Lecture 3. REDUCED ARAKELOV DIVISORS

Ha Tran

ICTP-CIMPA summer school 2016 HCM University of Science- Saigon University

We have studied:

- Arakelov divisors (*I*, *u*).
- The degree.
- Ideal lattices: $(I, u) \leftrightarrow (I, q_D)$.
- The Arakelov class group $Pic_F^0 = Div_F^0 / Princ_F$.

•
$$\Lambda = L(O_F^{ imes})$$
 and $T^0 = H/\Lambda$..

• $0 \longrightarrow T^0 \xrightarrow{\phi_1} Pic_F^0 \xrightarrow{\phi_2} Cl_F \longrightarrow 0$ is exact.

• $Pic_F^0 \xrightarrow{1:1}$ {Isometry classes of ideal lattices of covol. $\sqrt{|\Delta_F|}$ }.

We have studied:

- ...
- Pic_F^0 tells us: the regulator R_F and the class number h_F .

We have studied:

• ...

• Pic_F^0 tells us: the regulator R_F and the class number h_F .

Figure: Pic_F^0 of a real quadratic field, $h_F = ?$

We have studied:

• ...

• Pic_F^0 tells us: the regulator R_F and the class number h_F .

Figure: Pic_F^0 of a totally real cubic field, $h_F = ?$

We have studied:

- ...
- Pic_F^0 tells us: the regulator R_F and the class number h_F .

Figure: Pic_F^0 of a real quadratic field $F = \mathbb{Q}(\sqrt{10})$

$$\operatorname{vol}(\operatorname{Pic}_F^0) = 2\sqrt{2}\log{(3+\sqrt{10})},$$

$$R_F = ?$$

イロン イヨン イヨン イヨン 三日

3/24

We have studied:

• ...

• Pic_F^0 tells us: the regulator R_F and the class number h_F .

Figure: Pic_F^0 of a real quadratic field $F = \mathbb{Q}(\sqrt{10})$

$$vol(Pic_F^0) = 2\sqrt{2}\log(3 + \sqrt{10}), \qquad R_F = ?$$

 $vol(T^0) = \sqrt{n2^{-r_2/2}}R_F \text{ and } vol(Pic_F^0) = h_F vol(T^0).$

We have studied:

• ...

• Pic_F^0 tells us: the regulator R_F and the class number h_F . Today: Metric on Pic_F^0 and Reduced Arakelov divisors.

Content

1 Metric on the Arakelov class group Pic_F^0

2 Reduced Arakelov divisors

3 Properties of reduced Arakelov divisors

イロン イロン イヨン イヨン 三日 二

5/24

$$L(u) := (\log(u_{\sigma}))_{\sigma} \in \prod_{\sigma} \mathbb{R} \subset F_{\mathbb{R}}.$$

$$\|u\|_{Pic} = \min_{\Lambda} \|L(u)\|.$$

Let [D] and [D'] be 2 divisor classes on the same connected component of Pic_F^0 . Then there exists unique $u = (u_\sigma) \in \prod_\sigma \mathbb{R}_{>0}$ (up to multiplication by units) such that $D - D' = (O_F, u)$.

Let [D] and [D'] be 2 divisor classes on the same connected component of Pic_F^0 . Then there exists unique $u = (u_\sigma) \in \prod_\sigma \mathbb{R}_{>0}$ (up to multiplication by units) such that $D - D' = (O_F, u)$.

Let [D] and [D'] be 2 divisor classes on the same connected component of Pic_F^0 . Then there exists unique $u = (u_\sigma) \in \prod_\sigma \mathbb{R}_{>0}$ (up to multiplication by units) such that $D - D' = (O_F, u)$.

We define

$$||D - D'||_{Pic} := ||u||_{Pic}.$$

Let [D] and [D'] be 2 divisor classes on the same connected component of Pic_F^0 . Then there exists unique $u = (u_\sigma) \in \prod_\sigma \mathbb{R}_{>0}$ (up to multiplication by units) such that $D - D' = (O_F, u)$.

