Let now B and U be, respectively, be the set of branched and un-
branched prime ideals of D.

Let P be a branched prime ideal, and consider a P -primary ideal L
with L ( P . Another calculation shows that

`(D/L) =


0 if P /∈ Σ

inf vP (LDP/QDP ) if P ∈ Σ4

∞ if P ∈ Σ1 ∪ Σ2 ∪ Σ3

where Q is the biggest prime ideal properly contained in P . In partic-
ular, P ∈ Σ if and only if `(D/L) > 0 (since L ( P ); hence, Σ ∩ B =
Σ′∩B. Furthermore, `(D/L) =∞ if and only if P ∈ Σ1∪Σ2∪Σ3, and
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similarly for `′; since Σ1 = Σ′1 and Σ3 = Σ′3 by the previous reasoning,
and the Σi and Σ′i are disjoint, it follows that Σ2 ∩ B = Σ′2 ∩ B.

Let P be an unbranched prime ideal. If P /∈ Σ, then by hypothesis
there is a Q ( P not contained in Σ; in particular (eventually passing
to the minimal prime of an x ∈ P \ Q) we can suppose that Q is
branched. By the previous reasoning, Q /∈ Σ′, and thus also P /∈ Σ′.
By the same reasoning, if P /∈ Σ′ then P /∈ Σ; hence, Σ ∩ U = Σ′ ∩ U .
Furthermore, Σ4 ∩ U = ∅ = Σ′4 ∩ U ; hence, Σ2 ∩ U = Σ′2 ∩ U .

Putting together the two cases, we see that Σ = Σ′ and Σ2 = Σ′2;
hence, Σ4 = Σ′4. Moreover, inf vP (LDP/QDP ) = inf v′P (LDP/QDP )
imply that vP = v′P . The claim is proved. �

Remark 5.11. If we drop the hypothesis on the unbranched prime
ideals, the proposition above does not hold. For example, let P be an
unbranched prime ideal of D, and let ∆ be the set of prime ideals
properly contained in P . Then,(∑

Q∈∆

(tQDQ)D

)
(D/I) =

{
0 if QDQ ( IDQ for every Q ∈ ∆

∞ otherwise.

The first condition holds if and only if PDP ⊆ IDP ; hence,
∑

Q∈∆(tQDQ)D =

(iPDP )D. In the notation of Proposition 5.10, this means the length
function induced by the families Σ1 = ∆, Σ2 = Σ3 = Σ4 = ∅ and
Σ′1 = ∆, Σ′2 = {P}, Σ′3 = Σ′4 = ∅ are the same, and thus uniqueness
does not hold.

As a consequence, we can prove that (under the hypotheses of The-
orem 5.4) the set L(D) depends only on Spec(D) and the idempotence
of the primes of D.

Theorem 5.12. Let A,B be Prüfer domains such that every ideal of
A and B has only finitely many minimal primes. Suppose that there is
a homeomorphism φ : Spec(A) −→ Spec(B) such that a prime ideal P
is idempotent if and only if φ(P ) is idempotent. Then, there is an order
isomorphism φ : L(A) −→ L(B) that respects the classes of ` ⊗ DP ,
i.e., such that φ(Λ(`)) = Λ(φ(`)) for each Λ ∈ {Σt,Σi,Σr,Σv}.
Proof. We first note that, if P ∈ Spec(A), then P is branched if and
only if φ(P ) is branched: indeed, the homeomorphism φ induces home-
omorphisms φP : Spec(AP ) −→ Spec(Bφ(P )), and the maximal ideal
M of a valuation ring V is branched if and only if Spec(V ) \ {M}
is compact. Since Spec(AP ) \ {PAP} corresponds to Spec(Bφ(P )) \
{φ(P )Bφ(P )}, we have that P is branched if and only if φ(P ) is branched.

For every branched prime ideal P of A, fix a valuation vP on AP/LAP
(viewed as a map to R), where L is the largest prime properly contained
in P ; then, all valuations on AP/LAP are in the form λvP , for some
λ ∈ R+. Similarly, if P is a branched prime ideal of B, fix a valuation
wP on BP/LBP (with the same notation for L).
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Let ` ∈ L(A). By Corollary 5.7, and with the notation as above, we
can write

` =
∑

P∈Σt(`)

(tPAP )A+
∑

P∈Σi(`)

(iPAP )A+
∑

P∈Σr(`)

`(A/P )(rkPAP )A+
∑

P∈Σv(`)

(LλP vP )A;

hence, we define

φ(`) :=
∑

Q∈φ(Σt(`))

(tQBQ)B +
∑

Q∈φ(Σi(`))

(iQBQ)B+

+
∑

Q∈φ(Σr(`))

`(A/φ−1(Q))(rkQBQ)B +
∑

Q∈φ(Σv(`))

(Lλφ−1(Q)wQ
)B.

