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Abstract. We study when two fractional ideals of the same in-
tegral domain generate the same star operation.

1. Introduction

Throughout the paper, R will denote an integral domain with quo-
tient field K and F(R) will be the set of fractional ideals of R, that is,
the set of R-submodules I of K such that xI ⊆ R for some x ∈ K \{0}.

A star operation on R is a map ? : F(R) −→ F(R) such that, for
every I, J ∈ F(R) and every x ∈ K:

• I ⊆ I?;
• if I ⊆ J , then I? ⊆ J?;
• (I?)? = I?;
• (xI)? = x · I?;
• R? = R.

The usual examples of star operations are the identity (usually denoted
by d), the v-operation (or divisorial closure) J 7→ Jv := (R : (R : J)),
the t- and the w-operation (which are defined from v) and the star
operations I 7→

⋂
T∈∆ IT , where ∆ is a set of overrings of R intersecting

to R. While these examples are the easiest to work with, they usually
cover only a rather small part of the set of star operations.

A much more general construction is given in [9, Proposition 3.2]: if
(I : I) = R, then the map J 7→ (I : (I : J)) is a star operation. This
construction is much more flexible than the more “classical” ones, and
allows to construct a much higher number of star operations (see e.g.
[10, Proposition 2.1(1)] or [11, Theorem 2.1] for its use to construct an
infinite family of star operations, or [14, 15] for constructions in the
case of numerical semigroups). In this paper, we slightly generalize this
construction (removing the condition (I : I) = R) and study under
which conditions two ideals I and J generate the same star operation:
in particular, we are interested in understanding when this happens
only for isomorphic ideals.
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The structure of the paper is as follows: in Section 3 we give some gen-
eral properties of principal star operations; in Section 4, we generalize
some results of [9] from m-canonical ideals to general ideals; in Section
5 we study the effect of localizations on principal star operations; in
Section 6 we study operations generated by ideals whose v-closure is
R (and, in particular, what happens when R is a unique factorization
domain); in Section 7 we study the Noetherian case, reaching a nec-
essary and sufficient condition for v(I) = v(J) under the assumption
(I : I) = (J : J) = R.

2. Background

By an ideal of R we shall always mean a fractional ideal of R, re-
serving the term integral ideal for those contained in R.

Let ? be a star operation on R. An ideal I of R is ?-closed if I = I?;
the set of ?-closed ideals is denoted by F?(R). When ? = v is the
divisorial closure, the elements of Fv(R) are called divisorial ideals.

Let Star(R) be the set of star operation on R. Then, Star(R) has
a natural order structure, where ?1 ≤ ?2 if and only if I?1 ⊆ I?2 for
every I ∈ F(R), or equivalently if F?1(R) ⊇ F?2(R). Under this order,
Star(R) is a complete lattice whose minimum is the identity and whose
maximum is the v-operation.

A star operation is said to be of finite type if it is determined by its
action on finitely generated ideals, or equivalently if

I? =
⋃
{J? | J ⊆ I is finitely generated}

for every I ∈ F(R). A star operation is spectral if there is a subset
∆ ⊆ Spec(D) such that

I? =
⋂
{IRP | P ∈ ∆}

for every I ∈ F(R).
If ? is a star operation of R, a prime ideal P is a ?-prime if it is

?-closed; the set of the ?-primes, denoted by Spec?(R), is called the
?-spectrum. A ?-maximal ideal of R is an ideal maximal among the set
of proper ideals of R that are ?-closed; their set is denoted by Max?(R).
Any ?-maximal ideal is prime; however, ?-maximal ideals need not to
exist. If ? is a star operation of finite type, then every ?-closed proper
integral ideal is contained in some ?-maximal ideal; furthermore, for
every ?-closed ideal I we have I =

⋂
{IRP | P ∈ Spec?(R)}.

3. Principal star operations

Definition 3.1. Let R be an integral domain. For every I ∈ F(R),
the star operation generated by I, denoted by v(I), is the supremum of
all the star operations ? on R such that I is ?-closed. If ? = v(I) for
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some ideal I, we say that ? is a principal star operation. We denote by
Princ(R) the set of principal star operations of R.

We can give a more explicit representation of v(I).

Proposition 3.2. For every fractional ideal J , we have

(1) Jv(I) = Jv ∩ (I : (I : J)) = Jv ∩
⋂

α∈(I:J)\{0}

α−1I.

Furthermore, if (I : I) = R then Jv(I) = (I : (I : J)).

Proof. The fact that the two maps J 7→ Jv∩ (I : (I : J)) and J 7→ Jv∩⋂
α∈(I:J)\{0} α

−1I give star operations and coincide follows in the same

way as [9, Lemma 3.1 and Proposition 3.2]. The second representation
clearly implies that they close I; furthermore, if I is closed then Jv

and each α−1I are closed, and thus the two representations of (1) give
exactly v(I).

The “furthermore” statement follows again from [9, Lemma 3.1 and
Proposition 3.2]. �

In the paper [9] that introduced the map J 7→ (I : (I : J)) when
(I : I) = R, an ideal I was said to be m-canonical if J = (I : (I : J))
for every ideal J . This is equivalent to saying that (I : I) = R and that
v(I) is the identity.