We define

$$||D - D'||_{Pic} := ||u||_{Pic}.$$

The function $\| \|_{Pic}$ induces the natural topology of Pic_F^0 .

6/24

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ 三臣 - のへで

7/24

Ex:
$$F = \mathbb{Q}(\sqrt{15})$$
 and $f = \frac{7+\sqrt{\Delta}}{2} \in F^*$
and $I = 1/4(6, \sqrt{15})$ a fractional ideal of F , $u = (10, 1/10)$.
Let $D_1 = (O_F, 1)$, $D_2 = (f)$, $D_3 = (O_F, u)$ and $D_4 = d(I)$.

•
$$||D_2 - D_1||_{Pic} = ?$$

•
$$||D_3 - D_1||_{Pic} = ?$$

• $||D_4 - D_1||_{Pic} = ?$

Reduced Arakelov divisors can be used for computing in the Arakelov class group.

• D. Shanks [1972]: introduced "infrastructure". He discovered it when computing the regulator of a real quadratic field.

- D. Shanks [1972]: introduced "infrastructure". He discovered it when computing the regulator of a real quadratic field.
- H. Lenstra [1982]: described the infrastructure of a real quadratic number field in terms of "circle groups".

- D. Shanks [1972]: introduced "infrastructure". He discovered it when computing the regulator of a real quadratic field.
- H. Lenstra [1982]: described the infrastructure of a real quadratic number field in terms of "circle groups".
- H. Williams and his students [1983]: complex cubic fields.

- D. Shanks [1972]: introduced "infrastructure". He discovered it when computing the regulator of a real quadratic field.
- H. Lenstra [1982]: described the infrastructure of a real quadratic number field in terms of "circle groups".
- H. Williams and his students [1983]: complex cubic fields.
- J. Buchmann and H. Williams [1988] described the infrastructure for number fields with unit group of rank 1.

- D. Shanks [1972]: introduced "infrastructure". He discovered it when computing the regulator of a real quadratic field.
- H. Lenstra [1982]: described the infrastructure of a real quadratic number field in terms of "circle groups".
- H. Williams and his students [1983]: complex cubic fields.
- J. Buchmann and H. Williams [1988] described the infrastructure for number fields with unit group of rank 1.
- R. Schoof [2008]: The first description of infrastructure in terms of reduced Arakelov divisors and Arakelov class groups.

- Let a real quadratic form $f(X, Y) = aX^2 + bXY + cY^2$ where
 - $a, b, c \in \mathbb{Z}$ and gcd(a, b, c) = 1. The discriminant of f is $\Delta = b^2 - 4ac > 0$.

• Let a real quadratic form $f(X, Y) = aX^2 + bXY + cY^2$ where

イロト 不得下 イヨト イヨト 二日

9/24

- $a, b, c \in \mathbb{Z}$ and gcd(a, b, c) = 1. The discriminant of f is $\Delta = b^2 - 4ac > 0$.
- f is call reduced if $|\sqrt{\Delta} 2a| < b < \sqrt{\Delta}$.

• Let a real quadratic form $f(X, Y) = aX^2 + bXY + cY^2$ where

イロト 不得下 イヨト イヨト 二日

9/24

- $a, b, c \in \mathbb{Z}$ and gcd(a, b, c) = 1. The discriminant of f is $\Delta = b^2 - 4ac > 0$.
- f is call reduced if $|\sqrt{\Delta} 2a| < b < \sqrt{\Delta}$.

Ex: $f(X, Y) = X^2 + 7XY - 6Y^2$ is reduced ($\Delta = 73$).

