DECOMPOSITION AND CLASSIFICATION OF LENGTH FUNCTIONS

DARIO SPIRITO

Abstract

We study decompositions of length functions on integral domains as sums of length functions constructed from overrings. We find a standard representation when the integral domain admits a Jaffard family, when it is Noetherian and when it is a Prüfer domains such that every ideal has only finitely many minimal primes. We also show that there is a natural bijective correspondence between singular length functions and localizing systems.

1. Introduction

The concept of a (generalized) length function on the category $\operatorname{Mod}(R)$ of modules over a ring R was introduced by Northcott and Reufel [12] as a generalization of the classical length of a module: more precisely, they defined a length function as a map from $\operatorname{Mod}(R)$ to the set of nonnegative real numbers (plus infinity) that is additive on exact sequences and such that the length of a module is the supremum of the length of its finitely generated submodules. In particular, they were interested in classifying all the possible length functions on a valuation domain; their results were later deepened and expressed in a different form by Zanardo [20]. Shortly after [12], Vámos [19] distinguished the two properties used to define a length functions (which he called additivity and upper continuity), showed that they were independent from each other, and classified all length function on Noetherian rings. Ribenboim [13] subsequently considered length functions with values in an arbitrary ordered abelian group, though he needed to restrict the definition to a smaller class of modules (constructible modules) due to the possible non-completeness of the group (more precisely, due to the possible lack of suprema). More recently, length functions have been linked to the concept of algebraic entropy $[14,15,2]$, the study of which also involves invariants satisfying a weaker form of additivity [16].

The purpose of this paper is to investigate two closely related problems: the first is the possibility of "decomposing" a length function ℓ on an integral domain D as a sum of length functions defined on overrings

[^0]of D (in particular, localizations of D); the second is the possibility of expressing the set $\mathcal{L}(D)$ of length functions on D (and/or some distinguished subset) as a product of the set of length functions on a family of overrings of D. Both problems can be seen, more generally, as asking for a way to find all length functions on D by reducing to "simpler" domains and cases.

In Section 3 (which can be seen as a generalization the case of Dedekind domains treated in [12, Section 7]), we start by analyzing ways to construct a length function on an overring of D from a length function on D and, conversely, to construct a length function on D from a length function on an overring (or, more generally, from a family of overrings) and how these two operations relate one to each other. We show that the best results are obtained when we consider a Jaffard family of D, i.e., a family Θ of flat overrings of D that is complete, independent and locally finite (see Section 2 for a precise definition): in particular, we show that every length function ℓ is equal to the sum $\sum_{T \in \Theta} \ell \otimes T$ (where $\ell \otimes T$ sends a module M to $\ell\left(M \otimes_{D} T\right.$); Theorem 3.10) and that the set $\mathcal{L}_{\infty}(D)$ of length functions such that $\ell(D)=\infty$ is order-isomorphic to the product $\prod_{T \in \Theta} \mathcal{L}_{\infty}(T)$.

In Section 4, we study primary ideals; in particular, using Vámos' results, we show that any length function ℓ on a Noetherian domain D can be written as $\sum_{P \in \Sigma(\ell)} \ell \otimes D_{P}$ (where $\Sigma(\ell)$ is a subset of $\operatorname{Spec}(D)$ depending on ℓ; Proposition 4.5) and that if I is an ideal (of an arbitrary domain D) with a primary decomposition, then $\ell(D / I)$ is the sum of $\ell(D / Q)$, as Q ranges among the primary components of I (Proposition 4.4).

In Section 5, we study length function on Prüfer domains, in particular on those such that every ideal has only finitely many minimal primes. As in the Noetherian case, we show that we can always write $\ell=\sum_{P \in \Sigma(\ell)} \ell \otimes D_{P}$ (Theorem 5.4) and we use this representation to prove that, for these class of domains, the set $\mathcal{L}(D)$ depends only on the topological structure of $\operatorname{Spec}(D)$ and on which prime ideals are idempotent (Theorem 5.12).

In Section 6, we characterize singular length functions (i.e., length functions such that $\ell(M)$ can only be 0 or ∞) on an integral domain D by finding a natural bijection between their set and the set of localizing systems on D (Theorem 6.5). We also consider the relationship between singular length functions and stable semistar operations.

2. Background and notation

Let $\mathbb{R}^{\geq 0}$ denote the set of nonnegative real numbers, and let $\Gamma:=$ $\mathbb{R}^{\geq 0} \cup\{\infty\}$. Then, Γ has a natural structure of (commutative) ordered additive semigroup, where, for every $r \in \Gamma, r+\infty=\infty+r=\infty$ and $r \leq \infty$.

If $\Lambda \subseteq \Gamma$ is a (not necessarily finite) set, we define the sum of Λ as the supremum of all the finite sums $\lambda_{1}+\cdots+\lambda_{n}$, as $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ ranges among the finite subset of Λ. Since all elements of Λ are nonnegative, this notion coincides with the usual sum if Λ is finite.

Let R be a ring, and let $\operatorname{Mod}(R)$ be the category of R-modules. A $\operatorname{map} \ell: \operatorname{Mod}(R) \longrightarrow \Gamma$ is a length function on R if:

- $\ell(0)=0$;
- ℓ is additive: for every short exact sequence

$$
0 \longrightarrow M_{1} \longrightarrow M_{2} \longrightarrow M_{3} \longrightarrow 0
$$

we have $\ell\left(M_{2}\right)=\ell\left(M_{1}\right)+\ell\left(M_{3}\right)$;

- ℓ is upper continuous: for every R-module M,
$\ell(M)=\sup \{\ell(N) \mid N$ is a finitely generated submodule of $M\}$.
Note that the first hypothesis is adopted by Northcott and Reufel [12] and by Vámos [19], but not by Zanardo [20]. The only function it excludes is the map ℓ_{∞} sending every module to ∞. We call the length function ℓ_{0} such that $\ell_{0}(M)=0$ for every module M the zero length function; in [20, Section 3.1], ℓ_{0} and ℓ_{∞} are called trivial length function, but we shall not use this terminology.

If ℓ is different from the zero length function, then $\ell(R)>0$.
It is easily seen from the definition that if M_{1} and M_{2} are isomorphic then $\ell\left(M_{1}\right)=\ell\left(M_{2}\right)$, and that if N is a submodule or a quotient of M then $\ell(N) \leq \ell(M)$.

Three examples of length functions on a ring R are:

- the "usual" length function (i.e., the Jordan-Hölder length of a module): we denote it by length ${ }_{R}$;
- the function ℓ such that $\ell(M)=0$ if M is a torsion R-module, while $\ell(M)=\infty$ otherwise;
- if R is an integral domain, the rank function: $\operatorname{rank}(M):=$ $\operatorname{dim}_{K}(M \otimes K)$, where K is the quotient field of R.
If R is an integral domain, then the rank function is, up to multiplication by a constant, the only length function ℓ such that $\ell(R)<\infty[12$, Theorem 2].

Let $\operatorname{Im}(\ell)$ denote the image of ℓ, i.e., the set of $\ell(M)$ as M ranges in $\operatorname{Mod}(R)$. We say that a length function ℓ is:

- singular if $\operatorname{Im}(\ell)=\{0, \infty\}$;
- discrete if $\operatorname{Im}(\ell)$ is discrete in Γ.

We denote by:

- $\mathcal{L}(R)$ the set of length functions on R;
- $\mathcal{L}_{\infty}(R)$ the set of length functions such that $\ell(R)=\infty$;
- $\mathcal{L}_{\text {sing }}(R)$ the set of singular length functions;
- $\mathcal{L}_{\text {disc }}(R)$ the set of discrete length functions.

The set $\mathcal{L}(R)$ has a natural order structure, where $\ell_{1} \leq \ell_{2}$ if and only if $\ell_{1}(M) \leq \ell_{2}(M)$ for every R-module M. In this order, $\mathcal{L}(R)$ has both a minimum (ℓ_{0}) and a maximum (the function sending all non-zero modules to ∞).

We shall often use the following result.
Proposition 2.1. [20, Proposition 3.3] Let ℓ_{1}, ℓ_{2} be length functions of R. If $\ell_{1}(R / I)=\ell_{2}(R / I)$ for every ideal I of R, then $\ell_{1}=\ell_{2}$.

Let D be an integral domain with quotient field K; an overring of D is a ring comprised between D and K. A Jaffard family of D is a family Θ of overrings of D such that [18, Proposition 4.3]:

- every $T \in \Theta$ is flat;
- $K \notin \Theta$;
- $I=\bigcap\{I T \mid T \in \Theta\}$ for every ideal I of D (i.e., Θ is complete);
- $T S=K$ for every $T \neq S$ belonging to Θ (i.e., Θ is independent);
- for every $x \in K$, there are only finitely many $T \in \Theta$ such that x is not a unit in T (i.e., Θ is locally finite).
Note that this is not the original definition; see [4, beginning of Section 6.3 and Theorem 6.3.5] for two other characterizations.

In particular, if Θ is a Jaffard family of D and $P \in \operatorname{Spec}(D)$ is nonzero, then there is exactly one $T \in \Theta$ such that $P T \neq T[4$, Theorem 6.3.1(1)].

A Prüfer domain is an integral domain such that the localization at every prime ideal is a valuation domain. If V is a valuation domain and $P \in \operatorname{Spec}(V)$, we say that P is branched if P is minimal over a principal ideal; equivalently, if the union of all the prime ideals properly contained in P is different from P. A prime ideal that is not branched is called unbranched. If D is a Prüfer domain, we say that $P \in \operatorname{Spec}(D)$ is branched if $P D_{P}$ is branched in D_{P}.

All rings considered are commutative and unitary. All unreferenced results on Prüfer and valuation domains are standard; see for example [7] for a general reference.

3. Jaffard families

The following section is a generalization of [12, Section 7], of which we follow and generalize the method.

Let D be an integral domain and T be a D-algebra. Then, every T-module is also (in a canonical way) a D-module; thus, given any $\ell \in \mathcal{L}(D)$, we can define a function ℓ_{T} by

$$
\ell_{T}(M):=\ell(M) \quad \text { for every } M \in \operatorname{Mod}(T)
$$

Proposition 3.1. Let D, T, ℓ as above.
(a) ℓ_{T} is a length function on T.
(b) If ℓ is singular, so is ℓ_{T}.
(c) If ℓ is discrete, so is ℓ_{T}.

Proof. (a) Let $0 \longrightarrow M_{1} \longrightarrow M_{2} \longrightarrow M_{3} \longrightarrow 0$ be an exact sequence of T-modules. Then, it is also an exact sequence of D-modules; hence,

$$
\ell_{T}\left(M_{2}\right)=\ell\left(M_{2}\right)=\ell\left(M_{1}\right)+\ell\left(M_{3}\right)=\ell_{T}\left(M_{1}\right)+\ell_{T}\left(M_{3}\right) .
$$

Thus, ℓ_{T} is additive. Suppose now $\ell_{T}(M)>x$ for some $x \in \mathbb{R}$. Then, $\ell(M)>x$, and thus there is a finitely generated D-submodule N of M such that $\ell(N)>x$; let $N:=e_{1} D+\cdots+e_{k} D$. Then, $N T=$ $e_{1} T+\cdots+e_{n} T$ is a submodule of M containing N, and thus

$$
\ell_{T}(N T)=\ell(N T) \geq \ell(N)>x
$$

Hence, $\ell_{T}(M)=\sup \left\{\ell_{T}\left(N^{\prime}\right) \mid N^{\prime} \subseteq M\right.$ is finitely generated over $\left.T\right\}$, and thus ℓ_{T} is upper continuous. Therefore, ℓ_{T} is a length function on T.
(b) and (c) are obvious.

In general, it is possible for ℓ_{T} to be the zero length function even if ℓ is not: for example, if $\ell(D / I)=0$ and $T=D / I$, then $\ell_{T}(M)$ will be 0 for all T-modules M.
Proposition 3.2. Let D be an integral domain and T be a D-algebra.
(a) If T is torsion-free over D, then $\ell(T) \neq 0$ for all nonzero $\ell \in$ $\mathcal{L}(D)$.
(b) If T is torsion-free over D and $\ell \in \mathcal{L}_{\infty}(D)$, then $\ell_{T} \in \mathcal{L}_{\infty}(T)$.
(c) If T is torsion-free over D and $\operatorname{rank}_{D}(T)<\infty$, then $\ell \in \mathcal{L}_{\infty}(D)$ if and only if $\ell_{T} \in \mathcal{L}_{\infty}(T)$.
(d) If T is an overring of D, then $\ell \in \mathcal{L}_{\infty}(D)$ if and only if $\ell_{T} \in$ $\mathcal{L}_{\infty}(T)$.
Proof. (a) If T is torsion-free, then the canonical map $D \longrightarrow T$ is injective; hence, it ℓ is an arbitrary nonzero length function, $\ell_{T}(T)=$ $\ell(T) \geq \ell(D)>0$.
(b) As above, for every $\ell \in \mathcal{L}_{\infty}(D)$ we have $\ell_{T}(T)=\ell(T) \geq \ell(D)=$ ∞, and thus $\ell_{T} \in \mathcal{L}_{\infty}(T)$.
(c) Suppose T is torsion-free and $\operatorname{rank}_{D}(T)<\infty$, and let $\ell \in \mathcal{L}(D)$. If $\ell \in \mathcal{L}_{\infty}(D)$ then $\ell_{T} \in \mathcal{L}_{\infty}(T)$ by the previous point. On the other hand, if $\ell \notin \mathcal{L}_{\infty}(D)$, then by [12, Theorem 2], $\ell(M)=\alpha \cdot \operatorname{rank}_{D}(M)$ for every D-module M, where $\alpha:=\ell(D)$; in particular, $\ell_{T}(T)=\ell(T)=$ $\operatorname{rank}_{D}(T)<\infty$ by hypothesis, and thus $\ell_{T} \notin \mathcal{L}_{\infty}(T)$.
(d) follows from the previous point, since $T \otimes_{D} K \simeq D$ (where K is the quotient field of D) and so $\operatorname{rank}_{D}(T)=1$.

