Lecture 2. THE ARAKELOV CLASS GROUP

Ha Tran

ICTP-CIMPA summer school 2016 HCM University of Science-Saigon University

We have studied:

- Number field, the ring of integers.
- Fractional ideals: J/α for some $0 \neq \alpha \in O_F$ and $J \subset O_F$ is an ideal.
- The class group $Cl_F = Id_F/Princ_F$ and class number $h_F = \#Cl_F$.
- The Φ map:

$$\Phi = (\sigma_1, \cdots, \sigma_{r_1}, \sigma_{r_1+1}, \cdots, \sigma_{r_1+r_2}).$$

 $\Phi(I)$ is a lattice in $F_{\mathbb{R}}$.

- The L map: $L(x) = (\log |\sigma(f)|)_{\sigma}, \forall x \in F^{\times}$. $\Lambda = L(O_{\mathcal{E}}^{\times})$ is a lattice in $H = \dots$
- $\Lambda = L(O_F)$ is a lattice in H = ... $T^0 = H/\Lambda$ is a real torus of dim. $r_1 + r_2 - 1$.
- Ideal lattices: (I, q), where ... I: factional ideal; $u = \in (\mathbb{R}_{>0})^{r_1+r_2}$. Then (I, q_u) is an ideal lattice.
- Many famous lattices arise from ideal lattices.

$$T^0$$
 and $\Lambda = L(O_F^{\times})$

$$H = \left\{ (x_{\sigma}) \in \oplus_{\sigma} \mathbb{R} : \sum_{\sigma \text{ real}} x_{\sigma} + 2 \sum_{\sigma \text{ complex}} x_{\sigma} = 0
ight\}$$

and

$$T^0$$
 and $\Lambda = L(O_F^{\times})$

$$H = \left\{ (x_{\sigma}) \in \oplus_{\sigma} \mathbb{R} : \sum_{\sigma \text{ real}} x_{\sigma} + 2 \sum_{\sigma \text{ complex}} x_{\sigma} = 0
ight\}$$

and

$$\Lambda = L(O_F^{\times}).$$

$$T^0$$
 and $\Lambda = L(O_F^{\times})$

$$H = \left\{ (x_{\sigma}) \in \oplus_{\sigma} \mathbb{R} : \sum_{\sigma \text{ real}} x_{\sigma} + 2 \sum_{\sigma \text{ complex}} x_{\sigma} = 0
ight\}$$

and

$$\Lambda = L(O_F^{\times}).$$

 Λ is a lattice contained in the vector space H.

$$T^0$$
 and $\Lambda = L(O_F^{\times})$

$$H = \left\{ (x_{\sigma}) \in \oplus_{\sigma} \mathbb{R} : \sum_{\sigma \text{ real}} x_{\sigma} + 2 \sum_{\sigma \text{ complex}} x_{\sigma} = 0
ight\}$$

and

$$\Lambda = L(O_F^{\times}).$$

 Λ is a lattice contained in the vector space H.

$$T^0$$
 and $\Lambda = L(O_F^{\times})$

$$H = \left\{ (x_{\sigma}) \in \oplus_{\sigma} \mathbb{R} : \sum_{\sigma \text{ real}} x_{\sigma} + 2 \sum_{\sigma \text{ complex}} x_{\sigma} = 0
ight\}$$

and

$$\Lambda = L(O_F^{\times}).$$

 Λ is a lattice contained in the vector space H.