The definition of v(I) can be extended to semistar operations, as in
[13, Example 1.8(2)]; such construction was called the divisorial closure
with respect to I in [4]. The terminology “generated” is justified by the
following Proposition 3.3.

Proposition 3.3. Let ? be a star operation on R. Then, ? = inf{v(I) |
I ∈ F?(R)}.
Proof. Let ] := inf{v(I) | I ∈ F?(R)}. By definition, ? ≤ v(I) for every
I ∈ F?(R), and thus ? ≤ ]. Conversely, let J be a ?-ideal; then, ] ≤ v(J)
and thus J is ]-closed. It follows that ? ≥ ], and thus ? = ]. �

Our main interest in this paper is to understand when two ideals
generate the same star operation. The first cases are quite easy.

Lemma 3.4. Let I be a fractional ideal of R. Then, the following hold.

(a) v(I) = v if and only if I is divisorial.
(b) If (I : I) = R, then v(I) = d if and only if I is m-canonical.
(c) For every a ∈ K, a 6= 0, we have v(I) = v(aI).
(d) If L is an invertible ideal of R, then v(I) = v(IL).

Proof. The only non-trivial part is the last point. If L is invertible, then

Iv(IL)L ⊆ (Iv(IL)L)v(IL) = (IL)v(IL) = IL

and thus Iv(IL) ⊆ IL(R : L) = I, i.e., I is v(IL)-closed; it follows that
v(I) ≥ v(IL). Symmetrically, we have v(IL) ≥ v(IL(R : L)) = v(I),
and thus v(I) = v(IL). �
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We note that if J = IL for some invertible ideal L, then I and J are
locally isomorphic. However, the latter condition is neither necessary
nor sufficient for I and J to generate the same star operation, even
excluding divisorial ideals. For example, if R is an almost Dedekind
domain that is not Dedekind, then all ideals are locally isomorphic
but not all are divisorial, and two nondivisorial maximal ideal generate
different star operations (if M 6= N are two such ideals, then (M :
N) = M and so N v(M) = N v ∩ (M : (M : N)) = R). For an example
of non-locally isomorphic ideals generating the same star operation see
Example 7.11.

The following necessary condition has been proved in [14, Lemma
3.7] when I and J are fractional ideals of a numerical semigroup; the
proof of the integral domain case (which was also stated later in the
same paper) can be obtained in exactly the same way.

Proposition 3.5. Let R be an integral domain and I, J be non-divisorial
ideals of R. If v(I) = v(J) then

I = Iv ∩
⋂

γ∈(I:J)(J :I)\{0}

(γ−1I).

4. Local rings

As the construction of the principal star operation v(I) generalize
the definition of m-canonical ideal, we expect that I is in some way
“m-canonical for v(I)”. Pursuing this strategy, we obtain the following
generalization of [9, Lemma 2.2(e)].

Lemma 4.1. Let I be an ideal of a domain R such that (I : I) = R.
Let {Jα | α ∈ A} be v(I)-ideals such that

⋂
α∈A Jα 6= (0). Then,(

I :
⋂
α∈A

Jα

)
=

(∑
α∈A

(I : Jα)

)v(I)

.

Proof. Let J :=
∑

α∈A(I : Jα). Since (I : I) = R, we have Lv(I) = (I :
(I : L)) for every ideal L; therefore,

(I : J) =

(
I :
∑
α∈A

(I : Jα)

)
=
⋂
α∈A

(I : (I : Jα)) =
⋂
α∈A

Jv(I)
α =

⋂
α∈A

Jα

and thus

Jv(I) = (I : (I : J)) =

(
I :
⋂
α∈A

Jα

)
,

as claimed. �

The following definition abstracts a property proved, for m-canonical
ideals of local domains, in [9, Lemma 4.1].
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Definition 4.2. Let ? be a star operation on R. We say that an ideal
I of R is strongly ?-irreducible if I = I? 6=

⋂
{J ∈ F?(R) | I ( J}.

Lemma 4.3. Let R be a domain and I be a nondivisorial ideal of R.
If I is strongly v(I)-irreducible and v(I) = v(J), then I = uJ for some
u ∈ K.

Proof. Suppose v(I) = v(J). Then

I = Iv(J) = Iv ∩
⋂

α∈(J :I)\{0}

α−1J.

Both Iv and each α−1J is a v(I)-ideal: hence, either I = Iv (which is
impossible since I is not divisorial) or I = α−1J for some α ∈ K. �

Lemma 4.4. Suppose (R,M) is a local ring and R = (I : I). If M is
v(I)-closed, then I is strongly v(I)-irreducible.

Proof. Let {Jα} be a family of v(I)-ideals such that I =
⋂
Jα. Then,

R = (I : I) =

(
I :
⋂
α

Jα

)
=

(∑
α

(I : Jα)

)v(I)

by Lemma 4.1.
Hence (I : Jα) ⊆ R for every α; suppose I ( Jα for all α. Then,

1 /∈ (I : Jα) and thus (I : Jα) ⊆ M ; therefore,
∑

(I : Jα) ⊆ M and,

since M is v(I)-closed, also (
∑

α(I : Jα))v(I) ⊆ M , a contradiction.
Therefore, we must have Jα = I for some α, and I is strongly v(I)-
irreducible. �

As a consequence of the previous two lemmas, we have a very general
result for local rings.

