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Review

We have studied:

Arakelov divisors (/, u).

The degree.

Ideal lattices: (/,u) <> (/, qp).

The Arakelov class group Pic2 = Div2/Princk.
A= L(OX) and T° = H/A ...

0 — TO -2 Pic® 22, Clr —5 0 is exact.

pic? 1

{Isometry classes of ideal lattices of covol.\/]AF|}.
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Review

We have studied:

° Picg tells us: the regulator Rr and the class number hr.
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Review
We have studied:

° Pic,(_l tells us: the regulator Rr and the class number hg.

Figure: Pic,(_l of a real quadratic field F = Q(m)

vol(Pic2) = 2v/2log (3 + v/10), Re =?



Review
We have studied:

° Pic,(_l tells us: the regulator Rr and the class number hg.

Figure: Pic2 of a real quadratic field F = Q(+/10)

vol(Pic2) = 2v/2log (3 + 1/10), Rr =7
vol(T°) = \/n27 /2R and vol(Pic2) = hgvol(TP).



Review

We have studied:

° Pic,?— tells us: the regulator Rr and the class number hr.

Today: Metric on Pic? and Reduced Arakelov divisors.
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@ Metric on the Arakelov class group Pic?

@® Reduced Arakelov divisors

© Properties of reduced Arakelov divisors

Content
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Metric on Picg

Let F be a number field of degree n and A = L(Of). Let
u=(u,) € [, Rso. Denote by

L(u) := (log(uy)), € H]R C Fg.

lullpic = min [[L(u)][-
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Metric on Picg

Let F be a number field of degree n and A = L(Of). Let
u=(u,) € [[, Rso. Denote by

L(u) == (log(u,))s € [[R C Fa.

lullpic = min [[L(u)][-
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Metric on Picg

Let [D] and [D’] be 2 divisor classes on the same connected
component of Pic2. Then there exists unique

u=(u,) € [[, Rso (up to multiplication by units) such that
D—-D = (OF, U).
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Metric on Picg

Let [D] and [D’] be 2 divisor classes on the same connected
component of Pic2. Then there exists unique

u=(u,) € I[, Rso (up to multiplication by units) such that
D—-D = (OF, U).
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Metric on Picg

Let [D] and [D’] be 2 divisor classes on the same connected
component of Pic2. Then there exists unique

u=(u,) € I[, Rso (up to multiplication by units) such that
D—-D = (O/:, U).

D1={11,ul) D3=(13,u3)

D2=(15,u2)

We define
ID — D'||pic := [ul|pie-

24



Metric on Picg

Let [D] and [D’] be 2 divisor classes on the same connected
component of Pic2. Then there exists unique

u=(u,) €I, Rso (up to multiplication by units) such that
D — Dl = (OF, U).

Di{Lu1) D3=(13,u3)

D2=(15,u2)

We define
|D — D'||pic == ||ul|pic-

The function || ||pic induces the natural topology of Pic?.
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Metric on Picg

Ex: F=Q(v15) and f = Z:Y2 ¢ F~
and | = 1/4(6,/15) a fractional ideal of F, u = (10,1/10).
Let Dy = (O, 1), Dy = (f), D3 = (OF, u) and Dy = d(1).
 ||Dy — Dil[pic =7
* ||Ds — Dillpic =7
* ||Dy — Dillpic =7



What are reduced Arakelov divs.?

Reduced Arakelov divisors can be used for computing in the
Arakelov class group.
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What are reduced Arakelov divs.?

Reduced Arakelov divisors can be used for computing in the
Arakelov class group.

e D. Shanks [1972]: introduced “infrastructure”. He
discovered it when computing the regulator of a real
quadratic field.

H. Lenstra [1982]: described the infrastructure of a real
quadratic number field in terms of “circle groups”.

H. Williams and his students [1983]: complex cubic fields.
J. Buchmann and H. Williams [1988] described the
infrastructure for number fields with unit group of rank 1.
R. Schoof [2008]: The first description of infrastructure in
terms of reduced Arakelov divisors and Arakelov class
groups.

24



Reduced Arakelov divisors of real
quadratic fields

e Let a real quadratic form (X, Y) = aX? + bXY + cY?
where
a,b,c € Z and ged(a, b, c) = 1.
The discriminant of f is A = b?> — 4ac > 0.
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e Let a real quadratic form f(X,Y) = aX? + bXY + cY?
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a,b,c € Z and ged(a, b, c) = 1.
The discriminant of f is A = b?> — 4ac > 0.
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Reduced Arakelov divisors of real
quadratic fields

e Let a real quadratic form f(X,Y) = aX? + bXY + cY?

where
a,b,c € Z and ged(a, b, c) = 1.
The discriminant of f is A = b?> — 4ac > 0.

o fis call reduced if [V/A — 2a| < b < VA.
Ex: f(X,Y)=X2+7XY —6Y?is reduced (A = 73).