Let $T^0 = H/\Lambda$. Then T^0 is a compact real torus of dimension $r_1 + r_2 - 1$ (Dirichlet).

$$T^0$$
 and $\Lambda = L(O_F^{\times})$

Ex: Let
$$F = \mathbb{Q}(\sqrt{-2})$$
. Then $r_1 = 0, r_2 = 1$ and $T^0 = ?$ $dim(T^0) = ?$

$$T^0$$
 and $\Lambda = L(O_F^{\times})$

Ex: Let
$$F=\mathbb{Q}(\sqrt{2})$$
. Then $r_1=2, r_2=0$ and $H=\{(x,y)\in\mathbb{R}^2: x+y=0\}\simeq\mathbb{R}.$ $T^0=?$ $dim(T^0)=?$

T^0 and $\Lambda = L(O_F^{\times})$

Ex: Let $F = \mathbb{Q}(\sqrt{2})$. Then $r_1 = 2, r_2 = 0$ and $H = \{(x, y) \in \mathbb{R}^2 : x + y = 0\} \simeq \mathbb{R}$.

$$(\mathbb{R}^{2})^{0} = \{(x, y) \in \mathbb{R}^{2} : x + y = 0 \}$$

$$-3 \quad -2 \quad -1 \quad 1 \quad 2 \quad 3$$

$$T^0$$
 and $\Lambda = L(O_F^{\times})$

Ex: Let F be a totally real cubic field. Then $r_1 = 3$, $r_2 = 0$ and

$$H = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\} \simeq \mathbb{R}^2.$$

$$T^0 = ?$$
 $dim(T^0) = ?$

$$T^0$$
 and $\Lambda = L(O_F^{\times})$

Ex: Let F be a totally real cubic field. Then $r_1 = 3, r_2 = 0$ and

$$H = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 0\} \simeq \mathbb{R}^2.$$

$$T^0 = ? dim(T^0) = ?$$

Ex:
$$F = \mathbb{Q}(\sqrt[4]{2})$$
?

What we study today?

The Arakelov class group Pic_F^0 ,

- Pic_F^0 tells you the class number h_F , the regulator R_F ,...
- (Main Theorem) There is a bijection

$$extit{Pic}_F^0 \stackrel{\psi}{ o} \{ ext{Isometry classes of ideal lattices of covol. } \sqrt{|\Delta_F|} \}$$

Content

- 1 Arakelov divisors
 - What are Arakalov divisors?
 Principal Arakelov divisors
 Degree
 The Hermitian line bundle
 - The Hermitian line bundle
- **2** The Arakelov class group Pic_F^0
- 3 The structure of Pic_F^0
- 4 Main theorem

Arakelov divisors of a number field are analogous to divisors on an algebraic curve.

Arakelov divisors of a number field are analogous to divisors on an algebraic curve.

Algebraic curve

Divisor

$$D = \sum_{P \text{ points}} n_P P$$

 $n_P \in \mathbb{Z}$.

Arakelov divisors of a number field are analogous to divisors on an algebraic curve.

Algebraic curve

Divisor

$$D = \sum_{\substack{P \text{ points}}} n_P P$$

 $n_P \in \mathbb{Z}$.

Number field *F*

Arakelov divisor

$$D = \sum_{\substack{\mathfrak{p} \text{ primes} \\ \sigma \text{ infinite primes of } F}} n_{\mathfrak{p}} \mathfrak{p} + \sum_{\sigma} x_{\sigma} \sigma$$

 σ infinite primes of F.

$$n_{\mathfrak{p}} \in \mathbb{Z}$$
 but $x_{\sigma} \in \mathbb{R}$.

Definition

An Arakelov divisor is of the form

$$D = \sum_{\mathfrak{p} \; \mathsf{primes}} n_{\mathfrak{p}} \mathfrak{p} + \sum_{\sigma} \mathsf{x}_{\sigma} \sigma$$

 σ infinite primes of F; $n_{\mathfrak{p}} \in \mathbb{Z}$ but $x_{\sigma} \in \mathbb{R}$.

Definition

An Arakelov divisor is of the form

$$D = \sum_{\mathfrak{p} \text{ primes}} n_{\mathfrak{p}} \mathfrak{p} + \sum_{\sigma} x_{\sigma} \sigma$$

 σ infinite primes of F; $n_{\mathfrak{p}} \in \mathbb{Z}$ but $x_{\sigma} \in \mathbb{R}$.

