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Review

We have studied:

• Arakelov divisors (I , u).

• The degree.

• Ideal lattices: (I , u)↔ (I , qD).

• The Arakelov class group Pic0
F = Div 0

F/PrincF .

• Λ = L(O×F ) and T 0 = H/Λ ...

• 0 −→ T 0 φ1−→ Pic0
F

φ2−→ ClF −→ 0 is exact.

• Pic0
F

1:1−→
{Isometry classes of ideal lattices of covol.

√
|∆F |}.
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Review

We have studied:

• ...

• Pic0
F tells us: the regulator RF and the class number hF .

3 / 24



Review
We have studied:

• ...

• Pic0
F tells us: the regulator RF and the class number hF .

Figure: Pic0
F of a real quadratic field, hF =?

3 / 24



Review
We have studied:
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• Pic0
F tells us: the regulator RF and the class number hF .

Figure: Pic0
F of a totally real cubic field, hF =?
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Review

We have studied:

• ...

• Pic0
F tells us: the regulator RF and the class number hF .

Figure: Pic0
F of a real quadratic field F = Q(

√
10)

vol(Pic0
F ) = 2

√
2 log (3 +

√
10), RF =?
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Review
We have studied:

• ...

• Pic0
F tells us: the regulator RF and the class number hF .

Figure: Pic0
F of a real quadratic field F = Q(

√
10)

vol(Pic0
F ) = 2

√
2 log (3 +

√
10), RF =?

vol(T 0) =
√
n2−r2/2RF and vol(Pic0

F ) = hFvol(T
0).
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Review

We have studied:

• ...

• Pic0
F tells us: the regulator RF and the class number hF .

Today: Metric on Pic0
F and Reduced Arakelov divisors.
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Content

1 Metric on the Arakelov class group Pic0
F

2 Reduced Arakelov divisors

3 Properties of reduced Arakelov divisors

4 / 24



Metric on Pic0
F

Let F be a number field of degree n and Λ = L(O×F ). Let
u = (uσ) ∈

∏
σ R>0. Denote by

L(u) := (log(uσ))σ ∈
∏
σ

R ⊂ FR.

‖u‖Pic = min
Λ
‖L(u)‖.
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Metric on Pic0
F

Let F be a number field of degree n and Λ = L(O×F ). Let
u = (uσ) ∈

∏
σ R>0. Denote by

L(u) := (log(uσ))σ ∈
∏
σ

R ⊂ FR.

‖u‖Pic = min
Λ
‖L(u)‖.

v

logu

-3 -2 -1 1 2 3

-2

-1

1

2
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Metric on Pic0
F

Let [D] and [D ′] be 2 divisor classes on the same connected
component of Pic0

F . Then there exists unique
u = (uσ) ∈

∏
σ R>0 (up to multiplication by units) such that

D − D ′ = (OF , u).
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Metric on Pic0
F

Let [D] and [D ′] be 2 divisor classes on the same connected
component of Pic0

F . Then there exists unique
u = (uσ) ∈

∏
σ R>0 (up to multiplication by units) such that

D − D ′ = (OF , u).

We define
‖D − D ′‖Pic := ‖u‖Pic .

The function ‖ ‖Pic induces the natural topology of Pic0
F .
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Metric on Pic0
F

Ex: F = Q(
√

15) and f = 7+
√

∆
2
∈ F ∗

and I = 1/4(6,
√

15) a fractional ideal of F , u = (10, 1/10).
Let D1 = (OF , 1), D2 = (f ), D3 = (OF , u) and D4 = d(I ).

• ‖D2 − D1‖Pic =?

• ‖D3 − D1‖Pic =?

• ‖D4 − D1‖Pic =?
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What are reduced Arakelov divs.?

Reduced Arakelov divisors can be used for computing in the
Arakelov class group.

• D. Shanks [1972]: introduced “infrastructure”. He
discovered it when computing the regulator of a real
quadratic field.

