LATTICES IN NUMBER THEORY

Ha Tran

ICTP-CIMPA summer school 2016 HCM University of Science- Saigon University

- 4 同 ト 4 ヨ ト 4 ヨ ト

Lattices in Number Theory

We will study ideal lattices.

- They are lattices with structure of ideals.
- They are used in coding theory and cryptography.
- They have nice algebraic structure (so have nice and cheap representation, allows fast arithmetic,....)

Lattices in Number Theory

We will

- Review about number fields, ideal lattices and ...
 - Study Arakelov divisors.
- Study the Arakelov class group.
- Discuss about reduced Arakelov divisors and their properties.
 - Discuss the reduction algorithm.

Lattices in Number Theory

We will

- Review about number fields, ideal lattices and ...
 - Study Arakelov divisors.
- Study the Arakelov class group.
- Discuss about reduced Arakelov divisors and their properties.

Discuss the reduction algorithm.

PS: Questions are very welcome :)

ICTP-CIMPA summer school 2016

Lecture 1. NUMBER FIELDS AND ...

HCM University of Science- Saigon University

4/32

Content

・ロト ・回ト ・ヨト ・ヨト

5/32

1 Review

Number fields and the ring of integers Fractional ideals The class group $F_{\mathbb{R}}$ The Φ map The *L* map

2 Ideal lattices

Review

イロン イヨン イヨン イヨン 三日

Let F be a number field of degree n.

Review

Let *F* be a number field of degree *n*. $\sigma_1, ..., \sigma_{r_1}$ are r_1 real infinite primes $\sigma_{r_1+1}, ..., \sigma_{r_1+r_2}$ are r_2 complex infinite primes.

•
$$F = \mathbb{Q}$$
,
• $F = \mathbb{Q}(\sqrt{2})$,
• $F = \mathbb{Q}(i)$ (the Gaussian field),

•
$$F = \mathbb{Q}(\sqrt{5}),$$

- F is the splitting field of $x^3 + mx^2 - (m+3)x + 1 \ (m \ge -1, m \ne 3 \mod 9)$ (simplest cubic field),
- $\bullet F = \mathbb{Q}(\sqrt[4]{2})?$
- $F = \mathbb{Q}(\zeta_m)$ (cyclotomic field)?

Review

Let F be a number field of degree n. $\sigma_1, \ldots, \sigma_{r_1}$ are r_1 real infinite primes $\sigma_{r_1+1}, \ldots, \sigma_{r_1+r_2}$ are r_2 complex infinite primes. O_F : The ring of integers of F ($n = r_1 + 2r_2$). • $F = \mathbb{O}$. **2** $F = \mathbb{Q}(\sqrt{2}).$ **3** $F = \mathbb{Q}(i)$ (the Gaussian field), • $F = \mathbb{O}(\sqrt{5}).$ \bullet F is the splitting field of $x^{3} + mx^{2} - (m+3)x + 1 \ (m \ge -1, m \neq 3)$ mod 9) (simplest cubic field), **6** $F = \mathbb{Q}(\sqrt[4]{2})?$ • $F = \mathbb{Q}(\zeta_m)$ (cyclotomic field)?

- I is called a fractional ideal of F if
 - I is an additive subgroup of F, and
 - there exists $\alpha \in F^{\times}$ st αI is an ideal of O_F .

I is called a fractional ideal of F if

- I is an additive subgroup of F, and
- there exists $\alpha \in F^{\times}$ st αI is an ideal of O_F .
- Ex: $F = \mathbb{Q}(\sqrt{5})$. I_i is a factional ideal of F?

•
$$I_1 = \{m_1 + \sqrt{2}m_2 : m_1, m_2 \in \mathbb{Z}\}?$$

I is called a fractional ideal of F if

- I is an additive subgroup of F, and
- there exists $\alpha \in F^{\times}$ st αI is an ideal of O_F .

2
$$I_2 = \{m_1 + \frac{1+\sqrt{5}}{2}m_2 : m_1, m_2 \in \mathbb{Z}\}?$$

イロン イロン イヨン 一日

7/32

I is called a fractional ideal of F if

- I is an additive subgroup of F, and
- there exists $\alpha \in F^{\times}$ st αI is an ideal of O_F .

I is called a fractional ideal of F if

- I is an additive subgroup of F, and
- there exists $\alpha \in F^{\times}$ st αI is an ideal of O_F .