Reduced quadratic forms

$$f(X, Y) = X^{2} + 7XY - 6Y^{2} \text{ is reduced where}$$

$$a = 1, b = 7 \text{ and } c = -6, \Delta = 73 \text{ st:}$$

$$(\star) \qquad \Delta = b^{2} - 4ac > 0 \text{ and } gcd(a, b, c) = 1$$

$$(\star\star) \qquad |\sqrt{\Delta} - 2a| < b < \sqrt{\Delta}.$$

Reduced quadratic forms

$$f(X, Y) = X^{2} + 7XY - 6Y^{2} \text{ is reduced where}$$

$$a = 1, b = 7 \text{ and } c = -6, \Delta = 73 \text{ st:}$$

$$(\star) \qquad \Delta = b^{2} - 4ac > 0 \text{ and } gcd(a, b, c) = 1$$

$$(\star\star) \qquad |\sqrt{\Delta} - 2a| < b < \sqrt{\Delta}.$$

Reduced quadratic forms

$$f(X, Y) = X^{2} + 7XY - 6Y^{2} \text{ is reduced where}$$

$$a = 1, b = 7 \text{ and } c = -6, \Delta = 73 \text{ st:}$$

$$(\star) \qquad \Delta = b^{2} - 4ac > 0 \text{ and } \gcd(a, b, c) = 1$$

$$(\star\star) \qquad |\sqrt{\Delta} - 2a| < b < \sqrt{\Delta}.$$

$$???$$

- How many reduced quadratic forms of discriminant $\Delta=73?$
- Can find all of them?

Reduced quadratic forms(*)
$$\Delta = b^2 - 4ac > 0$$
 and $gcd(a, b, c) = 1$ (**) $|\sqrt{\Delta} - 2a| < b < \sqrt{\Delta}.$ The reduction algorithm can find all reduced quadratic for

of given discriminant.

	a	b	С	distance
a = - c	1	7	-6	
	6	5	-2	1.632850979
	2	7	-3	2.580939751
	3	5	-4	4.21379073
	4	3	-4	5.161879503
	4	5	-3	5.680471616
	3	7	-2	6.628560388
	2	5	-6	8.261411367
	6	7	-1	9.215298415
	1	7	-6	10.84235112
				7.6667

•
$$f(X, Y) = X^2 + 7XY - 6Y^2$$
 is reduced where
 $a = 1, b = 7$ and $c = -6$ st:
(*) $a, b, c \in \mathbb{Z}$ and $gcd(a, b, c) = 1$
(**) $|\sqrt{\Delta} - 2a| < b < \sqrt{\Delta}$.

< □ > < @ > < 볼 > < 볼 > 볼 ∽ QQ 11/24

•
$$f(X, Y) = X^2 + 7XY - 6Y^2$$
 is reduced where
 $a = 1, b = 7$ and $c = -6$ st:
(*) $a, b, c \in \mathbb{Z}$ and $gcd(a, b, c) = 1$
(**) $|\sqrt{\Delta} - 2a| < b < \sqrt{\Delta}$.

< □ > < @ > < 볼 > < 볼 > 볼 ∽ QQ 11/24

•
$$f(X, Y) = X^2 + 7XY - 6Y^2$$
 is reduced where
 $a = 1, b = 7$ and $c = -6$ st:
(*) $a, b, c \in \mathbb{Z}$ and $gcd(a, b, c) = 1$
(**) $|\sqrt{\Delta} - 2a| < b < \sqrt{\Delta}$.

• Let $F = \mathbb{Q}(\sqrt{\Delta})$ with $\Delta = 73 > 0$. Then

$$O_F = \mathbb{Z}\left[rac{1+\sqrt{73}}{2}
ight] = 1 \cdot \mathbb{Z} \oplus rac{b+\sqrt{\Delta}}{2a} \cdot \mathbb{Z}.$$

Here $a = 1 = N(O_F)$ and $b, c \in \mathbb{Z}$ satisfy (*) and (**).

•
$$f(X, Y) = X^2 + 7XY - 6Y^2$$
 is reduced where
 $a = 1, b = 7$ and $c = -6$ st:
(*) $a, b, c \in \mathbb{Z}$ and $gcd(a, b, c) = 1$
(**) $|\sqrt{\Delta} - 2a| < b < \sqrt{\Delta}$.

