WHEN TWO PRINCIPAL STAR OPERATIONS ARE
THE SAME

DARIO SPIRITO

ABSTRACT. We study when two fractional ideals of the same in-
tegral domain generate the same star operation.

1. INTRODUCTION

Throughout the paper, R will denote an integral domain with quo-
tient field K and F(R) will be the set of fractional ideals of R, that is,
the set of R-submodules I of K such that 2/ C R for some z € K\ {0}.

A star operation on R is a map % : F(R) — F(R) such that, for
every I,J € F(R) and every z € K:

o [ C I

o if ] C J, then I* C J*;

° (]*)* — I*;

o (zI)=u- 1%

e R*=R.
The usual examples of star operations are the identity (usually denoted
by d), the v-operation (or divisorial closure) J — J" = (R: (R :J)),
the ¢- and the w-operation (which are defined from v) and the star
operations I + (Vo [T, where A is a set of overrings of R intersecting
to R. While these examples are the easiest to work with, they usually
cover only a rather small part of the set of star operations.

A much more general construction is given in [9, Proposition 3.2]: if
(I : I) = R, then the map J — (I : ({ : J)) is a star operation. This
construction is much more flexible than the more “classical” ones, and
allows to construct a much higher number of star operations (see e.g.
[10, Proposition 2.1(1)] or [11, Theorem 2.1] for its use to construct an
infinite family of star operations, or [14, 15] for constructions in the
case of numerical semigroups). In this paper, we slightly generalize this
construction (removing the condition (I : I) = R) and study under
which conditions two ideals I and J generate the same star operation:
in particular, we are interested in understanding when this happens
only for isomorphic ideals.
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The structure of the paper is as follows: in Section 3 we give some gen-
eral properties of principal star operations; in Section 4, we generalize
some results of [9] from m-canonical ideals to general ideals; in Section
5 we study the effect of localizations on principal star operations; in
Section 6 we study operations generated by ideals whose v-closure is
R (and, in particular, what happens when R is a unique factorization
domain); in Section 7 we study the Noetherian case, reaching a nec-
essary and sufficient condition for v(I) = v(J) under the assumption
(I:1)=(J:J)=R.

2. BACKGROUND

By an ideal of R we shall always mean a fractional ideal of R, re-
serving the term integral ideal for those contained in R.

Let x be a star operation on R. An ideal I of R is x-closed if I = I
the set of x-closed ideals is denoted by F*(R). When x = v is the
divisorial closure, the elements of FY(R) are called divisorial ideals.

Let Star(R) be the set of star operation on R. Then, Star(R) has
a natural order structure, where x; < %o if and only if I** C I*? for
every I € F(R), or equivalently if 7*'(R) 2 F*2(R). Under this order,
Star(R) is a complete lattice whose minimum is the identity and whose
maximum is the v-operation.

A star operation is said to be of finite type if it is determined by its
action on finitely generated ideals, or equivalently if

I" = U{J* | J C I is finitely generated}

for every I € F(R). A star operation is spectral if there is a subset
A C Spec(D) such that

I*=({IRp | P e A}

for every I € F(R).

If x is a star operation of R, a prime ideal P is a x-prime if it is
*-closed; the set of the %-primes, denoted by Spec*(R), is called the
*-spectrum. A x-maximal ideal of R is an ideal maximal among the set
of proper ideals of R that are x-closed; their set is denoted by Max*(R).
Any *-maximal ideal is prime; however, x-maximal ideals need not to
exist. If x is a star operation of finite type, then every x-closed proper
integral ideal is contained in some *-maximal ideal; furthermore, for

every *-closed ideal I we have I = (\{IRp | P € Spec*(R)}.

3. PRINCIPAL STAR OPERATIONS

Definition 3.1. Let R be an integral domain. For every I € F(R),
the star operation generated by I, denoted by v([), is the supremum of
all the star operations x on R such that I is x-closed. If x = v([) for
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some ideal I, we say that x is a principal star operation. We denote by
Princ(R) the set of principal star operations of R.

We can give a more explicit representation of v(I).

Proposition 3.2. For every fractional ideal J, we have

(1) T =g 0)=J'n (] oL
a€e(I:J)\{0}

Furthermore, if (I : I) = R then J*Y) = (I : (I :J)).

Proof. The fact that the two maps J — J*N (I : (I : J)) and J — J’N
ﬂae( LIN0} a1 give star operations and coincide follows in the same
way as [9, Lemma 3.1 and Proposition 3.2]. The second representation
clearly implies that they close I; furthermore, if I is closed then J”
and each a1 are closed, and thus the two representations of (1) give
exactly v([).