I is called a fractional ideal of F if

- I is an additive subgroup of F, and
- there exists $\alpha \in F^{\times}$ st αI is an ideal of O_F .

a
$$I_4 = \{2m_1 + (1 - \sqrt{5})m_2 : m_1, m_2 \in \mathbb{Z}\}?$$

b $I_5 = \{\frac{1}{2}m_1 + \frac{1 - \sqrt{5}}{4}m_2 : m_1, m_2 \in \mathbb{Z}\}?$

I is called a fractional ideal of F if

- I is an additive subgroup of F, and
- there exists $\alpha \in F^{\times}$ st αI is an ideal of O_F .

The class group

 Id_F : The group of all fractional ideals of F with multiplication.

Let $Princ_F$:= the subgroup of principal ideals of F. The class group of F is

$$CI_F = Id_F / Princ_F.$$

The class group

 Id_F : The group of all fractional ideals of F with multiplication.

Let $Princ_F$:= the subgroup of principal ideals of F. The class group of F is

$$CI_F = Id_F / Princ_F.$$

• Cl_F is finite and $\#Cl_F = h_F$ (the class number).

The class group

 Id_F : The group of all fractional ideals of F with multiplication.

Let $Princ_F$:= the subgroup of principal ideals of F. The class group of F is

$$Cl_F = Id_F / Princ_F.$$

Cl_F is finite and #Cl_F = h_F (the class number).
Ex: Cl_F =?, h_F =? if
F = Q.
F = Q(√2).
F = Q(i).

4 $F = \mathbb{Q}(\sqrt{10}).$

イロト 不得 とくき とくきとう き

- Let $F_{\mathbb{R}} := F \otimes_{\mathbb{Q}} \mathbb{R} \simeq \prod_{\sigma \text{ real}} \mathbb{R} \times \prod_{\sigma \text{ complex}} \mathbb{C} \simeq \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$ an \mathbb{R} -algebra.
- **Ex:** $F_{\mathbb{R}} = ?$ if • $F = \mathbb{O}$. **2** $F = \mathbb{Q}(\sqrt{2}),$ **3** $F = \mathbb{Q}(i)$, • $F = \mathbb{Q}(\sqrt{5}),$ **6** F is a simplest cubic field, 6 $F = \mathbb{Q}(\sqrt[4]{2}),$ $P = \mathbb{Q}(\zeta_m)$ (cyclotomic field)?

- Let $F_{\mathbb{R}} := F \otimes_{\mathbb{Q}} \mathbb{R} \simeq \prod_{\sigma \text{ real}} \mathbb{R} \times \prod_{\sigma \text{ complex}} \mathbb{C} \simeq \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$ an \mathbb{R} -algebra.
- A scalar product on $F_{\mathbb{R}}$, for any $u = (u_{\sigma}), v = (v_{\sigma}) \in F_{\mathbb{R}}, \ \langle u, v \rangle := Tr(u\overline{v})$

$$= \sum_{\sigma \text{ real}} Re(u_{\sigma}\overline{v_{\sigma}}) + 2 \sum_{\sigma \text{ complex}} Re(u_{\sigma}\overline{v_{\sigma}}).$$

$$\Rightarrow \|u\|^2 = \sum_{\sigma \text{ real}} u_{\sigma}^2 + 2 \sum_{\sigma \text{ complex}} |u_{\sigma}|^2.$$

- Let $F_{\mathbb{R}} := F \otimes_{\mathbb{Q}} \mathbb{R} \simeq \prod_{\sigma \text{ real}} \mathbb{R} \times \prod_{\sigma \text{ complex}} \mathbb{C} \simeq \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$ an \mathbb{R} -algebra.
- A scalar product on $F_{\mathbb{R}}$, for any $u = (u_{\sigma}), v = (v_{\sigma}) \in F_{\mathbb{R}},$ $\langle u, v \rangle := Tr(u\overline{v})$

$$= \sum_{\sigma \text{ real}} Re(u_{\sigma}\overline{v_{\sigma}}) + 2 \sum_{\sigma \text{ complex}} Re(u_{\sigma}\overline{v_{\sigma}}).$$

$$\Rightarrow ||u||^{2} = \sum_{\sigma \text{ real}} u_{\sigma}^{2} + 2 \sum_{\sigma \text{ complex}} |u_{\sigma}|^{2}.$$