• Let $F = \mathbb{Q}(\sqrt{\Delta})$ with $\Delta = 73 > 0$. Then

$$O_F = \mathbb{Z}\left[rac{1+\sqrt{73}}{2}
ight] = 1 \cdot \mathbb{Z} \oplus rac{b+\sqrt{\Delta}}{2a} \cdot \mathbb{Z}.$$

Here $a = 1 = N(O_F)$ and $b, c \in \mathbb{Z}$ satisfy (*) and (**).

• $f(X, Y) = X^2 + 7XY - 6Y^2$ is reduced where a = 1, b = 7 and c = -6 st: (*) $a, b, c \in \mathbb{Z}$ and gcd(a, b, c) = 1(**) $|\sqrt{\Delta} - 2a| < b < \sqrt{\Delta}$.

• Let $F = \mathbb{Q}(\sqrt{\Delta})$ with $\Delta = 73 > 0$. Then

$$O_F = \mathbb{Z}\left[rac{1+\sqrt{73}}{2}
ight] = 1 \cdot \mathbb{Z} \oplus rac{b+\sqrt{\Delta}}{2a} \cdot \mathbb{Z}.$$

Here $a = 1 = N(O_F)$ and $b, c \in \mathbb{Z}$ satisfy (*) and (**).

• So, O_F corresponds to a reduced quadratic form $f(X, Y) \equiv (1, 7, -6)$ with discriminant $\Delta = 73$ and a > 0.
•
$$f(X, Y) = X^2 + 7XY - 6Y^2$$
 is reduced where
 $a = 1, b = 7$ and $c = -6$ st:
(*) $a, b, c \in \mathbb{Z}$ and $gcd(a, b, c) = 1$
(**) $|\sqrt{\Delta} - 2a| < b < \sqrt{\Delta}$.
• Let $F = \mathbb{Q}(\sqrt{\Delta})$ with $\Delta = 73 > 0$. Then
 $O_F = \mathbb{Z}\left[\frac{1+\sqrt{73}}{2}\right] = 1 \cdot \mathbb{Z} \oplus \frac{b+\sqrt{\Delta}}{2a} \cdot \mathbb{Z}$.

Here $a = 1 = N(O_F)$ and $b, c \in \mathbb{Z}$ satisfy (*) and (**). • So, O_F corresponds to a reduced quadratic form $f(X, Y) \equiv (1, 7, -6)$ with discriminant $\Delta = 73$ and a > 0. The Arakelov divisor $d(O_F) = (O_F, N(O_F)^{-1/n})$ is called reduced.

$$F = \mathbb{Q}(\sqrt{\Delta})$$
 with dis. $\Delta = 73 > 0$.

$$F = \mathbb{Q}(\sqrt{\Delta}) \text{ with dis. } \Delta = 73 > 0.$$

• $f_1(X, Y) \equiv (1, 7, -6) \leftrightarrow O_F = 1 \cdot \mathbb{Z} \oplus \frac{7 + \sqrt{\Delta}}{2 \cdot 1} \cdot \mathbb{Z}$: reduced.

$$F = \mathbb{Q}(\sqrt{\Delta})$$
 with dis. $\Delta = 73 > 0$.

•
$$f_1(X, Y) \equiv (1, 7, -6) \leftrightarrow O_F = 1 \cdot \mathbb{Z} \oplus \frac{7 + \sqrt{\Delta}}{2 \cdot 1} \cdot \mathbb{Z}$$
: reduced.