The “furthermore” statement follows again from [9, Lemma 3.1 and
Proposition 3.2]. O

In the paper [9] that introduced the map J +— (I : (I : J)) when
(I : I) = R, an ideal I was said to be m-canonical if J = (1 : (I :J))
for every ideal J. This is equivalent to saying that (I : I) = R and that
v(I) is the identity.

The definition of v(I) can be extended to semistar operations, as in
[13, Example 1.8(2)]; such construction was called the divisorial closure
with respect to I in [4]. The terminology “generated” is justified by the
following Proposition 3.3.

Proposition 3.3. Let x be a star operation on R. Then, x = inf{v(I) |
I € F*(R)}.

Proof. Let f :=inf{v(I) | I € F*(R)}. By definition, * < v([) for every
I € F*(R), and thus * < §. Conversely, let J be a x-ideal; then, § < v(J)
and thus J is g-closed. It follows that x > £, and thus x = f. O

Our main interest in this paper is to understand when two ideals
generate the same star operation. The first cases are quite easy.

Lemma 3.4. Let I be a fractional ideal of R. Then, the following hold.
(a) v(I) = v if and only if I is divisorial.
(b) If (I : I) = R, then v(I) = d if and only if I is m-canonical.
(¢) For every a € K, a # 0, we have v(I) = v(al).
(d) If L is an invertible ideal of R, then v(I) = v(IL).
Proof. The only non-trivial part is the last point. If L is invertible, then
[v(IL)L C (IU(IL)L)’U(IL) _ ([L)U(IL) — I
and thus I"U5) C IL(R: L) = I, i.e., I is v(IL)-closed; it follows that
v(I) > v(IL). Symmetrically, we have v(IL) > v(IL(R : L)) = v(I),
and thus v(I) = v(IL). O
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We note that if J = I L for some invertible ideal L, then I and J are
locally isomorphic. However, the latter condition is neither necessary
nor sufficient for I and J to generate the same star operation, even
excluding divisorial ideals. For example, if R is an almost Dedekind
domain that is not Dedekind, then all ideals are locally isomorphic
but not all are divisorial, and two nondivisorial maximal ideal generate
different star operations (if M # N are two such ideals, then (M :
N) = M and so N*™) = N*N (M : (M : N)) = R). For an example
of non-locally isomorphic ideals generating the same star operation see
Example 7.11.

The following necessary condition has been proved in [14, Lemma
3.7] when I and J are fractional ideals of a numerical semigroup; the
proof of the integral domain case (which was also stated later in the
same paper) can be obtained in exactly the same way.

Proposition 3.5. Let R be an integral domain and I, J be non-divisorial
ideals of R. If v(I) = v(J) then

I=1'N N ('

ye(:J)(J:1)\{0}

4. LOCAL RINGS

As the construction of the principal star operation v(I) generalize
the definition of m-canonical ideal, we expect that I is in some way
“m-canonical for v([)”. Pursuing this strategy, we obtain the following
generalization of [9, Lemma 2.2(e)].

Lemma 4.1. Let I be an ideal of a domain R such that (I : I) = R.
Let {Jo | o € A} be v(I)-ideals such that (,c 4 Jo 7 (0). Then,

v(I)
(I: N Ja) = (Z(I : Ja)> .

Proof. Let J := > (I : J,). Since (I : I) = R, we have L"0) = (I :
(I : L)) for every ideal L; therefore,

(J:J)Z(I:Z(I:Ja)>:ﬂ(z:(J:Ja))zﬂJ;U):ﬂJa

acA acA acA acA
and thus

Jv(f):(]:(I:J)):<]‘ﬂJ“)’

acA
as claimed. 0

The following definition abstracts a property proved, for m-canonical
ideals of local domains, in [9, Lemma 4.1].
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Definition 4.2. Let x be a star operation on R. We say that an ideal
I of R is strongly *-irreducible if I = I* # (\{J € F*(R) | I C J}.
Lemma 4.3. Let R be a domain and I be a nondivisorial ideal of R.

If I is strongly v(I)-irreducible and v(I) = v(J), then I = uJ for some
u€ K.

Proof. Suppose v(I) = v(J). Then

[=r'Y=rn (] o'J
a€(J:)\{0}
Both I and each a™'J is a v([)-ideal: hence, either I = I* (which is
impossible since I is not divisorial) or [ = a~'J for some a € K. [

Lemma 4.4. Suppose (R, M) is a local ring and R = (I : I). If M is
v([)-closed, then I is strongly v(I)-irreducible.

Proof. Let {J,} be a family of v([)-ideals such that I = () J,. Then,

()
R=(I:1)= <I:ﬂJa> = (Z([:J@)
by Lemma 4.1.

