Corso di laurea in Matematica - Anno Accademico 2015/2016 GE220 - Geometria 3 - Tutorato X

DOCENTE: PROF. MASSIMILIANO PONTECORVO TUTORI: A. GALOPPINI, M. BRUNO

ESERCIZIO 0 Sia $X:=[0,1]\times[0,1]\subset\mathbb{R}^2$ munito della topologia euclidea, e $f:X\to X$ un omeomorfismo. Si dimostri che $f(\partial X)=\partial X$.

ESERCIZIO 1 Calcolare il gruppo fondamentale di $Z = S^2 \cup \{x = 0\} \cup \{y = 0\} \cup \{z = 0\}$.

ESERCIZIO 2 Dimostrare che S^1 è omotopicamente equivalente alla palla chiusa spuntata $B = \{x^2 + y^2 \le 1\} \setminus \{(0,0)\}$. Stabilire se è anche omotopicamente equivalente alla palla aperta spuntata $B = \{x^2 + y^2 < 1\} \setminus \{(0,0)\}$.

ESERCIZIO 3 Si calcoli il gruppo fondamentale di un insieme stellato.

Esercizio 4 Si dia un esempio di spazi X e Y tali che:

- $\bullet X \subset Y$
- X e Y sono omotopicamente equivalenti ma non omeomorfi;
- \bullet X e Y non semplicemente connessi.

ESERCIZIO 5 Dare un esempio di spazio semplicemente connesso e non contraibile.

ESERCIZIO 6 Dimostrare che l'equivalenza omotopica è transitiva, ovvero se X è omotopicamente equivalente a Y e Y è omotopicamente equivalente a Z allora X è omotopicamente equivalente a Z.

ESERCIZIO 7 Dimostrare che S^{n-1} e $\mathbb{R}^n \setminus B_1^n(0)$ sono omotopicamente equivalenti.

ESERCIZIO 8 Sia $U := (\{z = 0\} - \{x^2 + y^2 \le 1\})$. Calcolare il gruppo fondamentale dei seguenti sottospazi di \mathbb{R}^3 , quindi stabilire quali sono omotopicamente equivalenti fra loro.

- (a) $X := U \cup (S^2 \cap \{z \ge 0\})$
- (b) $Y := U \cup (\{x^2 + y^2 = 1\})$
- (c) $W := U \cup S^2$
- (d) $Z := U \cup (\{x^2 + y^2 (z+1)^2 = 0\} \cap \{z \le 0\}) \cup (\{x^2 + y^2 (z-1)^2 = 0\} \cap \{z \ge 0\})$