Proposition 4.5. Let (R,M) be a local domain and I a nondivisorial
ideal of R such that (I : I) = R. If M = M v(I) (in particular, if M is
divisorial), then v(I) = v(J) for some ideal J if and only if I = uJ for
some u ∈ K.

Proof. By Lemma 4.4, I is strongly v(I)-irreducible; by Lemma 4.3 it
follows that I = uJ . �

Corollary 4.6. Let (R,M) be a local domain, and I and J two non-
divisorial ideals of R. If R is completely integrally closed and M is
divisorial, then v(I) = v(J) if and only if I = uJ for some u ∈ K.

Proof. Since R is completely integrally closed, (L : L) = R for all ideals
L; furthermore, since M is divisorial M v(L) = M for every L. The claim
follows from Proposition 4.5. �

One problem of the previous results is the hypothesis (I : I) = R. In
the following proposition we eliminate it at the price of forcing more
properties of R.
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Proposition 4.7. Let (R,M) be a local ring, and let T := (M : M).
Let I, J be ideals of R, properly contained between R and T , such that
v(I) = v(J).

(a) If (I : I), (J : J) ⊆ T , then (I : I) = (J : J).
(b) Suppose also that (I : I) =: A is local with divisorial maximal

ideal, and that I and J are not divisorial over A. Then, there
is a u ∈ K such that I = uJ .

Proof. If M is principal, T = R and the statement is vacuous. Suppose
thus M is not principal: then, we also have T = (R : M). We first
claim that Lv = T for every ideal L properly contained between R and
T . Indeed, the containment R ( L implies that (R : L) ( R and thus,
since R is local, (R : L) ⊆M and Lv ⊇ T ) L; hence, Lv = T .

(a) Let T1 := (I : I) and T2 := (J : J), and define ?i as the star
operation L?i := Lv ∩LTi. Since T contains T1 and T2, it is both a T1-
and a T2-ideal. We claim that L 6= R is ?i-closed if and only if it is a
Ti-ideal: the “if” part is obvious, while if L = Lv ∩ LTi then Lv = T is
a Ti-ideal and thus L is intersection of two Ti-ideals.

If v(I) = v(J), then I is ?-closed if and only if J is ?-closed; therefore,
since I is ?1-closed and J is ?2-closed, both I and J are T1 and T2-ideals.
But (I : I) (respectively, (J : J)) is the maximal overring of R in which
I (respectively, J) is an ideal; thus (I : I) = (J : J).

(b) Consider the star operation generated by I on A, i.e., vA(I) : L 7→
(A : (A : L)) ∩ (I : (I : L)) for every L ∈ F(A). By the first paragraph
of the proof, applied on the A-ideals, we have (A : (A : L)) = T for all
ideals L of A properly contained between A and T ; in particular, this
happen for J (since R ⊂ J implies A = AR ⊆ AJ = J , and A 6= J
since J is not divisorial), and thus JvA(I) = Jv(I) = J . Symmetrically,
IvA(J) = I; hence, vA(I) = vA(J). By Proposition 4.5, applied to A, we
have I = uJ for some u ∈ K, as claimed. �

Recall that a pseudo-valuation domain (PVD) is a local domain
(R,M) such that M is the maximal ideal of a valuation overring of
R (called the valuation domain associated to R) [8].

Corollary 4.8. Let (R,M) be a pseudo-valuation domain with asso-
ciated valuation ring V , and suppose that the field extension R/M ⊆
V/M is algebraic. Let I, J be nondivisorial ideals of R. Then, v(I) =
v(J) if and only if I = uJ for some u ∈ K.

Proof. By [12, Proposition 2.2(5)], there are a, b ∈ K such that a−1I
and b−1J are properly contained between R and V = (M : M). Fur-
thermore, since R/M ⊆ V/M is algebraic, every ring between R and
V is the pullback of some intermediate field, and in particular it is it-
self a PVD with maximal ideal M . The claim follows from Proposition
4.7. �
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5. Localizations

Let ? be a star operation on R and T a flat overring of R. Then, ?
is said to be extendable to T if the map

?T : F(T ) −→ F(T )

IT 7−→ I?T

is well-defined; when this happens, ?T is called the extension of ? to T
and is a star operation on T [16, Definition 3.1]. In general, not all star
operations are extendable, although finite-type operations are (see [10,
Proposition 2.4] and [16, Proposition 3.3(d)]).

We would like to have an equality v(I)T = v(IT ), where the latter
is considered as a star operation on T . In general, this is false, both
because v(I) may not be extendable and because the extension v(I)T
may not be equal to v(IT ): both these cases happen even for valuation
domains.