Hence, if T is a torsion-free D-algebra then by the previous proposition we have a map

$$
\begin{aligned}
\widehat{\Lambda}_{D, T}: \mathcal{L}(D) & \longrightarrow \mathcal{L}(T) \\
\ell & \longmapsto \ell_{T},
\end{aligned}
$$

that restricts to a map

$$
\begin{aligned}
\Lambda_{D, T}: \mathcal{L}_{\infty}(D) & \longrightarrow \mathcal{L}_{\infty}(T) \\
\ell & \longmapsto \ell_{T}
\end{aligned}
$$

Clearly, both $\widehat{\Lambda}_{D, T}$ and $\Lambda_{D, T}$ are order-preserving.
A more interesting question is if (and how) we can construct a length function on D from a length function on a D-algebra T. We shall mainly be interested in the case when $T=D_{P}$ is a localization of D, but there is no harm in working more generally with a flat algebra.

Let thus T be a flat D-algebra, and let $\ell \in \mathcal{L}(T)$. We define ℓ^{D} as the map such that

$$
\ell^{D}(M):=\ell\left(T \otimes_{D} M\right) \quad \text { for all } M \in \operatorname{Mod}(D)
$$

This construction behaves similarly to the construction ℓ_{T}.
Proposition 3.3. Let D, T, ℓ as above.
(a) $\ell^{D} \in \mathcal{L}(D)$.
(b) $\ell^{D} \in \mathcal{L}_{\infty}(D)$ if and only if $\ell \in \mathcal{L}_{\infty}(T)$.

Proof. (a) follows in the same way of $[12$, Proposition 2], using the flatness of T. (b) is immediate because $\ell^{D}(D)=\ell\left(T \otimes_{D} D\right)=\ell(T)$.

Therefore, we can define a map $\widehat{\Psi}_{T, D}$ by setting

$$
\begin{aligned}
\widehat{\Psi}_{T, D}: \mathcal{L}(T) & \longrightarrow \mathcal{L}(D) \\
\ell & \longmapsto \ell^{D}
\end{aligned}
$$

by part (b) of the previous proposition also its restriction

$$
\begin{aligned}
\Psi_{T, D}: \mathcal{L}_{\infty}(T) & \longrightarrow \mathcal{L}_{\infty}(D) \\
\ell & \longmapsto \ell^{D}
\end{aligned}
$$

is well-defined.
Proposition 3.4. Let D be an integral domain and T be a flat overring of D. Then, $\widehat{\Lambda}_{D, T} \circ \widehat{\Psi}_{T, D}$ is the identity on $\mathcal{L}(T)$.
Proof. Let $\ell \in \mathcal{L}(T)$. Then, for every $M \in \operatorname{Mod}(T)$, we have

$$
\left(\widehat{\Lambda}_{D, T} \circ \widehat{\Psi}_{T, D}\right)(\ell)(M)=\left(\ell^{D}\right)_{T}(M)=\ell^{D}(M)=\ell\left(M \otimes_{D} T\right)
$$

Since T is a flat overring of D, the inclusion $D \hookrightarrow T$ is an epimorphism (being $D \hookrightarrow K$ an epimorphism; see [9, Chapitre IV, Corollaire 3.2] or [8, Proposition 4.5]); hence, for every T-module D, we have

$$
T \otimes_{D} M \simeq T \otimes_{D}\left(T \otimes_{T} M\right) \simeq\left(T \otimes_{D} T\right) \otimes_{T} M \simeq T \otimes_{T} M \simeq M
$$

as T-modules, with the second-to-last equality coming from the fact that the inclusion is an epimorphism (see [9, Lemma 1.0] or [8, Lemma A.1]). Thus, $\left(\ell^{D}\right)_{T}(M)=\ell(M)$; since M was arbitrary, $\left(\ell^{D}\right)_{T}=\ell$, i.e., $\widehat{\Lambda}_{D, T} \circ \widehat{\Psi}_{T, D}$ is the identity.

Remark 3.5. The previous proposition does not work for arbitrary flat D-algebras. For example, if $T=M=D[x]$ is the polynomial ring over D, then $M \otimes_{D} T \simeq D[x, y]=T[y]$ as T-modules; hence, if ℓ is the rank function of T, we have $\ell(M)=1$ while $\left(\ell^{D}\right)_{T}(M)=\infty$.

Let now ℓ be a length function on D, and let T be a flat D-algebra. We set

$$
\ell \otimes T:=\left(\widehat{\Psi}_{T, D} \circ \widehat{\Lambda}_{D, T}\right)(\ell) .
$$

This notation comes from the fact that, if M is a D-module, then

$$
(\ell \otimes T)(M)=\left(\ell_{T}\right)^{D}(M)=\ell_{T}\left(M \otimes_{D} T\right)=\ell\left(M \otimes_{D} T\right)
$$

The construction $\ell \otimes T$ is easily seen to satisfy an associative-like property: if T_{1}, T_{2} are flat D-algebras, then

$$
\left(\ell \otimes T_{1}\right) \otimes T_{2}=\ell \otimes\left(T_{1} \otimes_{D} T_{2}\right)
$$

In general, $\ell \otimes T$ is different from ℓ; for example, if I is a proper ideal of D such that $I T=T$, then

$$
(\ell \otimes T)(D / I)=\ell\left(D / I \otimes_{D} T\right)=\ell(T / I T)=\ell(0)=0
$$

but clearly there may be length functions such that $\ell(D / I) \neq 0$.
Hence, if we want to construct an isomorphism from $\widehat{\Lambda}_{D, T}$ and $\widehat{\Psi}_{T, D}$, we need to consider more rings, and to do so we must define the sum of a family of length functions.

Definition 3.6. Let $\Lambda:=\left(\ell_{\alpha}\right)_{\alpha \in A}$ be a family of length functions on D. The sum of Λ, which we denote by $\sum_{\alpha \in A} \ell_{\alpha}$, is the map

$$
\begin{aligned}
\sum_{\alpha \in A} \ell_{\alpha}: \operatorname{Mod}(D) & \longrightarrow \Gamma \\
M & \longmapsto \sum_{\alpha \in A} \ell_{\alpha}(M) .
\end{aligned}
$$

Recall that the sum of an arbitrary family of elements of Γ is defined as the supremum of the set of the finite sums (see the beginning of Section 2).

Lemma 3.7. The sum of a family Λ of length functions on D is a length function, and is the supremum of Λ in $\mathcal{L}(D)$.

Proof. Just apply the definitions.
Lemma 3.8. Let $\left\{M_{\alpha}\right\}_{\alpha \in A}$ be a family of D-modules, and let ℓ be a length function on D. Then,

$$
\ell\left(\bigoplus_{\alpha \in A} M_{\alpha}\right)=\sum_{\alpha \in A} \ell\left(M_{\alpha}\right)
$$

Proof. If the family is finite, the claim follows immediately from additivity and induction on the cardinality of A.

If A is an arbitrary family, set N to be the direct product of the M_{α}; then, $\ell(N) \geq \ell\left(M_{\alpha_{1}}\right)+\cdots+\ell\left(M_{\alpha_{n}}\right)$ for all finite subsets $\alpha_{1}, \ldots, \alpha_{n}$. Furthermore, every finitely generated submodule of N is contained in $M_{\alpha_{1}} \oplus \cdots \oplus M_{\alpha_{n}}$ for some $\alpha_{1}, \ldots, \alpha_{n}$; by upper continuity, it follows that $\ell(N)$ must be exactly the supremum. The claim is proved.

The following lemma is a (partial) generalization of a property of h-local domains; see [11, Theorem 22].

Lemma 3.9. Let D be an integral domain and Θ be a Jaffard family of D. If M is a torsion D-module, then

$$
M \simeq \bigoplus_{T \in \Theta} M \otimes_{D} T
$$

In particular, if $I \neq(0)$ is an ideal of D, then

$$
\frac{D}{I} \simeq \bigoplus_{T \in \Theta} \frac{T}{I T} \simeq \bigoplus_{T \in \Theta}\left(\frac{D}{I} \otimes_{D} T\right)
$$

Proof. We shall follow the proof of [11, Theorem $22,3 \Longrightarrow 4]$; we start by showing that $K / D \simeq \bigoplus_{T \in \Theta} K / T$. Indeed, consider the natural map

$$
\begin{gathered}
\Phi: K \longrightarrow \bigoplus_{T \in \Theta} K / T \\
d \longmapsto d+T .
\end{gathered}
$$

Note that Φ is well-defined since Θ is locally finite.
The kernel of Φ is $\bigcap_{T \in \Theta} T=D$. Hence, we need only to show that Φ is surjective, and to do so it is enough to show that every element of the form $e(\alpha, U):=(0, \ldots, 0, \alpha+U, 0, \ldots, 0)$ is in the image of Φ; i.e., we need to show that for every $U \in \Theta$ and every $\alpha \in K$ there is an $\alpha^{\prime} \in K$ such that $\alpha^{\prime}-\alpha \in U$ while $\alpha^{\prime} \in T$ for every $T \in \Theta \backslash U$.

Let $U^{\prime}:=\bigcap_{T \in \Theta \backslash U} T$; by [18, Proposition 4.5(b)], $U^{\prime} U=K$. Hence, we have

$$
U+U^{\prime}=\bigcap_{T \in \Theta}\left(U+U^{\prime}\right) T=\left(U+U U^{\prime}\right) \cap \bigcap_{T \in \Theta \backslash U}\left(U T+U^{\prime} T\right)=K
$$

In particular, $\alpha=\beta+\alpha^{\prime}$ for some $\beta \in U, \alpha^{\prime} \in U^{\prime}$; since $\alpha^{\prime}-\alpha=\beta \in$ U, we have $e(\alpha, U)=\Phi\left(\alpha^{\prime}\right)$, as required. Hence, Φ is surjective and $K / D \simeq \bigoplus_{T \in \Theta} K / T$.

Let now M be a torsion D-module; then, since every T is flat we have (see e.g. [11, p.9-10])

$$
\begin{aligned}
M & \simeq \operatorname{Tor}_{1}^{D}(K / D, M) \simeq \operatorname{Tor}_{1}^{D}\left(\bigoplus_{T \in \Theta} K / T, M\right) \simeq \\
& \simeq \bigoplus_{T \in \Theta} \operatorname{Tor}_{1}^{T}(K / T, M) \simeq \bigoplus_{T \in \Theta} M \otimes_{D} T
\end{aligned}
$$

as claimed. The "in particular" statement follows from the fact that $D / I \otimes_{D} T \simeq T / I T$.
Theorem 3.10. Let D be an integral domain, and let Θ be a Jaffard family of D. For every length function $\ell \in \mathcal{L}_{\infty}(D)$, we have

$$
\ell=\sum_{T \in \Theta} \ell \otimes T
$$

Proof. Let $\ell^{\sharp}:=\sum_{T \in \Theta} \ell \otimes T$; by Lemma 3.7, ℓ^{\sharp} is a length function on D. To show that $\ell=\ell^{\sharp}$, it is enough to show that $\ell(D / I)=\ell^{\sharp}(D / I)$ for every ideal I of D.

If $I=(0)$ then $\ell(D / I)=\infty=\ell^{\sharp}(D / I)$. Suppose $I \neq(0)$. By Lemmas 3.8 and 3.9, we have
$\ell(D / I)=\ell\left(\bigoplus_{T \in \Theta} \frac{D}{I} \otimes T\right)=\sum_{T \in \Theta} \ell\left(\frac{D}{I} \otimes T\right)=\sum_{T \in \Theta}(\ell \otimes T)(D / I)=\ell^{\sharp}(D / I)$.
The claim is proved.
Theorem 3.11. Let Θ be a Jaffard family of D, and let Λ_{Θ} and Ψ_{Θ} be the maps

$$
\begin{aligned}
\Lambda_{\Theta}: \mathcal{L}_{\infty}(D) & \longrightarrow \prod_{T \in \Theta} \mathcal{L}_{\infty}(T) & \text { and } & \Psi_{\Theta}: \prod_{T \in \Theta} \mathcal{L}_{\infty}(T) \longrightarrow \mathcal{L}_{\infty}(D) \\
\ell & \left(\ell_{T}\right)_{T \in \Theta} & & \left(\ell_{(T)}\right)_{T \in \Theta} \longmapsto \sum_{T \in \Theta}\left(\ell_{(T)}\right)^{D} .
\end{aligned}
$$

Then, the following hold.
(a) Λ_{Θ} and Ψ_{Θ} are order-preserving bijections between $\mathcal{L}_{\infty}(D)$ and $\prod_{T \in \Theta} \mathcal{L}_{\infty}(T)$, inverse one of each other.
(b) Λ_{Θ} restricts to a bijection from $\mathcal{L}_{\text {sing }}(D)$ to $\prod_{T \in \Theta} \mathcal{L}_{\text {sing }}(T)$.
(c) If Θ is finite, Λ_{Θ} restricts to a bijection from $\mathcal{L}_{\text {disc }}(D)$ to $\prod_{T \in \Theta} \mathcal{L}_{\text {disc }}(T)$.

Proof. (a) By Propositions 3.1, 3.3 and Lemma 3.7, Λ_{Θ} and Ψ_{Θ} are well-defined.

By definition,

$$
\Psi_{\Theta} \circ \Lambda_{\Theta}(\ell)=\sum_{T \in \Theta}\left(\ell_{T}\right)^{D}=\sum_{T \in \Theta} \ell \otimes T
$$

which is equal to ℓ by Theorem 3.10. Hence, $\Psi_{\Theta} \circ \Lambda_{\Theta}$ is the identity on $\mathcal{L}(D)$.