• H. Lenstra [1982]: described the infrastructure of a real
quadratic number field in terms of “circle groups”.

• H. Williams and his students [1983]: complex cubic fields.

• J. Buchmann and H. Williams [1988] described the
infrastructure for number fields with unit group of rank 1.

• R. Schoof [2008]: The first description of infrastructure in
terms of reduced Arakelov divisors and Arakelov class
groups.
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Reduced Arakelov divisors of real

quadratic fields

• Let a real quadratic form f (X ,Y ) = aX 2 + bXY + cY 2

where
a, b, c ∈ Z and gcd(a, b, c) = 1.
The discriminant of f is ∆ = b2 − 4ac > 0.
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• Let a real quadratic form f (X ,Y ) = aX 2 + bXY + cY 2

where
a, b, c ∈ Z and gcd(a, b, c) = 1.
The discriminant of f is ∆ = b2 − 4ac > 0.

• f is call reduced if |
√

∆− 2a| < b <
√

∆.

Ex: f (X ,Y ) = X 2 + 7XY − 6Y 2 is reduced (∆ = 73).
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Reduced quadratic forms

f (X ,Y ) = X 2 + 7XY − 6Y 2 is reduced where
a = 1, b = 7 and c = −6, ∆ = 73 st:

(?) ∆ = b2 − 4ac > 0 and gcd(a, b, c) = 1

(??) |
√

∆− 2a| < b <
√

∆.
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f (X ,Y ) = X 2 + 7XY − 6Y 2 is reduced where
a = 1, b = 7 and c = −6, ∆ = 73 st:

(?) ∆ = b2 − 4ac > 0 and gcd(a, b, c) = 1

(??) |
√

∆− 2a| < b <
√

∆.

???

• How many reduced quadratic forms of discriminant
∆ = 73?

• Can find all of them?
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Reduced quadratic forms
(?) ∆ = b2 − 4ac > 0 and gcd(a, b, c) = 1

(??) |
√

∆− 2a| < b <
√

∆.

The reduction algorithm can find all reduced quadratic forms
of given discriminant.

a > 0 10 / 24



Reduced Arakelov divisors of real
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(?) a, b, c ∈ Z and gcd(a, b, c) = 1

(??) |
√

∆− 2a| < b <
√

∆.

• Let F = Q(
√

∆) with ∆ = 73 > 0. Then

OF = Z

[
1 +
√

73

2

]
= 1 · Z⊕ b +

√
∆

2a
· Z.

Here a = 1 = N(OF ) and b, c ∈ Z satisfy (?) and (??).
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• f (X ,Y ) = X 2 + 7XY − 6Y 2 is reduced where
a = 1, b = 7 and c = −6 st:

(?) a, b, c ∈ Z and gcd(a, b, c) = 1

(??) |
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∆− 2a| < b <
√

∆.

• Let F = Q(
√

∆) with ∆ = 73 > 0. Then

OF = Z

[
1 +
√

73

2

]
= 1 · Z⊕ b +

√
∆

2a
· Z.

Here a = 1 = N(OF ) and b, c ∈ Z satisfy (?) and (??).
• So, OF corresponds to a reduced quadratic form
f (X ,Y ) ≡ (1, 7,−6) with discriminant ∆ = 73 and
a > 0.
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Reduced Arakelov divisors of real

quadratic fields
• f (X ,Y ) = X 2 + 7XY − 6Y 2 is reduced where
a = 1, b = 7 and c = −6 st:

(?) a, b, c ∈ Z and gcd(a, b, c) = 1

(??) |
√

∆− 2a| < b <
√

∆.

• Let F = Q(
√

∆) with ∆ = 73 > 0. Then

OF = Z

[
1 +
√

73

2

]
= 1 · Z⊕ b +

√
∆

2a
· Z.

