WHEN TWO PRINCIPAL STAR OPERATIONS ARE THE SAME

DARIO SPIRITO

ABSTRACT. We study when two fractional ideals of the same integral domain generate the same star operation.

1. INTRODUCTION

Throughout the paper, R will denote an integral domain with quotient field K and $\mathcal{F}(R)$ will be the set of *fractional ideals* of R, that is, the set of R-submodules I of K such that $xI \subseteq R$ for some $x \in K \setminus \{0\}$.

A star operation on R is a map $\star : \mathcal{F}(R) \longrightarrow \mathcal{F}(R)$ such that, for every $I, J \in \mathcal{F}(R)$ and every $x \in K$:

- $I \subseteq I^*$;
- if $I \subseteq J$, then $I^* \subseteq J^*$;
- $(I^*)^* = I^*;$
- $(xI)^* = x \cdot I^*;$
- $R^* = R$.

The usual examples of star operations are the identity (usually denoted by d), the v-operation (or divisorial closure) $J \mapsto J^v := (R : (R : J))$, the t- and the w-operation (which are defined from v) and the star operations $I \mapsto \bigcap_{T \in \Delta} IT$, where Δ is a set of overrings of R intersecting to R. While these examples are the easiest to work with, they usually cover only a rather small part of the set of star operations.

A much more general construction is given in [9, Proposition 3.2]: if $(I : I) = R$, then the map $J \mapsto (I : (I : J))$ is a star operation. This construction is much more flexible than the more "classical" ones, and allows to construct a much higher number of star operations (see e.g. [10, Proposition 2.1(1)] or [11, Theorem 2.1] for its use to construct an infinite family of star operations, or [14, 15] for constructions in the case of numerical semigroups). In this paper, we slightly generalize this construction (removing the condition $(I : I) = R$) and study under which conditions two ideals I and J generate the same star operation: in particular, we are interested in understanding when this happens only for isomorphic ideals.

Date: April 2, 2019.

²⁰¹⁰ Mathematics Subject Classification. 13G05; 13A15.

Key words and phrases. Star operations; Principal star operations; m-canonical ideals.

The structure of the paper is as follows: in Section 3 we give some general properties of principal star operations; in Section 4, we generalize some results of $[9]$ from m-canonical ideals to general ideals; in Section 5 we study the effect of localizations on principal star operations; in Section 6 we study operations generated by ideals whose v -closure is R (and, in particular, what happens when R is a unique factorization domain); in Section 7 we study the Noetherian case, reaching a necessary and sufficient condition for $v(I) = v(J)$ under the assumption $(I : I) = (J : J) = R.$

2. Background

By an *ideal* of R we shall always mean a fractional ideal of R, reserving the term *integral ideal* for those contained in R.

Let \star be a star operation on R. An ideal I of R is \star -closed if $I = I^*$; the set of \star -closed ideals is denoted by $\mathcal{F}^{\star}(R)$. When $\star = v$ is the divisorial closure, the elements of $\mathcal{F}^v(R)$ are called *divisorial ideals*.

Let $\text{Star}(R)$ be the set of star operation on R. Then, $\text{Star}(R)$ has a natural order structure, where $\star_1 \leq \star_2$ if and only if $I^{\star_1} \subseteq I^{\star_2}$ for every $I \in \mathcal{F}(R)$, or equivalently if $\mathcal{F}^{*1}(R) \supseteq \mathcal{F}^{*2}(R)$. Under this order, $Star(R)$ is a complete lattice whose minimum is the identity and whose maximum is the v-operation.

A star operation is said to be *of finite type* if it is determined by its action on finitely generated ideals, or equivalently if

 $I^* = \left[\begin{array}{c} | \{J^* \mid J \subseteq I \text{ is finitely generated} \} \end{array} \right]$

for every $I \in \mathcal{F}(R)$. A star operation is *spectral* if there is a subset $\Delta \subseteq \text{Spec}(D)$ such that

$$
I^* = \bigcap \{ IR_P \mid P \in \Delta \}
$$

for every $I \in \mathcal{F}(R)$.

If \star is a star operation of R, a prime ideal P is a \star -prime if it is \star -closed; the set of the \star -primes, denoted by Spec^{\star}(R), is called the \star -spectrum. A \star -maximal ideal of R is an ideal maximal among the set of proper ideals of R that are \star -closed; their set is denoted by $\text{Max}^{\star}(R)$. Any \star -maximal ideal is prime; however, \star -maximal ideals need not to exist. If \star is a star operation of finite type, then every \star -closed proper integral ideal is contained in some \star -maximal ideal; furthermore, for every \star -closed ideal I we have $I = \bigcap \{IR_P \mid P \in \text{Spec}^{\star}(R)\}.$

3. Principal star operations

Definition 3.1. Let R be an integral domain. For every $I \in \mathcal{F}(R)$, the *star operation generated by I*, denoted by $v(I)$, is the supremum of all the star operations \star on R such that I is \star -closed. If $\star = v(I)$ for

some ideal I, we say that \star is a *principal* star operation. We denote by $Princ(R)$ the set of principal star operations of R.

We can give a more explicit representation of $v(I)$.

Proposition 3.2. For every fractional ideal J, we have

(1)
$$
J^{v(I)} = J^v \cap (I : (I : J)) = J^v \cap \bigcap_{\alpha \in (I : J) \setminus \{0\}} \alpha^{-1} I.
$$

Furthermore, if $(I : I) = R$ then $J^{v(I)} = (I : (I : J)).$

Proof. The fact that the two maps $J \mapsto J^v \cap (I : (I : J))$ and $J \mapsto J^v \cap J^v$ $\bigcap_{\alpha \in (I:J)\setminus\{0\}} \alpha^{-1}I$ give star operations and coincide follows in the same way as [9, Lemma 3.1 and Proposition 3.2]. The second representation clearly implies that they close I ; furthermore, if I is closed then J^v and each $\alpha^{-1}I$ are closed, and thus the two representations of (1) give exactly $v(I)$.

The "furthermore" statement follows again from [9, Lemma 3.1 and Proposition 3.2.

In the paper [9] that introduced the map $J \mapsto (I : (I : J))$ when $(I : I) = R$, an ideal I was said to be m-canonical if $J = (I : (I : J))$ for every ideal J. This is equivalent to saying that $(I : I) = R$ and that $v(I)$ is the identity.