Take now $\left(\ell_{(T)}\right)_{T \in \Theta} \in \prod_{T \in \Theta} \mathcal{L}_{\infty}(T)$. Fix $U \in \Theta$, and let ℓ^{\prime} be the component with respect to U of $\left(\Lambda_{\Theta} \circ \Psi_{\Theta}\right)\left(\ell^{T}\right)$. As in the proof of Theorem 3.10, we need to show that $\ell_{(U)}(U / J)=\ell^{\prime}(U / J)$ for every ideal J of U. If $J=(0)$ then both sides are infinite; suppose $J \neq(0)$. Then,

$$
\ell^{\prime}(U / J)=\ell_{(U)}\left(\sum_{T \in \Theta}(U / J) \otimes_{D} T\right)=\sum_{T \in \Theta} \ell_{(T)}\left((U / J) \otimes_{D} T\right)
$$

If $U \neq T$, then

$$
\frac{U}{J} \otimes_{D} T \simeq \frac{D}{J \cap D} \otimes_{D} U \otimes_{D} T \simeq \frac{T}{(J \cap D) T} \otimes U=(0)
$$

since $(J \cap D) T=T$; hence, $\ell^{\prime}(U / J)$ reduces to $\ell_{(U)}\left((U / J) \otimes_{D} U\right)=$ $\ell_{(U)}(U / J)$. Therefore, $\ell^{\prime}=\ell_{(U)}$, and so $\Lambda_{\Theta} \circ \Psi_{\Theta}$ is the identity, as claimed.
(b) If ℓ is singular, then so is every ℓ_{T}, by Proposition 3.1(b). Conversely, if every ℓ_{T} is singular, then $\sum_{T} \ell_{T}(M \otimes T)$ is always zero or infinite, and thus ℓ is singular.
(c) If ℓ is discrete, so is every ℓ_{T}, by Proposition 3.1(c). On the other hand, if Θ is finite, say $\Theta:=\left\{T_{1}, \ldots, T_{n}\right\}$, then

$$
\operatorname{Im}(\ell)=\left\{a_{1}+\cdots+a_{n} \mid a_{i} \in \operatorname{Im}\left(\ell_{T_{i}}\right)\right\}
$$

Since each $\operatorname{Im}\left(\ell_{T_{i}}\right)$ is discrete, so is $\operatorname{Im}(\ell)$. The claim is proved.
The fact that every infinite length function ℓ can be "decomposed" as a sum of $\ell \otimes T$ is a rather special property, which puts some constraints on the family Θ.
Proposition 3.12. Let D be an integral domain, and let Θ be a nonempty family of flat overrings of D.
(a) If, for every $\ell \in \mathcal{L}(D)$, we have $\ell=\sum_{T \in \Theta} \ell \otimes T$, then $\Theta=\{D\}$.
(b) If, for every $\ell \in \mathcal{L}_{\infty}(D)$, we have $\ell=\sum_{T \in \Theta} \ell \otimes T$, then for every nonzero prime P of D there is exactly one $T \in \Theta$ such that $P T \neq T$.

Proof. Given a length function ℓ on D, let $\ell^{\sharp}:=\sum_{T \in \Theta} \ell \otimes T$.
(a) Let ℓ be the rank function on D. Then, $\ell(D)=\ell(T)=1$ for every overring T of D, and in particular $(\ell \otimes T)(D)=1$ for every flat overring T. Hence, $\ell^{\sharp}(D)=\sum_{T \in \Theta} 1=|\Theta|$; since by hypothesis $\ell=\ell^{\sharp}$ we must have $|\Theta|=1$; let $\Theta=\{T\}$.

Suppose $T \neq D$: then, since T is flat there must be a prime ideal P of D such that $P T=T$. Let $\ell:=\left(\text { length }_{D_{P}}\right)^{D}$: then,

$$
\ell(D / P)=\operatorname{length}_{D_{P}}\left(D / P \otimes_{D} D_{P}\right)=\operatorname{length}_{D_{P}}\left(D_{P} / P D_{P}\right)=1
$$

On the other hand,

$$
\ell^{\sharp}(D / P)=(\ell \otimes T)(D / P)=\ell(D / P \otimes T)=\ell(T / P T)=\ell(0)=0,
$$

against the hypothesis. Hence, T must be equal to D and $\Theta=\{D\}$, as claimed.
(b) Fix a nonzero prime ideal P of D, and let $\Theta^{\prime}:=\{P \in \Theta \mid$ $P T \neq T\}$. Let $\ell:=\left(\text { length }_{D_{P}}\right)^{D}$; then, $\ell \in \mathcal{L}_{\infty}(D)$, and with the same calculation of the previous point we see that $\ell(D / P)=1$ while $\ell^{\sharp}(D / P)=\left|\Theta^{\prime}\right|$, which means that $\left|\Theta^{\prime}\right|=1$. The claim is proved.

Remark 3.13.

(1) Under the hypotheses of part (b) of the previous proposition, the only property needed to show that Θ is a Jaffard family is the local finiteness of Θ. We shall see in Example 6.9 that, at least for singular length functions, this is not actually necessary; on the other hand, we shall present in Example 6.10 the case of a one-dimensional domain having a length function ℓ that cannot be written as $\sum \ell \otimes D_{M}$ (with the sum ranging among the maximal ideals).
(2) If Θ is an infinite Jaffard family, there could be elements in $\prod_{T} \mathcal{L}_{\text {disc }}(T)$ that does not come from discrete length functions. For example, suppose $\Theta=\left\{T_{1}, \ldots, T_{n}, \ldots\right\}$ is countable and that for every i there is a discrete length function ℓ_{i} on T_{i} such that $\ell_{i}\left(M_{i}\right) \neq\{0, \infty\}$ for some torsion T_{i}-module M_{i}. By possibly multiplying for some constant, we can suppose $\ell_{i}\left(M_{i}\right)=\frac{1}{2^{i}}$ for every i. Let $\ell:=\Psi_{\Theta}\left(\ell_{i}\right)$. Then, $\ell\left(M_{i}\right)=\frac{1}{2^{i}}$ for every i; hence, we have $\ell\left(\bigoplus_{i \leq k} M_{i}\right)=1-\frac{1}{2^{k}}$ and $\ell\left(\bigoplus_{i \in \mathbb{N}} M_{i}\right)=1$. In particular, $\operatorname{Im}(\ell)$ is not discrete, since 1 is not an isolated point of $\operatorname{Im}(\ell)$.

Example 3.14. Let D be a one-dimensional locally finite domain. Then, $\left\{D_{M} \mid M \in \operatorname{Max}(D)\right\}$ is a Jaffard family of D. By Theorem 3.11, it follows that a length function ℓ on D is completely determined by the restrictions $\ell_{D_{P}}$. In turn, this means that ℓ is completely determined by its values at $\ell\left(D_{P} / Q D_{P}\right)$, where Q is a P-primary ideal; as we shall see in Proposition 4.4 below, this means that ℓ is determined by the values $\ell(D / Q)$, as Q ranges among the primary ideals of D.
Similarly, if D is an h-local domain (meaning that D is a locally finite domain such that every nonzero prime ideal is contained in only one maximal ideal) then $\left\{D_{M} \mid M \in \operatorname{Max}(D)\right\}$ is a Jaffard family, and thus every length function ℓ is determined at the local level.

4. Primary ideals

As shown by Proposition 3.12, the possibility of decomposing every length function ℓ as a sum of $\ell \otimes T$, as T ranges in a (fixed) family Θ, is a quite special property, since it is usually not easy to find Jaffard families of an integral domain D. In this section, and in the next one, we shall try to see when a decomposition $\ell=\sum_{T \in \Theta} \ell \otimes T$ can be
reached if we allow Θ to be dependent on ℓ; to do so, we must treat length functions in a more intrinsic way.

Lemma 4.1. Let ℓ be a length function of D, and let M be a D-module. Then, $\ell(M)=0$ if and only if $\ell(D / \operatorname{Ann}(x))=0$ for all $x \in M$.
Proof. If $\ell(M)=0$, then $\ell(N)=0$ for all submodules N of M. In particular, this happens for $N=x D$, for every $x \in M$; however, $x D \simeq$ $D / \operatorname{Ann}(x)$, and thus $\ell(D / \operatorname{Ann}(x))=0$.

Conversely, suppose $\ell(D / \operatorname{Ann}(x))=0$ for all $x \in M$. By upper continuity, it is enough to prove that $\ell(N)=0$ for all finitely generated submodule N of M. Let thus $N=\left\langle x_{1}, \ldots, x_{n}\right\rangle$; then, by [20, Proposition 2.2], $\ell(N)=\sum_{i} \ell\left(N_{i+1} / N_{i}\right)$, where $N_{k}:=\left\langle x_{1}, \ldots, x_{k}\right\rangle$. However, N_{i+1} / N_{i} is a cyclic D-module, generated by $y:=x_{i+1}+N_{i}$; in particular, it is isomorphic to $D / \operatorname{Ann}(y)$. However, $\operatorname{Ann}(y) \supseteq \operatorname{Ann}\left(x_{i+1}\right)$, and thus $\ell(D / \operatorname{Ann}(y)) \leq \ell\left(D / \operatorname{Ann}\left(x_{i+1}\right)\right)=0$. Therefore, $\ell(N)=0$, and the claim is proved.

The following is a slight generalization of [12, Lemma 2], of which we follow the proof.

Lemma 4.2. Let R be a ring (not necessarily an integral domain); let $\alpha, \beta \in R$. Then, the following hold.
(a) $\ell(R / \alpha \beta R) \leq \ell(R / \alpha R)+\ell(R / \beta R)$.
(b) If β is not a zero-divisor in R, then $\ell(R / \alpha \beta R)=\ell(R / \alpha R)+$ $\ell(R / \beta R)$.
(c) If $\ell(R)<\infty$ and β is not a zero-divisor, then $\ell(R / \beta R)=0$.

Proof. Consider the exact sequence

$$
0 \longrightarrow \beta R / \alpha \beta R \longrightarrow R / \alpha \beta R \longrightarrow R / \beta R \longrightarrow 0 .
$$

Then, by additivity,

$$
\ell(R / \alpha \beta R)=\ell(R / \beta R)+\ell(\beta R / \alpha \beta R) ;
$$

furthermore, $\ell(\beta R / \alpha \beta R) \leq \ell(R / \alpha R)$ since multiplication by β induces a surjection $R / \alpha R \rightarrow \beta R / \alpha \beta R$. (a) is proved.

If β is not a zero-divisor, then multiplication by β is an isomorphism, and thus (b) holds. In particular, if $\alpha=0$ we have

$$
\ell(R)=\ell(R / \beta R)+\ell(R),
$$

and if $\ell(R)$ is finite then $\ell(R / \beta R)$ must be 0 . Thus, (c) holds.
Lemma 4.3. Let D be an integral domain and ℓ be a length function on D. Let Q be a P-primary ideal such that $\ell(D / Q)<\infty$, and let I be an ideal such that $Q \subsetneq I \nsubseteq P$. Then, $\ell(D / I)=0$.

Proof. Let $x \in I \backslash P$: then, $(Q: x)=Q$ since Q is P-primary [1, Lemma 4.4(iii)], and in particular \bar{x} is not a zero-divisor in $D / Q=: R$. By Lemma 4.2, it follows that $\ell_{R}(R / \bar{x} R)=0$; however, by definition,
$\ell_{R}(R / \bar{x} R)=\ell(D /(Q, x))$. Since $I \supseteq(Q, x)$, it follows that $\ell(D / I) \leq$ $\ell(D /(Q, x))=0$, as claimed.
Proposition 4.4. Let D be an integral domain, and let ℓ be a length function on D. Let $P^{\prime} \subseteq P$ be two prime ideals, and let Q be a P^{\prime} primary ideal. Then,

$$
\ell(D / Q)=\ell\left(D_{P} / Q D_{P}\right)=\ell_{D_{P}}\left(D_{P} / Q D_{P}\right)=\left(\ell \otimes D_{P}\right)(D / Q) .
$$

Proof. Since Q is P^{\prime}-primary and $P^{\prime} \subseteq P$, we have $Q=Q D_{P^{\prime}} \cap D=$ $Q D_{P} \cap D$, and thus there is an exact sequence

$$
0 \longrightarrow D / Q \xrightarrow{\iota} D_{P} / Q D_{P} \xrightarrow{\pi} N \longrightarrow 0
$$

for some D-module N. If $\ell(D / Q)=\infty$, then also $\ell\left(D_{P} / Q D_{P}\right)=\infty$ and we are done. Suppose $\ell(D / Q)<\infty$, and let $z=\pi(x) \in N$. Consider $I:=\operatorname{Ann}(z)$: then, I contains Q since $Q \subseteq \operatorname{Ann}(x)$. Furthermore, if $x=x^{\prime}+Q D_{P} \in D_{P} / Q D_{P}$, there is an $s \in D \backslash P$ such that $s x^{\prime} \in D ;$ hence, $s x \in \iota(D / Q)$, or equivalently $0=\pi(s x)=s z$. Therefore, $I \nsubseteq P$, and thus $I \nsubseteq P^{\prime}$; by Lemma 4.3, we have $\ell(D / I)=0$. By Lemma 4.1, it follows that $\ell(N)=0$, and thus $\ell(D / Q)=\ell\left(D_{P} / Q D_{P}\right)$, as claimed.

The second and the third equalities come from the definitions.
In particular, we can obtain a version of Vámos' results in the vein of Theorem 3.10.
Proposition 4.5. Let D be a Noetherian domain, let ℓ be a length function on D and let $\Sigma(\ell):=\{P \in \operatorname{Spec}(D) \mid \ell(D / P)>0\}$. Then,

$$
\ell=\sum_{P \in \Sigma(\ell)} \ell \otimes D_{P} .
$$

Proof. Let $\ell^{\sharp}:=\sum_{P \in \Sigma(\ell)} \ell \otimes D_{P}$; then, ℓ^{\sharp} is a length function. By [19, Corollary to Lemma 2], to show that $\ell=\ell^{\sharp}$ it is enough to show that $\ell(D / Q)=\ell^{\sharp}(D / Q)$ for every prime ideal Q of D.