Reduced quadratic forms

f(X,Y)=X?>+7XY —6Y? is reduced where
a=1b=7and c= -6, A =73 st:

(%)
(%)

A = b?> —4ac > 0 and ged(a, b, c) =1

WA — 24| < b< VA.
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Reduced quadratic forms

f(X,Y)=X?+7XY — 6Y? is reduced where
a=1b=7and c= -6, A =73 st:

(*)
(%)

77

e How many reduced quadratic forms of discriminant
A =737

A = b?> — 4ac > 0 and ged(a, b, c) =1

VA —2a| < b < VA.

e Can find all of them?
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Reduced quadratic forms
(%) A = b?> —4ac > 0 and ged(a, b, c) =1
(%x) VA —2a| < b< VA.

The reduction algorithm can find all reduced quadratic forms
of given discriminant.

a | b | ¢ distance |
a=-c¢ 1 7 -6
6 5 -2 1.632850979
2 7 -3 2.580939751
3 5 -4 4.21379073
4 3 -4 5.161879503
4 5 -3 5.680471616
3 7 -2 6.628560388
2 5 -6 8.261411367
6 7 -1 9.215298415
1 7 -6 10.84235112

a0 10 /24



Reduced Arakelov divisors of real
quadratic fields

e f(X,Y)=X?+7XY —6Y?is reduced where
a=1b=7and c = —6 st:
(%) a,b,c € Z and gcd(a, b,c) =1

(), VA —2a| < b< VA
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Reduced Arakelov divisors of real
quadratic fields

e f(X,Y)=X?+7XY —6Y?is reduced where
a=1,b=7and c = —6 st:
(%) a,b,c € Z and gcd(a, b,c) =1
(%) VA —2a| < b< VA.
o Let F = Q(vA) with A =73 > 0. Then

14+ VT3 b+ VA

2 2a

Or=27 =1-Z® 7.

Here a=1= N(Of) and b, ¢ € Z satisfy () and (x*).
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Reduced Arakelov divisors of real

quadratic fields
e f(X,Y)=X?>+7XY —6Y?is reduced where
a=1,b=7and c = —6 st:
(%) a,b,c € Z and gcd(a, b,c) =1
(%) VA —2a| < b < VA.
o Let F = Q(vA) with A =73 > 0. Then
1473 b+vVA
5 :

a

Here a=1= N(Of) and b, c € Z satisfy () and ().

e So, Of corresponds to a reduced quadratic form
f(X,Y)=(1,7,—6) with discriminant A = 73 and
a>0.
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Reduced Arakelov divisors of real

quadratic fields
e f(X,Y)=X?+7XY —6Y?is reduced where
a=1,b=7and c = —6 st:
(%) a,b,c € Z and gcd(a, b,c) =1
(%) VA —2a| < b< VA.
o Let F = Q(vA) with A =73 > 0. Then
14+ V73 b+VE
5 :

a

Or=17 =1-Z®

Here a=1= N(Of) and b, ¢ € Z satisfy () and (x*).

e So, Of corresponds to a reduced quadratic form
f(X,Y)=(1,7,—6) with discriminant A = 73 and
a > 0. The Arakelov divisor d(Of) = (Of, N(Or)~Y/") is

called reduced.
11/24



Reduced Arakelov divisors of real
quadratic fields

F = Q(VA) with dis. A =73>0.
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Reduced Arakelov divisors of real
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Reduced Arakelov divisors of real
quadratic fields

F = Q(VA) with dis. A =73>0.

f(X,Y)=(a,b,c)+ | = 1~Z@%Z-Z: reduced.

13 /24



Reduced Arakelov divisors of real

quadratic fields
F = Q(v/A) with dis. A =73 >0.

f(X,Y)=(a, b,c) | = I-Z@%Z-Z: reduced.

distance

1.632850979
2.580939751

4.21379073
5.161879503
5.680471616
6.628560388
8.261411367
9.215298415
10.84235112
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Reduced Arakelov divisors of real

quadratic fields
F = Q(v/A) with dis. A =73 >0.

f(X,Y)=(a, b,c) | = I-Z@%Z-Z: reduced.

distance
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Reduced Arakelov divisors
How to generalize the reducedness?

| is reduced. lis not reduce‘d.