Ex: $F = \mathbb{Q}, \mathbb{Q}(\sqrt{2}), \mathbb{Q}(i), \mathbb{Q}(\sqrt{5}),$
simplest cubic fields,
 $F = \mathbb{Q}(\sqrt[4]{2})?$

$$\Rightarrow \|u\|^2 = \sum_{\sigma \text{ real}} u_{\sigma}^2 + 2 \sum_{\sigma \text{ complex}} |u_{\sigma}|^2.$$

• $N(u) := \prod_{\sigma \text{ real}} u_{\sigma} \times \prod_{\sigma \text{ complex}} |u_{\sigma}|^2.$
Ex: $F = \mathbb{Q}, \mathbb{Q}(\sqrt{2}), \mathbb{Q}(i), \mathbb{Q}(\sqrt{5}),$
simplest cubic fields,
 $F = \mathbb{Q}(\sqrt[4]{2})?$

The Φ map

Let $\Phi: F \longrightarrow F_{\mathbb{R}}$ with $\Phi(f) = (\sigma_1(f), ..., \sigma_{r_1+r_2}(f))$ for $f \in F$. **Fx** $\Phi = ?$ if • $F = \mathbb{O}$, **2** $F = \mathbb{Q}(\sqrt{2}),$ $\mathbf{S} F = \mathbb{O}(i),$ • $F = \mathbb{Q}(\sqrt{5}),$ **5** F is a simplest cubic field, **6** $F = \mathbb{Q}(\sqrt[4]{2})?$

Lattices

Definition (Lattices)

A lattice is a pair (L, q) where

- L is a free \mathbb{Z} -module of finite rank, and
- $q: L \times L \longrightarrow \mathbb{R}$ is a non-degenerate symmetric bilinear form.

Lattices

Definition (Lattices)

A lattice is a pair (L, q) where

- L is a free \mathbb{Z} -module of finite rank, and
- q: L × L → ℝ is a non-degenerate symmetric bilinear form.

Ex: $L = \mathbb{Z}^n$ with the standard metric inherited from \mathbb{R}^n is a lattice.

Lattices

Definition (Lattices)

A lattice is a pair (L, q) where

- L is a free \mathbb{Z} -module of finite rank, and
- q: L × L → ℝ is a non-degenerate symmetric bilinear form.

Ex: $L = \mathbb{Z}^n$ with the standard metric inherited from \mathbb{R}^n is a lattice. Ex: Let $F = \mathbb{Q}(\sqrt{5})$. Then $\Phi(O_F)$ is a lattice in $F_{\mathbb{R}} \simeq \mathbb{R}^2$.

The Φ map Let $\Phi: F \longrightarrow F_{\mathbb{R}}$ with $\Phi(f) = (\sigma_1(f), ..., \sigma_{r_1+r_2}(f))$ for $f \in F$.

The Φ map Let $\Phi : F \longrightarrow F_{\mathbb{R}}$ with $\Phi(f) = (\sigma_1(f), ..., \sigma_{r_1+r_2}(f))$ for $f \in F$. Ex: Let $F = \mathbb{Q}(\sqrt{5})$. What $\Phi(O_F)$ looks like?

The Φ map Let $\Phi : F \longrightarrow F_{\mathbb{R}}$ with $\Phi(f) = (\sigma_1(f), ..., \sigma_{r_1+r_2}(f))$ for $f \in F$. Ex: Let $F = \mathbb{Q}(\sqrt{5})$. What $\Phi(O_F)$ looks like?

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

The Φ map Let $\Phi : F \longrightarrow F_{\mathbb{R}}$ with $\Phi(f) = (\sigma_1(f), ..., \sigma_{r_1+r_2}(f))$ for $f \in F$. Ex: Let $F = \mathbb{Q}(\sqrt{5})$. What $\Phi(O_F)$ looks like?

 $\Phi(O_F)$ is a lattice in $F_{\mathbb{R}}$.

The Φ map and the images of fractional ideals

Let $\Phi: F \longrightarrow F_{\mathbb{R}}$ with $\Phi(f) = (\sigma_1(f), ..., \sigma_{r_1+r_2}(f))$ for $f \in F$. Ex: Let $F = \mathbb{Q}(\sqrt{5})$ and $I_5 = \{\frac{1}{2}m_1 + \frac{1-\sqrt{5}}{4}m_2 : m_1, m_2 \in \mathbb{Z}\}$: a fractional ideal of F. What $\Phi(I)$ looks like?