By the previous reasoning, every prime of φ(Σi(`)) and φ(Σr(`)) is
idempotent and every prime of φ(Σv(`)) is branched; hence, φ is a well-
defined map from L(A) to L(B). Furthermore, since φ is a homeomor-
phism it is straightforward to see that {φ(Σt(`)), φ(Σi(`)), φ(Σr(`)), φ(Σv(`))}
is a layered family with core φ(Σt(`)), and that if every prime con-
tained in the branched prime Q of B is in φ(Σt(`)) then Q is in
φ(Σt(`))∪φ(Σi(`))∪φ(Σr(`)). By Proposition 5.10, thus, φ is injective,
and it respects the classes of `⊗DP .

With the same reasoning, we can build an injective map φ−1 : L(B) −→
L(A), and it is an easy verification that φ−1 is the inverse of φ. Hence,

φ and φ−1 are bijections between L(A) and L(B).

Suppose now `1 ≤ `2 are length functions on A: we claim that φ(`1) ≤
φ(`2).

It is enough to verify the inequality at B/J , where J is an ideal
of B; furthermore, with the same reasoning of the proof of Theorem
5.4, we can reduce this verification to the case where rad(J) =: Q is a
prime ideal, and by Proposition 5.1 we can further suppose that J is a
primary ideal. Let P := φ−1(Q).

If P /∈ Σ(`1), then Q /∈ φ(Σ(`1)) = Σ(φ(`1)), and thus, by Proposi-
tion 5.1, `1(B/J) = 0. Hence, φ(`1)(B/J) ≤ φ(`2)(B/J). Suppose thus
that P ∈ Σ(`1), i.e., that Q ∈ Σ(φ(`1)).

Then, φ(`1)(B/J) = (φ(`1)⊗BQ)(B/J). Furthermore, if Q is a prime
ideal such thatQ /∈ φ(Σv(`)) (equivalently, if P /∈ Σv(`)) then `(A/J) =
φ(`)(B/Q) for every length function `; in particular,

φ(`1)(B/Q) = `1(A/P ) ≤ `2(A/P ) = φ(`2)(B/Q).

Thus, if J = Q we are done; suppose now that J ( Q.
If P /∈ Σv(`) and L1, L2 are P -primary ideals such that L1, L2 ( P ,

then `(A/L1) = `(A/L2) (equal to 0 if P /∈ Σ(`) and to ∞ if P ∈
Σ(`)); hence, if P ∈ Σ(`1) \ Σv(`) then `1(A/L) = ∞ for every P -
primary ideal L ( P , which means that `2(A/L) = ∞; it follows that
also φ(`1)(B/J) = ∞ = φ(`2)(B/J), and in particular φ(`1)(B/J) ≤
φ(`2)(B/J).
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Hence, we only need to consider that case P ∈ Σv(`1); in particular,
P is branched, and so Q is as well. If P /∈ Σv(`2), then `2(A/L) = ∞
for all P -primary ideals L ( P ; hence φ(`1)(B/J) ≤ φ(`2)(B/J) since
the latter is equal to ∞.

Suppose thus that P ∈ Σv(`1) ∩ Σv(`2); let P ′ be the largest prime
ideal of A properly contained in P , and let Q′ be the largest prime
ideal of B properly contained in Q. Let πQ : BQ −→ BQ/Q

′BQ be the
canonical quotient map. If QBQ is principal, then JBQ = (QBQ)n for
some n, and we define I := (PAP )n ∩ A. If QBQ is not principal, let
δ := inf{wQ(πQ(x)) | x ∈ J} ∈ R. If πP : AP −→ AP/P

′AP is the
quotient, then we define I := {y ∈ A | vP (πP (y)) ≥ δ}. In both cases,
I is an ideal of A whose radical is P , and by construction `(A/I) = δ =
φ(`)(B/J) for every length function ` such that P ∈ Σv(`); as above,
it follows that φ(`1)(B/J) ≤ φ(`2)(B/J).