2

fo
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Reduced Arakelov divisors
How to generalize the reducedness?
Definition
A fractional idea [ is called reduced if 1 is minimal in /.
(i.e., 1 €/ and for any g € I, if |o(g)| < 1,Vo then g =0.)
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Reduced Arakelov divisors
How to generalize the reducedness?
Definition
A fractional idea [ is called reduced if 1 is minimal in /.
(i.e., 1 €/ and for any g € I, if |o(g)| < 1,Vo then g =0.)
Definition
An Arakelov divisor D is called reduced if
D = d(I) := (I, N(1)~+) for some reduced ideal /.

| is reduced. |is not reduce‘d.

14 /24



Examples of reduced Arakelov
divisors

® D = (Of,1) is reduced.
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Examples of reduced Arakelov
divisors

® D = (Of,1) is reduced.
® Let F = Q(VA) with A >0 and | = Z + 25YA7 with

a,b,c €Z, b*—4ac = A and VA —2a| < b < VA.
Then d(/) is reduced.
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Examples of reduced Arakelov
divisors

® D = (OF,1) is reduced.

® Let F = Q(VA) with A >0 and | = Z + 22YA7 with
a,b,c €7, b> —4dac = A and |v/A —2a] < b < VA.
Then d(/) is reduced.

© Reduced Arakelov divisors on T° with F = Q(+/983).
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Examples of reduced Arakelov

divisors
® D = (Of,1) is reduced.
® Let F = Q(VA) with A > 0 and | = Z + 2287 with
a,b,c €7, b* —4ac = A and |v/A —2a] < b < VA.
Then d(/) is reduced.
©® Reduced Arakelov divisors on T° with F = Q(\/@)

Ex: Find all reduced Arakelov divisors of Q(1/10).
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Examples of reduced Arakelov

divisors
® D = (Of,1) is reduced.
® Let F = Q(vVA) with A > 0 and | = Z + 2£Y87 with
a,b,c €7, b> —4dac = A and |v/A —2a] < b < VA.
Then d(/) is reduced.
©® Reduced Arakelov divisors on T° with F = Q(\/@)

Denote the set of all reduced Arakelov divisors of F is RedE.

?7?? #Redr? How does Redg distribute?
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Redr (Schoof 2008)

Denote the set of all reduced Arakelov divisors of F is RedE.
?7?? #Redr? How does Redg distribute?
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Redr (Schoof 2008)

Proposition 1. (cardinality of Redf)

Let D = d(/) be a reduced Arakelov divisor. Then

(i) I C OF and N(I71) < OF where 0F = (2)2/|Al.
(i) Redr is finite.
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Redr (Schoof 2008)

Proposition 1. (cardinality of Redf)

Let D = d(/) be a reduced Arakelov divisor. Then
(i) 171 C Of and N(I71) < OF where 9 = (%)rz\/m
(ii) RedE is finite.

Theorem 1.

Let D = (/, u) be an Arakelov divisor of degree 0. Then there
is a reduced Arakelov divisor D’ lying on the same connected

component of Pic? as D such that: [|D — D'||pie, < log(OF).

16

24



Redr (Schoof 2008)

Proposition 1. (cardinality of Redf)

Let D = d(/) be a reduced Arakelov divisor. Then
(i) I C OF and N(I71) < OF where 0F = (2)2/|Al.
(i) Redr is finite.

Theorem 1.

Let D = (/, u) be an Arakelov divisor of degree 0. Then there
is a reduced Arakelov divisor D’ lying on the same connected

component of Pic? as D such that: [|D — D'||pie, < log(OF).

Theorem 2.
The number of reduced Arakelov divisors contained in a ball of
radius 1 in Pic? is at most ~ 2.8854".

Iog 2
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Redr (Schoof 2008)
oF = (2)/1A].

Lemma
Let D = (/, u) be of deg 0. Then there exists 0 # f € [ st

lupa(F)] < OF" for every o
(= [Ifllo < v/noF'").

Proof. Use the Minkowskis Convex Body Theorem with the
bounded symmetric convex set

V={(Vs)o € Fr : |¥s| < 6;/" for all o}.
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Redr (Schoof 2008)

Denote the set of all reduced Arakelov divisors of F is RedE.
?7?? #Redr? How does Redg distribute?
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Redr (Schoof 2008)

Proposition 1. (cardinality of Redf)

Let D = d(/) be a reduced Arakelov divisor. Then
(i) 17 is integral and N(/71) < OF where 9F = (2)2/|A.
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Redr (Schoof 2008)

Proposition 1. (cardinality of Redf)

Let D = d(/) be a reduced Arakelov divisor. Then

(i) 17 is integral and N(/71) < OF where 9F = (2)2/|A.
(i) Redr is finite.