Hence (I : J,) C R for every «; suppose I C J, for all a. Then,
1¢(I:J,) and thus (I : J,) C M; therefore, > (I : J,) € M and,
since M is v([)-closed, also (D> (I : Jo)"" C M, a contradiction.
Therefore, we must have J, = I for some «, and [ is strongly v([)-
irreducible. 0

As a consequence of the previous two lemmas, we have a very general
result for local rings.

Proposition 4.5. Let (R, M) be a local domain and I a nondivisorial
ideal of R such that (I : I) = R. If M = M*Y) (in particular, if M is
divisorial), then v(I) = v(J) for some ideal J if and only if I = uJ for

some u € K.

Proof. By Lemma 4.4, I is strongly v([)-irreducible; by Lemma 4.3 it
follows that I = uJ. O

Corollary 4.6. Let (R, M) be a local domain, and I and J two non-
divisorial ideals of R. If R 1is completely integrally closed and M 1is
divisorial, then v(I) = v(J) if and only if I = uJ for some u € K.

Proof. Since R is completely integrally closed, (L : L) = R for all ideals
L; furthermore, since M is divisorial M ") = M for every L. The claim
follows from Proposition 4.5. O

One problem of the previous results is the hypothesis (1 : I) = R. In
the following proposition we eliminate it at the price of forcing more
properties of R.
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Proposition 4.7. Let (R, M) be a local ring, and let T := (M : M).
Let I, J be ideals of R, properly contained between R and T, such that
v(I) =wv(J).

(a) If (1 :1),(J:J)CT, then (I:1)=(J:J).

(b) Suppose also that (I : I) =: A is local with divisorial maximal
ideal, and that I and J are not divisorial over A. Then, there
1s au € K such that I = ulJ.

Proof. If M is principal, T'= R and the statement is vacuous. Suppose
thus M is not principal: then, we also have T' = (R : M). We first
claim that LY = T for every ideal L properly contained between R and
T. Indeed, the containment R C L implies that (R : L) C R and thus,
since R is local, (R: L) C M and LY O T 2 L; hence, L' =T.

(a) Let Ty := (I : I) and T := (J : J), and define *; as the star
operation L* := LY N LT;. Since T contains T} and 75, it is both a T}-
and a Ty-ideal. We claim that L # R is %;-closed if and only if it is a
Ti-ideal: the “if” part is obvious, while if L = LY N LT; then LY =T is
a T;-ideal and thus L is intersection of two Tj-ideals.

If v(I) = v(J), then I is x-closed if and only if J is x-closed; therefore,
since [ is x1-closed and J is xo-closed, both I and J are T} and Ts-ideals.
But (1 : I) (respectively, (J : J)) is the maximal overring of R in which
I (respectively, J) is an ideal; thus (1 : ) = (J : J).

(b) Consider the star operation generated by I on A, i.e.,va(l) : L +—
(A: (A:L)N(:(I:L))for every L € F(A). By the first paragraph
of the proof, applied on the A-ideals, we have (A : (A: L)) =T for all
ideals L of A properly contained between A and T'; in particular, this
happen for J (since R C J implies A = AR C AJ = J, and A # J
since J is not divisorial), and thus Jual) = Jo() = J. Symmetrically,
1°4U) = T; hence, va(I) = v4(J). By Proposition 4.5, applied to A, we
have I = uJ for some u € K, as claimed. [l

Recall that a pseudo-valuation domain (PVD) is a local domain
(R, M) such that M is the maximal ideal of a valuation overring of
R (called the valuation domain associated to R) [8].

Corollary 4.8. Let (R, M) be a pseudo-valuation domain with asso-
ciated valuation ring V', and suppose that the field extension R/M C
V/M is algebraic. Let 1,.J be nondivisorial ideals of R. Then, v(I) =
v(J) if and only if [ =uJ for some u € K.

Proof. By [12, Proposition 2.2(5)], there are a,b € K such that a='I
and b~'J are properly contained between R and V = (M : M). Fur-
thermore, since R/M C V/M is algebraic, every ring between R and
V' is the pullback of some intermediate field, and in particular it is it-

self a PVD with maximal ideal M. The claim follows from Proposition
4.7. O
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5. LOCALIZATIONS

Let x be a star operation on R and T a flat overring of R. Then,
is said to be extendable to T if the map

* .F(T) —>.F(T)
IT — I*T

is well-defined; when this happens, xr is called the extension of x to T’
and is a star operation on 7' [16, Definition 3.1]. In general, not all star
operations are extendable, although finite-type operations are (see [10,
Proposition 2.4] and [16, Proposition 3.3(d)]).

We would like to have an equality v([)r = v(IT), where the latter
is considered as a star operation on 7. In general, this is false, both
because v(I) may not be extendable and because the extension v(I)p
may not be equal to v(IT): both these cases happen even for valuation
domains.