The definition of $v(I)$ can be extended to semistar operations, as in [13, Example 1.8(2)]; such construction was called the divisorial closure with respect to I in [4]. The terminology "generated" is justified by the following Proposition 3.3.

Proposition 3.3. Let \star be a star operation on R. Then, $\star = \inf \{v(I) \mid$ $I \in \mathcal{F}^{\star}(R)$.

Proof. Let $\sharp := \inf \{ v(I) \mid I \in \mathcal{F}^{\star}(R) \}.$ By definition, $\star \leq v(I)$ for every $I \in \mathcal{F}^{\star}(R)$, and thus $\star \leq \sharp$. Conversely, let J be a \star -ideal; then, $\sharp \leq v(J)$ and thus J is \sharp -closed. It follows that $\star \geq \sharp$, and thus $\star = \sharp$.

Our main interest in this paper is to understand when two ideals generate the same star operation. The first cases are quite easy.

Lemma 3.4. Let I be a fractional ideal of R. Then, the following hold.

- (a) $v(I) = v$ if and only if I is divisorial.
- (b) If $(I : I) = R$, then $v(I) = d$ if and only if I is m-canonical.
- (c) For every $a \in K$, $a \neq 0$, we have $v(I) = v(aI)$.
- (d) If L is an invertible ideal of R, then $v(I) = v(IL)$.

Proof. The only non-trivial part is the last point. If L is invertible, then

$$
I^{v(IL)}L \subseteq (I^{v(IL)}L)^{v(IL)} = (IL)^{v(IL)} = IL
$$

and thus $I^{\nu(IL)} \subseteq IL(R: L) = I$, i.e., I is $\nu(IL)$ -closed; it follows that $v(I) \ge v(IL)$. Symmetrically, we have $v(IL) \ge v(IL(R: L)) = v(I)$, and thus $v(I) = v(IL)$.

We note that if $J = IL$ for some invertible ideal L, then I and J are locally isomorphic. However, the latter condition is neither necessary nor sufficient for I and J to generate the same star operation, even excluding divisorial ideals. For example, if R is an almost Dedekind domain that is not Dedekind, then all ideals are locally isomorphic but not all are divisorial, and two nondivisorial maximal ideal generate different star operations (if $M \neq N$ are two such ideals, then $(M :$ $N = M$ and so $N^{v(M)} = N^v \cap (M : (M : N)) = R$. For an example of non-locally isomorphic ideals generating the same star operation see Example 7.11.

The following necessary condition has been proved in [14, Lemma 3.7] when I and J are fractional ideals of a numerical semigroup; the proof of the integral domain case (which was also stated later in the same paper) can be obtained in exactly the same way.

Proposition 3.5. Let R be an integral domain and I, J be non-divisorial ideals of R. If $v(I) = v(J)$ then

$$
I = I^v \cap \bigcap_{\gamma \in (I:J)(J:I) \setminus \{0\}} (\gamma^{-1}I).
$$

4. Local rings

As the construction of the principal star operation $v(I)$ generalize the definition of m-canonical ideal, we expect that I is in some way "m-canonical for $v(I)$ ". Pursuing this strategy, we obtain the following generalization of [9, Lemma 2.2(e)].

Lemma 4.1. Let I be an ideal of a domain R such that $(I : I) = R$. Let $\{J_\alpha \mid \alpha \in A\}$ be $v(I)$ -ideals such that $\bigcap_{\alpha \in A} J_\alpha \neq (0)$. Then,

$$
\left(I:\bigcap_{\alpha\in A}J_{\alpha}\right)=\left(\sum_{\alpha\in A}(I:J_{\alpha})\right)^{v(I)}.
$$

Proof. Let $J := \sum_{\alpha \in A} (I : J_\alpha)$. Since $(I : I) = R$, we have $L^{v(I)} = (I : I)$ $(I: L)$ for every ideal L; therefore,

$$
(I:J) = \left(I: \sum_{\alpha \in A} (I:J_{\alpha})\right) = \bigcap_{\alpha \in A} (I: (I:J_{\alpha})) = \bigcap_{\alpha \in A} J_{\alpha}^{v(I)} = \bigcap_{\alpha \in A} J_{\alpha}
$$

and thus

$$
J^{v(I)} = (I : (I : J)) = \left(I : \bigcap_{\alpha \in A} J_{\alpha}\right),
$$
 as claimed.

The following definition abstracts a property proved, for *m*-canonical ideals of local domains, in [9, Lemma 4.1].

Definition 4.2. Let \star be a star operation on R. We say that an ideal I of R is strongly \star -irreducible if $I = I^* \neq \bigcap \{J \in \mathcal{F}^*(R) \mid I \subsetneq J\}.$

Lemma 4.3. Let R be a domain and I be a nondivisorial ideal of R . If I is strongly $v(I)$ -irreducible and $v(I) = v(J)$, then $I = uJ$ for some $u \in K$.

Proof. Suppose $v(I) = v(J)$. Then

$$
I = I^{v(J)} = I^v \cap \bigcap_{\alpha \in (J:I) \setminus \{0\}} \alpha^{-1} J.
$$

Both I^v and each $\alpha^{-1}J$ is a $v(I)$ -ideal: hence, either $I = I^v$ (which is impossible since I is not divisorial) or $I = \alpha^{-1}J$ for some $\alpha \in K$. \Box

Lemma 4.4. Suppose (R, M) is a local ring and $R = (I : I)$. If M is $v(I)$ -closed, then I is strongly $v(I)$ -irreducible.

Proof. Let $\{J_{\alpha}\}\$ be a family of $v(I)$ -ideals such that $I = \bigcap J_{\alpha}$. Then,

$$
R = (I : I) = \left(I : \bigcap_{\alpha} J_{\alpha}\right) = \left(\sum_{\alpha} (I : J_{\alpha})\right)^{v(I)}
$$

by Lemma 4.1.

Hence $(I : J_\alpha) \subseteq R$ for every α ; suppose $I \subsetneq J_\alpha$ for all α . Then, $1 \notin (I : J_\alpha)$ and thus $(I : J_\alpha) \subseteq M$; therefore, $\sum (I : J_\alpha) \subseteq M$ and, since M is $v(I)$ -closed, also $\left(\sum_{\alpha}(I : J_{\alpha})\right)^{v(I)} \subseteq M$, a contradiction. Therefore, we must have $J_{\alpha} = I$ for some α , and I is strongly $v(I)$ irreducible. □

As a consequence of the previous two lemmas, we have a very general result for local rings.