For example, suppose V is a valuation domain with branched maxi-
mal ideal. If I is divisorial, then v(I) = v; however, if the maximal ideal
is not principal, then v is not extendable to VP for every non-maximal
prime P . On the other hand, if the maximal ideal is principal, then
the only star operation on V is the identity, and thus v(I) = d for all
ideals I: in particular, v(I) is extendable to every localization of V , and
its extension is the identity. Suppose (0) ⊂ P ⊂ Q are non-maximal
prime ideals of V , and suppose QVQ is not principal in VQ: then, the
v-operation on V is not the identity. However, P = PVQ is divisorial
in VQ, and thus v(PVQ) is the v-operation; on the other hand, v(P )VQ
is the identity on VQ. In particular, v(PVQ) 6= v(P )VQ .

In the Noetherian case, however, everything works.

Proposition 5.1. If R is Noetherian, then v(I)T = v(IT ) for every
flat overring T of R.

Proof. By definition, Jv(I) = (R : (R : J))∩ (I : (I : J)); multiplication
by a flat overring commutes with intersections, and since every ideal is
finitely generated, the colon localizes, and thus

Jv(I)T = (R : (R : J))T ∩ (I : (I : J))T =

= (T : (T : JT )) ∩ (IT : (IT : JT )) =

= (JT )vT ∩ (IT : (IT : JT )) = (JT )v(IT ),

i.e., v(I)T = v(IT ). �

Another case where localization works well is for Jaffard families. If
R is an integral domain with quotient field K, a Jaffard family of R is
a set Θ of flat overrings of R such that [6, Section 6.3.1]:

• Θ is locally finite;
• I =

∏
{IT ∩R | T ∈ Θ, IT 6= T} for every integral ideal I;
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• (IT1 ∩ R) + (IT2 ∩ R) = R for every integral ideal I and every
T1 6= T2 in Θ.

Proposition 5.2. Let R be an integral domain, and let T be an over-
ring of R that belongs to a Jaffard family of R. For every ideal I of R,
the star operation v(I) is extendable to T , and v(I)T = v(IT ).

Proof. Since T belongs to a Jaffard family of R, we have (J : L)T =
(JT : LT ) for every pair of fractional ideals J, L of R [16, Lemma 5.3];
the claim follows as in the proof of Proposition 5.1. �

Jaffard families can be used to factorize the set of star operations of a
domain R into a direct product of sets of star operations [16, Theorem
5.4]; for principal star operations, we have something similar. We define
a “direct sum”-like construction of sets of principal ideals as⊕
T∈Θ

Princ(T ) := {(?(T ))T∈Θ | ?(T ) 6= v(T ) for only a finite number of T}.

Proposition 5.3. Let R be an integral domain and Θ be a Jaffard
family on R. Then, the map

Υ: Princ(R) −→
⊕
T∈Θ

Princ(T )

v(I) 7−→ (v(IT ))T∈Θ

is a well-defined order-isomorphism.

Proof. The map Υ is just the restriction of the localization map λΘ to
Princ(R), which is an isomorphism (see [16, Theorem 5.4]), so we have
only to show that it is well-defined and surjective.

By Proposition 5.2, v(I)T = v(IT ) for every T ∈ Θ; moreover, IT =
T for all but a finite number of T (by definition of a Jaffard family), so
that v(IT ) = v(T ) = v(T ) for all but a finite number of T . In particular,
the image of Υ lies inside the direct sum

⊕
T∈Θ Princ(T ).

Suppose, conversely, that (v(JT ))T∈Θ ∈
⊕

T∈Θ Princ(T ). We can sup-

pose that JT ⊆ T for every T , and that JT = T if v(JT ) = v(T ). De-
fine thus I :=

⋂
T∈Θ JT : then, I is nonzero (since JT 6= T for only

a finite number of T ) and IT = JT for every T [16, Lemma 5.2].
Therefore, v(I)T = v(IT ) = v(JT ), and the image of Υ is exactly⊕

T∈Θ Princ(T ). �

Proposition 5.3 can be interpreted as a way to “factorize” principal
star operations.

Corollary 5.4. Let R be an integral domain and Θ be a Jaffard family
on R. Let I be an integral ideal of R. Then, there are T1, . . . , Tn ∈ Θ
such that v(I) = v(IT1 ∩R) ∧ · · · ∧ v(ITn ∩R).

Proof. Since I ⊆ R, we have IT = T for all but finitely many T ∈ Θ;
let T1, . . . , Tn be the exceptions. The claim follows from Proposition
5.3. �
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Recall that an integral domain is said to be h-local if every ideal is
contained in a finite number of maximal ideals and every prime ideal
is contained in only one maximal ideal.

Corollary 5.5. Let R be an h-local Prüfer domain, and let M be the
set of nondivisorial maximal ideals of R. Then, there is a bijective
correspondence between Princ(R) and the set Pfin(M) of finite subset
of M. Furthermore, M is finite if and only if every star operation is
principal.

Proof. Since R is h-local, {RM | M ∈ Max(R)} is a Jaffard family of
R, and thus by Proposition 5.3 there is a bijective correspondence Υ
between Princ(R) and

⊕
M∈Max(R) Princ(RM). If M /∈ M, then MRM

is principal and thus Star(RM) = Princ(RM) = {d = v}; hence, Υ
restricts to a bijection Υ′ between Princ(R) and

⊕
M∈M Princ(RM).