If $Q \notin \Sigma(\ell)$, then $\ell(D / Q)=0$ (by definition of $\Sigma(\ell)$). Furthermore, any ideal I properly containing Q satisfies $\ell(D / I)=0$ (by [19, Lemma 3] or Lemma 4.3), and thus no prime ideal containing Q belongs to $\Sigma(\ell)$. However, if $Q \nsubseteq P$ then

$$
\left(\ell \otimes D_{P}\right)(D / Q)=\ell\left(D / Q \otimes D_{P}\right)=\ell\left(D_{P} / Q D_{P}\right)=\ell(0)=0
$$

and thus also $\ell^{\sharp}(D / Q)=0$.
Suppose now that $Q \in \Sigma(\ell)$. Then, using the previous reasoning we have
$\ell^{\sharp}(D / Q)=\sum_{\substack{P \in \Sigma(\ell) \\ P \supseteq Q}}\left(\ell \otimes D_{P}\right)(D / Q)=\sum_{\substack{P \in \Sigma(\ell) \\ P \supseteq Q}} \ell\left(D_{P} / Q D_{P}\right)=\sum_{\substack{P \in \Sigma(\ell) \\ P \supseteq Q}} \ell(D / Q)$,
with the last equality coming from Proposition 4.4.
If Q is a maximal element of $\Sigma(\ell)$, then $\ell^{\sharp}(D / Q)=\ell(D / Q)$, as claimed. Suppose Q is not maximal in $\Sigma(\ell)$; then, $\ell(D / Q)=\infty$, since
$\ell(D / Q)>0$ (being $Q \in \Sigma(\ell)$) and $\ell(D / Q)$ cannot be finite (using again [19, Lemma 3]/Lemma 4.3). Hence, both $\ell(D / Q)$ and $\ell^{\sharp}(D / Q)$ are infinite.

Therefore, $\ell(D / Q)=\ell^{\sharp}(D / Q)$ for every prime ideal Q, and thus $\ell=\ell^{\sharp}$, as claimed.

More generally, Proposition 4.4 shows that, for a P-primary ideal Q, the value of $\ell(D / Q)$ depends only on $\ell_{D_{P}}$, which is a length function over D_{P}. We now want to extend this result to ideals having a primary decomposition; we premise a lemma, which already appeared, without proof, in [19].
Lemma 4.6. Let I, J be ideals of a ring R (not necessarily a domain), and let ℓ be a length function on R. Then,

$$
\ell(R / I)+\ell(R / J)=\ell(R /(I+J))+\ell(R /(I \cap J))
$$

Proof. To simplify the notation, let $\tau(A):=\ell(R / A)$ for every ideal A. From the two exact sequences

$$
0 \longrightarrow \frac{I}{I \cap J} \longrightarrow \frac{D}{I \cap J} \longrightarrow \frac{D}{I} \longrightarrow 0
$$

and

$$
0 \longrightarrow \frac{I+J}{J} \longrightarrow \frac{D}{J} \longrightarrow \frac{D}{I+J} \longrightarrow 0
$$

and additivity, we have

$$
\left\{\begin{array}{l}
\tau(I \cap J)=\tau(I)+\ell(I /(I \cap J)) \\
\tau(J)=\tau(I+J)+\ell((I+J) / J)
\end{array}\right.
$$

Hence,

$$
\tau(I)+\tau(J)+\ell(I /(I \cap J))=\tau(I \cap J)+\tau(I+J)+\ell((I+J) / J)
$$

Since $I /(I \cap J) \simeq(I+J) / J$, the claim follows if $\ell(I /(I \cap J))<\infty$. If not, then $\tau(J) \geq \ell((I+J) / J)=\infty$, and thus $\tau(I \cap J) \geq \tau(J)=\infty$; hence, both sides are infinite, and the claim again follows.

Proposition 4.7. Let D be an integral domain, and let ℓ be a length function on D. Let I be an ideal of D having a primary decomposition $Q_{1} \cap \cdots \cap Q_{n}$. Then,

$$
\ell(D / I)=\sum_{i=1}^{n} \ell\left(D / Q_{i}\right)
$$

Proof. Set $\tau(A):=\ell(D / A)$ for every ideal A of D.
If $\tau\left(Q_{i}\right)=\infty$ for some i, then $\tau(I)=\infty$ and we are done. Suppose $\tau\left(Q_{i}\right)<\infty$ for every i : we proceed by induction on the number n of components of I. If $n=1$ the claim is obvious. Suppose the claim holds up to $n-1$; without loss of generality, $P_{1}:=\operatorname{rad}\left(Q_{1}\right)$ is a minimal prime
of I. Then, $I=Q_{1} \cap J$, where $J:=Q_{2} \cap \cdots \cap Q_{n}$. By Lemma 4.6, we have

$$
\tau(I)+\tau\left(Q_{1}+J\right)=\tau\left(Q_{1}\right)+\tau(J)
$$

The ideal $Q_{1}+J$ is not contained in P_{1}, for otherwise $J \subseteq P_{1}$, which is impossible since no primary component of J is contained in P_{1}. By Lemma 4.3, this implies that $\tau\left(Q_{1}+J\right)=0$, and thus $\tau(I)=\tau\left(Q_{1}\right)+$ $\tau(J)$; the claim now follows by induction.

5. Prüfer domains

In this section, we obtain a standard representation for length functions on Prüfer domains where every ideal has only finitely many minimal primes; the groundwork for it is the following extension of Proposition 4.4.
Proposition 5.1. Let D be a Prüfer domain, and let ℓ be a length function on D. Let I be an ideal of D such that $P:=\operatorname{rad}(I)$ is prime. Then, $\ell(D / I)=\ell\left(D_{P} / I D_{P}\right)=\left(\ell \otimes D_{P}\right)(D / I)$.
Proof. Let $J:=I D_{P} \cap D$; then, J is a P-primary ideal, and by Proposition 4.4 we have $\ell(D / J)=\ell\left(D_{P} / J D_{P}\right)=\ell\left(D_{P} / I D_{P}\right)$, with the last equality coming from the fact that $J D_{P}=I D_{P}$. Thus, we must prove that $\ell(D / I)=\ell(D / J)$.

If $\ell(D / J)=\infty$ then $\ell(D / I) \geq \ell(D / J)=\infty$ and we are done. Suppose $\ell(D / J)<\infty$, and consider the exact sequence

$$
0 \longrightarrow J / I \longrightarrow D / I \longrightarrow D / J \longrightarrow 0
$$

Then, $\ell(D / I)=\ell(D / J)+\ell(J / I)$, and thus we need to show that $\ell(J / I)=0$.

Let $x \in J$, and let $A:=(I: x)$; we claim that $P \subsetneq A$. Indeed, let $M \in \operatorname{Max}(D)$: if $I \nsubseteq M$ (equivalently, if $J \nsubseteq M)$ then $A D_{M}=\left(I D_{M}\right.$: $x)=D_{M}$ contains $P D_{M}=D_{M}$. Suppose $I \subseteq M$: then, $A D_{M}=$ $\left(I D_{M}: x D_{M}\right)$. If $A D_{M} \nsupseteq P D_{M}$, then $A D_{M} \subsetneq P D_{M}$; localizing further at D_{P}, we have $A D_{P} \subseteq P D_{P}$. However, $A D_{P}=\left(I D_{P}: x\right)=D_{P}$, a contradiction. Hence, $P \subseteq A$; but since $A D_{P} \neq P D_{P}$, we must also $P \neq A$ and so $P \subsetneq A$.

Since $\ell(D / J)<\infty$, we can now apply Lemma 4.3, obtaining $\ell(D / A)=$ 0 ; by Lemma 4.1, we have $\ell(J / I)=0$ (since $(I: x)$ is equal to the annihilator of $x+I$ in $J / I)$ and thus $\ell(D / I)=\ell(D / J)$, as claimed.

Definition 5.2. Let D be a Prüfer domain, and let ℓ be a length function on D. The total spectrum of ℓ is

$$
\Sigma(\ell):=\{P \in \operatorname{Spec}(D) \mid \ell(D / Q)>0 \text { for some } P \text {-primary ideal } Q\} .
$$

Lemma 5.3. Let D be a Prüfer domain, ℓ a length function on D, and let $P^{\prime} \subsetneq P$ be prime ideals such that $P \in \Sigma(\ell)$. Then, $\ell\left(D / P^{\prime}\right)=\infty$, and in particular $P^{\prime} \in \Sigma(\ell)$.

Proof. Let L be a P-primary ideal. Then,

$$
P^{\prime}=P^{\prime} D_{P} \cap D \subseteq L D_{P} \cap D=L
$$

If $\ell\left(D / P^{\prime}\right)<\infty$, then by Lemma 4.3 (applied with $Q=P^{\prime}$) we would have $\ell(D / L)=0$. Since L was an arbitrary P-primary ideal, it would follow that $P \notin \Sigma(\ell)$, against the hypothesis. Hence, $\ell\left(D / P^{\prime}\right)=\infty$.

The total spectrum of ℓ is exactly the set we are looking for.
Theorem 5.4. Let D be a Prüfer domain such that every ideal of D has only finitely many minimal primes. For every length function ℓ on D, we have

$$
\ell=\sum_{P \in \Sigma(\ell)} \ell \otimes D_{P} .
$$

Proof. Let $\ell^{\sharp}:=\sum_{P \in \Sigma(\ell)} \ell \otimes D_{P}$; then, ℓ^{\sharp} is a length function by Lemma 3.7. To show that $\ell=\ell^{\sharp}$ it is enough to show that $\ell(D / I)=\ell^{\sharp}(D / I)$ for every ideal I of D. Let thus I be an ideal of D, and let $\left\{P_{1}, \ldots, P_{n}\right\}$ be the minimal primes of I.

For each i, let $T_{i}:=\bigcap\left\{D_{Q} \mid Q \in \mathcal{V}\left(P_{i}\right)\right\}$, where $\mathcal{V}(A):=\{P \in$ $\operatorname{Spec}(D) \mid A \subseteq P\}$; then, T_{i} is a Prüfer domain whose prime ideals are the extension of the prime ideals comparable with P_{i}. Let $J_{i}:=I T_{i} \cap D$; then, $\operatorname{rad}\left(J_{i}\right)=P_{i}$, and since every maximal ideal containing I survives in some T_{i}, we have $I=J_{1} \cap \cdots \cap J_{n}$. Fix i, and let $L_{i}:=\bigcap_{k \neq i} J_{k}$: then, the minimal primes of L_{i} are $P_{1}, \ldots, P_{i-1}, P_{i+1}, \ldots, P_{n}$. In particular, since $\operatorname{rad}\left(J_{i}\right)=P_{i}$ and $\operatorname{Spec}(D)$ is a tree, there are no prime ideals containing both J_{i} and L_{i}; thus, $J_{i}+L_{i}=D$. By Lemma 4.6, it follows that

$$
\ell^{\prime}(D / I)=\ell^{\prime}\left(D /\left(J_{i} \cap L_{i}\right)\right)=\ell^{\prime}\left(D / J_{i}\right)+\ell^{\prime}\left(D / L_{i}\right)
$$

for every length function ℓ^{\prime}; by induction, it follows that $\ell^{\prime}(D / I)=$ $\sum_{i} \ell^{\prime}\left(D / J_{i}\right)$ for every ℓ^{\prime}. In particular, it holds for $\ell^{\prime}=\ell$ and for $\ell^{\prime}=\ell^{\sharp}$; hence, we need only to prove that $\ell\left(D / J_{i}\right)=\ell^{\sharp}\left(D / J_{i}\right)$ for every J_{i}, or equivalently that $\ell(D / J)=\ell^{\sharp}(D / J)$ for every J such that $\operatorname{rad}(J)=$ $P \in \operatorname{Spec}(D)$.

By Proposition 5.1, $\ell(D / J)=\left(\ell \otimes D_{P}\right)(D / J)$. On the other hand,

$$
\ell^{\sharp}(D / J)=\sum_{Q \in \Sigma(\ell)}\left(\ell \otimes D_{Q}\right)(D / J)=\sum_{Q \in \Sigma(\ell)} \ell\left(D_{Q} / J D_{Q}\right) .
$$

If $Q \nsupseteq P$, then $J D_{Q}=D_{Q}$, and so $\ell\left(D_{Q} / J D_{Q}\right)=0$. Hence,

$$
\begin{equation*}
\ell^{\sharp}(D / J)=\sum_{\substack{Q \in \Sigma(\ell) \\ Q \supseteq P}} \ell\left(D_{Q} / J D_{Q}\right)=\sum_{\substack{Q \in \Sigma(\ell) \\ Q \supseteq P}}\left(\ell \otimes D_{Q}\right)(D / J) . \tag{1}
\end{equation*}
$$

If P is maximal in $\Sigma(\ell)$, then (1) reduces to $\ell^{\sharp}(D / J)=\left(\ell \otimes D_{P}\right)(D / J)$, and so is equal to $\ell(D / J)$. If P is not maximal, then by Lemma 5.3 $\ell(D / P)=\infty$, and so both $\ell(D / J)$ and $\ell^{\sharp}(D / J)$ are infinite; in particular, they are equal. The claim is proved.

This theorem does not hold for general Prüfer domain. We shall see an example at the end of the paper (Example 6.10).
Since $\ell \otimes D_{P}=\left(\ell^{\prime}\right)^{D}$, where ℓ^{\prime} is a length function on D_{P}, the previous theorem effectively reduces the study of the length functions on D to the local case. If V is a valuation domain, the length functions on V has been studied in [12] and [20]: they can be divided into the following four classes.

- Torsion singular length functions: if $P \in \operatorname{Spec}(V)$, we define t_{P} as

$$
t_{P}(M):= \begin{cases}0 & \text { if } M \text { is a torsion } V / P \text {-module } \\ \infty & \text { otherwise }\end{cases}
$$

- Idempotent singular length functions: if $P \in \operatorname{Spec}(V)$ is idempotent, we define i_{P} as

$$
i_{P}(M):= \begin{cases}0 & \text { if } M \text { is a } V / P \text {-module } \\ \infty & \text { otherwise }\end{cases}
$$

- L-rank functions: if $P \in \operatorname{Spec}(V)$ is idempotent, and $\alpha \in \mathbb{R}^{+}$, then $\ell=\alpha \cdot \mathrm{rk}_{P}$ for some $\alpha \in \mathbb{R}^{+}$, where

$$
\operatorname{rk}_{P}(M):= \begin{cases}\operatorname{rank}_{V / P}(M) & \text { if } M \text { is a } V / P \text {-module } \\ \infty & \text { otherwise }\end{cases}
$$

- Valuative length functions: let $P \in \operatorname{Spec}(D)$ be a branched prime ideal. Let Q be the largest prime ideal contained in P, and let v be a valuation on D_{P} / Q. We define L_{v} as the function

$$
L_{v}(M):=\sup \sum_{i=1}^{s} \inf \left\{v(\alpha) \mid \alpha \in \operatorname{Ann}\left(E_{i} / E_{i-1}\right)\right\}
$$

where the supremum is taken over all finite chains of submodules $(0)=E_{0} \subsetneq E_{1} \subsetneq \cdots \subsetneq E_{s}=M$.