Proof.

i) I C O since 1 € I, we have /71 C Of.
By the lemma, there is a nonzero element f € [ such that

N()Y|o(F)] < OF" for all 6.

If N(I)™* > Of then we have |o(f)| < 1 for all o,
contradicting the minimality of 1. This proves part (i).

ii) It follows (i) because the number integral ideals of
bounded norm is finite.

18 /24



Redr (Schoof 2008)

Theorem 1.

Let D = (/, u) be a divisor of deg 0. Then there is a reduced
Arakelov divisor D’ lying on the same connected component of
Pic? as D st |D — D'||pic, < log(OF).
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Redr (Schoof 2008)

Theorem 1.

Let D = (/, u) be a divisor of deg 0. Then there is a reduced
Arakelov divisor D’ lying on the same connected component of
Pic? as D st |D — D'||pic, < log(OF).

Proof.
e deg(D) = 0, 3 minimal element f € / (lemma) st

ug|o(F)| < 9" for all o.

o Let J=f"1. Then D' = d(J) is reduced.

e D’ is on the same connected component of Pic2 as D bc
D — D' = (f) + (Of, v) with v = u|f|N(J)'/".

* ID = D'llpice = [[vllpic < log(OF) since

Vo = Uy |o(F)|N(J)Y" for all o and 3 log v, = 0.

m
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Redr (Schoof 2008)

Theorem 2.
The number of reduced Arakelov divisors contained in a ball of

radius 1 in Pic2 is at most (%) ~ 2.8854".
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Redr (Schoof 2008)

Theorem 2.
The number of reduced Arakelov divisors contained in a ball of
radius 1 in Pic? is at most ~ 2.8854".

Iog2
B, = the reduced Arakelov divisors contained in a ball of
radius 1 in Pic?.

e n=1 #B., <

o n=2 #B4 <

e n=3, #B%, < 24.
n=4, #BL, <69.
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Redr (Schoof 2008)
Theorem 2. (For totally real fields).
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Redr (Schoof 2008)
Theorem 2. (For totally real fields).

e There exists D = d(/) and D' = d(I") reduced divisors in
the ball with
D— D" +(f)=(Og,v)
for some f € F* such that o(f) > 0 for all real o.
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Redr (Schoof 2008)
Theorem 2. (For totally real fields).

e There exists D = d(/) and D' = d(I") reduced divisors in
the ball with
D— D"+ (f) = (Of,v)
for some f € F* such that o(f) > 0 for all real o.
There are at most 2" reduced divisors in the ball of radius
log2 in Pic?.
Bc if not, then fix one of them: Dy and consider D — D
where D runs through the other D. They are all equal to
(f) + (Or, u) for some u € [], Rso.
By the box principle, for two distinct divisors, let's say
D, D', the signatures of g and g’ are equal.
Then D — D" = (f) 4 (OF, u) for some u € [] R, and
f = g/g’ totally positive.
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Redr (Schoof 2008)
Theorem 2. (For totally real fields).

e There exists D = d(/) and D' = d(I") reduced divisors in
the ball with

D— D" +(f)=(Og,v)
for some f € F* such that o(f) > 0 for all real o.
o | =fl.
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Redr (Schoof 2008)
Theorem 2. (For totally real fields).

e There exists D = d(/) and D' = d(I") reduced divisors in
the ball with

D — D'+ (f) = (O, v)
for some f € F* such that o(f) > 0 for all real o.
o | =fl.
o Let A= N(I/I')s = [N(f)|. Then X >

1
>
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Redr (Schoof 2008)
Theorem 2. (For totally real fields).

e There exists D = d(/) and D' = d(I") reduced divisors in
the ball with
D — D'+ (f) = (O, v)
for some f € F* such that o(f) > 0 for all real o.

o [ =1l

o Let A= N(I/I')s = |N(f)|». Then A > 1.

e Assume that A < 1. = f — 1 € [ satisfies that

o(F) =1 < |o(F)=A|+|A—1] < A+1—X=1for all 0.

By the minimality of 1, we must have f —1 =0,s0 [ =/’
and then D = D’.

E]
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How to find a reduced divisor?

The reduction algorithm.
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Recap

Metric on Pic2. Let D, D’ € Pic? st D — D’ = (Of, u).
Then
ID" = Dllpic = [|ullpic = min [ L(u)]].

A fractional ideal I is reduced if 1 € | is minimal.

RedF is finite.

There is at least one reduced Arakelov divisor in the ball
of radius log(9F) in Pic2.

The number of reduced Arakelov divisors contained in a
ball of radius 1 in Pic2 is at most 2.8854".
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