GE220 - Topologia Generale e Algebrica Dip. Matematica - Università Roma Tre

M. Pontecorvo - V. Talamanca

Compito - 9 giugno 2016

Istruzioni. Scrivere nome, cognome, numero di matricola e firma su ogni foglio che si intende consegnare. Scrivere solamente sui fogli forniti. Non sono ammessi libri, quaderni, altri fogli né calcolatrici. NON PARLARE e metter via i cellulari pena il ritiro del compito. Rispondere alle domande giustificando attentamente le risposte.

Punteggio totale 100 punti.

1. Sia $\mathbb{R}[t]$ l'anello dei polinomi in una variabile a coefficienti reali, il cui tipico elemento è $P(t) = a_0 + a_1 t + a_2 t^2 + \cdots + a_n t^n$ con $a_i \in \mathbb{R}$.

Dato un sottoinsieme di polinomi $S \subset \mathbb{R}[t]$ consideriamo l'insieme dei loro "zeri" e poniamo $Z(S) := \{x \in \mathbb{R} \mid P(x) = 0, \quad \forall P(t) \in S\}.$

- (a) (10 punti). Individuare i seguenti sottoinsiemi di \mathbb{R} :
 - i. Z(t-1) =
 - ii. $Z(t^2 1) =$

Al fine di definire la topologia di Zarisky su \mathbb{R} consideriamo la seguente famiglia di sottoinsiemi "chiusi" di \mathbb{R} : $\mathcal{C} := \{Z(S) \mid S \subset \mathbb{R}[t]\}$.

- (b) (20 punti). Dimostrare che \mathcal{C} definisce una topologia:
 - i. $\emptyset \in \mathcal{C}$
 - ii. $\mathbb{R} \in \mathcal{C}$
 - iii. Se $\{Z_i\}_{i\in I}$ è una famiglia di elementi di \mathcal{C} allora $\cap_{i\in I} Z_i \in \mathcal{C}$.
 - iv. Se $Z_1, \ldots Z_n \in \mathcal{C}$ allora $\bigcup_{i=1}^n Z_i \in \mathcal{C}$. (Suggerimento se $Z_i = Z(S_i)$ considerare l'insieme $S = S_1 \cdots S_n$ composto dai prodotti $P_1(t) \cdots P_n(t)$ con $P_i(t) \in Z_i$.
- (c) (20 punti). Discutere la seguente domanda. È possibile confrontare la topologia di Zarisky con la topologia cofinita, su \mathbb{R} ?
- 2. (15 punti). Dimostrare che non esistono funzioni continue iniettive da S^1 a \mathbb{R} .
- 3. (15 punti). Sia r una retta in \mathbb{R}^3 . Usare la topologia prodotto per calcolare il gruppo fondamentale di $\mathbb{R}^3 \setminus r$.
- 4. (20 punti). Classificare tutti i rivestimenti (connessi) del cerchio S^1 .