Therefore, φ(`1) ≤ φ(`2), and so φ is order-preserving. By symmetry,

the same happens for φ−1 = φ
−1

; hence, φ is an order isomorphism, as
claimed. �

6. Singular length functions

In this section, we characterize singular length functions through
purely ideal-theoretic means, by using the concept of localizing system
(see [5] or [6, Section 5.1]). We denote by I(D) the set of ideals of D.

Definition 6.1. Let D be an integral domain. A localizing system on
D is a set F ⊆ I(D) such that:

• if I ∈ F and I ⊆ J , then J ∈ F ;
• if I ∈ F and (J : iD) ∈ F for all i ∈ I, then J ∈ F .

We denote by LocSist(D) the set of localizing systems on D.

Our next aim is to prove that to every length function can be asso-
ciated a localizing system, and conversely.

Definition 6.2. Let ` be a length function. The zero locus of ` is

Z(`) := {I ∈ I(D) | `(D/I) = 0}.

Proposition 6.3. The zero locus of a length function ` is a localizing
system.

Proof. If I ∈ Z(`) and I ⊆ J then `(D/J) ≤ `(D/I) = 0, and so J ∈
Z(`). Suppose I ∈ Z(`) and let J be an ideal such that (J : iD) ∈ Z(`)
for every i ∈ I. From the exact sequence

0 −→ (I + J)/J −→ D/J −→ D/(I + J) −→ 0,

and from the fact that I + J ∈ Z(`) (since I + J ⊇ I ∈ Z(`)), we
have `(D/J) = `((I + J)/J). For every i + J ∈ (I + J)/J , we have
Ann(i+ J) = (J : iD) ∈ Z(`) by hypothesis; by Lemma 4.1, it follows
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that `((I +J)/J) = 0, and thus `(D/J) = 0, i.e., J ∈ Z(`). Thus, Z(`)
is a localizing system. �

Conversely, let F be a localizing system on D. The length function
associated to F is

`F(M) :=

{
0 if Ann(x) ∈ F for all x ∈M
∞ otherwise.

Proposition 6.4. For any localizing system F on D, `F is a length
function.

Proof. Clearly, `F is upper continuous. Let

0 −→M1 −→M2
π−−→M3 −→ 0

be an exact sequence of D-modules.
If `F(M2) = 0, then Ann(x) ∈ F for all x ∈ M2; in particular,

Ann(y) ∈ F for all y ∈ M1 (and so `F(M1) = 0) and Ann(z) =
Ann(π(x)) ⊇ Ann(x) for all z = π(x) ∈ M3 (and so `F(M3) = 0). In
particular, `F(M2) = `F(M1) + `F(M3).

Suppose now `F(M2) = ∞; then, there is an x ∈ M2 such that
Ann(x) /∈ F . Suppose `F(M1) = `F(M3) = 0, let z := π(x), and
consider the exact sequence

0 −→ xD ∩M1 −→ xD −→ zD −→ 0.

Since we supposed `F(M3) = 0, we must have I := Ann(z) ∈ F ;
furthermore, for every i ∈ I, we have ix ∈ xD∩M1, and thus Ann(ix) ∈
F . However, Ann(ix) = (Ann(x) : iD); since I ∈ F , this would mean
that Ann(x) ∈ F , against the hypothesis on x. Therefore, one between
`F(M1) and `F(M3) is infinite, and thus `F(M2) = `F(M1) + `F(M3).
Hence, `F is a length function. �

Theorem 6.5. Let D be an integral domain. The two maps

Lsing(D) −→ LocSist(D)

` 7−→ Z(`)
and

LocSist(D) −→ Lsing(D)

F 7−→ `F

are bijections, one inverse of the other. Furthermore, if LocSist(D) is
endowed with the containment order, they are order-reversing isomor-
phisms.

Proof. Since a singular length function is characterized by its zero locus,
we need to show that Z(`F) = F and that `Z(`) = `. Indeed,

Z(`F) = {I ∈ I(D) | `F(D/I) = 0}.

However, for every x ∈ D/I we have Ann(x) ⊇ Ann(1 + I) = I, and
thus `F(D/I) = 0 if and only if I ∈ Z(`). Therefore, Z(`F) = F .
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On the other hand,

`Z(`)(M) =

{
0 if Ann(x) ∈ Z(`) for all x ∈M
∞ otherwise.