The Φ map and the images of fractional ideals

Let $\Phi: F \longrightarrow F_{\mathbb{R}}$ with $\Phi(f) = (\sigma_1(f), ..., \sigma_{r_1+r_2}(f))$ for $f \in F$. Ex: Let $F = \mathbb{Q}(\sqrt{5})$ and $I_5 = \{\frac{1}{2}m_1 + \frac{1-\sqrt{5}}{4}m_2 : m_1, m_2 \in \mathbb{Z}\}$: a fractional ideal of F. What $\Phi(I)$ looks like?

Proposition

Let *I* be a factional ideal of *F*. Then $\Phi(I)$ is a lattice in $F_{\mathbb{R}}$.

The Φ map and the images of fractional ideals

Let $\Phi: F \longrightarrow F_{\mathbb{R}}$ with $\Phi(f) = (\sigma_1(f), ..., \sigma_{r_1+r_2}(f))$ for $f \in F$. Ex: Let $F = \mathbb{Q}(\sqrt{5})$ and $I_5 = \{\frac{1}{2}m_1 + \frac{1-\sqrt{5}}{4}m_2 : m_1, m_2 \in \mathbb{Z}\}$: a fractional ideal of F. What $\Phi(I)$ looks like?

Proposition

Let *I* be a factional ideal of *F*. Then $\Phi(I)$ is a lattice in $F_{\mathbb{R}}$.

Ex: Draw the lattice $\Phi(I_5)$.

イロト 不得下 イヨト イヨト 二日

Consider to the map

$$L: F^{\times} \longrightarrow F_{\mathbb{R}}$$
 where $L(f) = (\log(|\sigma(f)|))_{\sigma}$.

Ex: *F* is the splitting field of $x^3 - x^2 - 2x + 1$ (simplest cubic field). The roots: $\alpha_1 = \alpha, \alpha_2 = \frac{1}{1-\alpha}, \alpha_3 = 1 - \frac{1}{\alpha}$. Then

$$O_F^{\times} = <\pm 1, \alpha_1, \alpha_2 > .$$

What $L(O_F^{\times})$ looks like?

The L map Ex: *F* is the splitting field of $x^3 - x^2 - 2x + 1$. The roots: $\alpha_1 = \alpha, \alpha_2 = \frac{1}{1-\alpha}, \alpha_3 = 1 - \frac{1}{\alpha}$. Then $O_F^{\times} = < \pm 1, \alpha_1, \alpha_2 > .$

The L map Ex: *F* is the splitting field of $x^3 - x^2 - 2x + 1$. The roots: $\alpha_1 = \alpha, \alpha_2 = \frac{1}{1-\alpha}, \alpha_3 = 1 - \frac{1}{\alpha}$. Then $O_F^{\times} = < \pm 1, \alpha_1, \alpha_2 > .$

 $L(O_F^{\times})$ is the hexagonal lattice.

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ う へ (~ 17 / 32

$\Lambda := L(O_F^{\times}) = \{L(x) : x \in O_F^{\times}\} \subset H.$

$\Lambda := L(O_F^{\times}) = \{L(x) : x \in O_F^{\times}\} \subset H.$

$$\Lambda := L(O_F^{\times}) = \{L(x) : x \in O_F^{\times}\} \subset H.$$

$$\Lambda := L(O_F^{\times}) = \{L(x) : x \in O_F^{\times}\} \subset H.$$

 Λ is a lattice contained in the vector space H.

$$\Lambda := L(O_F^{\times}) = \{L(x) : x \in O_F^{\times}\} \subset H.$$

$$H = \left\{ (x_{\sigma}) \in \oplus_{\sigma} \mathbb{R} : \sum_{\sigma \text{ real}} x_{\sigma} + 2 \sum_{\sigma \text{ complex}} x_{\sigma} = 0
ight\}.$$

 Λ is a lattice contained in the vector space H.