For example, suppose V' is a valuation domain with branched maxi-
mal ideal. If [ is divisorial, then v(I) = v; however, if the maximal ideal
is not principal, then v is not extendable to Vp for every non-maximal
prime P. On the other hand, if the maximal ideal is principal, then
the only star operation on V is the identity, and thus v(/) = d for all
ideals I: in particular, v(I) is extendable to every localization of V', and
its extension is the identity. Suppose (0) C P C @ are non-maximal
prime ideals of V', and suppose )V is not principal in Vj: then, the
v-operation on V' is not the identity. However, P = PV(, is divisorial
in Vo, and thus v(PVy) is the v-operation; on the other hand, v(P)y,
is the identity on Vg. In particular, v(PVy) # v(P),.

In the Noetherian case, however, everything works.

Proposition 5.1. If R is Noetherian, then v(I)r = v(IT) for every
flat overring T of R.

Proof. By definition, J*) = (R: (R : J))N (I : (I : J)); multiplication
by a flat overring commutes with intersections, and since every ideal is
finitely generated, the colon localizes, and thus

JDT = (R:(R:INTN:(I:J)T =
=(T:(T:JN)N{UT:(IT:JT)) =
= (JD)r*NIT:(IT:JT)) = (JT)*UD),
e, v(I)r =v(IT). O
Another case where localization works well is for Jaffard families. If

R is an integral domain with quotient field K, a Jaffard family of R is
a set © of flat overrings of R such that [6, Section 6.3.1]:

e O is locally finite;
o [ =[[{ITNR|T e€0O,IT #T} for every integral ideal I;
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o (ITyNR)+ (ITyN R) = R for every integral ideal I and every
T1 # TQ in ©.

Proposition 5.2. Let R be an integral domain, and let T' be an over-
ring of R that belongs to a Jaffard family of R. For every ideal I of R,
the star operation v(I) is extendable to T, and v(I)r = v(IT).

Proof. Since T belongs to a Jaffard family of R, we have (J : L)T =
(JT : LT) for every pair of fractional ideals J, L of R [16, Lemma 5.3];
the claim follows as in the proof of Proposition 5.1. O

Jaffard families can be used to factorize the set of star operations of a
domain R into a direct product of sets of star operations [16, Theorem
5.4]; for principal star operations, we have something similar. We define
a “direct sum”-like construction of sets of principal ideals as

@ Princ(T) := {(*")peo | ) # v for only a finite number of T}.
TeO

Proposition 5.3. Let R be an integral domain and © be a Jaffard
family on R. Then, the map

T: Princ(R) — @Princ(T)

v(l) — (v(IT))reo
1 a well-defined order-isomorphism.

Proof. The map T is just the restriction of the localization map \g to
Princ(R), which is an isomorphism (see [16, Theorem 5.4]), so we have
only to show that it is well-defined and surjective.

By Proposition 5.2, v(I)r = v(IT) for every T' € ©; moreover, [T =
T for all but a finite number of T' (by definition of a Jaffard family), so
that v(IT) = v(T) = v") for all but a finite number of T'. In particular,
the image of T lies inside the direct sum @ g Princ(T).

Suppose, conversely, that (v(J7))ree € @ree Princ(T’). We can sup-
pose that Jp C T for every T, and that Jp = T if v(Jy) = v7). De-
fine thus I := (,co J7: then, I is nonzero (since Jp # T for only
a finite number of T') and IT = Jr for every T [16, Lemma 5.2].
Therefore, v(I)r = v(IT) = v(Jr), and the image of T is exactly

Do Princ(T). O

Proposition 5.3 can be interpreted as a way to “factorize” principal
star operations.

Corollary 5.4. Let R be an integral domain and © be a Jaffard family
on R. Let I be an integral ideal of R. Then, there are T1,...,T, € ©
such that v(I) =v(ITyNR)A--- Av(IT, N R).

Proof. Since I C R, we have IT =T for all but finitely many 1" € ©;
let T7,...,T, be the exceptions. The claim follows from Proposition
5.3. O
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Recall that an integral domain is said to be h-local if every ideal is
contained in a finite number of maximal ideals and every prime ideal
is contained in only one maximal ideal.

Corollary 5.5. Let R be an h-local Prifer domain, and let M be the
set of nondivisorial maximal ideals of R. Then, there is a bijective
correspondence between Princ(R) and the set Pgn(M) of finite subset
of M. Furthermore, M 1is finite if and only if every star operation is
principal.