Proposition 4.5. Let (R, M) be a local domain and I a nondivisorial ideal of R such that $(I : I) = R$. If $M = M^{v(I)}$ (in particular, if M is divisorial), then $v(I) = v(J)$ for some ideal J if and only if $I = uJ$ for some $u \in K$.

Proof. By Lemma 4.4, I is strongly $v(I)$ -irreducible; by Lemma 4.3 it follows that $I = uJ$.

Corollary 4.6. Let (R, M) be a local domain, and I and J two nondivisorial ideals of R. If R is completely integrally closed and M is divisorial, then $v(I) = v(J)$ if and only if $I = uJ$ for some $u \in K$.

Proof. Since R is completely integrally closed, $(L : L) = R$ for all ideals L; furthermore, since M is divisorial $M^{v(L)} = M$ for every L. The claim follows from Proposition 4.5.

One problem of the previous results is the hypothesis $(I : I) = R$. In the following proposition we eliminate it at the price of forcing more properties of R.

Proposition 4.7. Let (R, M) be a local ring, and let $T := (M : M)$. Let I, J be ideals of R, properly contained between R and T, such that $v(I) = v(J)$.

- (a) If $(I : I)$, $(J : J) \subseteq T$, then $(I : I) = (J : J)$.
- (b) Suppose also that $(I : I) =: A$ is local with divisorial maximal ideal, and that I and J are not divisorial over A. Then, there is a $u \in K$ such that $I = uJ$.

Proof. If M is principal, $T = R$ and the statement is vacuous. Suppose thus M is not principal: then, we also have $T = (R : M)$. We first claim that $L^v = T$ for every ideal L properly contained between R and T. Indeed, the containment $R \subsetneq L$ implies that $(R : L) \subsetneq R$ and thus, since R is local, $(R: L) \subseteq M$ and $L^v \supseteq T \supsetneq L$; hence, $L^v = T$.

(a) Let $T_1 := (I : I)$ and $T_2 := (J : J)$, and define \star_i as the star operation $L^{*i} := L^v \cap LT_i$. Since T contains T_1 and T_2 , it is both a T_1 and a T_2 -ideal. We claim that $L \neq R$ is \star_i -closed if and only if it is a T_i -ideal: the "if" part is obvious, while if $L = L^v \cap LT_i$ then $L^v = T$ is a T_i -ideal and thus L is intersection of two T_i -ideals.

If $v(I) = v(J)$, then I is \star -closed if and only if J is \star -closed; therefore, since I is \star_1 -closed and J is \star_2 -closed, both I and J are T_1 and T_2 -ideals. But $(I : I)$ (respectively, $(J : J)$) is the maximal overring of R in which I (respectively, J) is an ideal; thus $(I : I) = (J : J)$.

(b) Consider the star operation generated by I on A, i.e., $v_A(I) : L \mapsto$ $(A:(A:L)) \cap (I:(I:L))$ for every $L \in \mathcal{F}(A)$. By the first paragraph of the proof, applied on the A-ideals, we have $(A:(A:L))=T$ for all ideals L of A properly contained between A and T ; in particular, this happen for J (since $R \subset J$ implies $A = AR \subseteq AJ = J$, and $A \neq J$ since *J* is not divisorial), and thus $J^{v_A(I)} = J^{v(I)} = J$. Symmetrically, $I^{v_A(J)} = I$; hence, $v_A(I) = v_A(J)$. By Proposition 4.5, applied to A, we have $I = uJ$ for some $u \in K$, as claimed.

Recall that a pseudo-valuation domain (PVD) is a local domain (R, M) such that M is the maximal ideal of a valuation overring of R (called the valuation domain *associated* to R) [8].

Corollary 4.8. Let (R, M) be a pseudo-valuation domain with associated valuation ring V, and suppose that the field extension $R/M \subset$ V/M is algebraic. Let I, J be nondivisorial ideals of R. Then, $v(I) =$ $v(J)$ if and only if $I = uJ$ for some $u \in K$.

Proof. By [12, Proposition 2.2(5)], there are $a, b \in K$ such that $a^{-1}I$ and $b^{-1}J$ are properly contained between R and $V = (M : M)$. Furthermore, since $R/M \subseteq V/M$ is algebraic, every ring between R and V is the pullback of some intermediate field, and in particular it is itself a PVD with maximal ideal M. The claim follows from Proposition $4.7.$

5. Localizations

Let \star be a star operation on R and T a flat overring of R. Then, \star is said to be *extendable* to T if the map

$$
\star_T : \mathcal{F}(T) \longrightarrow \mathcal{F}(T)
$$

$$
IT \longmapsto I^{\star}T
$$

is well-defined; when this happens, \star_T is called the *extension* of \star to T and is a star operation on T [16, Definition 3.1]. In general, not all star operations are extendable, although finite-type operations are (see [10, Proposition 2.4] and [16, Proposition 3.3(d)]).

We would like to have an equality $v(I)_T = v(T)$, where the latter is considered as a star operation on T . In general, this is false, both because $v(I)$ may not be extendable and because the extension $v(I)_T$ may not be equal to $v(T)$: both these cases happen even for valuation domains.

For example, suppose V is a valuation domain with branched maximal ideal. If I is divisorial, then $v(I) = v$; however, if the maximal ideal is not principal, then v is not extendable to V_P for every non-maximal prime P. On the other hand, if the maximal ideal is principal, then the only star operation on V is the identity, and thus $v(I) = d$ for all ideals I: in particular, $v(I)$ is extendable to every localization of V, and its extension is the identity. Suppose $(0) \subset P \subset Q$ are non-maximal prime ideals of V, and suppose QV_Q is not principal in V_Q : then, the v-operation on V is not the identity. However, $P = PV_Q$ is divisorial in V_Q , and thus $v(PV_Q)$ is the v-operation; on the other hand, $v(P)_{V_Q}$ is the identity on V_Q . In particular, $v(PV_Q) \neq v(P)_{V_Q}$.

In the Noetherian case, however, everything works.

Proposition 5.1. If R is Noetherian, then $v(I)_T = v(T)$ for every flat overring T of R .

Proof. By definition, $J^{v(I)} = (R : (R : J)) \cap (I : (I : J))$; multiplication by a flat overring commutes with intersections, and since every ideal is finitely generated, the colon localizes, and thus

$$
J^{v(I)}T = (R : (R : J))T \cap (I : (I : J))T =
$$

= (T : (T : JT)) \cap (IT : (IT : JT)) =
= (JT)^{v_T} \cap (IT : (IT : JT)) = (JT)^{v(IT)},

i.e., $v(I)_T = v(IT)$.