Let $T^0 = H/\Lambda$. Then T^0 is a compact real torus of dimension $r_1 + r_2 - 1$ (Dirichlet).

$$T^0$$
 and $\Lambda = L(O_F^{ imes})$

Ex: Let
$$F = \mathbb{Q}(\sqrt{-2})$$
. Then $r_1 = 0, r_2 = 1$ and $T^0 = ?$ $dim(T^0) = ?$

T^0 and $\Lambda = L(O_F^{\times})$

◆□ > ◆□ > ◆三 > ◆三 > ○ ○ ○ ○ ○

20 / 32

Ex: Let $F = \mathbb{Q}(\sqrt{2})$. Then $r_1 = 2, r_2 = 0$ and $H = \{(x, y) \in \mathbb{R}^2 : x + y = 0\} \simeq \mathbb{R}$. $T^0 = ? \quad dim(T^0) = ?$

$$T^0$$
 and $\Lambda = L(O_F^{\times})$

Ex: Let *F* be a totally real cubic field. Then $r_1 = 3, r_2 = 0$ and

$$H = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\} \simeq \mathbb{R}^2.$$

 $T^0 = ? \qquad dim(T^0) = ?$

$$\mathcal{T}^0$$
 and $\Lambda = L(\mathcal{O}_F^{ imes})$

(日) (四) (注) (注) (三)

22 / 32

Ex: Let *F* be a totally real cubic field. Then $r_1 = 3, r_2 = 0$ and

$$H = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\} \simeq \mathbb{R}^2.$$

 $T^0 = ? \quad dim(T^0) = ?$
Ex: $F = \mathbb{Q}(\sqrt[4]{2})?$

Definition (Ideal lattices)

An ideal lattice is a lattice (I, q), where

- *I* is a (fractional) *O_F*-ideal and
- $q: I \times I \longrightarrow \mathbb{R}$ is st $q(\lambda x, y) = q(x, \overline{\lambda}y)$ (Hermitian property) for all $x, y \in I$ and for all $\lambda \in O_F$.

Definition (Ideal lattices)

An ideal lattice is a lattice (I, q), where

- I is a (fractional) O_F-ideal and
- $q: I \times I \longrightarrow \mathbb{R}$ is st $q(\lambda x, y) = q(x, \overline{\lambda}y)$ (Hermitian property) for all $x, y \in I$ and for all $\lambda \in O_F$.
- Ex 1: Let I be a factional ideal of F.

 $q(x, y) := \langle x, y \rangle$ for any $x, y \in I$.

(the scalar product defined on $F_{\mathbb{R}}$)

Definition (Ideal lattices)

An ideal lattice is a lattice (I, q), where

- I is a (fractional) O_F-ideal and
- $q: I \times I \longrightarrow \mathbb{R}$ is st $q(\lambda x, y) = q(x, \overline{\lambda}y)$ (Hermitian property) for all $x, y \in I$ and for all $\lambda \in O_F$.
- Ex 1: Let I be a factional ideal of F.

 $q(x, y) := \langle x, y \rangle$ for any $x, y \in I$.

(the scalar product defined on $F_{\mathbb{R}}$) Then (I, q) is an ideal lattice.

Ex 2: Let *I* be a factional ideal of *F* and

$$u = (u_{\sigma}) \in (\mathbb{R}_{>0})^{r_1+r_2}$$
.
 $z \in I, uz := (u_{\sigma} \cdot \sigma(z))_{\sigma} \in F_{\mathbb{R}}$.
We define

$q_u(x,y) := \langle ux, uy \rangle$ for any $x, y \in I$.

(the scalar product defined on $F_{\mathbb{R}}$)

Ex 2: Let *I* be a factional ideal of *F* and

$$u = (u_{\sigma}) \in (\mathbb{R}_{>0})^{r_1+r_2}$$
.
 $z \in I, uz := (u_{\sigma} \cdot \sigma(z))_{\sigma} \in F_{\mathbb{R}}$.
We define

$q_u(x,y) := \langle ux, uy \rangle$ for any $x, y \in I$.

(the scalar product defined on $F_{\mathbb{R}}$) **Proposition** (I, q_u) is an ideal lattice.

Isometric ideal lattices

イロト 不得下 イヨト イヨト 二日

25/32

Definition

Two ideal lattices (I, q) and (I', q') are called isometric if

- there exists $f \in F^{\times}$ such that I' = fI and
- q'(fx, fy) = q(x, y) for all $x, y \in I$.

Lattices from fractional ideals A full rank lattice in $F_{\mathbb{R}}$ is also a full rank lattice in \mathbb{R}^n via

26 / 32

- \mathbb{Z}^2 ?
- The hexagonal lattice?