Proof. Since R is h-local, {Ry; | M € Max(R)} is a Jaffard family of
R, and thus by Proposition 5.3 there is a bijective correspondence T
between Princ(R) and €D cypax(r) Princ(Rar). If M ¢ M, then MRy
is principal and thus Star(R;) = Princ(Ry) = {d = v}; hence, T
restricts to a bijection Y’ between Princ(R) and @, ,, Princ(Ras).
Since Ry is a valuation domain, each Princ(R,,) is composed by two
elements (the identity and the v-operation). Thus, we can construct
a bijection YT from the direct sum to Py, (M) by associating to x :=
(M) the finite set T1(x) :== {M € M | ¥ £ v}. The composition
T, oY’ is a bijection from Princ(R) to Pgn(M).

The last claim follows immediately. O

A factorization property similar to Corollary 5.4 can be proved for
ideals having a primary decomposition with no embedded primes.

Proposition 5.6. Let Q1,...,Q, be primary ideals, let P; := rad(Q;)
foralli and let [ :== Q1N ---NQ,. If the P; are pairwise incomparable,

then v(I) = v(Q1) A~ ANv(Qn).

Proof. For every i, the ideal @Q; is v(Q;)-closed, and thus I is (v(Q1) A
-+ A v(Qp))-closed; hence, v(I) > v(Q1) A ---v(Qn). To prove the
converse, we need to show that each @); is v(I)-closed.

Without loss of generality, let ¢« = 1, and define @ =0 NN Qy;
we claim that @1 = (I g @) Since Q1Q C Q1N Q = I, clearly
Q1 C (I :x Q). Conversely, let z € (I :z Q). Since the radicals of the
Q; are pairwise incomparable, Q; ¢ P, for every i > 1, and so Q Z Pi;
therefore, thereis a q € @\Pl. Then, xq € I, and in particular zq € ;.
If x ¢ @1, then since @ is primary we would have ¢* € @; for some
t € N; however, this would imply ¢ € rad(Q;) = P, against the choice
of ¢. Thus, Q1 C (I :g @) and so Q1 = (I g @)

By definition, I is v(I)-closed; hence, also (I :g @) is v([)-closed. It
follows that @ is v([)-closed, and thus that each Q; is v(I)-closed, i.e.,
v(I) <v(Q1) A--- Av(Qyp). The claim is proved. O

6. v-TRIVIAL IDEALS

In this section, we analyze principal operations generated by v-trivial
ideals.
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Definition 6.1. An ideal [ of a domain R is v-trivial if IV = R.
Lemma 6.2. If [ is v-trivial, then (I : I) = R.
Proof. If I" = R, then (R: ) = R,and thus (I : [) C (R:I)=R. O

Definition 6.3. A star operation « is semifinite (or quasi-spectral) if
every x-closed ideal I C R is contained in a *-prime ideal.

All finite-type and all spectral operations are semifinite; on the other
hand, if V' is a valuation domain with maximal ideal that is branched
but not finitely generated, the v-operation on V' is not semifinite. The
class of semifinite operations is closed by taking infima, but not by
taking suprema (see [5, Example 4.5]).

Lemma 6.4. Let R be an integral domain, and let I,J be v-trivial
tdeals of R.

(a) If J C I, then J°D = I, and in particular v(I) # v(J).
Suppose v is semifinite on R.

(b) I NJ is v-trivial.

(c) I CJvD.

(d) If I # J, then v(I) # v(J).

Proof. (a) Since I is v-trivial, by Lemma 6.2 we have J*4) = (I : (I :
J)). However, R C (I : J) C (R : J) = R (using the v-triviality of J)
and thus J*) = (I : R) = I, as claimed. In particular, J = J*¢) #£
J*U) and so v(I) # v(J).

(b) If (I N J)" # R, then by semifiniteness there is a prime ideal P
such that TN J C P = P": But this would imply / C P or J C P,
against the hypothesis that I and J are v-trivial.

(c) Since J C J'U it follows that J°0) is v-trivial, and by the
previous point so it J*ONI. If T ¢ J*D) it would follow that J*)NT C
I; but J* N T is v(I)-closed, against (a). Hence I C J*(),

(d) If both I and J are v(I)-closed, then so is INJ; by (b), (INJ)"
R. The claim follows applyning (a) to I NJ and I (or J).

ol

Corollary 6.5. Let R be a domain such that v is semifinite. Let I, J
be ideals of R such that IV and J* are invertible; then, v(I) = v(J) if
and only if I = LJ for some invertible ideal L.

Proof. By invertibility, we have
R=I"(R:I')=({I"(R:1")"=({(R:1")"

since I C I(R : I") C R, the ideal I(R : IV) is v-trivial. Analogously,

R=(J(R:J")" and J(R : JY) is v-trivial. Hence, by Lemma 6.4(d)

I(R:I")=J(R:J"; thus, [ = I"(R: J")J,and L :=I"(R: J") is

invertible. U

Corollary 6.6. Let R be a unique factorization domain. Then:
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(a) for every principal star operation x # v there is a proper ideal
I such that h(I) > 1 and x = v([);

(b) if 1,J are fractional ideals of R, v(I) = v(J) if and only if
I =uJ for someu € K.