Since RM is a valuation domain, each Princ(RM) is composed by two
elements (the identity and the v-operation). Thus, we can construct
a bijection Υ1 from the direct sum to Pfin(M) by associating to ? :=
(?(M)) the finite set Υ1(?) := {M ∈ M | ?(M) 6= v}. The composition
Υ1 ◦Υ′ is a bijection from Princ(R) to Pfin(M).

The last claim follows immediately. �

A factorization property similar to Corollary 5.4 can be proved for
ideals having a primary decomposition with no embedded primes.

Proposition 5.6. Let Q1, . . . , Qn be primary ideals, let Pi := rad(Qi)
for all i and let I := Q1∩ · · ·∩Qn. If the Pi are pairwise incomparable,
then v(I) = v(Q1) ∧ · · · ∧ v(Qn).

Proof. For every i, the ideal Qi is v(Qi)-closed, and thus I is (v(Q1) ∧
· · · ∧ v(Qn))-closed; hence, v(I) ≥ v(Q1) ∧ · · · v(Qn). To prove the
converse, we need to show that each Qi is v(I)-closed.

Without loss of generality, let i = 1, and define Q̂ := Q2 ∩ · · · ∩Qn;

we claim that Q1 = (I :R Q̂). Since Q1Q̂ ⊆ Q1 ∩ Q̂ = I, clearly

Q1 ⊆ (I :R Q̂). Conversely, let x ∈ (I :R Q̂). Since the radicals of the

Qi are pairwise incomparable, Qi * P1 for every i > 1, and so Q̂ * P1;

therefore, there is a q ∈ Q̂\P1. Then, xq ∈ I, and in particular xq ∈ Q1.
If x /∈ Q1, then since Q1 is primary we would have qt ∈ Q1 for some
t ∈ N; however, this would imply q ∈ rad(Q1) = P1, against the choice

of q. Thus, Q1 ⊆ (I :R Q̂) and so Q1 = (I :R Q̂).

By definition, I is v(I)-closed; hence, also (I :R Q̂) is v(I)-closed. It
follows that Q1 is v(I)-closed, and thus that each Qi is v(I)-closed, i.e.,
v(I) ≤ v(Q1) ∧ · · · ∧ v(Qn). The claim is proved. �

6. v-trivial ideals

In this section, we analyze principal operations generated by v-trivial
ideals.
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Definition 6.1. An ideal I of a domain R is v-trivial if Iv = R.

Lemma 6.2. If I is v-trivial, then (I : I) = R.

Proof. If Iv = R, then (R : I) = R, and thus (I : I) ⊆ (R : I) = R. �

Definition 6.3. A star operation ? is semifinite (or quasi-spectral) if
every ?-closed ideal I ( R is contained in a ?-prime ideal.

All finite-type and all spectral operations are semifinite; on the other
hand, if V is a valuation domain with maximal ideal that is branched
but not finitely generated, the v-operation on V is not semifinite. The
class of semifinite operations is closed by taking infima, but not by
taking suprema (see [5, Example 4.5]).

Lemma 6.4. Let R be an integral domain, and let I, J be v-trivial
ideals of R.

(a) If J ( I, then Jv(I) = I, and in particular v(I) 6= v(J).

Suppose v is semifinite on R.

(b) I ∩ J is v-trivial.
(c) I ⊆ Jv(I).
(d) If I 6= J , then v(I) 6= v(J).

Proof. (a) Since I is v-trivial, by Lemma 6.2 we have Jv(I) = (I : (I :
J)). However, R ⊆ (I : J) ⊆ (R : J) = R (using the v-triviality of J)
and thus Jv(I) = (I : R) = I, as claimed. In particular, J = Jv(J) 6=
Jv(I) and so v(I) 6= v(J).

(b) If (I ∩ J)v 6= R, then by semifiniteness there is a prime ideal P
such that I ∩ J ⊆ P = P v: But this would imply I ⊆ P or J ⊆ P ,
against the hypothesis that I and J are v-trivial.

(c) Since J ⊆ Jv(I), it follows that Jv(I) is v-trivial, and by the
previous point so it Jv(I)∩I. If I * Jv(I), it would follow that Jv(I)∩I (
I; but Jv(I) ∩ I is v(I)-closed, against (a). Hence I ⊆ Jv(I).

(d) If both I and J are v(I)-closed, then so is I∩J ; by (b), (I∩J)v =
R. The claim follows applyning (a) to I ∩ J and I (or J). �

Corollary 6.5. Let R be a domain such that v is semifinite. Let I, J
be ideals of R such that Iv and Jv are invertible; then, v(I) = v(J) if
and only if I = LJ for some invertible ideal L.

Proof. By invertibility, we have

R = Iv(R : Iv) = (Iv(R : Iv))v = (I(R : Iv))v;

since I ⊆ I(R : Iv) ⊆ R, the ideal I(R : Iv) is v-trivial. Analogously,
R = (J(R : Jv))v and J(R : Jv) is v-trivial. Hence, by Lemma 6.4(d)
I(R : Iv) = J(R : Jv); thus, I = Iv(R : Jv)J , and L := Iv(R : Jv) is
invertible. �

Corollary 6.6. Let R be a unique factorization domain. Then:
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(a) for every principal star operation ? 6= v there is a proper ideal
I such that h(I) > 1 and ? = v(I);

(b) if I, J are fractional ideals of R, v(I) = v(J) if and only if
I = uJ for some u ∈ K.