If Ann(x) ∈ Z(`) for all x ∈M , then `(M) = 0 by Lemma 4.1, while if
Ann(x) /∈ Z(`) for some x ∈ M then xD ' D/Ann(x) and thus, since
` is singular, `(M) ≥ `(xD) =∞. Thus, `Z(`) = `, as claimed.

The last claims follows from the fact that, for singular length func-
tions, `1 ≤ `2 if and only if Z(`1) ⊇ Z(`2). �

Localizing systems are also closely related to the concept of stable
semistar operations. Let F(D) be the set of D-submodules of the quo-
tient field K; a stable semistar operation on D is a map ? : F(D) −→
F(D) such that, for every I, J ∈ F(D) and every x ∈ K:

• I ⊆ I?;
• if I ⊆ J , then I? ⊆ J?;
• (I?)? = I?;
• (xI)? = x · I?;
• (I ∩ J)? = I? ∩ J?.

(A map that satisfies the first four properties is called a semistar oper-
ation.) We denote by SStarst(D) the set of stable semistar operations.

There is a natural bijection between stable semistar operations and
localizing system: if ? is a stable semistar operation, then the set F? :=
{I ∈ I(D) | 1 ∈ I?} is a localizing system, while if F is a localizing
system then

?F : I 7→
⋃
{(I : E) | E ∈ F}

is a stable semistar operation; these two correspondences are inverse
one of each other [5, Theorem 2.10]. By composing them with the maps
considered in Theorem 6.5, we obtain two bijections

Φ: SStarst(D) −→ Lsing(D)

? 7−→ `F?
and

Φ−1 : Lsing −→ SStarst(D)

` 7−→ ?Z(`).

which are order-reversing isomorphisms if SStarst(D) is endowed with
the order such that ?1 ≤ ?2 if I?1 ⊆ I?2 for every I ∈ F(D). Note
that, in this order, the infimum of a family ∆ is the map sending I to⋂
?∈∆ I

?.

Proposition 6.6. Let Λ be a nonempty set of stable semistar opera-
tions on the integral domain D. Then,

Φ(inf Λ) =
∑
?∈Λ

Φ(?).

Proof. Since Φ is an order-reversing isomorphism, Φ(inf Λ) = sup Φ(Λ);
the claim now follows from Lemma 3.7. �



26 DARIO SPIRITO

A special subset of stable semistar operations are spectral semistar
operations, i.e., closures in the form

s∆ : I 7→
⋂
P∈∆

IDP ,

where ∆ ⊆ Spec(D); furthermore, we can suppose that ∆ is closed by
generizations, i.e., it is such that if P ∈ ∆ and Q ⊆ P then also Q ∈ ∆.
The corresponding localizing system is

F∆ := {I ∈ I(D) | I * P for every P ∈ ∆},
while the associated length function `∆ is such that

`∆(D/I) =

{
0 if I * P for every P ∈ ∆

∞ if I ⊆ P for some P ∈ ∆,

or, more generally,

`∆(M) =

{
0 if Ann(x) * P for every P ∈ ∆ and x ∈M
∞ if Ann(x) ⊆ P for some P ∈ ∆ and x ∈M

for every D-module M . In particular, if ∆ = Spec(D) then `∆(M) = 0
if and only if M = 0, while if ∆ = {(0)} then `∆(M) = 0 if and only if
M is torsion.

Such length functions have a decomposition like the ones found in
Theorems 3.10 and 5.4.

Proposition 6.7. Let D be an integral domain, and let ∆ ⊆ Spec(D)
be closed by generizations; let ` := Φ(s∆), and let Σ(`) := {P ∈
Spec(D) | P /∈ Z(`)}. Then:

(a) ∆ = Σ(`);

(b) ` =
∑

P∈Σ(`)

`⊗DP .

Proof. From the bijections between SStarst(D), LocSist(D) and Lsing(D),
we see that prime P is in Z(`) if and only if 1 ∈ P s∆ ; since ∆ is closed
by generizations, it follows that P ∈ Z(`) if and only if P /∈ ∆, and
thus ∆ = Σ(`).