Another case where localization works well is for Jaffard families. If R is an integral domain with quotient field K, a Jaffard family of R is a set Θ of flat overrings of R such that [6, Section 6.3.1]:

- \bullet Θ is locally finite:
- $I = \prod \{ IT \cap R \mid T \in \Theta, IT \neq T \}$ for every integral ideal I;

• $(IT_1 \cap R) + (IT_2 \cap R) = R$ for every integral ideal I and every $T_1 \neq T_2$ in Θ .

Proposition 5.2. Let R be an integral domain, and let T be an overring of R that belongs to a Jaffard family of R. For every ideal I of R. the star operation $v(I)$ is extendable to T, and $v(I)_T = v(IT)$.

Proof. Since T belongs to a Jaffard family of R, we have $(J: L)T =$ $(TT : LT)$ for every pair of fractional ideals J, L of R [16, Lemma 5.3]; the claim follows as in the proof of Proposition 5.1. \Box

Jaffard families can be used to factorize the set of star operations of a domain R into a direct product of sets of star operations [16, Theorem 5.4]; for principal star operations, we have something similar. We define a "direct sum"-like construction of sets of principal ideals as

 \bigoplus Princ(*T*) := {($\star^{(T)}$)_{*T*∈ Θ} | $\star^{(T)} \neq v^{(T)}$ for only a finite number of *T*}. $T \in \Theta$

Proposition 5.3. Let R be an integral domain and Θ be a Jaffard family on R. Then, the map

$$
\Upsilon: \text{Princ}(R) \longrightarrow \bigoplus_{T \in \Theta} \text{Princ}(T)
$$

$$
v(I) \longmapsto (v(IT))_{T \in \Theta}
$$

is a well-defined order-isomorphism.

Proof. The map Υ is just the restriction of the localization map λ_{Θ} to $Princ(R)$, which is an isomorphism (see [16, Theorem 5.4]), so we have only to show that it is well-defined and surjective.

By Proposition 5.2, $v(I)_T = v(IT)$ for every $T \in \Theta$; moreover, $IT =$ T for all but a finite number of T (by definition of a Jaffard family), so that $v(IT) = v(T) = v^{(T)}$ for all but a finite number of T. In particular, the image of Υ lies inside the direct sum $\bigoplus_{T \in \Theta} \text{Princ}(T)$.

Suppose, conversely, that $(v(J_T))_{T \in \Theta} \in \bigoplus_{T \in \Theta} \text{Princ}(T)$. We can suppose that $J_T \subseteq T$ for every T, and that $J_T = T$ if $v(J_T) = v^{(T)}$. Define thus $I := \bigcap_{T \in \Theta} J_T$: then, I is nonzero (since $J_T \neq T$ for only a finite number of T) and $IT = J_T$ for every T [16, Lemma 5.2]. Therefore, $v(I)_T = v(T) = v(J_T)$, and the image of Υ is exactly $\bigoplus_{T \in \Theta} \text{Princ}(T)$.

Proposition 5.3 can be interpreted as a way to "factorize" principal star operations.

Corollary 5.4. Let R be an integral domain and Θ be a Jaffard family on R. Let I be an integral ideal of R. Then, there are $T_1, \ldots, T_n \in \Theta$ such that $v(I) = v(IT_1 \cap R) \wedge \cdots \wedge v(IT_n \cap R)$.

Proof. Since $I \subseteq R$, we have $IT = T$ for all but finitely many $T \in \Theta$; let T_1, \ldots, T_n be the exceptions. The claim follows from Proposition $5.3.$

Recall that an integral domain is said to be h-local if every ideal is contained in a finite number of maximal ideals and every prime ideal is contained in only one maximal ideal.

Corollary 5.5. Let R be an h-local Prüfer domain, and let M be the set of nondivisorial maximal ideals of R. Then, there is a bijective correspondence between $Princ(R)$ and the set $\mathcal{P}_{fin}(\mathcal{M})$ of finite subset of M . Furthermore, M is finite if and only if every star operation is principal.

Proof. Since R is h-local, $\{R_M \mid M \in \text{Max}(R)\}\$ is a Jaffard family of R, and thus by Proposition 5.3 there is a bijective correspondence Υ between $\text{Princ}(R)$ and $\bigoplus_{M \in \text{Max}(R)} \text{Princ}(R_M)$. If $M \notin \mathcal{M}$, then MR_M is principal and thus $\text{Star}(R_M) = \text{Princ}(R_M) = \{d = v\}$; hence, Υ restricts to a bijection Υ' between $\text{Princ}(R)$ and $\bigoplus_{M \in \mathcal{M}} \text{Princ}(R_M)$. Since R_M is a valuation domain, each $Princ(R_M)$ is composed by two elements (the identity and the v-operation). Thus, we can construct a bijection Υ_1 from the direct sum to $\mathcal{P}_{fin}(\mathcal{M})$ by associating to $\star :=$ $(\star^{(M)})$ the finite set $\Upsilon_1(\star) := \{M \in \mathcal{M} \mid \star^{(M)} \neq v\}$. The composition $\Upsilon_1 \circ \Upsilon'$ is a bijection from $\text{Princ}(R)$ to $\mathcal{P}_{\text{fin}}(\mathcal{M})$.

The last claim follows immediately.

A factorization property similar to Corollary 5.4 can be proved for ideals having a primary decomposition with no embedded primes.

Proposition 5.6. Let Q_1, \ldots, Q_n be primary ideals, let $P_i := \text{rad}(Q_i)$ for all i and let $I := Q_1 \cap \cdots \cap Q_n$. If the P_i are pairwise incomparable, then $v(I) = v(Q_1) \wedge \cdots \wedge v(Q_n)$.

Proof. For every i, the ideal Q_i is $v(Q_i)$ -closed, and thus I is $(v(Q_1) \wedge$ $\cdots \wedge v(Q_n)$ -closed; hence, $v(I) \geq v(Q_1) \wedge \cdots v(Q_n)$. To prove the converse, we need to show that each Q_i is $v(I)$ -closed.