Ex 4:
$$F = \mathbb{Q}$$
, $O_F = \mathbb{Z}$, $\mathfrak{p}_1 = 2\mathbb{Z}$, $\mathfrak{p}_2 = 5\mathbb{Z}$: 2 prime ideals; $\sigma : \mathbb{Q} \to \mathbb{C}$, $q \longmapsto q$ the infinite prime; $D = \mathfrak{p}_1 - 3\mathfrak{p}_2 + \pi\sigma$ is an Arakelov divisor.

Definition

An Arakelov divisor is of the form

$$D = \sum_{\mathfrak{p} \text{ primes}} n_{\mathfrak{p}} \mathfrak{p} + \sum_{\sigma} x_{\sigma} \sigma$$

 σ infinite primes of F; $n_{\mathfrak{p}} \in \mathbb{Z}$ but $x_{\sigma} \in \mathbb{R}$.

• The set of all Arakelov divisors of F is an additive group denoted by $Div_F \simeq \bigoplus_{\mathfrak{p}} \mathbb{Z} \times \bigoplus_{\sigma} \mathbb{R}$.

Definition

An Arakelov divisor is of the form

$$D = \sum_{\mathfrak{p} \text{ primes}} n_{\mathfrak{p}} \mathfrak{p} + \sum_{\sigma} x_{\sigma} \sigma$$

 σ infinite primes of F; $n_{\mathfrak{p}} \in \mathbb{Z}$ but $x_{\sigma} \in \mathbb{R}$.

- The set of all Arakelov divisors of F is an additive group denoted by $Div_F \simeq \bigoplus_{\mathfrak{p}} \mathbb{Z} \times \bigoplus_{\sigma} \mathbb{R}$.
- $D_1 + D_2 = ?$, the neutral of Div_F , -D = ?

Definition

An Arakelov divisor is of the form

$$D = \sum_{\mathfrak{p} \text{ primes}} n_{\mathfrak{p}} \mathfrak{p} + \sum_{\sigma} x_{\sigma} \sigma$$

 σ infinite primes of F; $n_{\mathfrak{p}} \in \mathbb{Z}$ but $x_{\sigma} \in \mathbb{R}$.

- The set of all Arakelov divisors of F is an additive group denoted by $Div_F \simeq \bigoplus_{\mathfrak{p}} \mathbb{Z} \times \bigoplus_{\sigma} \mathbb{R}$.
- $D_1 + D_2 = ?$, the neutral of Div_F , -D = ?

Ex 5:
$$Div_F = ?$$

Definition

An Arakelov divisor is of the form

$$D = \sum_{\mathfrak{p} \text{ primes}} n_{\mathfrak{p}} \mathfrak{p} + \sum_{\sigma} x_{\sigma} \sigma$$

 σ infinite primes of F; $n_{\mathfrak{p}} \in \mathbb{Z}$ but $x_{\sigma} \in \mathbb{R}$.

- The set of all Arakelov divisors of F is an additive group denoted by $Div_F \simeq \bigoplus_{\mathfrak{p}} \mathbb{Z} \times \bigoplus_{\sigma} \mathbb{R}$.
- $D_1 + D_2 = ?$, the neutral of Div_F , -D = ?

Ex 5:
$$Div_F = ?$$

• $F = \mathbb{Q}$

Definition

An Arakelov divisor is of the form

$$D = \sum_{\mathfrak{p} \text{ primes}} n_{\mathfrak{p}} \mathfrak{p} + \sum_{\sigma} x_{\sigma} \sigma$$

 σ infinite primes of F; $n_{\mathfrak{p}} \in \mathbb{Z}$ but $x_{\sigma} \in \mathbb{R}$.

- The set of all Arakelov divisors of F is an additive group denoted by $Div_F \simeq \bigoplus_{\mathfrak{p}} \mathbb{Z} \times \bigoplus_{\sigma} \mathbb{R}$.
- $D_1 + D_2 = ?$, the neutral of Div_F , -D = ?