•
$$f_2(X, Y) \equiv (6, 5-2) \leftrightarrow I_2 = 1 \cdot \mathbb{Z} \oplus \frac{5+\sqrt{\Delta}}{2\cdot 6} \cdot \mathbb{Z}$$
: reduced.

$$F = \mathbb{Q}(\sqrt{\Delta}) \text{ with dis. } \Delta = 73 > 0.$$

• $f_1(X, Y) \equiv (1, 7, -6) \leftrightarrow O_F = 1 \cdot \mathbb{Z} \oplus \frac{7+\sqrt{\Delta}}{2 \cdot 1} \cdot \mathbb{Z}$: reduced.
• $f_2(X, Y) \equiv (6, 5 - 2) \leftrightarrow l_2 = 1 \cdot \mathbb{Z} \oplus \frac{5+\sqrt{\Delta}}{2 \cdot 6} \cdot \mathbb{Z}$: reduced.
• \cdots

$$F = \mathbb{Q}(\sqrt{\Delta}) \text{ with dis. } \Delta = 73 > 0.$$

• $f_1(X, Y) \equiv (1, 7, -6) \leftrightarrow O_F = 1 \cdot \mathbb{Z} \oplus \frac{7+\sqrt{\Delta}}{2 \cdot 1} \cdot \mathbb{Z}$: reduced.
• $f_2(X, Y) \equiv (6, 5 - 2) \leftrightarrow l_2 = 1 \cdot \mathbb{Z} \oplus \frac{5+\sqrt{\Delta}}{2 \cdot 6} \cdot \mathbb{Z}$: reduced.
• \cdots

$$F = \mathbb{Q}(\sqrt{\Delta}) \text{ with dis. } \Delta = 73 > 0.$$
$$f(X, Y) \equiv (a, b, c) \leftrightarrow I = 1 \cdot \mathbb{Z} \oplus \frac{b + \sqrt{\Delta}}{2 \cdot a} \cdot \mathbb{Z}: \text{ reduced.}$$

Reduced Arakelov divisors of real quadratic fields $F = \mathbb{Q}(\sqrt{\Delta})$ with dis. $\Delta = 73 > 0$. $f(X, Y) \equiv (a, b, c) \leftrightarrow I = 1 \cdot \mathbb{Z} \oplus \frac{b + \sqrt{\Delta}}{2 \cdot a} \cdot \mathbb{Z}$: reduced.

	2	h	•	dictanco
	a	u	L L	uistance
a = - c	1	7	-6	
	6	5	-2	1.632850979
	2	7	-3	2.580939751
	3	5	-4	4.21379073
	4	3	-4	5.161879503
	4	5	-3	5.680471616
	3	7	-2	6.628560388
	2	5	-6	8.261411367
	6	7	-1	9.215298415
	1	7	-6	10.84235112
				7.6667

13/24

4 14 15

Reduced Arakelov divisors of real
quadratic fields
$$F = \mathbb{Q}(\sqrt{\Delta})$$
 with dis. $\Delta = 73 > 0$.
 $f(X, Y) \equiv (a, b, c) \leftrightarrow I = 1 \cdot \mathbb{Z} \oplus \frac{b + \sqrt{\Delta}}{2 \cdot a} \cdot \mathbb{Z}$: reduced.

Reduced Arakelov divisors

How to generalize the reducedness?

Reduced Arakelov divisors

How to generalize the reducedness?

Definition

A fractional idea *I* is called reduced if 1 is minimal in *I*.

(i.e., $1 \in I$ and for any $g \in I$, if $|\sigma(g)| < 1, orall \sigma$ then g = 0.)

Reduced Arakelov divisors

How to generalize the reducedness?

Definition

A fractional idea *I* is called reduced if 1 is minimal in *I*.

(i.e., $1 \in I$ and for any $g \in I$, if $|\sigma(g)| < 1, \forall \sigma$ then g = 0.)

Definition

An Arakelov divisor D is called reduced if $D = d(I) := (I, N(I)^{-\frac{1}{n}})$ for some reduced ideal I. I is reduced.

1) $D = (O_F, 1)$ is reduced.