Without loss of generality, let $i = 1$, and define $\widehat{Q} := Q_2 \cap \cdots \cap Q_n$; we claim that $Q_1 = (I :_R \hat{Q})$. Since $Q_1 \hat{Q} \subseteq Q_1 \cap \hat{Q} = I$, clearly $Q_1 \subseteq (I :_R \widehat{Q})$. Conversely, let $x \in (I :_R \widehat{Q})$. Since the radicals of the Q_i are pairwise incomparable, $Q_i \nsubseteq P_1$ for every $i > 1$, and so $\widehat{Q} \nsubseteq P_1$; therefore, there is a $q \in \widehat{Q} \backslash P_1$. Then, $xq \in I$, and in particular $xq \in Q_1$. If $x \notin Q_1$, then since Q_1 is primary we would have $q^t \in Q_1$ for some $t \in \mathbb{N}$; however, this would imply $q \in rad(Q_1) = P_1$, against the choice of q. Thus, $Q_1 \subseteq (I :_R \widehat{Q})$ and so $Q_1 = (I :_R \widehat{Q})$.

By definition, I is $v(I)$ -closed; hence, also $(I :_R \hat{Q})$ is $v(I)$ -closed. It follows that Q_1 is $v(I)$ -closed, and thus that each Q_i is $v(I)$ -closed, i.e., $v(I) \leq v(Q_1) \wedge \cdots \wedge v(Q_n)$. The claim is proved.

$6. v$ -TRIVIAL IDEALS

In this section, we analyze principal operations generated by v -trivial ideals.

Definition 6.1. An ideal I of a domain R is v-trivial if $I^v = R$.

Lemma 6.2. If I is v-trivial, then $(I : I) = R$.

Proof. If $I^v = R$, then $(R : I) = R$, and thus $(I : I) \subseteq (R : I) = R$. \Box

Definition 6.3. A star operation \star is *semifinite* (or *quasi-spectral*) if every \star -closed ideal $I \subsetneq R$ is contained in a \star -prime ideal.

All finite-type and all spectral operations are semifinite; on the other hand, if V is a valuation domain with maximal ideal that is branched but not finitely generated, the v-operation on V is not semifinite. The class of semifinite operations is closed by taking infima, but not by taking suprema (see [5, Example 4.5]).

Lemma 6.4. Let R be an integral domain, and let I, J be v-trivial ideals of R.

(a) If $J \subsetneq I$, then $J^{v(I)} = I$, and in particular $v(I) \neq v(J)$. Suppose v is semifinite on R.

(b) $I \cap J$ is v-trivial.

 $(c) I \subseteq J^{v(I)}.$

(d) If $I \neq J$, then $v(I) \neq v(J)$.

Proof. (a) Since I is v-trivial, by Lemma 6.2 we have $J^{v(I)} = (I : (I : I)$ J)). However, $R \subseteq (I : J) \subseteq (R : J) = R$ (using the *v*-triviality of J) and thus $J^{v(I)} = (I : R) = I$, as claimed. In particular, $J = J^{v(J)} \neq I$ $J^{v(I)}$ and so $v(I) \neq v(J)$.

(b) If $(I \cap J)^v \neq R$, then by semifiniteness there is a prime ideal P such that $I \cap J \subseteq P = P^v$: But this would imply $I \subseteq P$ or $J \subseteq P$, against the hypothesis that I and J are v-trivial.

(c) Since $J \subseteq J^{v(I)}$, it follows that $J^{v(I)}$ is v-trivial, and by the previous point so it $J^{v(I)} \cap I$. If $I \nsubseteq J^{v(I)}$, it would follow that $J^{v(I)} \cap I \subseteq$ *I*; but $J^{v(I)} \cap I$ is $v(I)$ -closed, against (a). Hence $I \subseteq J^{v(I)}$.

(d) If both I and J are $v(I)$ -closed, then so is $I \cap J$; by (b), $(I \cap J)^v$ = R. The claim follows applyning (a) to $I \cap J$ and I (or J).

Corollary 6.5. Let R be a domain such that v is semifinite. Let I, J be ideals of R such that I^v and J^v are invertible; then, $v(I) = v(J)$ if and only if $I = LJ$ for some invertible ideal L.

Proof. By invertibility, we have

$$
R = I^v(R : I^v) = (I^v(R : I^v))^v = (I(R : I^v))^v;
$$

since $I \subseteq I(R : I^v) \subseteq R$, the ideal $I(R : I^v)$ is v-trivial. Analogously, $R = (J(R:J^v))^v$ and $J(R:J^v)$ is v-trivial. Hence, by Lemma 6.4(d) $I(R: I^v) = J(R: J^v);$ thus, $I = I^v(R: J^v)J$, and $L := I^v(R: J^v)$ is invertible.

Corollary 6.6. Let R be a unique factorization domain. Then:

- (a) for every principal star operation $\star \neq v$ there is a proper ideal I such that $h(I) > 1$ and $\star = v(I)$;
- (b) if I, J are fractional ideals of R, $v(I) = v(J)$ if and only if $I = uJ$ for some $u \in K$.

Proof. Let $\star = v(I)$ for some ideal I. By [7, Corollary 44.5], every vclosed ideal of R is principal; hence, let $I^v = pR$. Then, $(p^{-1}I)^v = R$, i.e., $p^{-1}I$ is v-trivial. Analogously, $q^{-1}J$ is v-trivial for some J; thus $v(p^{-1}I) = v(I) = v(J) = v(q^{-1}J)$. Applying Lemma 6.4(d) to $p^{-1}I$ and $q^{-1}J$ we get $p^{-1}I = q^{-1}J$, i.e., $I = (pq^{-1})J$.

For star operations generated by v -trivial prime ideals, we can also determine the set of closed ideals.

Proposition 6.7. Let R be a domain such that v is semifinite and such that I^v is invertible for every ideal I, and let $P \in \text{Spec}(R)$. Then $\mathcal{F}^{v(P)}(R) = \mathcal{F}^{v}(R) \cup \{LP \mid L \text{ is an invertible ideal}\}.$ In particular, $v(P)$ is a maximal element of $\text{Princ}(R) \setminus \{v\}.$

Proof. Let I be a non-divisorial ideal; multiplying by an invertible ideal L, we can suppose $I^v = R$. If $I \subseteq P$, by Lemma 6.4(a) $I^{v(P)} = P$, and thus $I \neq I^{\nu(P)}$ unless $I = P$; suppose $I \nsubseteq P$. Then $(P : I) = P$: we have $(P: I) \subseteq (R: I) = R$, and thus if $xI \subseteq P$ then $x \in P$. Therefore, $I^{v(P)} = I^v \cap (P : (P : I)) = R \cap (P : P) = R \neq I.$

For the "in particular" claim, note that if $v(I) > v(P)$ then I should be \star -closed: by the previous part of the proof, this means that either I is divisorial (and so $v(I) = v$) or $I = LP$ for some invertible L (and thus $v(I) = v(P)$ by Lemma 3.4(d).