The semistar operation s∆ is the infimum of the family s{P}, as P
ranges in ∆; by Proposition 6.6, it follows that

` = Φ(s∆) =
∑
P∈∆

Φ(s{P}),

and thus we only need to show that Φ(s{P}) = ` ⊗DP ; to do so, it is
enough to show that their zero locus are equal. We have

Z(Φ(s{P})) = F s{P} = {I ∈ I(D) | I * P}.
If I * P , then DP/IDP = 0, and thus

(`⊗DP )(D/I) = `(D/I ⊗D DP ) = `(DP/IDP ) = `(0) = 0,
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i.e., I ∈ Z(`⊗DP ); on the other hand, if I ⊆ P then, using Proposition
4.4,

(`⊗DP )(D/I) ≥ (`⊗DP )(D/P ) = `(D/P ) =∞
since P s{P} = PDP does not contain 1. Hence, I /∈ Z(` ⊗ DP ), and
thus Z(Φ(s{P})) = Z(`⊗DP ). The claim is proved. �

Let now D be a Prüfer domain, and let ? ∈ SStarst(D). The normal-
ized stable version of ? is [17, Section 4]

?̂ : I 7→
⋂

P∈Σ1(?)

IDP ∩
⋂

P∈Σ2(?)

(IDP )vDP ,

where vDP is the v-operation on DP (i.e., if J is an ideal of DP then
JvDP =

⋂
{yDP | J ⊆ yDP}), and

Σ1(?) :={P ∈ Spec(D) | 1 /∈ P ?},
Σ2(?) :={P ∈ Spec(D) | 1 ∈ P ?, 1 /∈ Q? for some P -primary ideal Q}.

(In the terminology of [17], Σ1(?) =: QSpec?(D) is the quasi-spectrum
of ?, while Σ2(?) =: PsSpec?(D) is the pseudo-spectrum.) By [17,
Proposition 3.4], and in the terminology introduced in Definition 5.9,
furthermore, {Σ1(?),Σ2(?)} is a layered family with core Σ1(?).

This construction is analogue to the passage from a length function
` to

`] :=
∑

P∈Σt(`)

(tPDP )D +
∑

P∈Σi(`)

(iPDP )D =
∑

P∈Σ(`)

`⊗DP ,

as the next proposition shows.

Proposition 6.8. Let D be a Prüfer domain. Then, for every stable
star operation ?, we have Φ(?̂) = Φ(?)].

Proof. Let ∆ be the set formed by the functions dP : I 7→ IDP , for
P ∈ Σ1(?), and vP := I 7→ (IDP )vDP , as P ∈ Σ2(?). By Proposition
6.6, it follows that

Φ(?̂) =
∑

P∈Σ1(?)

Φ(dP ) +
∑

P∈Σ2(?)

Φ(vP ).

On the other hand, by unpacking the definitions, we have Σt(Φ(?)) =
Σ1(?) and Σi(Φ(?)) = Σ2(?); hence, it is enough to show that Φ(dP ) =
(tPDP )D and Φ(vP ) = (iPDP )D for every P ∈ Spec(D), and to do so it
is enough to consider their zero loci.

By a direct calculation,

Z(Φ(dP )) ={I ∈ I(D) | I * P} =

={I ∈ I(D) | PDP ( IDP} = Z((tPDP )D);

analogously,

Z(Φ(vP )) = {I ∈ I(D) | PDP ⊆ IDP} = Z((iPDP )D);
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since (IDP )vDP = DP if and only if IDP is equal to DP or to PDP .
The claim is proved. �

Suppose now that every ideal of D has only finitely many minimal
primes. Then, Theorem 5.4 (and Corollary 5.8) can be seen as a version
of [17, Theorem 4.5 and Corollary 4.6]: like any singular length function
can be written as

∑
P∈Σ1

` ⊗ DP +
∑

P∈Σ2
` ⊗ DP , a stable semistar

operation can be written as the infimum of the semistar operations dP
(as P ranges in some Σ1) and vP (as P ranges in Σ2).

More generally, suppose that ? is a semistar operation which is equal
to its normalized stable version, i.e., suppose that there are Σ1,Σ2 ⊆
Spec(D) such that {Σ1,Σ2} is a layered family with core Σ1 and

? : I 7→
⋂
P∈Σ1

IDP ∩
⋂
P∈Σ2

(IDP )vDP .

Then, by Proposition 6.8, we see that the corresponding length func-
tion ` = `] can be decomposed as ` =

∑
P∈Σ(`) ` ⊗ DP . Thus, the

fact that a stable semistar operation is determined at the local level
(through the closures dP and vP ) corresponds to the fact that the cor-
responding length function depends exclusively on length functions on
the localizations of D.