Here a = 1 = N(OF ) and b, c ∈ Z satisfy (?) and (??).
• So, OF corresponds to a reduced quadratic form
f (X ,Y ) ≡ (1, 7,−6) with discriminant ∆ = 73 and
a > 0. The Arakelov divisor d(OF ) = (OF ,N(OF )−1/n) is
called reduced.
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Reduced Arakelov divisors of real

quadratic fields

F = Q(
√

∆) with dis. ∆ = 73 > 0.

• f1(X ,Y ) ≡ (1, 7,−6)↔ OF = 1 · Z⊕ 7+
√

∆
2·1 · Z: reduced.

• f2(X ,Y ) ≡ (6, 5− 2)↔ I2 = 1 · Z⊕ 5+
√

∆
2·6 · Z: reduced.

• · · ·
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Reduced Arakelov divisors of real

quadratic fields

F = Q(
√

∆) with dis. ∆ = 73 > 0.

f (X ,Y ) ≡ (a, b, c)↔ I = 1 · Z⊕ b+
√

∆
2·a · Z: reduced.
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Reduced Arakelov divisors of real

quadratic fields
F = Q(

√
∆) with dis. ∆ = 73 > 0.

f (X ,Y ) ≡ (a, b, c)↔ I = 1 · Z⊕ b+
√

∆
2·a · Z: reduced.
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Reduced Arakelov divisors of real

quadratic fields
F = Q(

√
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Reduced Arakelov divisors
How to generalize the reducedness?

Definition
A fractional idea I is called reduced if 1 is minimal in I .
(i.e., 1 ∈ I and for any g ∈ I , if |σ(g)| < 1,∀σ then g = 0.)

Definition
An Arakelov divisor D is called reduced if
D = d(I ) := (I ,N(I )−

1
n ) for some reduced ideal I .

I is reduced.

1

-4 -2 2 4

-3

-2

-1

1

2

3

I is not reduced.

1

-3 -2 -1 1 2 3

-2

-1

1

2
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Examples of reduced Arakelov

divisors

1 D = (OF , 1) is reduced.

2 Let F = Q(
√

∆) with ∆ > 0 and I = Z + b+
√

∆
2a

Z with

a, b, c ∈ Z, b2 − 4ac = ∆ and |
√

∆− 2a| < b <
√

∆.
Then d(I ) is reduced.

3 Reduced Arakelov divisors on T 0 with F = Q(
√

983).
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Then d(I ) is reduced.

3 Reduced Arakelov divisors on T 0 with F = Q(
√

983).

Ex: Find all reduced Arakelov divisors of Q(
√

10).
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Examples of reduced Arakelov

divisors
1 D = (OF , 1) is reduced.

2 Let F = Q(
√

∆) with ∆ > 0 and I = Z + b+
√

∆
2a

Z with

a, b, c ∈ Z, b2 − 4ac = ∆ and |
√

∆− 2a| < b <
√

∆.
Then d(I ) is reduced.

3 Reduced Arakelov divisors on T 0 with F = Q(
√

983).

Denote the set of all reduced Arakelov divisors of F is RedF .
??? #RedF? How does RedF distribute?
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RedF (Schoof 2008)
Denote the set of all reduced Arakelov divisors of F is RedF .
??? #RedF? How does RedF distribute?

Proposition 1. (cardinality of RedF )
Let D = d(I ) be a reduced Arakelov divisor. Then
(i) I−1 ⊂ OF and N(I−1) ≤ ∂F where ∂F = ( 2

π
)r2
√
|∆|.

(ii) RedF is finite.

Theorem 1.
Let D = (I , u) be an Arakelov divisor of degree 0. Then there
is a reduced Arakelov divisor D ′ lying on the same connected
component of Pic0

F as D such that: ‖D − D ′‖PicF ≤ log(∂F ).

Theorem 2.
The number of reduced Arakelov divisors contained in a ball of
radius 1 in Pic0

F is at most
(

2
log 2

)n
≈ 2.8854n.
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radius 1 in Pic0

F is at most
(

2
log 2

)n
≈ 2.8854n.
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RedF (Schoof 2008)

∂F = ( 2
π

)r2
√
|∆|.