Proof. Let x = v(I) for some ideal I. By [7, Corollary 44.5], every v-
closed ideal of R is principal; hence, let IV = pR. Then, (p~'I)" = R,
i.e., p~'I is w-trivial. Analogously, ¢~ 'J is v-trivial for some J; thus
v(p™'I) = v(I) = v(J) = v(¢"'J). Applying Lemma 6.4(d) to p~'T
and ¢7'J we get p~ ' = q ' J, ie., [ = (pg')J. O

For star operations generated by v-trivial prime ideals, we can also
determine the set of closed ideals.

Proposition 6.7. Let R be a domain such that v is semifinite and
such that IV is invertible for every ideal I, and let P € Spec(R). Then
F'PNR) = FU(R)U{LP | L is an invertible ideal}. In particular, v(P)

is a mazximal element of Princ(R) \ {v}.

Proof. Let I be a non-divisorial ideal; multiplying by an invertible ideal
L, we can suppose [' = R. If I C P, by Lemma 6.4(a) I"") = P, and
thus I # I"®) unless I = P; suppose I € P. Then (P : I) = P: we
have (P : 1) C (R:I)= R, and thus if I C P then x € P. Therefore,
P =raP:(P:1)=RN(P:P)=R#I1.

For the “in particular” claim, note that if v(/) > v(P) then I should
be x-closed: by the previous part of the proof, this means that either
I is divisorial (and so v(I) = v) or I = LP for some invertible L (and
thus v(/) = v(P) by Lemma 3.4(d). O

Corollary 6.8. Let R be a unique factorization domain, and let P €
Spec(R). Then, F*®)(R) = F'(R)U {aP | a € K}.

We have seen in Proposition 3.3 that all star operation can be “gen-
erated” by principal star operations; we can use v-trivial ideals to show
that in many cases we need infinitely many of them.

Proposition 6.9. Let R be a domain such that v is semifinite, and let
L, ..., I, be v-trivial ideals; let x := v(I}) A--- Av(I,). Then, the ideal
IyN---N1, is the minimal v-trivial ideal that is %-closed.

Proof. Let J := 1, N---N1I,. By Lemma 6.4(b), J is v-trivial. Clearly
J is x-closed. Suppose L is v-trivial; then, applying Lemma 6.4(c),

Lr = peinrolln) 5 o=
Therefore, J is the minimum among v-trivial x-closed ideals. O

Corollary 6.10. Let R be a unique factorization domain, and let x €
Star(R) be such that x # v. If \{J € F*(R) | J* = R} = (0), then
is not the infimum of a finite family of principal star operations.
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Proof. Since R is a UFD, the v-operation is semifinite, and every prin-
cipal star operation can be generated by a v-trivial ideal. If x were to
be finitely generated, say * = v(I1) A--- Av(l,), then J:=I,N---N1I,
would be the minimal v-trivial x-closed ideal; however, by hypothesis,
there must be a v-trivial x-closed ideal J’ not containing .J, and thus
cannot be finitely generated. O

Proposition 6.11. Let R be a domain, and let A be a set of overrings
whose intersection is R. Let x be the star operation I — (\{IT | T €
A}. Suppose that:
(1) v is semifinite;
(2) every v-trivial ideal contains a finitely generated v-trivial ideal;
(3) there is a v-trivial x-closed ideal.
Then, % is not the infimum of a finite family of principal star opera-
tions.

Proof. By substituting an overring 7" € A with {Ty, | M € Max(T)},
we can suppose without loss of generality that each member of A is
local.

If x were finitely generated, by Proposition 6.9 there would be a
minimal v-trivial x-closed ideal, say J. By hypothesis, there is finitely
generated v-trivial ideal I C J; since I* = J, by [1, Theorem 2], we
have IT = JT for every T € A.

Since I* # R, there must be an S € A such that IS # S; by
Nakayama’s lemma, [2S = (IS)?> C IS, and so (I?)* C I?’SNR C I.
In particular, (I?)* is a v-trivial x-closed ideal, against the definition of
I. Thus, * is not finitely generated. U

The first two hypothesis hold, for example, for unique factorization
domains of dimension d > 1; the third one holds, for example, in the
following cases:

e x is a spectral star operation of finite type different from the
w-operation (see [17, 2]);

e if R is integrally closed and (at least) one maximal ideal is not
divisorial, the b-operation/integral closure;

e if Ris a UFD, all star operations coming from overrings, except
the v-operation.