D = (O_F, 1) is reduced.
 Let F = Q(√Δ) with Δ > 0 and I = Z + b+√Δ/2a Z with a, b, c ∈ Z, b² - 4ac = Δ and |√Δ - 2a| < b < √Δ. Then d(I) is reduced.

3 Reduced Arakelov divisors on T^0 with $F = \mathbb{Q}(\sqrt{983})$.

・ロン ・四 と ・ ヨン ・ ヨン

- **1** $D = (O_F, 1)$ is reduced.
- 2 Let $F = \mathbb{Q}(\sqrt{\Delta})$ with $\Delta > 0$ and $I = \mathbb{Z} + \frac{b+\sqrt{\Delta}}{2a}\mathbb{Z}$ with $a, b, c \in \mathbb{Z}, b^2 4ac = \Delta$ and $|\sqrt{\Delta} 2a| < b < \sqrt{\Delta}$. Then d(I) is reduced.
- **3** Reduced Arakelov divisors on T^0 with $F = \mathbb{Q}(\sqrt{983})$.

Ex: Find all reduced Arakelov divisors of $\mathbb{Q}(\sqrt{10})$.

1 $D = (O_F, 1)$ is reduced.

2 Let $F = \mathbb{Q}(\sqrt{\Delta})$ with $\Delta > 0$ and $I = \mathbb{Z} + \frac{b+\sqrt{\Delta}}{2a}\mathbb{Z}$ with $a, b, c \in \mathbb{Z}, b^2 - 4ac = \Delta$ and $|\sqrt{\Delta} - 2a| < b < \sqrt{\Delta}$. Then d(I) is reduced.

3 Reduced Arakelov divisors on T^0 with $F = \mathbb{Q}(\sqrt{983})$.

Denote the set of all reduced Arakelov divisors of F is Red_F . ??? $\#Red_F$? How does Red_F distribute?

Denote the set of all reduced Arakelov divisors of F is Red_F . ??? $\#Red_F$? How does Red_F distribute?

Red_F (Schoof 2008)

Proposition 1. (cardinality of Red_F)

Let D = d(I) be a reduced Arakelov divisor. Then (i) $I^{-1} \subset O_F$ and $N(I^{-1}) \leq \partial_F$ where $\partial_F = (\frac{2}{\pi})^{r_2} \sqrt{|\Delta|}$. (ii) Red_F is finite.

Proposition 1. (cardinality of Red_F)

Let D = d(I) be a reduced Arakelov divisor. Then (i) $I^{-1} \subset O_F$ and $N(I^{-1}) \leq \partial_F$ where $\partial_F = (\frac{2}{\pi})^{r_2} \sqrt{|\Delta|}$. (ii) Red_F is finite.

Theorem 1.

Let D = (I, u) be an Arakelov divisor of degree 0. Then there is a reduced Arakelov divisor D' lying on the same connected component of Pic_F^0 as D such that: $||D - D'||_{Pic_F} \leq log(\partial_F)$.

Proposition 1. (cardinality of Red_F)

Let D = d(I) be a reduced Arakelov divisor. Then (i) $I^{-1} \subset O_F$ and $N(I^{-1}) \leq \partial_F$ where $\partial_F = (\frac{2}{\pi})^{r_2} \sqrt{|\Delta|}$. (ii) Red_F is finite.

Theorem 1.

Let D = (I, u) be an Arakelov divisor of degree 0. Then there is a reduced Arakelov divisor D' lying on the same connected component of Pic_F^0 as D such that: $||D - D'||_{Pic_F} \leq log(\partial_F)$.

Theorem 2.

The number of reduced Arakelov divisors contained in a ball of radius 1 in Pic_F^0 is at most $\left(\frac{2}{\log 2}\right)^n \approx 2.8854^n$.