Lemma
Let D = (I , u) be of deg 0. Then there exists 0 6= f ∈ I st

|uσσ(f )| < ∂
1/n
F for every σ

(⇒ ‖f ‖D ≤
√
n∂

1/n
F ).

Proof. Use the Minkowskis Convex Body Theorem with the
bounded symmetric convex set

V = {(yσ)σ ∈ FR : |yσ| ≤ ∂
1/n
F for all σ}.
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RedF (Schoof 2008)
Denote the set of all reduced Arakelov divisors of F is RedF .
??? #RedF? How does RedF distribute?

Proposition 1. (cardinality of RedF )
Let D = d(I ) be a reduced Arakelov divisor. Then
(i) I−1 is integral and N(I−1) ≤ ∂F where ∂F = ( 2

π
)r2
√
|∆|.

(ii) RedF is finite.

Proof.

i) I ⊂ OF since 1 ∈ I , we have I−1 ⊂ OF .
By the lemma, there is a nonzero element f ∈ I such that

N(I )−1/n|σ(f )| ≤ ∂
1/n
F for all σ.

If N(I )−1 > ∂F then we have |σ(f )| < 1 for all σ,
contradicting the minimality of 1. This proves part (i).

ii) It follows (i) because the number integral ideals of
bounded norm is finite.
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RedF (Schoof 2008)

Theorem 1.
Let D = (I , u) be a divisor of deg 0. Then there is a reduced
Arakelov divisor D ′ lying on the same connected component of
Pic0

F as D st ‖D − D ′‖PicF ≤ log(∂F ).
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Theorem 1.
Let D = (I , u) be a divisor of deg 0. Then there is a reduced
Arakelov divisor D ′ lying on the same connected component of
Pic0

F as D st ‖D − D ′‖PicF ≤ log(∂F ).

Proof.

• deg(D) = 0, ∃ minimal element f ∈ I (lemma) st

uσ|σ(f )| < ∂
1/n
F for all σ.

• Let J = f −1I . Then D ′ = d(J) is reduced.

• D ′ is on the same connected component of Pic0
F as D bc

D − D ′ = (f ) + (OF , v) with v = u|f |N(J)1/n.

• ‖D − D ′‖PicF = ‖v‖Pic ≤ log(∂F ) since
vσ = uσ|σ(f )|N(J)1/n for all σ and

∑
σ log vσ = 0.
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Theorem 2.
The number of reduced Arakelov divisors contained in a ball of
radius 1 in Pic0

F is at most
(

2
log 2

)n
≈ 2.8854n.
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RedF (Schoof 2008)

Theorem 2.
The number of reduced Arakelov divisors contained in a ball of
radius 1 in Pic0

F is at most
(

2
log 2

)n
≈ 2.8854n.

B1
red = the reduced Arakelov divisors contained in a ball of

radius 1 in Pic0
F .

• n = 1, #B1
red ≤ 2.

• n = 2, #B1
red ≤ 8.

• n = 3, #B1
red ≤ 24.

• n = 4, #B1
red ≤ 69.

• ...
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RedF (Schoof 2008)
Theorem 2. (For totally real fields).

• There exists D = d(I ) and D ′ = d(I ′) reduced divisors in
the ball with
D − D ′ + (f ) = (OF , v)
for some f ∈ F ∗ such that σ(f ) > 0 for all real σ.

• I = fI ′.

• Let λ = N(I/I ′)
1
n = |N(f )| 1n . Then λ ≥ 1

2
.

• Assume that λ ≤ 1. ⇒ f − 1 ∈ I satisfies that

|σ(f )−1| ≤ |σ(f )−λ|+ |λ−1| < λ+ 1−λ = 1 for all σ.