7. NOETHERIAN DOMAINS

In this section, we study in more detail the case of Noetherian do-
mains; in particular, we shall give in Theorem 7.9 a necessary and
sufficient condition on when v(/) = v(J), under the assumption that
(I:1)=R=(J:J). We first state a case that is already settled, even
without this hypothesis.

Proposition 7.1. [14, Proposition 5.4] Let (R, M) be a local Noether-
tan integral domain of dimension 1 such that its integral closure V is
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a discrete valuation domain that is finite over R; suppose also that the
induced map of residue fields R/M C V /My is an isomorphism. Then,
v(I) =v(J) if and only if I = uJ for some u € K, u# 0.

We denote by Ass(I) the set of associated primes of I.

Proposition 7.2. Let R be a domain and I an ideal of R. Then,
Spec’(R) D Spec’(R) U Ass(I), and if R is Noetherian the two sets
are equal.

Proof. If P € Ass(I), then P = (I :gr ) = 27 'I N R for some = € R,
and thus it is v(I)-closed; if P € Spec’(R) then P = PY and thus
P=p'0,

Conversely, suppose R is Noetherian and P = P*!). Then P = PN
(I:(I:P))=P°n(:J),where J=(I:P);let J=jR+---+j,R.
We have

P = PA(:))=P'NRANI:J)=P'N(l:pJ)=
= P”ﬁ([ leR—l-—l—jnR) :Pvﬁﬂ?zl([ leR)7

and, since P is prime, this implies that P* = P or (I :g j;R) = P for
some 4. In the latter case, since j; € K, j; = a/b for some a,b € R;
hence (I :gr j;R) = (I : ab™*R) N R = (bl :p aR), and thus P is
associated to bl. There is an exact sequence

bR R R 0
o b bR

and, since R is a domain, bR/bI ~ R/I and thus Ass(bl) C Ass(/) U
Ass(bR) [3, Chapter IV, Proposition 3]; therefore, P is associated to [
or it is divisorial (since an associated prime of a divisorial ideal — in

this case, bR — is divisorial). O

Remark 7.3. Note that, if P = R, then (/ : P) C (R: P) = R, and
thus j; € R; in this case, b = 1 and the last part of the proof can be
greatly simplified.

0—

The following is a slight improvement of Proposition 6.7. We denote
by X*(R) the set of height-1 prime ideals of R.

Corollary 7.4. Let R be an integrally closed Noetherian domain. Then,
the maximal elements of Princ(R) \ {v} are the v(P), as P ranges in
Spec(R) \ X'(R).

Proof. Since R is integrally closed, the divisorial prime ideals of R are
the height 1 primes. In particular, if P is a prime ideal of height > 1,
then v(P) is maximal by Proposition 6.7.

Conversely, suppose v([) is maximal in Princ(R) \ {v}. If all asso-
ciated primes of I have height 1, then I = mPeXl(R) IRp, and so [ is
divisorial, against v(I) # v. Hence, there is a P € Ass(I) \ X*(R); by
Proposition 7.2, P € Spec®™(R), and thus v(I) < v(P). As v(I) is
maximal, it follows that v(I) = v(P). The claim is proved. O
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Corollary 7.5. Let R be a Noetherian unique factorization domain.
Then, v(I) is a mazimal element of Princ(R)\{v} if and only if I = uP
for some prime ideal P € Spec(R) \ X'(R) and some u € K.

Proof. 1t is enough to join Corollary 7.4 (the maximal elements are the
v(P)) with Corollary 6.6 (v(I) = v(P) if and only if I = uP). O

Proposition 7.2 allows to determine, in the Noetherian case, all the
spectra of the principal star operations. We need two lemmas.

Lemma 7.6. Let R be a Noetherian ring and A C Spec(R) \ {(0)} be
a finite set. There is an ideal I of R such that Ass(I) = A.

Proof. We proceed by induction on n = |A|. If n =1 and A = {P} we
can take [ = P.

Suppose n > 1 and let A = {Py,..., P,}; without loss of generality
we can suppose P; ¢ P; for every ¢ > j. Let Iy be an ideal such that
Ass(ly) = {P1,...,P,_1}, and let Iy = Q1 N --- N Q,_1 be a primary
decomposition, where P; := rad(Q);). Since the intersection of all P,-
primary ideals is (0), there is a P,-primary ideal Q,, such that Q,, Z Ip;
let I := Iy N Q,. To show that Ass(/) = A, it is enough to prove that
@1 N---NQ, is an irredundant intersection.