Corollary 6.8. Let R be a unique factorization domain, and let $P \in$ Spec (R) . Then, $\mathcal{F}^{v(P)}(R) = \mathcal{F}^{v}(R) \cup \{aP \mid a \in K\}.$

We have seen in Proposition 3.3 that all star operation can be "generated" by principal star operations; we can use v -trivial ideals to show that in many cases we need infinitely many of them.

Proposition 6.9. Let R be a domain such that v is semifinite, and let I_1, \ldots, I_n be v-trivial ideals; let $\star := v(I_1) \wedge \cdots \wedge v(I_n)$. Then, the ideal $I_1 \cap \cdots \cap I_n$ is the minimal v-trivial ideal that is \star -closed.

Proof. Let $J := I_1 \cap \cdots \cap I_n$. By Lemma 6.4(b), J is v-trivial. Clearly J is \star -closed. Suppose L is v-trivial; then, applying Lemma 6.4(c),

$$
L^* = L^{v(I_1) \wedge \cdots \wedge v(I_n)} \supseteq I_1 \cap \cdots I_n = J.
$$

Therefore, J is the minimum among v-trivial \star -closed ideals. \Box

Corollary 6.10. Let R be a unique factorization domain, and let $\star \in$ Star(R) be such that $\star \neq v$. If $\bigcap \{J \in \mathcal{F}^{\star}(R) \mid J^{v} = R\} = (0)$, then \star is not the infimum of a finite family of principal star operations.

Proof. Since R is a UFD, the v-operation is semifinite, and every principal star operation can be generated by a v-trivial ideal. If \star were to be finitely generated, say $\star = v(I_1) \wedge \cdots \wedge v(I_n)$, then $J := I_1 \cap \cdots \cap I_n$ would be the minimal v-trivial \star -closed ideal; however, by hypothesis, there must be a v-trivial \star -closed ideal J' not containing J, and thus \star cannot be finitely generated.

Proposition 6.11. Let R be a domain, and let Δ be a set of overrings whose intersection is R. Let \star be the star operation $I \mapsto \bigcap \{IT \mid T \in$ Δ }. Suppose that:

- (1) v is semifinite;
- (2) every v-trivial ideal contains a finitely generated v-trivial ideal; (3) there is a v-trivial \star -closed ideal.

Then, \star is not the infimum of a finite family of principal star operations.

Proof. By substituting an overring $T \in \Delta$ with $\{T_M \mid M \in \text{Max}(T)\}\$, we can suppose without loss of generality that each member of Δ is local.

If \star were finitely generated, by Proposition 6.9 there would be a minimal v-trivial \star -closed ideal, say J. By hypothesis, there is finitely generated v-trivial ideal $I \subseteq J$; since $I^* = J$, by [1, Theorem 2], we have $IT = JT$ for every $T \in \Delta$.

Since $I^* \neq R$, there must be an $S \in \Delta$ such that $IS \neq S$; by Nakayama's lemma, $I^2S = (IS)^2 \subsetneq IS$, and so $(I^2)^* \subsetneq I^2S \cap R \subsetneq I$. In particular, $(I^2)^*$ is a v-trivial \star -closed ideal, against the definition of I. Thus, \star is not finitely generated.

The first two hypothesis hold, for example, for unique factorization domains of dimension $d > 1$; the third one holds, for example, in the following cases:

- $\bullet \star$ is a spectral star operation of finite type different from the w-operation (see [17, 2]);
- if R is integrally closed and (at least) one maximal ideal is not divisorial, the b-operation/integral closure;
- if R is a UFD, all star operations coming from overrings, except the v-operation.

7. Noetherian domains

In this section, we study in more detail the case of Noetherian domains; in particular, we shall give in Theorem 7.9 a necessary and sufficient condition on when $v(I) = v(J)$, under the assumption that $(I : I) = R = (J : J)$. We first state a case that is already settled, even without this hypothesis.

Proposition 7.1. [14, Proposition 5.4] Let (R, M) be a local Noetherian integral domain of dimension 1 such that its integral closure V is

a discrete valuation domain that is finite over R; suppose also that the induced map of residue fields $R/M \subseteq V/M_V$ is an isomorphism. Then, $v(I) = v(J)$ if and only if $I = uJ$ for some $u \in K$, $u \neq 0$.

We denote by $\text{Ass}(I)$ the set of associated primes of I.

Proposition 7.2. Let R be a domain and I an ideal of R . Then, $Spec^{v(I)}(R) \supseteq Spec^{v}(R) \cup Ass(I)$, and if R is Noetherian the two sets are equal.

Proof. If $P \in \text{Ass}(I)$, then $P = (I :_R x) = x^{-1}I \cap R$ for some $x \in R$, and thus it is $v(I)$ -closed; if $P \in \text{Spec}^{v}(R)$ then $P = P^{v}$ and thus $P = P^{v(I)}.$

Conversely, suppose R is Noetherian and $P = P^{v(I)}$. Then $P = P^v \cap$ $(I:(I:P)) = P^v \cap (I:J)$, where $J = (I:P)$; let $J = j_1R + \cdots + j_nR$. We have

$$
P = P^v \cap (I : J) = P^v \cap R \cap (I : J) = P^v \cap (I : R J) =
$$

= $P^v \cap (I : R j_1 R + \dots + j_n R) = P^v \cap \bigcap_{i=1}^n (I : R j_i R),$

and, since P is prime, this implies that $P^v = P$ or $(I :_R j_i R) = P$ for some *i*. In the latter case, since $j_i \in K$, $j_i = a/b$ for some $a, b \in R$; hence $(I :_R j_i R) = (I : ab^{-1}R) \cap R = (bI :_R aR)$, and thus P is associated to bI. There is an exact sequence

$$
0 \longrightarrow \frac{bR}{bI} \longrightarrow \frac{R}{bI} \longrightarrow \frac{R}{bR} \longrightarrow 0
$$

and, since R is a domain, $bR/bI \simeq R/I$ and thus Ass $(bI) \subset \text{Ass}(I) \cup$ Ass (bR) [3, Chapter IV, Proposition 3]; therefore, P is associated to I or it is divisorial (since an associated prime of a divisorial ideal – in this case, bR – is divisorial).