Remark 5.5.

(1) The four classes of length functions are pairwise disjoint; however, the classes of idempotent singular length functions and of L-rank functions could be merged by considering the functions of type $\alpha \cdot \mathrm{rk}_{P}$ for $\alpha \in \mathbb{R}^{\geq 0}$, i.e., by allowing $\alpha=0$ in the definition of L-rank function (and using the convention $0 \cdot \infty=\infty$). However, in view of the study of singular length functions (see Corollary 5.8 and Section 6 from below Proposition 6.7 onwards) it is more useful to consider them separately.
(2) $i_{(0)}$ is the zero length function.
(3) The rank function on V is $\mathrm{rk}_{(0)}$; on the other hand, if M is the maximal ideal of V, then the "usual" length is rk_{M} if M is idempotent, while if $M=m V$ is principal (and thus, in particular,
branched) it is equal to L_{v}, where v is a rank-one valuation on V / Q normalized in such a way that $v(\bar{m})=1$.

Suppose now that D is a $\operatorname{Prüfer}$ domain, $P \in \operatorname{Spec}(D)$, and let ℓ be a length function on the valuation domain D_{P}. Calculating $\ell^{D}(D / I)$ (where I is an ideal of D) corresponds to calculating the values of $\ell\left(D_{P} / I D_{P}\right)$, which can be done easily by considering the various classes of length function of valuation domains; the results are the following.

- $\left(t_{P D_{P}}\right)^{D}(D / I)= \begin{cases}0 & \text { if } P D_{P} \subsetneq I D_{P} \\ \infty & \text { otherwise } ;\end{cases}$
- $\left(i_{P D_{P}}\right)^{D}(D / I)= \begin{cases}0 & \text { if } P D_{P} \subseteq I D_{P} \\ \infty & \text { otherwise } ;\end{cases}$
- $\left(\operatorname{rk}_{P D_{P}}\right)^{D}(D / I)=\left\{\begin{array}{ll}\operatorname{rank}_{\frac{D}{P}}\left(\frac{D_{P}}{I D_{P}}\right) & \text { if } P D_{P} \subseteq I D_{P} \\ \infty & \text { otherwise }\end{array}= \begin{cases}0 & \text { if } P D_{P} \subsetneq I D_{P} \\ 1 & \text { if } P D_{P}=I D_{P} \\ \infty & \text { otherwise }\end{cases}\right.$
- $\left(L_{v}\right)^{D}(D / I)= \begin{cases}0 & \text { if } I \nsubseteq P \\ \inf v\left(I D_{P} / Q D_{P}\right) & \text { if } P \text { is minimal over } I \\ \infty & \text { otherwise. }\end{cases}$

Let now ℓ be a length function on the Prüfer domain D (not necessarily satisfying the hypothesis of Theorem 5.4). To each class of length functions on valuation domains we can associate a subset of the spectrum of D :

- $\Sigma_{t}(\ell):=\left\{P \in \operatorname{Spec}(D) \mid \ell_{D_{P}}=t_{P D_{P}}\right\} ;$
- $\Sigma_{i}(\ell):=\left\{P \in \operatorname{Spec}(D) \mid \ell_{D_{P}}=i_{P D_{P}}\right\} ;$
- $\Sigma_{r}(\ell):=\left\{P \in \operatorname{Spec}(D) \mid \ell_{D_{P}}=\alpha \mathrm{rk}_{P D_{P}}\right.$ for some $\left.\alpha \in \mathbb{R}^{+}\right\}$;
- $\Sigma_{v}(\ell):=\left\{P \in \operatorname{Spec}(D) \mid \ell_{D_{P}}=L_{v}\right.$ for some rank-one valuation v on $\left.D_{P} / Q D_{P}\right\}$.

Lemma 5.6. Let D be a Prüfer domain, ℓ a length function.
(a) The four sets $\Sigma_{t}(\ell), \Sigma_{i}(\ell), \Sigma_{r}(\ell)$ and $\Sigma_{v}(\ell)$ are pairwise disjoint.
(b) $\Sigma(\ell)=\Sigma_{t}(\ell) \cup \Sigma_{i}(\ell) \cup \Sigma_{r}(\ell) \cup \Sigma_{v}(\ell)$.
(c) If $P, Q \in \operatorname{Spec}(D)$ are such that $P \in \Sigma(\ell)$ and $Q \subsetneq P$, then $Q \in \Sigma_{t}(\ell)$.

Proof. (a) follows from the fact that the four classes of length functions on valuation domains are disjoint; (b) follows from the calculations of $\ell^{D}(D / I)$. (c) is another version of Lemma 5.3, since $\ell(D / Q)=\infty$ if and only if $Q \in \Sigma_{t}(\ell)$.

With this terminology, we get a restatement of Theorem 5.4 and a way to characterize singular and discrete length functions.
Corollary 5.7. Let D be a Prüfer domain such that every ideal of D has only finitely many minimal primes, and let ℓ be a length function on D. Then,
$\ell=\sum_{P \in \Sigma_{t}(\ell)}\left(t_{P D_{P}}\right)^{D}+\sum_{P \in \Sigma_{i}(\ell)}\left(i_{P D_{P}}\right)^{D}+\sum_{P \in \Sigma_{r}(\ell)} \ell(D / P)\left(\mathrm{rk}_{P D_{P}}\right)^{D}+\sum_{P \in \Sigma_{v}(\ell)}\left(L_{v_{P}}\right)^{D}$,
where v_{P} is a rank-one valuation on $D_{P} / Q D_{P}$ (and Q is the prime ideal directly below P).

Corollary 5.8. Let D be a Prüfer domain such that every ideal of D has only finitely many minimal primes, and let ℓ be a length function on D.
(a) ℓ is singular if and only if $\Sigma_{r}(\ell)=\Sigma_{v}(\ell)=\emptyset$.
(b) ℓ is discrete if and only if $\Sigma_{v}(\ell)$ does not contain any idempotent prime and the family $\left\{\ell(D / P) \mid P \in \Sigma_{r}(\ell) \cup \Sigma_{v}(\ell)\right\}$ is discrete.

The representation of Corollary 5.7 can also be seen as a way to define a length function: given $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \Sigma_{4} \subseteq \operatorname{Spec}(D), \alpha_{P} \in \mathbb{R}^{+}$and a valuation on $D_{P} / L D_{P}$, we can define a length function ℓ by

$$
\ell:=\sum_{P \in \Sigma_{1}}\left(t_{P D_{P}}\right)^{D}+\sum_{P \in \Sigma_{2}}\left(i_{P D_{P}}\right)^{D}+\sum_{P \in \Sigma_{3}} \alpha_{P}\left(\operatorname{rk}_{P D_{P}}\right)^{D}+\sum_{P \in \Sigma_{4}}\left(L_{v_{P}}\right)^{D} .
$$

In general, there is no guarantee that this representation is the same as the one obtained in the corollary, i.e., the conditions $\Sigma_{1}=\Sigma_{t}(\ell)$, $\Sigma_{2}=\Sigma_{i}(\ell)$, etc. need not to be satisfied; indeed, being arbitrary, the sets Σ_{j} usually do not satisfy conditions (a) and (c) of Lemma 5.6. For example, if $P \nsubseteq Q$ are two prime ideals, the families $\Sigma_{1}=\{Q\}$, $\Sigma_{2}=\Sigma_{3}=\Sigma_{4}=\emptyset$ and $\Sigma_{1}^{\prime}=\{Q, P\}, \Sigma_{2}^{\prime}=\Sigma_{3}^{\prime}=\Sigma_{4}^{\prime}=\emptyset$ give rise to the same ℓ.

However, we can obtain uniqueness just by excluding the more obvious problems. To express it in a slightly less unwieldy way, we introduce the following definition.

Definition 5.9. Let (\mathcal{P}, \leq) be a partially ordered set. A family $\left\{X_{1}, \ldots, X_{n}\right\}$ of subsets of \mathcal{P} is a layered family with core X_{k} if:

- $X_{i} \cap X_{j}=\emptyset$ if $i \neq j$;
- if $x \in \bigcup_{i} X_{i}$ and $y<x$, then $y \in X_{k}$.

Under this terminology, parts (a) and (c) of Lemma 5.6 can be reparaphrased by saying that $\left\{\Sigma_{t}(\ell), \Sigma_{i}(\ell), \Sigma_{r}(\ell), \Sigma_{v}(\ell)\right\}$ is a layered family with core $\Sigma_{t}(\ell)$.

Proposition 5.10. Let D be a Prüfer domain. Let $\left\{\Sigma_{1}, \Sigma_{2}, \Sigma_{3}, \Sigma_{4}\right\}$ and $\left\{\Sigma_{1}^{\prime}, \Sigma_{2}^{\prime}, \Sigma_{3}^{\prime}, \Sigma_{4}^{\prime}\right\}$ be layered families of $\operatorname{Spec}(D)$ with core Σ_{1} and Σ_{1}^{\prime}, respectively, and suppose that:

- each prime in $\Sigma_{2}, \Sigma_{3}, \Sigma_{2}^{\prime}$ and Σ_{3}^{\prime} is idempotent;
- each prime in Σ_{4} and Σ_{4}^{\prime} is branched;
- if P is unbranched and every prime properly contained in P belongs to Σ_{1} (respectively, Σ_{1}^{\prime}), then $P \in \Sigma_{1} \cup \Sigma_{2} \cup \Sigma_{3}$ (resp., $\left.P \in \Sigma_{1}^{\prime} \cup \Sigma_{2}^{\prime} \cup \Sigma_{3}^{\prime}\right)$.
Furthermore, for every $P \in \Sigma_{3}$ (resp., $P \in \Sigma_{3}^{\prime}$), let $\alpha_{P} \in \mathbb{R}^{+}$(resp., $\alpha_{P}^{\prime} \in \mathbb{R}^{+}$), and for every $P \in \Sigma_{4}$ (resp., $P \in \Sigma_{4}^{\prime}$) let v_{P} (resp., v_{P}^{\prime}) be a valuation relative to $D_{P} / Q D_{P}$, where Q is the largest prime properly contained in P. Let ℓ and ℓ^{\prime} be the length functions

$$
\ell=\sum_{P \in \Sigma_{1}}\left(t_{P D_{P}}\right)^{D}+\sum_{P \in \Sigma_{2}}\left(i_{P D_{P}}\right)^{D}+\sum_{P \in \Sigma_{3}} \alpha_{P}\left(\mathrm{rk}_{P D_{P}}\right)^{D}+\sum_{P \in \Sigma_{4}}\left(L_{v_{P}}\right)^{D},
$$

and

$$
\ell^{\prime}=\sum_{P \in \Sigma_{1}^{\prime}}\left(t_{P D_{P}}\right)^{D}+\sum_{P \in \Sigma_{2}^{\prime}}\left(i_{P D_{P}}\right)^{D}+\sum_{P \in \Sigma_{3}^{\prime}} \alpha_{P}^{\prime}\left(\mathrm{rk}_{P D_{P}}\right)^{D}+\sum_{P \in \Sigma_{4}^{\prime}}\left(L_{v_{P}^{\prime}}\right)^{D} .
$$

Then, $\ell=\ell^{\prime}$ if and only if the following hold:

- $\Sigma_{j}=\Sigma_{j}^{\prime}$ for $j=1,2,3,4$;
- $\alpha_{P}=\alpha_{P}^{\prime}$ for all $P \in \Sigma_{3}$;
- $v_{P}=v_{P}^{\prime}$ for all $P \in \Sigma_{4}$.

Proof. If the three properties hold, then clearly $\ell=\ell^{\prime}$. Suppose now that $\ell=\ell^{\prime}$. Let $\Sigma:=\bigcup_{j} \Sigma_{j}$ and $\Sigma^{\prime}:=\bigcup_{j} \Sigma_{j}^{\prime}$.

Let P be a prime ideal of D. Then, a direct calculation shows that

$$
\ell(D / P)= \begin{cases}0 & \text { if } P \in \Sigma_{2} \cup \Sigma_{4} \text { or } P \notin \Sigma \\ \alpha_{P} & \text { if } P \in \Sigma_{3} \\ \infty & \text { if } P \in \Sigma_{1}\end{cases}
$$

and analogously (mutatis mutandis) for ℓ^{\prime}. In particular, $\ell(D / P)=\infty$ if and only $P \in \Sigma_{1}$ and $\ell^{\prime}(D / P)=\infty$ if and only if $P \in \Sigma_{1}^{\prime}$; since $\ell=\ell^{\prime}$ it follows that $\Sigma_{1}=\Sigma_{1}^{\prime}$. Likewise, $\ell(D / P) \notin\{0, \infty\}$ if and only if $P \in \Sigma_{3}$, and analogously for ℓ^{\prime}; hence, $\Sigma_{3}=\Sigma_{3}^{\prime}$ and $\alpha_{P}=\alpha_{P}^{\prime}$ for all $P \in \Sigma_{3}$.

Let now \mathcal{B} and \mathcal{U} be, respectively, be the set of branched and unbranched prime ideals of D.

Let P be a branched prime ideal, and consider a P-primary ideal L with $L \subsetneq P$. Another calculation shows that

$$
\ell(D / L)= \begin{cases}0 & \text { if } P \notin \Sigma \\ \inf v_{P}\left(L D_{P} / Q D_{P}\right) & \text { if } P \in \Sigma_{4} \\ \infty & \text { if } P \in \Sigma_{1} \cup \Sigma_{2} \cup \Sigma_{3}\end{cases}
$$

where Q is the biggest prime ideal properly contained in P. In particular, $P \in \Sigma$ if and only if $\ell(D / L)>0$ (since $L \subsetneq P$); hence, $\Sigma \cap \mathcal{B}=$ $\Sigma^{\prime} \cap \mathcal{B}$. Furthermore, $\ell(D / L)=\infty$ if and only if $P \in \Sigma_{1} \cup \Sigma_{2} \cup \Sigma_{3}$, and
similarly for ℓ^{\prime}; since $\Sigma_{1}=\Sigma_{1}^{\prime}$ and $\Sigma_{3}=\Sigma_{3}^{\prime}$ by the previous reasoning, and the Σ_{i} and Σ_{i}^{\prime} are disjoint, it follows that $\Sigma_{2} \cap \mathcal{B}=\Sigma_{2}^{\prime} \cap \mathcal{B}$.

