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Abstract. We study the properties of some distinguished sub-
spaces of the Zariski space Zar(F |D) of a field F over a domain
D, in particular the topological properties of subspaces defined
through algebraic means. We are mainly interested in two classes of
problems: understanding when spaces in the form Zar(F |D) \ {V }
are compact (which is strongly linked to the problem of determin-
ing when Zar(F |D) is a Noetherian space), and studying spaces
of rings defined through pseudo-convergent sequences on an (arbi-
trary, but fixed) rank one valuation domain.

1. Introduction and notation

Let D be an integral domain and K be a field containing D (not
necessarily the quotient field of D). In the Thirties, studying the prob-
lem of resolution of singularities, Zariski introduced the Zariski space
of K over D (under the name generalized Riemann surface) as the set
Zar(K|D) of all valuation domains of K containing D [22, 23]. He
introduced on this set a topology (later called the Zariski topology)
which is generated by the open sets

B(x1, . . . , xn) := {V ∈ Zar(K|D) | x1, . . . , xn ∈ V },

as x1, . . . , xn range inK, and showed that, under this topology, Zar(K|D)
is a compact space [24, Chapter VI, Theorem 40].

Later, it was shown that Zar(K|D) is actually a spectral space [9],
that is, that for every K and D there is a ring R such that Zar(K|D) '
Spec(R); such an R can also be constructed explicitly as a Bézout do-
main having quotient field K(X) (called the Kronecker function ring
of K over D) [4, 5, 6]. As a spectral space, Zar(K|D) can also be en-
dowed with the inverse topology (the topology generated by the comple-
ments of the open and compact subspaces of the original topology) and
the constructible (or patch) topology (the topology generated by both
the open and compact subspaces and their complements). These two
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topologies are both spectral (so, in particular, compact) and, more im-
portantly, Zar(K|D)cons (i.e., Zar(K|D) under the constructible topol-
ogy) is an Hausdorff space, something that does not happen for the
Zariski or the inverse topology unless D is a field and K is an algebraic
extension, i.e., unless Zar(K|D) is just {K}. A particular importance
have the closed set of Zar(K|D)cons: they are called proconstruible sub-
sets, and they are again spectral spaces (in the Zariski topology).

These three topology are closely linked with the algebraic properties
of the valuation domains, and in particular there is a connection be-
tween the topological properties of X ⊆ Zar(K|D) and the algebraic
properties of the intersection of the elements of X (called the holomor-
phy ring A(X) of X) [12, 13, 14, 15]: for example, if X is a compact
subset of one-dimensional valuation domains such that

⋂
V ∈X mV 6= (0),

then A(X) is a one-dimensional Bézout domain [15, Theorem 5.3]. In
particular, for Prüfer domains, the set Zar(D) (that is, Zar(K|D) with
K being the quotient field of D) is homeomorphic to the spectrum
of D (under the Zariski topology). More generally, there is always a
map γ : Zar(K|D) −→ Spec(D), V 7→ mV ∩D, called the center map,
which is continuous ([24, Chapter VI, §17, Lemma 1] or [4, Lemma
2.1]), surjective (this follows, for example, from [1, Theorem 5.21] or
[8, Theorem 19.6]) and closed [4, Theorem 2.5].

The space Zar(K|D) can also be considered as a subspace of the set
Over(K|D) of the rings comprised between D and K, as a subspace of
the set of D-submodules of K or, even more generally, as a subspace
of the power set of K; all these sets become spectral spaces under
the natural extension of the Zariski topology [3, 1.9.5(vi-vii)]. It is to
be noted that a closer look at Zariski’s proof of the compactness of
Zar(K|D) actually shows that Zar(K|D) is a proconstruible subset of
the power set P(K) [14, discussion after Proposition 2.1].

2. Compactness

In general, it is hard to find subsets of Zar(K|D) that are not com-
pact. A general algebro-geometric criterion was given in [7, Lemma
5.8(2)] through the theory of semistar operations ; to be useful, however,
it has to be applied together with the theory of the b-operation/integral
closure, which can be defined either as the semistar operation induced
by the whole Zar(D) or through integral dependence of ideals [10]. A
first consequence is the following.

Theorem 2.1. [19, Proposition 7.1] Let D be a Noetherian ring with
quotient field K, and let ∆ be the set of Noetherian valuation overrings
of D. Then, ∆ is compact if and only if dim(D) ≤ 1.

(Note that, when dim(D) ≤ 1, the set ∆ is actually just Zar(D).) If
∆ is as in the theorem, then we can write ∆ = X(D) ∩ Zar(D), where
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X(D) is the set of Noetherian overrings of D; in particular, X(D) can-
not be proconstructible in the Zariski topology of Over(D), since this
would imply that ∆, as the intersection of two proconstructible sub-
spaces, is itself proconstructible. The same happens for other subsets
of Noetherian rings.

Proposition 2.2. [19, Proposition 7.3 and Corollary 7.7] Let D be a
Noetherian domain. Then, the following are equivalent:

(i) dim(D) = 1;
(ii) X(D) is compact;

(iii) the set {T ∈ Over(D) | T is a Dedekind domain} is compact;
(iv) the set {T ∈ Over(D) | T is Noetherian of dimension 1} is

compact;

The same holds if “compact” is substituted with “proconstructible”.