Ex 5:
$$Div_F = ?$$

- $F = \mathbb{Q}$
- $F = \mathbb{Q}(i), \mathbb{Q}(\sqrt{2}).$

• Divisor.

Analogies Number field *F*

Arakelov divisor.

- Divisor.
- Principal divisor.

Analogies

- Arakelov divisor.
- Principal Arakelov divisor.

- Divisor.
- Principal divisor.
- Picard group.

Analogies

- Arakelov divisor.
- Principal Arakelov divisor.
- Arakelov class group.

- Divisor.
- Principal divisor.
- Picard group.
- Canonical divisor κ .

Analogies

- Arakelov divisor.
- Principal Arakelov divisor.
- Arakelov class group.
- The inverse different.

Analogies

Algebraic curve

- Divisor.
- Principal divisor.
- Picard group.
- Canonical divisor κ .
- Riemann–Roch $h^0(D) h^0(\kappa D) = deg(D) (g 1).$

- Arakelov divisor.
- Principal Arakelov divisor.
- Arakelov class group.
- The inverse different.
- Riemann–Roch $h^0(D) h^0(\kappa D) = deg(D) \frac{1}{2} \log |\Delta|.$

Analogies

Number field F

divisor.

- e Hamber Heid 7
 - Principal Arakelov

Arakelov divisor.

- Arakelov class group.
- The inverse different.
- Riemann–Roch $h^0(D) h^0(\kappa D) = deg(D) \frac{1}{2} \log |\Delta|.$
- $h^0(D)$.

Algebraic curve

- Divisor.
- Principal divisor.
- Picard group.
- Canonical divisor κ .
- Riemann–Roch $h^0(D) h^0(\kappa D) = deg(D) (g 1).$
- $h^0(D)$.

- Divisor.
- Principal divisor.
- Picard group.
- Canonical divisor κ .
- Riemann–Roch $h^0(D) h^0(\kappa D) = deg(D) (g 1).$
- $h^0(D)$.
- ...

Analogies

- Arakelov divisor.
- Principal Arakelov divisor.
- Arakelov class group.
- The inverse different.
- Riemann–Roch $h^0(D) h^0(\kappa D) = deg(D) \frac{1}{2} \log |\Delta|.$
- $h^0(D)$.
- ..

• For $f \in F^{\times}$, the principal Arakelov divisor

$$(f) = \sum_{\mathfrak{p} \; \mathsf{primes}} n_{\mathfrak{p}} \mathfrak{p} + \sum_{\sigma} \mathsf{x}_{\sigma} \sigma$$

• For $f \in F^{\times}$, the principal Arakelov divisor

$$(f) = \sum_{\mathfrak{p} \; \mathsf{primes}} n_{\mathfrak{p}} \mathfrak{p} + \sum_{\sigma} \mathsf{x}_{\sigma} \sigma$$

Ex 6:
$$f = -1$$
. Then $(f) = ?$

• For $f \in F^{\times}$, the principal Arakelov divisor

$$(f) = \sum_{\mathfrak{p} \; \mathsf{primes}} n_{\mathfrak{p}} \mathfrak{p} + \sum_{\sigma} \mathsf{x}_{\sigma} \sigma$$

Ex 6:
$$f = -1$$
. Then $(f) = ?$
Ex 7: $F = \mathbb{Q}(\sqrt{2}), f = 1 - \sqrt{2} \in \mathbb{Q}(\sqrt{2})^{\times} : (f) = ?$
 $g = 3 - \sqrt{2} \in \mathbb{Q}(\sqrt{2})^{\times} : (g) = ?$

• For $f \in F^{\times}$, the principal Arakelov divisor

$$(f) = \sum_{\mathfrak{p} \; \mathsf{primes}} n_{\mathfrak{p}} \mathfrak{p} + \sum_{\sigma} \mathsf{x}_{\sigma} \sigma$$