Remark 7.3. Note that, if $P^v = R$, then $(I : P) \subseteq (R : P) = R$, and thus $j_i \in R$; in this case, $b = 1$ and the last part of the proof can be greatly simplified.

The following is a slight improvement of Proposition 6.7. We denote by $X^1(R)$ the set of height-1 prime ideals of R.

Corollary 7.4. Let R be an integrally closed Noetherian domain. Then, the maximal elements of $Princ(R) \setminus \{v\}$ are the $v(P)$, as P ranges in $Spec(R) \setminus X^1(R)$.

Proof. Since R is integrally closed, the divisorial prime ideals of R are the height 1 primes. In particular, if P is a prime ideal of height > 1 . then $v(P)$ is maximal by Proposition 6.7.

Conversely, suppose $v(I)$ is maximal in $Princ(R) \setminus \{v\}$. If all associated primes of I have height 1, then $I = \bigcap_{P \in X^1(R)} IR_P$, and so I is divisorial, against $v(I) \neq v$. Hence, there is a $P \in \text{Ass}(I) \setminus X^1(R)$; by Proposition 7.2, $P \in \text{Spec}^{v(I)}(R)$, and thus $v(I) \leq v(P)$. As $v(I)$ is maximal, it follows that $v(I) = v(P)$. The claim is proved.

Corollary 7.5. Let R be a Noetherian unique factorization domain. Then, $v(I)$ is a maximal element of $\text{Princ}(R) \setminus \{v\}$ if and only if $I = uP$ for some prime ideal $P \in \text{Spec}(R) \setminus X^1(R)$ and some $u \in K$.

Proof. It is enough to join Corollary 7.4 (the maximal elements are the $v(P)$) with Corollary 6.6 $(v(I) = v(P))$ if and only if $I = uP$).

Proposition 7.2 allows to determine, in the Noetherian case, all the spectra of the principal star operations. We need two lemmas.

Lemma 7.6. Let R be a Noetherian ring and $\Delta \subseteq \text{Spec}(R) \setminus \{(0)\}\$ be a finite set. There is an ideal I of R such that $\text{Ass}(I) = \Delta$.

Proof. We proceed by induction on $n = |\Delta|$. If $n = 1$ and $\Delta = \{P\}$ we can take $I = P$.

Suppose $n > 1$ and let $\Delta = \{P_1, \ldots, P_n\}$; without loss of generality we can suppose $P_i \nsubseteq P_j$ for every $i > j$. Let I_0 be an ideal such that Ass(I_0) = { $P_1, ..., P_{n-1}$ }, and let $I_0 = Q_1 \cap ... \cap Q_{n-1}$ be a primary decomposition, where $P_i := \text{rad}(Q_i)$. Since the intersection of all P_n primary ideals is (0), there is a P_n -primary ideal Q_n such that $Q_n \nsubseteq I_0$; let $I := I_0 \cap Q_n$. To show that $\text{Ass}(I) = \Delta$, it is enough to prove that $Q_1 \cap \cdots \cap Q_n$ is an irredundant intersection.

Suppose Q_i is redundant. By construction, $i \neq n$; moreover, if $i = 1$, then $Q_2 \cap \cdots \cap Q_n \subseteq Q_1$ and thus, passing to the radical, $P_2 \cap \cdots \cap P_n \subseteq$ P_1 , and $P_j \subseteq P_1$ for some $j > 1$, against the hypothesis. Hence suppose $1 < i < n$, and let $L_1 := Q_1 \cap \cdots \cap Q_{i-1}$ and $L_2 := Q_{i+1} \cap \cdots \cap Q_n$. By inductive hypothesis, $Q_1 \cap \cdots \cap Q_i = L_1 \cap Q_i$ is irredundant, and thus $L_1 \nsubseteq Q_i$; let $x \in L_1 \setminus Q_i$. For every $a \in L_2$, we have $xa \in L_1L_2 \subseteq$ $L_1 \cap L_2 \subseteq Q_i$ (since Q_i is redundant), and thus $L_2 \subseteq (Q_i : R x)$. However, $rad((Q:_{R} x)) \neq R$, and thus $rad((Q_{i}:_{R} x)) = rad(Q_{i}) = P_{i}$; hence, rad $(L_2) \subseteq rad(Q_i)$, i.e., $P_{i+1} \cap \cdots \cap P_n \subseteq P_i$. However, this implies that $P_j \subseteq P_i$ for some $j > i$, which still is against the hypothesis. Therefore, no Q_i can be redundant.

Lemma 7.7. Let $\star_1, \ldots, \star_n \in \text{Star}(R)$, and let $\star := \star_1 \wedge \cdots \wedge \star_n$. Then, $Spec^*(R) = \bigcup_i Spec^{*_i}(R).$

Proof. If $P = P^{*_i}$ for some i then $P^* \subseteq P^{*_i} = P$ and thus $P = P^*$. Conversely, if $P = P^*$ then $P = P^{*_1} \cap \cdots \cap P^{*_n}$; since P is prime, it follows that $P = P^{\star_i}$ for some *i*. The claim is proved.

Proposition 7.8. Let R be a Noetherian domain, and let $\Delta \subseteq \text{Spec}(R)$. Then, the following are equivalent:

- (i) $\Delta = \text{Spec}^{v(I)}(R)$ for some ideal I;
- (ii) $\Delta = \text{Spec}^{\star}(R)$ for some $\star = v(I_1) \wedge \cdots \wedge v(I_n)$;
- (iii) $\Delta = \text{Spec}^v(R) \cup \Delta'$, for some finite set Δ' .

Proof. (i) \implies (ii) is obvious. (ii) \implies (iii) follows from Lemma 7.7. (iii) \Rightarrow (i) follows by Lemma 7.6 and Proposition 7.2 (it is enough to take an I such that $\text{Ass}(I) = \Delta'$).).

We now characterize when two nondivisorial ideals with $(I : I)$ $(J:J) = R$ generate the same star operation.

Theorem 7.9. Let R be a Noetherian domain, and let I, J be nondivisorial ideals such that $(I : I) = (J : J) = R$. Then, $v(I) = v(J)$ if and only if $\text{Ass}(I) \cup \text{Spec}^v(R) = \text{Ass}(J) \cup \text{Spec}^v(R)$ and, for every $P \in \text{Ass}(I) \cup \text{Spec}^v(R)$, there is an $a_P \in K$ such that $IR_P = a_P JR_P$.