We end the paper with two examples of Prüfer domains of dimension
1 that are not locally finite and whose behavior with respect to decom-
position is very different: more precisely, in Example 6.9 we present an
example where every singular length function can be decomposed (de-
spite the domain not satisfying the hypothesis of Theorem 5.4), while
in Example 6.10 we give a singular function that can’t be decomposed.

Example 6.9. Let D be an almost Dedekind domain (i.e., an in-
tegral domain such that DM is a discrete valuation ring for every
M ∈ Max(D)), and suppose that there is only a finite (nonzero) num-
ber of maximal ideals of D that are not finitely generated. (See [10] for
explicit examples of domains with this property.) In particular, D is
one-dimensional and Spec(D) is not Noetherian, and so there are ideals
with infinitely many minimal primes.

We claim that every singular length function ` can be written as
` =

∑
M∈Max(D) ` ⊗ DM , and, to do so, we want to show that every

stable semistar operation ? is equal to ? = s∆ for some ∆ ⊆ Spec(D).
If not, then by [5, Theorem 4.12(3)] there is a proper ideal I of D such
that I = I? ∩D but P 6= P ? ∩D for every prime ideal P containing I;
sinceD is one-dimensional, it follows that 1 ∈ P ? for every P containing
I, or equivalently that P ? = D?.

Suppose that P = pD contains I and is principal; then,

1 ∈ P ? = (pD)? = pD?,
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and thus 1/p ∈ T := D?. Hence,

I? = (ID)? = (ID?)? ⊇ ID

[
1

p

]
.

The ideal ID
[

1
p

]
∩D is not contained in pD, since(

ID

[
1

p

]
∩D

)
DP = ID

[
1

p

]
DP ∩DDP = DP ;

thus, ID
[

1
p

]
∩ D 6= I, a contradiction. Hence, I is not contained in

any principal prime ideal; however, this means that I has a primary
decomposition, namely I =

⋂
i(IDMi

∩D), where {M1, . . . ,Mn} are the
maximal ideal of D containing I. By Proposition 4.7, it follows that
`(D/I) =

∑
i `(D/(IDMi

∩D)); however, by Proposition 4.4,

`(D/(IDM ∩D)) = `(DM/IDM) = `(DM/(MDM)k) = 0

sinceDM is a DVR (and so IDM = (MDM)k for some k) and `(DM/MDM) =
`(D/M) = 0. It follows that `(D/I) = 0, and thus that I ∈ Z(`) =
{I ∈ I(D) | 1 ∈ I?}, against the fact that I = I? ∩ D. Hence, ? is
spectral and so ? = s∆; by Proposition 6.7, we have

` =
∑

P∈Σ(`)

`⊗DP =
∑

M∈Max(D)

`⊗DM ,

with the last equality coming from the fact that, if M /∈ Σ(`), then
`⊗DM sends every proper quotient D/I to 0.

Example 6.10. Let D := A be the ring of all algebraic integers. By
[3, Example 4.5] and [17, Example 4.2], we can build a stable semistar
operation ? such that Q? = D for every primary ideal Q, while D? = D
(and so (xD)? = xD for every x ∈ D). The corresponding localizing
system contains every ideal contained in only finitely many maximal
ideals, but it does not contain any proper principal ideal; hence, the
associated length function ` is such that `(D/I) = 0 if I is contained in
only finitely many maximal ideals, while `(D/xD) =∞ for all nonunits
x ∈ D.

By Proposition 4.4, if Q is P -primary, then

`DP (DP/QDP ) = `(D/Q) = 0,

while `DP (DP ) = ∞; hence, `DP = t(0) for every P ∈ Max(D). It
follows that Σt(`) = {(0)} while Σi(`) = Σr(`) = Σv(`) = ∅; therefore,
setting `] :=

∑
P∈Σ(`) `⊗DP , we have

`](M) = (t(0))
D(M) =

{
0 if M is a torsion D-module

∞ otherwise,

and thus `](D/I) = 0 for every proper ideal I of D. In particular,
` 6= `].



30 DARIO SPIRITO

Furthermore, (`⊗DM)(D/I) = 0 for every nonzero ideal I and every
maximal ideal M ; hence, we also have

` 6=
∑
P∈∆

`⊗DP .

for every family ∆ ⊆ Spec(D).
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domain. Comm. Algebra, 46(4):1831–1842, 2018.

[18] Dario Spirito. Jaffard families and localizations of star operations. J. Commut.
Algebra, to appear.
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