Let P be an unbranched prime ideal. If $P \notin \Sigma$, then by hypothesis there is a $Q \subsetneq P$ not contained in Σ; in particular (eventually passing to the minimal prime of an $x \in P \backslash Q$) we can suppose that Q is branched. By the previous reasoning, $Q \notin \Sigma^{\prime}$, and thus also $P \notin \Sigma^{\prime}$. By the same reasoning, if $P \notin \Sigma^{\prime}$ then $P \notin \Sigma$; hence, $\Sigma \cap \mathcal{U}=\Sigma^{\prime} \cap \mathcal{U}$. Furthermore, $\Sigma_{4} \cap \mathcal{U}=\emptyset=\Sigma_{4}^{\prime} \cap \mathcal{U}$; hence, $\Sigma_{2} \cap \mathcal{U}=\Sigma_{2}^{\prime} \cap \mathcal{U}$.

Putting together the two cases, we see that $\Sigma=\Sigma^{\prime}$ and $\Sigma_{2}=\Sigma_{2}^{\prime}$; hence, $\Sigma_{4}=\Sigma_{4}^{\prime}$. Moreover, $\inf v_{P}\left(L D_{P} / Q D_{P}\right)=\inf v_{P}^{\prime}\left(L D_{P} / Q D_{P}\right)$ imply that $v_{P}=v_{P}^{\prime}$. The claim is proved.

Remark 5.11. If we drop the hypothesis on the unbranched prime ideals, the proposition above does not hold. For example, let P be an unbranched prime ideal of D, and let Δ be the set of prime ideals properly contained in P. Then,

$$
\left(\sum_{Q \in \Delta}\left(t_{Q D_{Q}}\right)^{D}\right)(D / I)= \begin{cases}0 & \text { if } Q D_{Q} \subsetneq I D_{Q} \text { for every } Q \in \Delta \\ \infty & \text { otherwise }\end{cases}
$$

The first condition holds if and only if $P D_{P} \subseteq I D_{P}$; hence, $\sum_{Q \in \Delta}\left(t_{Q D_{Q}}\right)^{D}=$ $\left(i_{P D_{P}}\right)^{D}$. In the notation of Proposition 5.10, this means the length function induced by the families $\Sigma_{1}=\Delta, \Sigma_{2}=\Sigma_{3}=\Sigma_{4}=\emptyset$ and $\Sigma_{1}^{\prime}=\Delta, \Sigma_{2}^{\prime}=\{P\}, \Sigma_{3}^{\prime}=\Sigma_{4}^{\prime}=\emptyset$ are the same, and thus uniqueness does not hold.

As a consequence, we can prove that (under the hypotheses of Theorem 5.4) the set $\mathcal{L}(D)$ depends only on $\operatorname{Spec}(D)$ and the idempotence of the primes of D.
Theorem 5.12. Let A, B be Prüfer domains such that every ideal of A and B has only finitely many minimal primes. Suppose that there is a homeomorphism $\phi: \operatorname{Spec}(A) \longrightarrow \operatorname{Spec}(B)$ such that a prime ideal P is idempotent if and only if $\phi(P)$ is idempotent. Then, there is an order isomorphism $\bar{\phi}: \mathcal{L}(A) \longrightarrow \mathcal{L}(B)$ that respects the classes of $\ell \otimes D_{P}$, i.e., such that $\phi(\Lambda(\ell))=\Lambda(\bar{\phi}(\ell))$ for each $\Lambda \in\left\{\Sigma_{t}, \Sigma_{i}, \Sigma_{r}, \Sigma_{v}\right\}$.

Proof. We first note that, if $P \in \operatorname{Spec}(A)$, then P is branched if and only if $\phi(P)$ is branched: indeed, the homeomorphism ϕ induces homeomorphisms $\phi_{P}: \operatorname{Spec}\left(A_{P}\right) \longrightarrow \operatorname{Spec}\left(B_{\phi(P)}\right)$, and the maximal ideal M of a valuation ring V is branched if and only if $\operatorname{Spec}(V) \backslash\{M\}$ is compact. Since $\operatorname{Spec}\left(A_{P}\right) \backslash\left\{P A_{P}\right\}$ corresponds to $\operatorname{Spec}\left(B_{\phi(P)}\right) \backslash$ $\left\{\phi(P) B_{\phi(P)}\right\}$, we have that P is branched if and only if $\phi(P)$ is branched.

For every branched prime ideal P of A, fix a valuation v_{P} on $A_{P} / L A_{P}$ (viewed as a map to \mathbb{R}), where L is the largest prime properly contained in P; then, all valuations on $A_{P} / L A_{P}$ are in the form λv_{P}, for some $\lambda \in \mathbb{R}^{+}$. Similarly, if P is a branched prime ideal of B, fix a valuation w_{P} on $B_{P} / L B_{P}$ (with the same notation for L).

Let $\ell \in \mathcal{L}(A)$. By Corollary 5.7, and with the notation as above, we can write
$\ell=\sum_{P \in \Sigma_{t}(\ell)}\left(t_{P A_{P}}\right)^{A}+\sum_{P \in \Sigma_{i}(\ell)}\left(i_{P A_{P}}\right)^{A}+\sum_{P \in \Sigma_{r}(\ell)} \ell(A / P)\left(\mathrm{rk}_{P A_{P}}\right)^{A}+\sum_{P \in \Sigma_{v}(\ell)}\left(L_{\lambda_{P} v_{P}}\right)^{A} ;$
hence, we define

$$
\begin{aligned}
\bar{\phi}(\ell) & :=\sum_{Q \in \phi\left(\Sigma_{t}(\ell)\right)}\left(t_{Q B_{Q}}\right)^{B}+\sum_{Q \in \phi\left(\Sigma_{i}(\ell)\right)}\left(i_{Q B_{Q}}\right)^{B}+ \\
& +\sum_{Q \in \phi\left(\Sigma_{r}(\ell)\right)} \ell\left(A / \phi^{-1}(Q)\right)\left(\mathrm{rk}_{Q B_{Q}}\right)^{B}+\sum_{Q \in \phi\left(\Sigma_{v}(\ell)\right)}\left(L_{\lambda_{\phi^{-1}(Q)} w_{Q}}\right)^{B} .
\end{aligned}
$$

By the previous reasoning, every prime of $\phi\left(\Sigma_{i}(\ell)\right)$ and $\phi\left(\Sigma_{r}(\ell)\right)$ is idempotent and every prime of $\phi\left(\Sigma_{v}(\ell)\right)$ is branched; hence, $\bar{\phi}$ is a welldefined map from $\mathcal{L}(A)$ to $\mathcal{L}(B)$. Furthermore, since ϕ is a homeomorphism it is straightforward to see that $\left\{\phi\left(\Sigma_{t}(\ell)\right), \phi\left(\Sigma_{i}(\ell)\right), \phi\left(\Sigma_{r}(\ell)\right), \phi\left(\Sigma_{v}(\ell)\right)\right\}$ is a layered family with core $\phi\left(\Sigma_{t}(\ell)\right)$, and that if every prime contained in the branched prime Q of B is in $\phi\left(\Sigma_{t}(\ell)\right)$ then Q is in $\phi\left(\Sigma_{t}(\ell)\right) \cup \phi\left(\Sigma_{i}(\ell)\right) \cup \phi\left(\Sigma_{r}(\ell)\right)$. By Proposition 5.10, thus, $\bar{\phi}$ is injective, and it respects the classes of $\ell \otimes D_{P}$.

With the same reasoning, we can build an injective map $\overline{\phi^{-1}}: \mathcal{L}(B) \longrightarrow$ $\mathcal{L}(A)$, and it is an easy verification that $\overline{\phi^{-1}}$ is the inverse of $\bar{\phi}$. Hence, $\bar{\phi}$ and $\overline{\phi^{-1}}$ are bijections between $\mathcal{L}(A)$ and $\mathcal{L}(B)$.
Suppose now $\ell_{1} \leq \ell_{2}$ are length functions on A : we claim that $\bar{\phi}\left(\ell_{1}\right) \leq$ $\bar{\phi}\left(\ell_{2}\right)$.

It is enough to verify the inequality at B / J, where J is an ideal of B; furthermore, with the same reasoning of the proof of Theorem 5.4, we can reduce this verification to the case where $\operatorname{rad}(J)=: Q$ is a prime ideal, and by Proposition 5.1 we can further suppose that J is a primary ideal. Let $P:=\phi^{-1}(Q)$.

If $P \notin \Sigma\left(\ell_{1}\right)$, then $Q \notin \phi\left(\Sigma\left(\ell_{1}\right)\right)=\Sigma\left(\bar{\phi}\left(\ell_{1}\right)\right)$, and thus, by Proposition 5.1, $\ell_{1}(B / J)=0$. Hence, $\bar{\phi}\left(\ell_{1}\right)(B / J) \leq \bar{\phi}\left(\ell_{2}\right)(B / J)$. Suppose thus that $P \in \Sigma\left(\ell_{1}\right)$, i.e., that $Q \in \Sigma\left(\bar{\phi}\left(\ell_{1}\right)\right)$.

Then, $\bar{\phi}\left(\ell_{1}\right)(B / J)=\left(\bar{\phi}\left(\ell_{1}\right) \otimes B_{Q}\right)(B / J)$. Furthermore, if Q is a prime ideal such that $Q \notin \phi\left(\Sigma_{v}(\ell)\right)$ (equivalently, if $P \notin \Sigma_{v}(\ell)$) then $\ell(A / J)=$ $\bar{\phi}(\ell)(B / Q)$ for every length function ℓ; in particular,

$$
\bar{\phi}\left(\ell_{1}\right)(B / Q)=\ell_{1}(A / P) \leq \ell_{2}(A / P)=\bar{\phi}\left(\ell_{2}\right)(B / Q)
$$

Thus, if $J=Q$ we are done; suppose now that $J \subsetneq Q$.
If $P \notin \Sigma_{v}(\ell)$ and L_{1}, L_{2} are P-primary ideals such that $L_{1}, L_{2} \subsetneq P$, then $\ell\left(A / L_{1}\right)=\ell\left(A / L_{2}\right)$ (equal to 0 if $P \notin \Sigma(\ell)$ and to ∞ if $P \in$ $\Sigma(\ell))$; hence, if $P \in \Sigma\left(\ell_{1}\right) \backslash \Sigma_{v}(\ell)$ then $\ell_{1}(A / L)=\infty$ for every P primary ideal $L \subsetneq P$, which means that $\ell_{2}(A / L)=\infty$; it follows that also $\bar{\phi}\left(\ell_{1}\right)(B / J)=\infty=\bar{\phi}\left(\ell_{2}\right)(B / J)$, and in particular $\bar{\phi}\left(\ell_{1}\right)(B / J) \leq$ $\bar{\phi}\left(\ell_{2}\right)(B / J)$.

Hence, we only need to consider that case $P \in \Sigma_{v}\left(\ell_{1}\right)$; in particular, P is branched, and so Q is as well. If $P \notin \Sigma_{v}\left(\ell_{2}\right)$, then $\ell_{2}(A / L)=\infty$ for all P-primary ideals $L \subsetneq P$; hence $\bar{\phi}\left(\ell_{1}\right)(B / J) \leq \bar{\phi}\left(\ell_{2}\right)(B / J)$ since the latter is equal to ∞.

Suppose thus that $P \in \Sigma_{v}\left(\ell_{1}\right) \cap \Sigma_{v}\left(\ell_{2}\right)$; let P^{\prime} be the largest prime ideal of A properly contained in P, and let Q^{\prime} be the largest prime ideal of B properly contained in Q. Let $\pi_{Q}: B_{Q} \longrightarrow B_{Q} / Q^{\prime} B_{Q}$ be the canonical quotient map. If $Q B_{Q}$ is principal, then $J B_{Q}=\left(Q B_{Q}\right)^{n}$ for some n, and we define $I:=\left(P A_{P}\right)^{n} \cap A$. If $Q B_{Q}$ is not principal, let $\delta:=\inf \left\{w_{Q}\left(\pi_{Q}(x)\right) \mid x \in J\right\} \in \mathbb{R}$. If $\pi_{P}: A_{P} \longrightarrow A_{P} / P^{\prime} A_{P}$ is the quotient, then we define $I:=\left\{y \in A \mid v_{P}\left(\pi_{P}(y)\right) \geq \delta\right\}$. In both cases, I is an ideal of A whose radical is P, and by construction $\ell(A / I)=\delta=$ $\bar{\phi}(\ell)(B / J)$ for every length function ℓ such that $P \in \Sigma_{v}(\ell)$; as above, it follows that $\bar{\phi}\left(\ell_{1}\right)(B / J) \leq \bar{\phi}\left(\ell_{2}\right)(B / J)$.

Therefore, $\bar{\phi}\left(\ell_{1}\right) \leq \bar{\phi}\left(\ell_{2}\right)$, and so $\bar{\phi}$ is order-preserving. By symmetry, the same happens for $\overline{\phi^{-1}}=\bar{\phi}^{-1}$; hence, $\bar{\phi}$ is an order isomorphism, as claimed.

6. Singular length functions

In this section, we characterize singular length functions through purely ideal-theoretic means, by using the concept of localizing system (see [5] or [6, Section 5.1]). We denote by $\mathcal{I}(D)$ the set of ideals of D.
Definition 6.1. Let D be an integral domain. A localizing system on D is a set $\mathcal{F} \subseteq \mathcal{I}(D)$ such that:

- if $I \in \mathcal{F}$ and $I \subseteq J$, then $J \in \mathcal{F}$;
- if $I \in \mathcal{F}$ and $(J: i D) \in \mathcal{F}$ for all $i \in I$, then $J \in \mathcal{F}$.

We denote by LocSist (D) the set of localizing systems on D.
Our next aim is to prove that to every length function can be associated a localizing system, and conversely.