 $\partial_F = \left(\frac{2}{\pi}\right)^{r_2} \sqrt{|\Delta|}.$

Lemma

Let D = (I, u) be of deg 0. Then there exists $0 \neq f \in I$ st

$$|u_{\sigma}\sigma(f)| < \partial_F^{1/n}$$
 for every σ

$$(\Rightarrow \|f\|_D \leq \sqrt{n}\partial_F^{1/n}).$$

Proof. Use the Minkowskis Convex Body Theorem with the bounded symmetric convex set

$$V = \{(y_{\sigma})_{\sigma} \in F_{\mathbb{R}} : |y_{\sigma}| \leq \partial_F^{1/n} \text{ for all } \sigma\}.$$

Denote the set of all reduced Arakelov divisors of F is Red_F . ??? $\#Red_F$? How does Red_F distribute?

Proposition 1. (cardinality of Red_F)

Let D = d(I) be a reduced Arakelov divisor. Then (i) I^{-1} is integral and $N(I^{-1}) \leq \partial_F$ where $\partial_F = (\frac{2}{\pi})^{r_2} \sqrt{|\Delta|}$. (ii) Red_F is finite.

Proposition 1. (cardinality of Red_F)

Let D = d(I) be a reduced Arakelov divisor. Then (i) I^{-1} is integral and $N(I^{-1}) \leq \partial_F$ where $\partial_F = (\frac{2}{\pi})^{r_2} \sqrt{|\Delta|}$. (ii) Red_F is finite.

Proof.

i)
$$I \subset O_F$$
 since $1 \in I$, we have $I^{-1} \subset O_F$.
By the lemma, there is a nonzero element $f \in I$ such that

$$N(I)^{-1/n}|\sigma(f)| \leq \partial_F^{1/n}$$
 for all σ .

If $N(I)^{-1} > \partial_F$ then we have $|\sigma(f)| < 1$ for all σ , contradicting the minimality of 1. This proves part (i).

 ii) It follows (i) because the number integral ideals of bounded norm is finite.

Red_F (Schoof 2008)

Theorem 1. Let D = (I, u) be a divisor of deg 0. Then there is a reduced Arakelov divisor D' lying on the same connected component of Pic_F^0 as D st $||D - D'||_{Pic_F} \leq log(\partial_F)$.

Theorem 1.

Let D = (I, u) be a divisor of deg 0. Then there is a reduced Arakelov divisor D' lying on the same connected component of Pic_F^0 as D st $||D - D'||_{Pic_F} \le log(\partial_F)$. Proof.

Proof.

• deg(D) = 0, \exists minimal element $f \in I$ (lemma) st

$$|u_\sigma(f)| < \partial_F^{1/n}$$
 for all σ .

- Let $J = f^{-1}I$. Then D' = d(J) is reduced.
- D' is on the same connected component of Pic_F^0 as D bc $D - D' = (f) + (O_F, v)$ with $v = u|f|N(J)^{1/n}$.
- $||D D'||_{Pic_F} = ||v||_{Pic} \le log(\partial_F)$ since $v_{\sigma} = u_{\sigma}|\sigma(f)|N(J)^{1/n}$ for all σ and $\sum_{\sigma} \log_{\mathcal{O}} v_{\sigma} = 0$.

Theorem 2.

The number of reduced Arakelov divisors contained in a ball of radius 1 in Pic_F^0 is at most $\left(\frac{2}{\log 2}\right)^n \approx 2.8854^n$.

イロト 不得 トイヨト イヨト 二日

20/24

Theorem 2.

The number of reduced Arakelov divisors contained in a ball of radius 1 in Pic_F^0 is at most $\left(\frac{2}{\log 2}\right)^n \approx 2.8854^n$.

 B_{red}^1 = the reduced Arakelov divisors contained in a ball of radius 1 in Pic_F^0 .

• $n = 1, \ \#B_{red}^1 \le 2.$ • $n = 2, \ \#B_{red}^1 \le 8.$ • $n = 3, \ \#B_{red}^1 \le 24.$ • $n = 4, \ \#B_{red}^1 \le 69.$

• ..

Theorem 2. (For totally real fields).