Proof. Let ? = v(I) for some ideal I. By [7, Corollary 44.5], every v-
closed ideal of R is principal; hence, let Iv = pR. Then, (p−1I)v = R,
i.e., p−1I is v-trivial. Analogously, q−1J is v-trivial for some J ; thus
v(p−1I) = v(I) = v(J) = v(q−1J). Applying Lemma 6.4(d) to p−1I
and q−1J we get p−1I = q−1J , i.e., I = (pq−1)J . �

For star operations generated by v-trivial prime ideals, we can also
determine the set of closed ideals.

Proposition 6.7. Let R be a domain such that v is semifinite and
such that Iv is invertible for every ideal I, and let P ∈ Spec(R). Then
Fv(P )(R) = Fv(R)∪{LP | L is an invertible ideal}. In particular, v(P )
is a maximal element of Princ(R) \ {v}.

Proof. Let I be a non-divisorial ideal; multiplying by an invertible ideal
L, we can suppose Iv = R. If I ⊆ P , by Lemma 6.4(a) Iv(P ) = P , and
thus I 6= Iv(P ) unless I = P ; suppose I * P . Then (P : I) = P : we
have (P : I) ⊆ (R : I) = R, and thus if xI ⊆ P then x ∈ P . Therefore,
Iv(P ) = Iv ∩ (P : (P : I)) = R ∩ (P : P ) = R 6= I.

For the “in particular” claim, note that if v(I) ≥ v(P ) then I should
be ?-closed: by the previous part of the proof, this means that either
I is divisorial (and so v(I) = v) or I = LP for some invertible L (and
thus v(I) = v(P ) by Lemma 3.4(d). �

Corollary 6.8. Let R be a unique factorization domain, and let P ∈
Spec(R). Then, Fv(P )(R) = Fv(R) ∪ {aP | a ∈ K}.

We have seen in Proposition 3.3 that all star operation can be “gen-
erated” by principal star operations; we can use v-trivial ideals to show
that in many cases we need infinitely many of them.

Proposition 6.9. Let R be a domain such that v is semifinite, and let
I1, . . . , In be v-trivial ideals; let ? := v(I1)∧ · · · ∧ v(In). Then, the ideal
I1 ∩ · · · ∩ In is the minimal v-trivial ideal that is ?-closed.

Proof. Let J := I1 ∩ · · · ∩ In. By Lemma 6.4(b), J is v-trivial. Clearly
J is ?-closed. Suppose L is v-trivial; then, applying Lemma 6.4(c),

L? = Lv(I1)∧···∧v(In) ⊇ I1 ∩ · · · In = J.

Therefore, J is the minimum among v-trivial ?-closed ideals. �

Corollary 6.10. Let R be a unique factorization domain, and let ? ∈
Star(R) be such that ? 6= v. If

⋂
{J ∈ F?(R) | Jv = R} = (0), then ?

is not the infimum of a finite family of principal star operations.
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Proof. Since R is a UFD, the v-operation is semifinite, and every prin-
cipal star operation can be generated by a v-trivial ideal. If ? were to
be finitely generated, say ? = v(I1)∧ · · · ∧ v(In), then J := I1 ∩ · · · ∩ In
would be the minimal v-trivial ?-closed ideal; however, by hypothesis,
there must be a v-trivial ?-closed ideal J ′ not containing J , and thus ?
cannot be finitely generated. �

Proposition 6.11. Let R be a domain, and let ∆ be a set of overrings
whose intersection is R. Let ? be the star operation I 7→

⋂
{IT | T ∈

∆}. Suppose that:

(1) v is semifinite;
(2) every v-trivial ideal contains a finitely generated v-trivial ideal;
(3) there is a v-trivial ?-closed ideal.

Then, ? is not the infimum of a finite family of principal star opera-
tions.

Proof. By substituting an overring T ∈ ∆ with {TM | M ∈ Max(T )},
we can suppose without loss of generality that each member of ∆ is
local.

If ? were finitely generated, by Proposition 6.9 there would be a
minimal v-trivial ?-closed ideal, say J . By hypothesis, there is finitely
generated v-trivial ideal I ⊆ J ; since I? = J , by [1, Theorem 2], we
have IT = JT for every T ∈ ∆.

Since I? 6= R, there must be an S ∈ ∆ such that IS 6= S; by
Nakayama’s lemma, I2S = (IS)2 ( IS, and so (I2)? ⊆ I2S ∩ R ( I.
In particular, (I2)? is a v-trivial ?-closed ideal, against the definition of
I. Thus, ? is not finitely generated. �

The first two hypothesis hold, for example, for unique factorization
domains of dimension d > 1; the third one holds, for example, in the
following cases:

• ? is a spectral star operation of finite type different from the
w-operation (see [17, 2]);
• if R is integrally closed and (at least) one maximal ideal is not

divisorial, the b-operation/integral closure;
• if R is a UFD, all star operations coming from overrings, except

the v-operation.