Definition 6.2. Let ℓ be a length function. The zero locus of ℓ is

$$
Z(\ell):=\{I \in \mathcal{I}(D) \mid \ell(D / I)=0\} .
$$

Proposition 6.3. The zero locus of a length function ℓ is a localizing system.
Proof. If $I \in Z(\ell)$ and $I \subseteq J$ then $\ell(D / J) \leq \ell(D / I)=0$, and so $J \in$ $Z(\ell)$. Suppose $I \in Z(\ell)$ and let J be an ideal such that $(J: i D) \in Z(\ell)$ for every $i \in I$. From the exact sequence

$$
0 \longrightarrow(I+J) / J \longrightarrow D / J \longrightarrow D /(I+J) \longrightarrow 0
$$

and from the fact that $I+J \in Z(\ell)$ (since $I+J \supseteq I \in Z(\ell)$), we have $\ell(D / J)=\ell((I+J) / J)$. For every $i+J \in(I+J) / J$, we have $\operatorname{Ann}(i+J)=(J: i D) \in Z(\ell)$ by hypothesis; by Lemma 4.1, it follows
that $\ell((I+J) / J)=0$, and thus $\ell(D / J)=0$, i.e., $J \in Z(\ell)$. Thus, $Z(\ell)$ is a localizing system.

Conversely, let \mathcal{F} be a localizing system on D. The length function associated to \mathcal{F} is

$$
\ell_{\mathcal{F}}(M):= \begin{cases}0 & \text { if } \operatorname{Ann}(x) \in \mathcal{F} \text { for all } x \in M \\ \infty & \text { otherwise }\end{cases}
$$

Proposition 6.4. For any localizing system \mathcal{F} on $D, \ell_{\mathcal{F}}$ is a length function.

Proof. Clearly, $\ell_{\mathcal{F}}$ is upper continuous. Let

$$
0 \longrightarrow M_{1} \longrightarrow M_{2} \xrightarrow{\pi} M_{3} \longrightarrow 0
$$

be an exact sequence of D-modules.
If $\ell_{\mathcal{F}}\left(M_{2}\right)=0$, then $\operatorname{Ann}(x) \in \mathcal{F}$ for all $x \in M_{2}$; in particular, $\operatorname{Ann}(y) \in \mathcal{F}$ for all $y \in M_{1}$ (and so $\ell_{\mathcal{F}}\left(M_{1}\right)=0$) and $\operatorname{Ann}(z)=$ $\operatorname{Ann}(\pi(x)) \supseteq \operatorname{Ann}(x)$ for all $z=\pi(x) \in M_{3}$ (and so $\left.\ell_{\mathcal{F}}\left(M_{3}\right)=0\right)$. In particular, $\ell_{\mathcal{F}}\left(M_{2}\right)=\ell_{\mathcal{F}}\left(M_{1}\right)+\ell_{\mathcal{F}}\left(M_{3}\right)$.

Suppose now $\ell_{\mathcal{F}}\left(M_{2}\right)=\infty$; then, there is an $x \in M_{2}$ such that $\operatorname{Ann}(x) \notin \mathcal{F}$. Suppose $\ell_{\mathcal{F}}\left(M_{1}\right)=\ell_{\mathcal{F}}\left(M_{3}\right)=0$, let $z:=\pi(x)$, and consider the exact sequence

$$
0 \longrightarrow x D \cap M_{1} \longrightarrow x D \longrightarrow z D \longrightarrow 0
$$

Since we supposed $\ell_{\mathcal{F}}\left(M_{3}\right)=0$, we must have $I:=\operatorname{Ann}(z) \in \mathcal{F}$; furthermore, for every $i \in I$, we have $i x \in x D \cap M_{1}$, and thus $\operatorname{Ann}(i x) \in$ \mathcal{F}. However, $\operatorname{Ann}(i x)=(\operatorname{Ann}(x): i D)$; since $I \in \mathcal{F}$, this would mean that $\operatorname{Ann}(x) \in \mathcal{F}$, against the hypothesis on x. Therefore, one between $\ell_{\mathcal{F}}\left(M_{1}\right)$ and $\ell_{\mathcal{F}}\left(M_{3}\right)$ is infinite, and thus $\ell_{\mathcal{F}}\left(M_{2}\right)=\ell_{\mathcal{F}}\left(M_{1}\right)+\ell_{\mathcal{F}}\left(M_{3}\right)$. Hence, $\ell_{\mathcal{F}}$ is a length function.

Theorem 6.5. Let D be an integral domain. The two maps

$$
\begin{array}{rlrl}
\mathcal{L}_{\text {sing }}(D) & \longrightarrow \operatorname{LocSist}(D) & \text { and } & \operatorname{LocSist}(D) \\
\ell & \longrightarrow \mathcal{L}_{\text {sing }}(D) \\
& \longmapsto \mathcal{F} & \longmapsto \ell_{\mathcal{F}}
\end{array}
$$

are bijections, one inverse of the other. Furthermore, if $\operatorname{LocSist}(D)$ is endowed with the containment order, they are order-reversing isomorphisms.

Proof. Since a singular length function is characterized by its zero locus, we need to show that $Z\left(\ell_{\mathcal{F}}\right)=\mathcal{F}$ and that $\ell_{Z(\ell)}=\ell$. Indeed,

$$
Z\left(\ell_{\mathcal{F}}\right)=\left\{I \in \mathcal{I}(D) \mid \ell_{\mathcal{F}}(D / I)=0\right\}
$$

However, for every $x \in D / I$ we have $\operatorname{Ann}(x) \supseteq \operatorname{Ann}(1+I)=I$, and thus $\ell_{\mathcal{F}}(D / I)=0$ if and only if $I \in Z(\ell)$. Therefore, $Z\left(\ell_{\mathcal{F}}\right)=\mathcal{F}$.

On the other hand,

$$
\ell_{Z(\ell)}(M)= \begin{cases}0 & \text { if } \operatorname{Ann}(x) \in Z(\ell) \text { for all } x \in M \\ \infty & \text { otherwise }\end{cases}
$$

If $\operatorname{Ann}(x) \in Z(\ell)$ for all $x \in M$, then $\ell(M)=0$ by Lemma 4.1, while if $\operatorname{Ann}(x) \notin Z(\ell)$ for some $x \in M$ then $x D \simeq D / \operatorname{Ann}(x)$ and thus, since ℓ is singular, $\ell(M) \geq \ell(x D)=\infty$. Thus, $\ell_{Z(\ell)}=\ell$, as claimed.

The last claims follows from the fact that, for singular length functions, $\ell_{1} \leq \ell_{2}$ if and only if $Z\left(\ell_{1}\right) \supseteq Z\left(\ell_{2}\right)$.

Localizing systems are also closely related to the concept of stable semistar operations. Let $\mathbf{F}(D)$ be the set of D-submodules of the quotient field K; a stable semistar operation on D is a map $\star: \mathbf{F}(D) \longrightarrow$ $\mathbf{F}(D)$ such that, for every $I, J \in \mathbf{F}(D)$ and every $x \in K$:

- $I \subseteq I^{\star}$;
- if $I \subseteq J$, then $I^{\star} \subseteq J^{\star}$;
- $\left(I^{\star}\right)^{\star}=I^{\star}$;
- $(x I)^{\star}=x \cdot I^{\star}$;
- $(I \cap J)^{\star}=I^{\star} \cap J^{\star}$.
(A map that satisfies the first four properties is called a semistar operation.) We denote by $\operatorname{SStar}_{\mathrm{st}}(D)$ the set of stable semistar operations.

There is a natural bijection between stable semistar operations and localizing system: if \star is a stable semistar operation, then the set $\mathcal{F}^{\star}:=$ $\left\{I \in \mathcal{I}(D) \mid 1 \in I^{\star}\right\}$ is a localizing system, while if \mathcal{F} is a localizing system then

$$
\star_{\mathcal{F}}: I \mapsto \bigcup\{(I: E) \mid E \in \mathcal{F}\}
$$

is a stable semistar operation; these two correspondences are inverse one of each other [5, Theorem 2.10]. By composing them with the maps considered in Theorem 6.5, we obtain two bijections

$$
\begin{aligned}
\Phi: \operatorname{SStar}_{\mathrm{st}}(D) & \longrightarrow \mathcal{L}_{\text {sing }}(D) \\
\star & \longmapsto \ell_{\mathcal{F} \star}
\end{aligned} \quad \text { and } \begin{aligned}
\Phi^{-1}: \mathcal{L}_{\text {sing }} & \longrightarrow \operatorname{SStar}_{\mathrm{st}}(D) \\
\ell & \longmapsto \star Z(\ell) .
\end{aligned}
$$

which are order-reversing isomorphisms if $\operatorname{SStar}_{\mathrm{st}}(D)$ is endowed with the order such that $\star_{1} \leq \star_{2}$ if $I^{\star_{1}} \subseteq I^{\star_{2}}$ for every $I \in \mathbf{F}(D)$. Note that, in this order, the infimum of a family Δ is the map sending I to $\bigcap_{\star \in \Delta} I^{\star}$.

Proposition 6.6. Let Λ be a nonempty set of stable semistar operations on the integral domain D. Then,

$$
\Phi(\inf \Lambda)=\sum_{\star \in \Lambda} \Phi(\star)
$$

Proof. Since Φ is an order-reversing isomorphism, $\Phi(\inf \Lambda)=\sup \Phi(\Lambda) ;$ the claim now follows from Lemma 3.7.

A special subset of stable semistar operations are spectral semistar operations, i.e., closures in the form

$$
s_{\Delta}: I \mapsto \bigcap_{P \in \Delta} I D_{P},
$$

where $\Delta \subseteq \operatorname{Spec}(D)$; furthermore, we can suppose that Δ is closed by generizations, i.e., it is such that if $P \in \Delta$ and $Q \subseteq P$ then also $Q \in \Delta$. The corresponding localizing system is

$$
\mathcal{F}_{\Delta}:=\{I \in \mathcal{I}(D) \mid I \nsubseteq P \text { for every } P \in \Delta\}
$$

while the associated length function ℓ_{Δ} is such that

$$
\ell_{\Delta}(D / I)= \begin{cases}0 & \text { if } I \nsubseteq P \text { for every } P \in \Delta \\ \infty & \text { if } I \subseteq P \text { for some } P \in \Delta\end{cases}
$$

or, more generally,

$$
\ell_{\Delta}(M)= \begin{cases}0 & \text { if } \operatorname{Ann}(x) \nsubseteq P \text { for every } P \in \Delta \text { and } x \in M \\ \infty & \text { if } \operatorname{Ann}(x) \subseteq P \text { for some } P \in \Delta \text { and } x \in M\end{cases}
$$

for every D-module M. In particular, if $\Delta=\operatorname{Spec}(D)$ then $\ell_{\Delta}(M)=0$ if and only if $M=0$, while if $\Delta=\{(0)\}$ then $\ell_{\Delta}(M)=0$ if and only if M is torsion.

Such length functions have a decomposition like the ones found in Theorems 3.10 and 5.4.

Proposition 6.7. Let D be an integral domain, and let $\Delta \subseteq \operatorname{Spec}(D)$ be closed by generizations; let $\ell:=\Phi\left(s_{\Delta}\right)$, and let $\Sigma(\ell):=\{P \in$ $\operatorname{Spec}(D) \mid P \notin Z(\ell)\}$. Then:
(a) $\Delta=\Sigma(\ell)$;
(b) $\ell=\sum_{P \in \Sigma(\ell)} \ell \otimes D_{P}$.

Proof. From the bijections between $\operatorname{SStar}_{\text {st }}(D), \operatorname{LocSist}(D)$ and $\mathcal{L}_{\text {sing }}(D)$, we see that prime P is in $Z(\ell)$ if and only if $1 \in P^{s_{\Delta}}$; since Δ is closed by generizations, it follows that $P \in Z(\ell)$ if and only if $P \notin \Delta$, and thus $\Delta=\Sigma(\ell)$.

The semistar operation s_{Δ} is the infimum of the family $s_{\{P\}}$, as P ranges in Δ; by Proposition 6.6, it follows that

$$
\ell=\Phi\left(s_{\Delta}\right)=\sum_{P \in \Delta} \Phi\left(s_{\{P\}}\right),
$$

and thus we only need to show that $\Phi\left(s_{\{P\}}\right)=\ell \otimes D_{P}$; to do so, it is enough to show that their zero locus are equal. We have

$$
Z\left(\Phi\left(s_{\{P\}}\right)\right)=\mathcal{F}^{s_{\{P\}}}=\{I \in \mathcal{I}(D) \mid I \nsubseteq P\} .
$$

If $I \nsubseteq P$, then $D_{P} / I D_{P}=0$, and thus

$$
\left(\ell \otimes D_{P}\right)(D / I)=\ell\left(D / I \otimes_{D} D_{P}\right)=\ell\left(D_{P} / I D_{P}\right)=\ell(0)=0
$$

i.e., $I \in Z\left(\ell \otimes D_{P}\right)$; on the other hand, if $I \subseteq P$ then, using Proposition 4.4,

$$
\left(\ell \otimes D_{P}\right)(D / I) \geq\left(\ell \otimes D_{P}\right)(D / P)=\ell(D / P)=\infty
$$

since $P^{s_{\{P\}}}=P D_{P}$ does not contain 1. Hence, $I \notin Z\left(\ell \otimes D_{P}\right)$, and thus $Z\left(\Phi\left(s_{\{P\}}\right)\right)=Z\left(\ell \otimes D_{P}\right)$. The claim is proved.