Theorem 2. (For totally real fields).

 There exists D = d(I) and D' = d(I') reduced divisors in the ball with D - D' + (f) = (O_F, v)

for some $f \in F^*$ such that $\sigma(f) > 0$ for all real σ .

Theorem 2. (For totally real fields).

• There exists D = d(I) and D' = d(I') reduced divisors in the ball with

$$D-D'+(f)=(O_F,v)$$

for some $f \in F^*$ such that $\sigma(f) > 0$ for all real σ .

There are at most 2^n reduced divisors in the ball of radius log 2 in Pic_F^0 .

Bc if not, then fix one of them: D_0 and consider $D - D_0$ where D runs through the other D. They are all equal to $(f) + (O_F, u)$ for some $u \in \prod_{\sigma} \mathbb{R}_{>0}$.

By the box principle, for two distinct divisors, let's say D, D', the signatures of g and g' are equal.

Then $D - D' = (f) + (O_F, u)$ for some $u \in \prod_{\sigma} \mathbb{R}_{>0}$, and f = g/g' totally positive.

21 / 24

Theorem 2. (For totally real fields).

There exists D = d(I) and D' = d(I') reduced divisors in the ball with D - D' + (f) = (O_F, v) for some f ∈ F* such that σ(f) > 0 for all real σ.

•
$$I = fI'$$
.

21 / 24

Theorem 2. (For totally real fields).

 There exists D = d(I) and D' = d(I') reduced divisors in the ball with D - D' + (f) = (O_F, v) for some f ∈ F* such that σ(f) > 0 for all real σ.

•
$$I = fI'$$
.

• Let
$$\lambda = N(I/I')^{\frac{1}{n}} = |N(f)|^{\frac{1}{n}}$$
. Then $\lambda \geq \frac{1}{2}$.

Theorem 2. (For totally real fields).

 There exists D = d(I) and D' = d(I') reduced divisors in the ball with D - D' + (f) = (O_F, v)

for some $f \in F^*$ such that $\sigma(f) > 0$ for all real σ .

•
$$I = fI'$$
.

- Let $\lambda = N(I/I')^{\frac{1}{n}} = |N(f)|^{\frac{1}{n}}$. Then $\lambda \geq \frac{1}{2}$.
- Assume that $\lambda \leq 1$. $\Rightarrow f 1 \in I$ satisfies that

 $|\sigma(f)-1| \leq |\sigma(f)-\lambda|+|\lambda-1| < \lambda+1-\lambda = 1$ for all σ .

By the minimality of 1, we must have f - 1 = 0, so I = I'and then D = D'.

How to find a reduced divisor?

The reduction algorithm.
Recap

• Metric on Pic_F^0 . Let $D, D' \in Pic_F^0$ st $D - D' = (O_F, u)$. Then

$$||D' - D||_{Pic} = ||u||_{Pic} = \min_{\Lambda} ||L(u)||.$$

- A fractional ideal I is reduced if $1 \in I$ is minimal.
- *Red_F* is finite.
- There is at least one reduced Arakelov divisor in the ball of radius log(∂_F) in Pic⁰_F.
- The number of reduced Arakelov divisors contained in a ball of radius 1 in *Pic⁰_F* is at most 2.8854ⁿ.

References

Eva Bayer-Fluckiger. Lattices and number fields.

In Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), volume 241 of Contemp. Math., pages 69–84. Amer. Math. Soc., Providence, RI, 1999.

Hendrik W. Lenstra, Jr. Lattices.

In Algorithmic number theory: lattices, number fields, curves and cryptography, volume 44 of Math. Sci. Res. Inst. Publ., pages 127–181. Cambridge Univ. Press, Cambridge, 2008.

René Schoof. Computing Arakelov class groups.

In Algorithmic number theory: lattices, number fields, curves and cryptography, volume 44 of Math. Sci. Res. Inst. Publ., pages 447–495. Cambridge Univ. Press, Cambridge, 2008.