7. Noetherian domains

In this section, we study in more detail the case of Noetherian do-
mains; in particular, we shall give in Theorem 7.9 a necessary and
sufficient condition on when v(I) = v(J), under the assumption that
(I : I) = R = (J : J). We first state a case that is already settled, even
without this hypothesis.

Proposition 7.1. [14, Proposition 5.4] Let (R,M) be a local Noether-
ian integral domain of dimension 1 such that its integral closure V is
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a discrete valuation domain that is finite over R; suppose also that the
induced map of residue fields R/M ⊆ V/MV is an isomorphism. Then,
v(I) = v(J) if and only if I = uJ for some u ∈ K, u 6= 0.

We denote by Ass(I) the set of associated primes of I.

Proposition 7.2. Let R be a domain and I an ideal of R. Then,
Specv(I)(R) ⊇ Specv(R) ∪ Ass(I), and if R is Noetherian the two sets
are equal.

Proof. If P ∈ Ass(I), then P = (I :R x) = x−1I ∩ R for some x ∈ R,
and thus it is v(I)-closed; if P ∈ Specv(R) then P = P v and thus
P = P v(I).

Conversely, suppose R is Noetherian and P = P v(I). Then P = P v ∩
(I : (I : P )) = P v ∩ (I : J), where J = (I : P ); let J = j1R+ · · ·+ jnR.
We have

P = P v ∩ (I : J) = P v ∩R ∩ (I : J) = P v ∩ (I :R J) =
= P v ∩ (I :R j1R + · · ·+ jnR) = P v ∩

⋂n
i=1(I :R jiR),

and, since P is prime, this implies that P v = P or (I :R jiR) = P for
some i. In the latter case, since ji ∈ K, ji = a/b for some a, b ∈ R;
hence (I :R jiR) = (I : ab−1R) ∩ R = (bI :R aR), and thus P is
associated to bI. There is an exact sequence

0 −→ bR

bI
−→ R

bI
−→ R

bR
−→ 0

and, since R is a domain, bR/bI ' R/I and thus Ass(bI) ⊆ Ass(I) ∪
Ass(bR) [3, Chapter IV, Proposition 3]; therefore, P is associated to I
or it is divisorial (since an associated prime of a divisorial ideal – in
this case, bR – is divisorial). �

Remark 7.3. Note that, if P v = R, then (I : P ) ⊆ (R : P ) = R, and
thus ji ∈ R; in this case, b = 1 and the last part of the proof can be
greatly simplified.

The following is a slight improvement of Proposition 6.7. We denote
by X1(R) the set of height-1 prime ideals of R.

Corollary 7.4. Let R be an integrally closed Noetherian domain. Then,
the maximal elements of Princ(R) \ {v} are the v(P ), as P ranges in
Spec(R) \X1(R).

Proof. Since R is integrally closed, the divisorial prime ideals of R are
the height 1 primes. In particular, if P is a prime ideal of height > 1,
then v(P ) is maximal by Proposition 6.7.

Conversely, suppose v(I) is maximal in Princ(R) \ {v}. If all asso-
ciated primes of I have height 1, then I =

⋂
P∈X1(R) IRP , and so I is

divisorial, against v(I) 6= v. Hence, there is a P ∈ Ass(I) \X1(R); by

Proposition 7.2, P ∈ Specv(I)(R), and thus v(I) ≤ v(P ). As v(I) is
maximal, it follows that v(I) = v(P ). The claim is proved. �
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Corollary 7.5. Let R be a Noetherian unique factorization domain.
Then, v(I) is a maximal element of Princ(R)\{v} if and only if I = uP
for some prime ideal P ∈ Spec(R) \X1(R) and some u ∈ K.

Proof. It is enough to join Corollary 7.4 (the maximal elements are the
v(P )) with Corollary 6.6 (v(I) = v(P ) if and only if I = uP ). �

Proposition 7.2 allows to determine, in the Noetherian case, all the
spectra of the principal star operations. We need two lemmas.

Lemma 7.6. Let R be a Noetherian ring and ∆ ⊆ Spec(R) \ {(0)} be
a finite set. There is an ideal I of R such that Ass(I) = ∆.

Proof. We proceed by induction on n = |∆|. If n = 1 and ∆ = {P} we
can take I = P .

Suppose n > 1 and let ∆ = {P1, . . . , Pn}; without loss of generality
we can suppose Pi * Pj for every i > j. Let I0 be an ideal such that
Ass(I0) = {P1, . . . , Pn−1}, and let I0 = Q1 ∩ · · · ∩ Qn−1 be a primary
decomposition, where Pi := rad(Qi). Since the intersection of all Pn-
primary ideals is (0), there is a Pn-primary ideal Qn such that Qn * I0;
let I := I0 ∩Qn. To show that Ass(I) = ∆, it is enough to prove that
Q1 ∩ · · · ∩Qn is an irredundant intersection.