Ex 6:
$$f = -1$$
. Then $(f) = ?$
Ex 7: $F = \mathbb{Q}(\sqrt{2})$, $f = 1 - \sqrt{2} \in \mathbb{Q}(\sqrt{2})^{\times}$: $(f) = ?$
 $g = 3 - \sqrt{2} \in \mathbb{Q}(\sqrt{2})^{\times}$: $(g) = ?$
Ex 8: Let $F = \mathbb{Q}(i)$ and $f = 2 + i \in F^{\times}$. Then $(f) = ?$

Degree

$$deg(\mathfrak{p}) = log(N(\mathfrak{p})) \text{ where } N(\mathfrak{p}) = \#O_F/\mathfrak{p},$$
 $deg(\sigma) = \left\{ egin{array}{l} 1 & ext{if } \sigma ext{ real} \ 2 & ext{if } \sigma ext{ complex} \end{array}
ight.$

$$deg(\mathfrak{p}) = log(N(\mathfrak{p})) \text{ where } N(\mathfrak{p}) = \#O_F/\mathfrak{p},$$
 $deg(\sigma) = \left\{ egin{array}{l} 1 & ext{if } \sigma \text{ real} \\ 2 & ext{if } \sigma \text{ complex} \end{array}
ight.$

• The degree of D is defined by $deg(D) := \sum_{\mathfrak{p}} n_{\mathfrak{p}} \log N(\mathfrak{p}) + \sum_{\sigma} deg(\sigma) x_{\sigma}.$

$$deg(\mathfrak{p}) = log(N(\mathfrak{p})) \text{ where } N(\mathfrak{p}) = \#O_F/\mathfrak{p},$$
 $deg(\sigma) = \left\{ egin{array}{l} 1 & ext{if } \sigma ext{ real} \ 2 & ext{if } \sigma ext{ complex} \end{array}
ight.$

• The degree of D is defined by $deg(D) := \sum_{\mathfrak{p}} n_{\mathfrak{p}} \log N(\mathfrak{p}) + \sum_{\sigma} deg(\sigma) x_{\sigma}.$

Let $f \in F^{\times}$. Compute deg(f) if Ex 6: f = -1?

$$deg(\mathfrak{p}) = log(N(\mathfrak{p})) \text{ where } N(\mathfrak{p}) = \#O_F/\mathfrak{p},$$
 $deg(\sigma) = \left\{ egin{array}{l} 1 & ext{if } \sigma \text{ real} \\ 2 & ext{if } \sigma \text{ complex} \end{array}
ight.$

• The degree of D is defined by $\deg(D) := \sum_{\mathfrak{p}} n_{\mathfrak{p}} \log N(\mathfrak{p}) + \sum_{\sigma} \deg(\sigma) x_{\sigma}.$

Let $f \in F^{\times}$. Compute deg(f) if

Ex 6:
$$f = -1$$
?

Ex 7:
$$F = \mathbb{Q}(\sqrt{2})$$
, $f = 1 - \sqrt{2}$?, $f = 3 - \sqrt{2}$?

$$deg(\mathfrak{p}) = log(N(\mathfrak{p})) \text{ where } N(\mathfrak{p}) = \#O_F/\mathfrak{p},$$
 $deg(\sigma) = \left\{ egin{array}{l} 1 & ext{if } \sigma \text{ real} \\ 2 & ext{if } \sigma \text{ complex} \end{array}
ight.$

• The degree of D is defined by $\deg(D) := \sum_{\mathfrak{p}} n_{\mathfrak{p}} \log N(\mathfrak{p}) + \sum_{\sigma} \deg(\sigma) x_{\sigma}.$

Let $f \in F^{\times}$. Compute deg(f) if

Ex 6:
$$f = -1$$
?

Ex 7:
$$F = \mathbb{Q}(\sqrt{2})$$
, $f = 1 - \sqrt{2}$?, $f = 3 - \sqrt{2}$?