Suppose @; is redundant. By construction, i # n; moreover, if i = 1,
then Q>N---NQ,, € @ and thus, passing to the radical, P,N---NP, C
Py, and P; C P, for some j > 1, against the hypothesis. Hence suppose
1< < n, and let L; := le“'ﬂQi,1 and Ly := QZ+1ﬂan
By inductive hypothesis, @1 N ---NQ; = L1 N Q; is irredundant, and
thus Ly € Qy; let @ € Ly \ Q;. For every a € Lo, we have za € Ly Ly C
LiNLy C Q; (since Q; is redundant), and thus Ly, C (Q; :r ). However,
rad((Q :r z)) # R, and thus rad((Q; :g x)) = rad(Q;) = F;; hence,
rad(Ls) C rad(Q;), i.e., Py1N---N P, C P;. However, this implies that
P; C P, for some j > 4, which still is against the hypothesis. Therefore,
no (); can be redundant. O

Lemma 7.7. Let xq,...,%, € Star(R), and let x := %1 A+ -+ A*,. Then,
Spec*(R) = |J, Spec™ (R).

Proof. It P = P* for some ¢ then P* C P* = P and thus P = P*.
Conversely, if P = P* then P = P** N ---N P*; since P is prime, it
follows that P = P* for some i. The claim is proved. O

Proposition 7.8. Let R be a Noetherian domain, and let A C Spec(R).
Then, the following are equivalent:
(i) A = Spec®D(R) for some ideal I;
(1)) A = Spec*(R) for some x =v(I1) A--- ANv(l,);
(111) A = Spec’(R) U A, for some finite set A'.
Proof. (i) = (ii) is obvious. (ii) == (iii) follows from Lemma 7.7. (iii)

— (i) follows by Lemma 7.6 and Proposition 7.2 (it is enough to take
an I such that Ass(l) = A’). O
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We now characterize when two nondivisorial ideals with (I : I) =
(J : J) = R generate the same star operation.

Theorem 7.9. Let R be a Noetherian domain, and let I,J be non-
divisorial ideals such that (I : I) = (J : J) = R. Then, v(I) = v(J)
if and only if Ass(I) U Spec’(R) = Ass(J) U Spec’(R) and, for every
P € Ass(I) USpec’(R), there is an ap € K such that IRp = apJRp.

Proof. Suppose the two conditions hold. By Proposition 7.2, Ass(/) U
Spec’(R) = Spec®™(R), and thus Spec'”(R) = Spec®) (R) =: A. For
every ideal L, using Proposition 5.1 we have

L@ — ﬂ Lv(I)RP _ ﬂ (LRP)U(I)RP _ ﬂ (LRP)U(IRP).

PeA PeA PeA

Since IRp and JRp are isomorphic, (LRp)"URr) = (LRp)"VEP); it
follows that v(I) = v(J).

Conversely, suppose v(I) = v(J) =: . Then, Spec*(R) is equal to
both Ass(/) U Spec’(R) and Ass(J) U Spec’(R), which thus are equal.
Note also that (I : I) = R implies that Rp = ([ : [)Rp = (IRp : IRp)
for every prime ideal P.

Let now P € Spec*(R). Since v(I) = v(J), clearly v(I)gr, = v(J)g,,
which by Proposition 5.1 implies that v(IRp) = v(JRp). However,
PRp is v(I Rp)-closed because P is v([)-closed; it follows, by Proposi-
tion 4.5, that IRp = apJRp for some ap € K, as claimed. O

Corollary 7.10. Let R be an integrally closed Noetherian domain,
and let I1,J be non-divisorial ideals. Then, v(I) = v(J) if and only
if Ass(I) U X (R) = Ass(J)U XY (R) and for every P € Ass(I) there is
an ap € Rp such that IRp = apJRp.

Proof. Since R is integrally closed and Noetherian, we have (I : I) = R
for every ideal I; furthermore, the divisorial primes are the height 1
primes, and for any such P the localizations [ Rp and JRp are isomor-
phic since Rp is a DVR. The claim now follows from Theorem 7.9. [J

Example 7.11. Let R be a Noetherian integrally closed domain, and
suppose that Rj; is not a UFD for some maximal ideal M. Let P be
an height 1 prime contained in M such that PR, is not principal, and
let @ be a prime ideal of height bigger than 1 such that P+ @ = R (in
particular, Q@ ¢ M). We claim that v(PQ) = v(Q) but PQ and Q are
not locally isomorphic.

In fact, since they are coprime, PQ = P N @, and thus Ass(PQ) =
{P,Q} while Ass(Q) = {Q}; moreover, P ¢ @ and thus PQRg =
QPRg = QRg. Since P € X'(R), by Corollary 7.10 it follows that
v(PQ) = v(Q). However, QR) = Ry is principal, while PQR), =
PRy, by hypothesis, is not: therefore, () and P(Q) are not locally iso-
morphic. In particular, there cannot be an invertible ideal L such that
Q) = LPQ, because LR); would be principal and thus () and P would
be locally isomorphic.
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