Another interesting case is the one in which we delete just one val-
uation domain.

Theorem 2.3. [19, Theorem 3.6] Let D be an integral domain and V
be a minimal element of Zar(D). If Zar(D)\{V } is compact, then V is
equal to the integral closure of D[x1, . . . , xn]M for some x1, . . . , xn ∈ K
and some M ∈ Max(D[x1, . . . , xn]).

This condition is very strong; for example, it cannot happen in all
the following cases:

• D is Noetherian and dim(V ) ≥ 2;
• dim(V ) > 2 dim(D) [19, Proposition 4.3];
• D is local and

⋂
{P | P ∈ Y} = (0) for some family Y of

nonzero incomparable prime ideals [19, Theorem 5.1].

A topological space X is Noetherian if all its subsets are compact;
equivalently, if the open sets of X satisfy the ascending chain condition.
For example, the prime spectrum of any Noetherian ring is a Noetherian
space [1, Chapter 6, Exercises 5-8]. On the other hand, by either of the
previous two cases, Zar(D) is not a Noetherian space as soon as D is a
Noetherian domain of dimension 2 or more. Indeed, the Noetherianity
of Zar(K|D) is an extremely rare phenomenon.

Proposition 2.4. Let D be an integral domain and let K be a field
containing D; suppose that D is integrally closed in K.

(a) [20, Proposition 4.2] If D = F is a field, then Zar(K|F ) is a
Noetherian space if and only if trdegF K ≤ 1 and, for every
T ∈ K transcendental over F , every valuation on F [T ] extends
to finitely many valuations of K.
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(b) [20, Theorem 5.11 and Corollary 5.12] If D is local and not a
field, then Zar(D) is Noetherian if and only if D is a pseudo-
valuation domain,1 K is the quotient field of D and Zar(L|F )
is Noetherian, where F is the residue field of D and L is the
residue field of the associated valuation domain.

(c) [20, Theorem 5.11 and Corollary 5.12] If D is not a field, then
Zar(K|D) is Noetherian if and only if K is the quotient field
of D, Spec(D) is Noetherian and Zar(DM) is Noetherian for
every M ∈ Max(D).

In particular, these domains have a fairly peculiar Zariski space: in
the local case, the non-minimal valuations of D are all comparable, and
the valuative dimension of D can be only dim(D) or dim(D) + 1 [20,
Proposition 5.13].

3. Pseudo-convergent sequences

Let now V be a one-dimensional valuation ring with valuation v,
value group Γv ⊆ R and quotient field K. A pseudo-convergent se-
quence of V is a sequence E = {sn}n∈N ⊂ K such that

v(sn − sn−1) < v(sn+1 − sn)

for all n ∈ N, n ≥ 1. Pseudo-convergent sequences were introduced by
Ostrowski to determine all the rank-one extensions of V to K(X) [16,
17], and subsequently used by Kaplansky to investigate maximal valued
fields [11]. They can be generalized to pseudo-monotone sequences [2,
Definition 4.6].

The gauge of E is the sequence of the δn := v(sn+1 − sn) [21, p.
327]; it is strictly increasing, and its limit δE ∈ R ∪ {∞} is called
the breadth of E. In particular, δE is infinite if and only if E is a
Cauchy sequence (in the topology induced by the valuation). If V is
discrete, every pseudo-convergent sequence has infinite breadth. The
ideal Br(E) := {x ∈ V | v(x) ≥ δE} is called the breadth ideal of E.

Pseudo-convergent sequences can be divided into two classes: E is of
algebraic type if v(f(sn)) is definitively increasing for some polynomial
f ∈ K[X], while it is of transcendental type otherwise [11, Definitions,
p. 306]. If v(α − sn) < v(α − sn+1) for all n ∈ N (or, equivalently, if
v(α − sn) = δn), then α is said to be a pseudo-limit of E; if α ∈ K
(the algebraic closure of K), then we can use the same definition once
we fix an extension u of v to K. In particular, E is of algebraic type if
and only if it has a pseudo-limit in K [11, Theorems 2 and 3]. Pseudo-
limits are not unique, but if α is one of them, then the set L(E) of
the pseudo-limits of E is the coset α + Br(E) [11, Lemma 3]. The

1A pseudo-valuation domain (PVD) is a local domain (D,m) having a valua-
tion overring V whose maximal ideal is m; such V is called the valuation domain
associated to D.
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name “algebraic” and “transcendental” derive from the fact that, if E

is a Cauchy sequence, the limit of E in K̂ is algebraic (resp., transcen-
dental) over K if and only if E is of algebraic (resp., transcendental)
type.

To each pseudo-convergent sequence E we associate the map wE :
K(X) −→ R ∪ {∞} such that [18, Propositions 4.3 and 4.4]

wE(φ) := lim
n→∞

v(φ(sn)).