By the minimality of 1, we must have f − 1 = 0, so I = I ′

and then D = D ′.
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• There exists D = d(I ) and D ′ = d(I ′) reduced divisors in
the ball with
D − D ′ + (f ) = (OF , v)
for some f ∈ F ∗ such that σ(f ) > 0 for all real σ.
There are at most 2n reduced divisors in the ball of radius
log 2 in Pic0

F .
Bc if not, then fix one of them: D0 and consider D − D0

where D runs through the other D. They are all equal to
(f ) + (OF , u) for some u ∈

∏
σ R>0.

By the box principle, for two distinct divisors, let’s say
D,D ′, the signatures of g and g ′ are equal.
Then D − D ′ = (f ) + (OF , u) for some u ∈

∏
σ R>0, and

f = g/g ′ totally positive.

• I = fI ′.

• Let λ = N(I/I ′)
1
n = |N(f )| 1n . Then λ ≥ 1

2
.

• Assume that λ ≤ 1. ⇒ f − 1 ∈ I satisfies that

|σ(f )−1| ≤ |σ(f )−λ|+ |λ−1| < λ+ 1−λ = 1 for all σ.

By the minimality of 1, we must have f − 1 = 0, so I = I ′

and then D = D ′.

21 / 24



RedF (Schoof 2008)
Theorem 2. (For totally real fields).

• There exists D = d(I ) and D ′ = d(I ′) reduced divisors in
the ball with
D − D ′ + (f ) = (OF , v)
for some f ∈ F ∗ such that σ(f ) > 0 for all real σ.

• I = fI ′.

• Let λ = N(I/I ′)
1
n = |N(f )| 1n . Then λ ≥ 1

2
.

• Assume that λ ≤ 1. ⇒ f − 1 ∈ I satisfies that

|σ(f )−1| ≤ |σ(f )−λ|+ |λ−1| < λ+ 1−λ = 1 for all σ.

By the minimality of 1, we must have f − 1 = 0, so I = I ′

and then D = D ′.

21 / 24



RedF (Schoof 2008)
Theorem 2. (For totally real fields).

• There exists D = d(I ) and D ′ = d(I ′) reduced divisors in
the ball with
D − D ′ + (f ) = (OF , v)
for some f ∈ F ∗ such that σ(f ) > 0 for all real σ.

• I = fI ′.

• Let λ = N(I/I ′)
1
n = |N(f )| 1n . Then λ ≥ 1

2
.

• Assume that λ ≤ 1. ⇒ f − 1 ∈ I satisfies that

|σ(f )−1| ≤ |σ(f )−λ|+ |λ−1| < λ+ 1−λ = 1 for all σ.

By the minimality of 1, we must have f − 1 = 0, so I = I ′

and then D = D ′.

21 / 24



RedF (Schoof 2008)
Theorem 2. (For totally real fields).

• There exists D = d(I ) and D ′ = d(I ′) reduced divisors in
the ball with
D − D ′ + (f ) = (OF , v)
for some f ∈ F ∗ such that σ(f ) > 0 for all real σ.

• I = fI ′.

• Let λ = N(I/I ′)
1
n = |N(f )| 1n . Then λ ≥ 1

2
.

• Assume that λ ≤ 1. ⇒ f − 1 ∈ I satisfies that

|σ(f )−1| ≤ |σ(f )−λ|+ |λ−1| < λ+ 1−λ = 1 for all σ.

By the minimality of 1, we must have f − 1 = 0, so I = I ′

and then D = D ′.

21 / 24



How to find a reduced divisor?

The reduction algorithm.
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Recap

• Metric on Pic0
F . Let D,D ′ ∈ Pic0

F st D − D ′ = (OF , u).
Then

‖D ′ − D‖Pic = ‖u‖Pic = min
Λ
‖L(u)‖.

• A fractional ideal I is reduced if 1 ∈ I is minimal.

• RedF is finite.

• There is at least one reduced Arakelov divisor in the ball
of radius log(∂F ) in Pic0

F .

• The number of reduced Arakelov divisors contained in a
ball of radius 1 in Pic0

F is at most 2.8854n.
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