Let now D be a Prüfer domain, and let $\star \in \operatorname{SStar}_{\mathrm{st}}(D)$. The normalized stable version of \star is [17, Section 4]

$$
\hat{\star}: I \mapsto \bigcap_{P \in \Sigma_{1}(\star)} I D_{P} \cap \bigcap_{P \in \Sigma_{2}(\star)}\left(I D_{P}\right)^{v_{D_{P}}},
$$

where $v_{D_{P}}$ is the v-operation on D_{P} (i.e., if J is an ideal of D_{P} then $J^{v_{D_{P}}}=\bigcap\left\{y D_{P} \mid J \subseteq y D_{P}\right\}$), and
$\Sigma_{1}(\star):=\left\{P \in \operatorname{Spec}(D) \mid 1 \notin P^{\star}\right\}$,
$\Sigma_{2}(\star):=\left\{P \in \operatorname{Spec}(D) \mid 1 \in P^{\star}, 1 \notin Q^{\star}\right.$ for some P-primary ideal $\left.Q\right\}$.
(In the terminology of [17], $\Sigma_{1}(\star)=$: $\operatorname{QSpec}^{\star}(D)$ is the quasi-spectrum of \star, while $\Sigma_{2}(\star)=: \operatorname{PsSpec}^{\star}(D)$ is the pseudo-spectrum.) By [17, Proposition 3.4], and in the terminology introduced in Definition 5.9, furthermore, $\left\{\Sigma_{1}(\star), \Sigma_{2}(\star)\right\}$ is a layered family with core $\Sigma_{1}(\star)$.

This construction is analogue to the passage from a length function ℓ to

$$
\ell^{\sharp}:=\sum_{P \in \Sigma_{t}(\ell)}\left(t_{P D_{P}}\right)^{D}+\sum_{P \in \Sigma_{i}(\ell)}\left(i_{P D_{P}}\right)^{D}=\sum_{P \in \Sigma(\ell)} \ell \otimes D_{P},
$$

as the next proposition shows.
Proposition 6.8. Let D be a Prüfer domain. Then, for every stable star operation \star, we have $\Phi(\star)=\Phi(\star)^{\sharp}$.
Proof. Let Δ be the set formed by the functions $d_{P}: I \mapsto I D_{P}$, for $P \in \Sigma_{1}(\star)$, and $v_{P}:=I \mapsto\left(I D_{P}\right)^{v_{D_{P}}}$, as $P \in \Sigma_{2}(\star)$. By Proposition 6.6, it follows that

$$
\Phi(\widehat{\star})=\sum_{P \in \Sigma_{1}(\star)} \Phi\left(d_{P}\right)+\sum_{P \in \Sigma_{2}(\star)} \Phi\left(v_{P}\right) .
$$

On the other hand, by unpacking the definitions, we have $\Sigma_{t}(\Phi(\star))=$ $\Sigma_{1}(\star)$ and $\Sigma_{i}(\Phi(\star))=\Sigma_{2}(\star)$; hence, it is enough to show that $\Phi\left(d_{P}\right)=$ $\left(t_{P D_{P}}\right)^{D}$ and $\Phi\left(v_{P}\right)=\left(i_{P D_{P}}\right)^{D}$ for every $P \in \operatorname{Spec}(D)$, and to do so it is enough to consider their zero loci.

By a direct calculation,

$$
\begin{aligned}
Z\left(\Phi\left(d_{P}\right)\right) & =\{I \in \mathcal{I}(D) \mid I \nsubseteq P\}= \\
& =\left\{I \in \mathcal{I}(D) \mid P D_{P} \subsetneq I D_{P}\right\}=Z\left(\left(t_{P D_{P}}\right)^{D}\right) ;
\end{aligned}
$$

analogously,

$$
Z\left(\Phi\left(v_{P}\right)\right)=\left\{I \in \mathcal{I}(D) \mid P D_{P} \subseteq I D_{P}\right\}=Z\left(\left(i_{P D_{P}}\right)^{D}\right)
$$

since $\left(I D_{P}\right)^{v_{D_{P}}}=D_{P}$ if and only if $I D_{P}$ is equal to D_{P} or to $P D_{P}$. The claim is proved.

Suppose now that every ideal of D has only finitely many minimal primes. Then, Theorem 5.4 (and Corollary 5.8) can be seen as a version of [17, Theorem 4.5 and Corollary 4.6]: like any singular length function can be written as $\sum_{P \in \Sigma_{1}} \ell \otimes D_{P}+\sum_{P \in \Sigma_{2}} \ell \otimes D_{P}$, a stable semistar operation can be written as the infimum of the semistar operations d_{P} (as P ranges in some Σ_{1}) and v_{P} (as P ranges in Σ_{2}).

More generally, suppose that \star is a semistar operation which is equal to its normalized stable version, i.e., suppose that there are $\Sigma_{1}, \Sigma_{2} \subseteq$ $\operatorname{Spec}(D)$ such that $\left\{\Sigma_{1}, \Sigma_{2}\right\}$ is a layered family with core Σ_{1} and

$$
\star: I \mapsto \bigcap_{P \in \Sigma_{1}} I D_{P} \cap \bigcap_{P \in \Sigma_{2}}\left(I D_{P}\right)^{v_{D_{P}}} .
$$

Then, by Proposition 6.8, we see that the corresponding length function $\ell=\ell^{\sharp}$ can be decomposed as $\ell=\sum_{P \in \Sigma(\ell)} \ell \otimes D_{P}$. Thus, the fact that a stable semistar operation is determined at the local level (through the closures d_{P} and v_{P}) corresponds to the fact that the corresponding length function depends exclusively on length functions on the localizations of D.

We end the paper with two examples of Prüfer domains of dimension 1 that are not locally finite and whose behavior with respect to decomposition is very different: more precisely, in Example 6.9 we present an example where every singular length function can be decomposed (despite the domain not satisfying the hypothesis of Theorem 5.4), while in Example 6.10 we give a singular function that can't be decomposed.

Example 6.9. Let D be an almost Dedekind domain (i.e., an integral domain such that D_{M} is a discrete valuation ring for every $M \in \operatorname{Max}(D)$), and suppose that there is only a finite (nonzero) number of maximal ideals of D that are not finitely generated. (See [10] for explicit examples of domains with this property.) In particular, D is one-dimensional and $\operatorname{Spec}(D)$ is not Noetherian, and so there are ideals with infinitely many minimal primes.

We claim that every singular length function ℓ can be written as $\ell=\sum_{M \in \operatorname{Max}(D)} \ell \otimes D_{M}$, and, to do so, we want to show that every stable semistar operation \star is equal to $\star=s_{\Delta}$ for some $\Delta \subseteq \operatorname{Spec}(D)$. If not, then by [5, Theorem 4.12(3)] there is a proper ideal I of D such that $I=I^{\star} \cap D$ but $P \neq P^{\star} \cap D$ for every prime ideal P containing I; since D is one-dimensional, it follows that $1 \in P^{\star}$ for every P containing I, or equivalently that $P^{\star}=D^{\star}$.

Suppose that $P=p D$ contains I and is principal; then,

$$
1 \in P^{\star}=(p D)^{\star}=p D^{\star},
$$

and thus $1 / p \in T:=D^{\star}$. Hence,

$$
I^{\star}=(I D)^{\star}=\left(I D^{\star}\right)^{\star} \supseteq I D\left[\frac{1}{p}\right]
$$

The ideal $I D\left[\frac{1}{p}\right] \cap D$ is not contained in $p D$, since

$$
\left(I D\left[\frac{1}{p}\right] \cap D\right) D_{P}=I D\left[\frac{1}{p}\right] D_{P} \cap D D_{P}=D_{P}
$$

thus, $I D\left[\frac{1}{p}\right] \cap D \neq I$, a contradiction. Hence, I is not contained in any principal prime ideal; however, this means that I has a primary decomposition, namely $I=\bigcap_{i}\left(I D_{M_{i}} \cap D\right)$, where $\left\{M_{1}, \ldots, M_{n}\right\}$ are the maximal ideal of D containing I. By Proposition 4.7, it follows that $\ell(D / I)=\sum_{i} \ell\left(D /\left(I D_{M_{i}} \cap D\right)\right)$; however, by Proposition 4.4,

$$
\ell\left(D /\left(I D_{M} \cap D\right)\right)=\ell\left(D_{M} / I D_{M}\right)=\ell\left(D_{M} /\left(M D_{M}\right)^{k}\right)=0
$$

since D_{M} is a DVR (and so $I D_{M}=\left(M D_{M}\right)^{k}$ for some k) and $\ell\left(D_{M} / M D_{M}\right)=$ $\ell(D / M)=0$. It follows that $\ell(D / I)=0$, and thus that $I \in Z(\ell)=$ $\left\{I \in \mathcal{I}(D) \mid 1 \in I^{\star}\right\}$, against the fact that $I=I^{\star} \cap D$. Hence, \star is spectral and so $\star=s_{\Delta}$; by Proposition 6.7, we have

$$
\ell=\sum_{P \in \Sigma(\ell)} \ell \otimes D_{P}=\sum_{M \in \operatorname{Max}(D)} \ell \otimes D_{M}
$$

with the last equality coming from the fact that, if $M \notin \Sigma(\ell)$, then $\ell \otimes D_{M}$ sends every proper quotient D / I to 0 .

Example 6.10. Let $D:=\mathbb{A}$ be the ring of all algebraic integers. By [3, Example 4.5] and [17, Example 4.2], we can build a stable semistar operation \star such that $Q^{\star}=D$ for every primary ideal Q, while $D^{\star}=D$ (and so $(x D)^{\star}=x D$ for every $x \in D$). The corresponding localizing system contains every ideal contained in only finitely many maximal ideals, but it does not contain any proper principal ideal; hence, the associated length function ℓ is such that $\ell(D / I)=0$ if I is contained in only finitely many maximal ideals, while $\ell(D / x D)=\infty$ for all nonunits $x \in D$.

By Proposition 4.4, if Q is P-primary, then

$$
\ell_{D_{P}}\left(D_{P} / Q D_{P}\right)=\ell(D / Q)=0
$$

while $\ell_{D_{P}}\left(D_{P}\right)=\infty$; hence, $\ell_{D_{P}}=t_{(0)}$ for every $P \in \operatorname{Max}(D)$. It follows that $\Sigma_{t}(\ell)=\{(0)\}$ while $\Sigma_{i}(\ell)=\Sigma_{r}(\ell)=\Sigma_{v}(\ell)=\emptyset$; therefore, setting $\ell^{\sharp}:=\sum_{P \in \Sigma(\ell)} \ell \otimes D_{P}$, we have

$$
\ell^{\sharp}(M)=\left(t_{(0)}\right)^{D}(M)= \begin{cases}0 & \text { if } M \text { is a torsion } D \text {-module } \\ \infty & \text { otherwise },\end{cases}
$$

and thus $\ell^{\sharp}(D / I)=0$ for every proper ideal I of D. In particular, $\ell \neq \ell^{\sharp}$.

Furthermore, $\left(\ell \otimes D_{M}\right)(D / I)=0$ for every nonzero ideal I and every maximal ideal M; hence, we also have

$$
\ell \neq \sum_{P \in \Delta} \ell \otimes D_{P}
$$

for every family $\Delta \subseteq \operatorname{Spec}(D)$.

Acknowledgments

I would like to thank Luigi Salce for introducing me to length functions and for his feedback on an earlier version of the manuscript.

References

[1] M. F. Atiyah and I. G. Macdonald. Introduction to Commutative Algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
[2] Dikran Dikranjan and Anna Giordano Bruno. Entropy in a category. Appl. Categ. Structures, 21(1):67-101, 2013.
[3] Carmelo A. Finocchiaro, Marco Fontana, and Dario Spirito. Spectral spaces of semistar operations. J. Pure Appl. Algebra, 220(8):2897-2913, 2016.
[4] Marco Fontana, Evan Houston, and Thomas Lucas. Factoring Ideals in Integral Domains, volume 14 of Lecture Notes of the Unione Matematica Italiana. Springer, Heidelberg; UMI, Bologna, 2013.
[5] Marco Fontana and James A. Huckaba. Localizing systems and semistar operations. In Non-Noetherian commutative ring theory, volume 520 of Math. Appl., pages 169-197. Kluwer Acad. Publ., Dordrecht, 2000.
[6] Marco Fontana, James A. Huckaba, and Ira J. Papick. Prüfer Domains, volume 203 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 1997.
[7] Robert Gilmer. Multiplicative Ideal Theory. Marcel Dekker Inc., New York, 1972. Pure and Applied Mathematics, No. 12.
[8] Manfred Knebusch and Digen Zhang. Manis Valuations and Prüfer Extensions. I, volume 1791 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002. A new chapter in commutative algebra.
[9] Daniel Lazard. Autour de la platitude. Bull. Soc. Math. France, 97:81-128, 1969.
[10] Alan Loper. Sequence domains and integer-valued polynomials. J. Pure Appl. Algebra, 119(2):185-210, 1997.
[11] Eben Matlis. Torsion-free modules. The University of Chicago Press, ChicagoLondon, 1972. Chicago Lectures in Mathematics.
[12] Douglas Geoffrey Northcott and Manfred Reufel. A generalization of the concept of length. Quart. J. Math. Oxford Ser. (2), 16:297-321, 1965.
[13] Paulo Ribenboim. Valuations and lengths of constructible modules. J. Reine Angew. Math., 283/284:186-201, 1976.
[14] Luigi Salce, Peter Vámos, and Simone Virili. Length functions, multiplicities and algebraic entropy. Forum Math., 25(2):255-282, 2013.
[15] Luigi Salce and Simone Virili. The addition theorem for algebraic entropies induced by non-discrete length functions. Forum Math., 28(6):1143-1157, 2016.
[16] Luigi Salce and Paolo Zanardo. A general notion of algebraic entropy and the rank-entropy. Forum Math., 21(4):579-599, 2009.
[17] Dario Spirito. Towards a classification of stable semistar operations on a Prüfer domain. Comm. Algebra, 46(4):1831-1842, 2018.
[18] Dario Spirito. Jaffard families and localizations of star operations. J. Commut. Algebra, to appear.
[19] Peter Vámos. Additive functions and duality over Noetherian rings. Quart. J. Math. Oxford Ser. (2), 19:43-55, 1968.
[20] Paolo Zanardo. Multiplicative invariants and length functions over valuation domains. J. Commut. Algebra, 3(4):561-587, 2011.
Email address: spirito@mat.uniroma3.it
Dipartimento di Matematica e Fisica, Università degli Studi "Roma Tre", Roma, Italy

[^0]: Date: July 17, 2018.
 2010 Mathematics Subject Classification. 13C60, 13A18, 13F05, 13G05.
 Key words and phrases. Length functions, Jaffard family, Prüfer domains, localizing systems.