Then, wE is a valuation on K(X) if E is of transcendental type or
if E is of algebraic type and δE < ∞; if E is of algebraic type and
δE =∞, then wE is only a pseudo-valuation2. If wE is a valuation, the
corresponding valuation ring WE is a one-dimensional extension of V
to K(X); if K is algebraically closed, then every rank-one extension of
V to K(X) is in this form [16, 17]. We denote the set of all rings in the
form WE as W : then, the Zariski and the constructible topology agree
on W , and under them W is a regular zero-dimensional space that is
not compact [18, Propositions 6.2 and 6.3].

To every pseudo-convergent sequence E can be associated another
valuation domain, defined as

VE := {φ ∈ K(X) | φ(sn) ∈ V for all large n}.

The ring VE is always an extension of V to K(X), and it is contained in
WE (if WE is defined). If E is of transcendental type, then VE = WE

is an immediate extension of E [18, Theorem 4.9(a)]. On the other
hand, if E is of algebraic type, then the value group of VE is always
isomorphic to Γv ⊕ Z, and the rank of VE depends on the breadth [18,
Theorem 4.9(b,c)]:

• if kδ ∈ Γv for some positive k ∈ N, then VE has rank 2 and WE

has rank 1;
• if δ <∞ and kδ /∈ Γv for all positive k ∈ N, then VE = WE has

rank 1;
• if δ =∞, then VE has rank 2 and its one-dimensional overring

is K[X](q), where q is the minimal polynomial of the limit of E.

The valuation vE can also be described explicitly as a map into R2 (see
[18, Theorem 4.10]).

We denote the set of all the VE as V : then, V is a regular space in
both the Zariski and the constructible topology [18, Theorem 7.3], but
the two topologies agree on V if and only if the residue field of V is

2A pseudo-valuation on K is a map v : K −→ Γv∪{∞} (where (Γv,+) is a totally
ordered abelian group) such that v(a+b) ≥ min{v(a), v(b)} and v(ab) = v(a)+v(b)
for all a, b ∈ K; that it, it is a valuation without the hypothesis that only 0 goes to
∞. It is not linked with the notion of pseudo-valuation domain used in Section 2.
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finite [18, Proposition 6.8]. There is also a map

W −→ V
WE 7−→ VE

that, under the Zariski topology, is continuous and injective, but not a
topological embedding [18, Proposition 6.10].

There are two natural ways to partition V , either by fixing the
breadth of the sequences or by fixing a pseudo-limit.

Let δ ∈ R∪{∞}, and define V(•, δ) := {VE ∈ V | δE = δ}. Then, the
Zariski and the constructible topology agree on V(•, δ) [18, Theorem
8.7]; furthermore, this topology is also generated by the ultrametric
distance

dδ(VE, VF ) := lim
n→∞

max{d(sn, tn)− e−δ, 0},

where E := {sn}n∈N and F := {tn}n∈N. Under this metric, V(•, δ) is
complete, and is the completion of the subspace [18, Propositions 8.5
and 8.6]

VK(•, δ) := {VE ∈ V(•, δ) | E has a pseudo-limit in K}.
When δ =∞, the space V(•,∞) is canonically isomorphic to the com-

pletion K̂, and d∞ reduces to the distance induced by v̂; furthermore,
VK(•,∞) corresponds to K. Hence, V(•, δ) can be seen as a generaliza-
tion of the completion of V , with the elements of V(•, δ) corresponding
to the closed balls of V of radius e−δ. Note that the various dδ cannot
be unified to a metric on the whole V (since otherwise they would define
closed subspaces of V , but the V(•, δ) are not closed) [18, Proposition
8.11].

Let β ∈ K, fix an extension u of v to K and let

Vu(β, •) := {VE ∈ V | β is a pseudo-limit of E w.r.t. u}.
Then, each Vu(β, •) is a closed subspace of V [18, Proposition 8.13], and
the Zariski and the constructible topology agree on Vu(β, •) [18, Propo-
sition 8.17]; furthermore, the elements of Vu(β, •) are parametrized by
the breadth, and so there is a bijection between Vu(β, •) and (−∞, δ(β,K)]
(given by E 7→ δE), where δ(β,K) := sup{u(β − x) | x ∈ K} represent
(the valuation relative to) the distance between β and K. The topology
induced by Vu(β, •) on (−∞, δ(β,K)] is generated by the sets (a, b],
with b ∈ QΓv [18, Theorem 8.15]. This topology is metrizable if and
only if Γv is countable; in particular, we have the following.

Proposition 3.1. [18, Proposition 8.18] If Γv is not countable, then
Zar(K(X)|V )cons is not metrizable.

To conclude, we list some open problems on the topological proper-
ties of V , W and their subsets.

• Is V zero-dimensional?
• Is V a normal space?
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• Are V(δ1, •) and V(δ2, •) homeomorphic for δ1 6= δ2? (This is
true if δ1 − δ2 ∈ Γv [18, Proposition 8.4].)
• If Γv is countable, are V and W metrizable?
• If Γv is countable, is Zar(K(X)|V )cons metrizable?
• More generally, when is Zar(K|D)cons metrizable?
• If any of them is metrizable, can we find an ultrametric dis-

tance?
• What happens to V when the rank of V is not 1?
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