Proof. Suppose the two conditions hold. By Proposition 7.2, Ass $(I) \cup$ $Spec^{v}(R) = Spec^{v(I)}(R)$, and thus $Spec^{v(I)}(R) = Spec^{v(J)}(R) =: \Delta$. For every ideal L, using Proposition 5.1 we have

$$
L^{v(I)} = \bigcap_{P \in \Delta} L^{v(I)} R_P = \bigcap_{P \in \Delta} (LR_P)^{v(I)_{R_P}} = \bigcap_{P \in \Delta} (LR_P)^{v(IR_P)}.
$$

Since IR_P and JR_P are isomorphic, $(LR_P)^{v(IR_P)} = (LR_P)^{v(JR_P)}$; it follows that $v(I) = v(J)$.

Conversely, suppose $v(I) = v(J) =: \star$. Then, Spec^{*}(R) is equal to both $\text{Ass}(I) \cup \text{Spec}^v(R)$ and $\text{Ass}(J) \cup \text{Spec}^v(R)$, which thus are equal. Note also that $(I : I) = R$ implies that $R_P = (I : I)R_P = (IR_P : IR_P)$ for every prime ideal P.

Let now $P \in \text{Spec}^{\star}(R)$. Since $v(I) = v(J)$, clearly $v(I)_{R_P} = v(J)_{R_P}$, which by Proposition 5.1 implies that $v(IR_P) = v(JR_P)$. However, PR_P is $v(IR_P)$ -closed because P is $v(I)$ -closed; it follows, by Proposition 4.5, that $IR_P = a_P JR_P$ for some $a_P \in K$, as claimed.

Corollary 7.10. Let R be an integrally closed Noetherian domain, and let I, J be non-divisorial ideals. Then, $v(I) = v(J)$ if and only if Ass(I)∪ $X^1(R) =$ Ass(J)∪ $X^1(R)$ and for every $P \in$ Ass(I) there is an $a_P \in R_P$ such that $IR_P = a_P JR_P$.

Proof. Since R is integrally closed and Noetherian, we have $(I : I) = R$ for every ideal I; furthermore, the divisorial primes are the height 1 primes, and for any such P the localizations IR_P and JR_P are isomorphic since R_P is a DVR. The claim now follows from Theorem 7.9. \Box

Example 7.11. Let R be a Noetherian integrally closed domain, and suppose that R_M is not a UFD for some maximal ideal M. Let P be an height 1 prime contained in M such that PR_M is not principal, and let Q be a prime ideal of height bigger than 1 such that $P + Q = R$ (in particular, $Q \nsubseteq M$). We claim that $v(PQ) = v(Q)$ but PQ and Q are not locally isomorphic.

In fact, since they are coprime, $PQ = P \cap Q$, and thus Ass $(PQ) =$ $\{P,Q\}$ while Ass $(Q) = \{Q\}$; moreover, $P \nsubseteq Q$ and thus $PQR_Q =$ $QPR_Q = QR_Q$. Since $P \in X^1(R)$, by Corollary 7.10 it follows that $v(PQ) = v(Q)$. However, $QR_M = R_M$ is principal, while $PQR_M =$ PR_M , by hypothesis, is not: therefore, Q and PQ are not locally isomorphic. In particular, there cannot be an invertible ideal L such that $Q = LPQ$, because LR_M would be principal and thus Q and PQ would be locally isomorphic.

REFERENCES

- [1] D. D. Anderson. Star-operations induced by overrings. Comm. Algebra, 16(12):2535–2553, 1988.
- [2] D. D. Anderson and Sylvia J. Cook. Two star-operations and their induced lattices. Comm. Algebra, 28(5):2461–2475, 2000.
- [3] Nicolas Bourbaki. Commutative Algebra. Chapters 1–7. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1989. Translated from the French, Reprint of the 1972 edition.
- [4] Jesse Elliott. Semistar operations on Dedekind domains. Comm. Algebra, 43(1):236–248, 2015.
- [5] Carmelo A. Finocchiaro, Marco Fontana, and Dario Spirito. Spectral spaces of semistar operations. J. Pure Appl. Algebra, 220(8):2897–2913, 2016.
- [6] Marco Fontana, Evan Houston, and Thomas Lucas. Factoring Ideals in Integral Domains, volume 14 of Lecture Notes of the Unione Matematica Italiana. Springer, Heidelberg; UMI, Bologna, 2013.
- [7] Robert Gilmer. Multiplicative Ideal Theory. Marcel Dekker Inc., New York, 1972. Pure and Applied Mathematics, No. 12.
- [8] John R. Hedstrom and Evan G. Houston. Pseudo-valuation domains. Pacific J. Math., 75(1):137–147, 1978.
- [9] William J. Heinzer, James A. Huckaba, and Ira J. Papick. m-canonical ideals in integral domains. Comm. Algebra, 26(9):3021–3043, 1998.
- [10] Evan G. Houston, Abdeslam Mimouni, and Mi Hee Park. Integral domains which admit at most two star operations. Comm. Algebra, 39(5):1907-1921, 2011.
- [11] Evan G. Houston, Abdeslam Mimouni, and Mi Hee Park. Noetherian domains which admit only finitely many star operations. J. Algebra, 366:78–93, 2012.
- [12] Evan G. Houston, Abdeslam Mimouni, and Mi Hee Park. Integrally closed domains with only finitely many star operations. Comm. Algebra, 42(12):5264– 5286, 2014.
- [13] Giampaolo Picozza. Star operations on overrings and semistar operations. Comm. Algebra, 33(6):2051–2073, 2005.
- [14] Dario Spirito. Star Operations on Numerical Semigroups. Comm. Algebra, 43(7):2943–2963, 2015.
- [15] Dario Spirito. Star operations on numerical semigroups: the multiplicity 3 case. Semigroup Forum, 91(2):476–494, 2015.
- [16] Dario Spirito. Jaffard families and localizations of star operations. J. Commut. Algebra, to appear.
- [17] Fanggui Wang and R. L. McCasland. On w-modules over strong Mori domains. Comm. Algebra, 25(4):1285–1306, 1997.

Dipartimento di Matematica e Fisica, Universita degli Studi "Roma ` TRE", ROMA, ITALY

Email address: spirito@mat.uniroma3.it