Suppose Qi is redundant. By construction, i 6= n; moreover, if i = 1,
then Q2∩· · ·∩Qn ⊆ Q1 and thus, passing to the radical, P2∩· · ·∩Pn ⊆
P1, and Pj ⊆ P1 for some j > 1, against the hypothesis. Hence suppose
1 < i < n, and let L1 := Q1 ∩ · · · ∩ Qi−1 and L2 := Qi+1 ∩ · · · ∩ Qn.
By inductive hypothesis, Q1 ∩ · · · ∩ Qi = L1 ∩ Qi is irredundant, and
thus L1 * Qi; let x ∈ L1 \Qi. For every a ∈ L2, we have xa ∈ L1L2 ⊆
L1∩L2 ⊆ Qi (since Qi is redundant), and thus L2 ⊆ (Qi :R x). However,
rad((Q :R x)) 6= R, and thus rad((Qi :R x)) = rad(Qi) = Pi; hence,
rad(L2) ⊆ rad(Qi), i.e., Pi+1∩· · ·∩Pn ⊆ Pi. However, this implies that
Pj ⊆ Pi for some j > i, which still is against the hypothesis. Therefore,
no Qi can be redundant. �

Lemma 7.7. Let ?1, . . . , ?n ∈ Star(R), and let ? := ?1∧· · ·∧?n. Then,
Spec?(R) =

⋃
i Spec?i(R).

Proof. If P = P ?i for some i then P ? ⊆ P ?i = P and thus P = P ?.
Conversely, if P = P ? then P = P ?1 ∩ · · · ∩ P ?n ; since P is prime, it
follows that P = P ?i for some i. The claim is proved. �

Proposition 7.8. Let R be a Noetherian domain, and let ∆ ⊆ Spec(R).
Then, the following are equivalent:

(i) ∆ = Specv(I)(R) for some ideal I;
(ii) ∆ = Spec?(R) for some ? = v(I1) ∧ · · · ∧ v(In);

(iii) ∆ = Specv(R) ∪∆′, for some finite set ∆′.

Proof. (i) =⇒ (ii) is obvious. (ii) =⇒ (iii) follows from Lemma 7.7. (iii)
=⇒ (i) follows by Lemma 7.6 and Proposition 7.2 (it is enough to take
an I such that Ass(I) = ∆′). �
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We now characterize when two nondivisorial ideals with (I : I) =
(J : J) = R generate the same star operation.

Theorem 7.9. Let R be a Noetherian domain, and let I, J be non-
divisorial ideals such that (I : I) = (J : J) = R. Then, v(I) = v(J)
if and only if Ass(I) ∪ Specv(R) = Ass(J) ∪ Specv(R) and, for every
P ∈ Ass(I) ∪ Specv(R), there is an aP ∈ K such that IRP = aPJRP .

Proof. Suppose the two conditions hold. By Proposition 7.2, Ass(I) ∪
Specv(R) = Specv(I)(R), and thus Specv(I)(R) = Specv(J)(R) =: ∆. For
every ideal L, using Proposition 5.1 we have

Lv(I) =
⋂
P∈∆

Lv(I)RP =
⋂
P∈∆

(LRP )v(I)RP =
⋂
P∈∆

(LRP )v(IRP ).

Since IRP and JRP are isomorphic, (LRP )v(IRP ) = (LRP )v(JRP ); it
follows that v(I) = v(J).

Conversely, suppose v(I) = v(J) =: ?. Then, Spec?(R) is equal to
both Ass(I) ∪ Specv(R) and Ass(J) ∪ Specv(R), which thus are equal.
Note also that (I : I) = R implies that RP = (I : I)RP = (IRP : IRP )
for every prime ideal P .

Let now P ∈ Spec?(R). Since v(I) = v(J), clearly v(I)RP
= v(J)RP

,
which by Proposition 5.1 implies that v(IRP ) = v(JRP ). However,
PRP is v(IRP )-closed because P is v(I)-closed; it follows, by Proposi-
tion 4.5, that IRP = aPJRP for some aP ∈ K, as claimed. �

Corollary 7.10. Let R be an integrally closed Noetherian domain,
and let I, J be non-divisorial ideals. Then, v(I) = v(J) if and only
if Ass(I)∪X1(R) = Ass(J)∪X1(R) and for every P ∈ Ass(I) there is
an aP ∈ RP such that IRP = aPJRP .

Proof. Since R is integrally closed and Noetherian, we have (I : I) = R
for every ideal I; furthermore, the divisorial primes are the height 1
primes, and for any such P the localizations IRP and JRP are isomor-
phic since RP is a DVR. The claim now follows from Theorem 7.9. �

Example 7.11. Let R be a Noetherian integrally closed domain, and
suppose that RM is not a UFD for some maximal ideal M . Let P be
an height 1 prime contained in M such that PRM is not principal, and
let Q be a prime ideal of height bigger than 1 such that P +Q = R (in
particular, Q * M). We claim that v(PQ) = v(Q) but PQ and Q are
not locally isomorphic.

In fact, since they are coprime, PQ = P ∩ Q, and thus Ass(PQ) =
{P,Q} while Ass(Q) = {Q}; moreover, P * Q and thus PQRQ =
QPRQ = QRQ. Since P ∈ X1(R), by Corollary 7.10 it follows that
v(PQ) = v(Q). However, QRM = RM is principal, while PQRM =
PRM , by hypothesis, is not: therefore, Q and PQ are not locally iso-
morphic. In particular, there cannot be an invertible ideal L such that
Q = LPQ, because LRM would be principal and thus Q and PQ would
be locally isomorphic.
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