- Z² ?
- The hexagonal lattice?
- Let p is an odd prime, p = (1 − ζ_p)O_F: principal ideal of F = Q(ζ_p). Then (p, q_{1/p}) is an ideal lattice ≃?

- Z² ?
- The hexagonal lattice?
- Let p is an odd prime, p = (1 − ζ_p)O_F: principal ideal of F = Q(ζ_p). Then (p, q_{1/p}) is an ideal lattice ≃?
- Let $I = \frac{1}{(1-\zeta_9)^4} O_F$: principal ideal of $F = \mathbb{Q}(\zeta_9)$. Then (I, q_1) is an ideal lattice \simeq ?

Lattices from fractional ideals • Let $I = \frac{1}{(1-\zeta_9)^4} O_F$: principal ideal of $F = \mathbb{Q}(\zeta_9)$. Then (I, q_1) is an ideal lattice \simeq ?

[2.00 -1.00 1.00 -1.00 -1.00 -1.00] [-1.00 2.00 -1.00 1.00 1.00 1.00] [1.00 -1.00 2.00 -4.06 E-38 -1.00 1.47 E-39] [-1.00 1.00 -4.06 E-38 2.00 4.35 E-38 1.00] [-1.00 1.00 -1.00 4.35 E-38 2.00 7.35 E-39] [-1.00 1.00 1.47 E-39 1.00 7.35 E-39 2.00]

Figure: The Gram matrix of (I, q_1) .

(ロ)、(部)、(言)、(言)、(言)、(こ)、(の)、(28/32)

• Let $F = \mathbb{Q}(\zeta_{15})$ and $I = \beta O_F$ for some $\beta \in F$. Then (O_F, q_β) is an ideal lattice \simeq ?

- Let F = Q(ζ₁₅) and I = βO_F for some β ∈ F. Then (O_F, q_β) is an ideal lattice ≃?
- Let $F = \mathbb{Q}(\zeta_{35})$ and $\alpha = (\zeta_{35}^{-3} + \zeta_{35}^3)(\zeta_{35}^{-6} + \zeta_{35}^6)(\zeta_{35}^{-9} + \zeta_{35}^9)(\zeta_{35}^{-12} + \zeta_{35}^{12})/\psi'(\zeta_{35} + \zeta_{35}^{-1}).$ Then (O_F, q_α) is an ideal lattice \simeq ?

Recap

- Number field, the ring of integers.
- Fractional ideals: 1/αJ for some α ∈ O_F and J ⊂ O_F is an ideal.
- The class group Cl_F = Id_F/Princ_F and class number h_F = #Cl_F.
- The Φ map:
 - $\Phi = (\sigma_1, \cdots, \sigma_{r_1}, \sigma_{r_1+1}, \cdots, \sigma_{r_1+r_2}).$
- The *L* map: $L(x) = (\log |\sigma(f)|)_{\sigma}, \forall x \in F^{\times}.$
- Ideal lattices: (1, q), where
 - I is a (fractional) O_F -ideal and
 - $q: L \times L \longrightarrow \mathbb{R}$ is a non-degenerate symmetric bilinear form with Hermitian property.

I: factional ideal; $u = \in (\mathbb{R}_{>0})^{r_1+r_2}$. Then (I, q_u) is an ideal lattice.

Exercise: Let $F = \mathbb{Q}(\sqrt[4]{2})$. Prove that $O_F = \mathbb{Z}[\sqrt[4]{2}]$.

Exercise: Let
$$F = \mathbb{Q}(\sqrt[4]{2})$$
. Prove that $O_F = \mathbb{Z}[\sqrt[4]{2}]$.
There will be a gift for this :).

References

32 / 32

Eva Bayer-Fluckiger. Lattices and number fields.

In Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), volume 241 of Contemp. Math., pages 69–84. Amer. Math. Soc., Providence, RI, 1999.

Hendrik W. Lenstra, Jr. Lattices.

In Algorithmic number theory: lattices, number fields, curves and cryptography, volume 44 of Math. Sci. Res. Inst. Publ., pages 127–181. Cambridge Univ. Press, Cambridge, 2008.

René Schoof. Computing Arakelov class groups.

In Algorithmic number theory: lattices, number fields, curves and cryptography, volume 44 of Math. Sci. Res. Inst. Publ., pages 447–495. Cambridge Univ. Press, Cambridge, 2008.