Ex 8:
$$F = \mathbb{Q}(i)$$
 and $f = 2 + i$?

$$deg(\mathfrak{p}) = log(N(\mathfrak{p})) \text{ where } N(\mathfrak{p}) = \#O_F/\mathfrak{p},$$
 $deg(\sigma) = \left\{ egin{array}{l} 1 & ext{if } \sigma \text{ real} \\ 2 & ext{if } \sigma \text{ complex} \end{array}
ight.$

• The degree of D is defined by $deg(D) := \sum_{\mathfrak{p}} n_{\mathfrak{p}} \log N(\mathfrak{p}) + \sum_{\sigma} deg(\sigma) x_{\sigma}.$

Let
$$f \in F^{\times}$$
. Compute $deg(f)$ if

Ex 6:
$$f = -1$$
?

Ex 7:
$$F = \mathbb{Q}(\sqrt{2}), f = 1 - \sqrt{2}?, f = 3 - \sqrt{2}?$$

Ex 8:
$$F = \mathbb{Q}(i)$$
 and $f = 2 + i$?

• The set of all Arakelov divisors of degree 0 form a group, denoted by Div_F^0 ($\supset Princ_F$).

The Hermitian line bundle

• Let $D = \sum_{\mathfrak{p} \text{ primes}} n_{\mathfrak{p}} \mathfrak{p} + \sum_{\sigma} x_{\sigma} \sigma$. Denote

$$I:=\prod_{\mathfrak{p}}\mathfrak{p}^{-n_{\mathfrak{p}}} \text{ and } u:=(e^{-x_{\sigma}})_{\sigma}\in F_{\mathbb{R}}.$$

Then (I, u) is called the Hermitian line bundle associated to D. We can identity D = (I, u).

The Hermitian line bundle

• Let $D = \sum_{\mathfrak{p} \text{ primes}} n_{\mathfrak{p}} \mathfrak{p} + \sum_{\sigma} x_{\sigma} \sigma$. Denote

$$I:=\prod_{\mathfrak{p}}\mathfrak{p}^{-n_{\mathfrak{p}}} \ ext{and} \ u:=(e^{-\mathsf{x}_{\sigma}})_{\sigma}\in F_{\mathbb{R}}.$$

Then (I, u) is called the Hermitian line bundle associated to D. We can identity D = (I, u). Ex: The Hermitian line bundle ass. to

- the zero divisor D = 0?
- the principal divisor D = (f)?
- $D_1 + D_2 = ?$ if $D_1 = (I_1, u_1), D_2 = (I_2, u_2)?$
- -D = ? if D = (I, u).

What is the Arakelov class group Pic_F^0 ?

It is an analogue of the Picard group of an algebraic curve.

Definition

The Arakelov class group Pic_F^0 is the quotient of Div_F^0 by its subgroup of principal divisors.

What is the Arakelov class group Pic_F^0 ?

It is an analogue of the Picard group of an algebraic curve.

Definition

The Arakelov class group Pic_F^0 is the quotient of Div_F^0 by its subgroup of principal divisors.

Ex 1:
$$F = \mathbb{Q}$$
, $Pic_F^0 = ?$

Ex 2:
$$F = \mathbb{Q}(\sqrt{-1}), Pic_F^0 = ?$$

Ex 3:
$$F = \mathbb{Q}(\sqrt{2}), Pic_F^0 = ?$$

Consider the maps

$$\phi_1: T^0 \longrightarrow Pic_F^0$$

$$(x_{\sigma})_{\sigma} + \Lambda \longmapsto \text{ class of } (O_F, u) \text{ where } u = (e^{x_{\sigma}})_{\sigma}$$
,

Consider the maps

$$\phi_1: T^0 \longrightarrow Pic_F^0$$

$$(x_{\sigma})_{\sigma} + \Lambda \longmapsto \text{ class of } (O_F, u) \text{ where } u = (e^{x_{\sigma}})_{\sigma}$$
,

and

$$\phi_2: Pic_F^0 \longrightarrow Cl_F$$

class of $(I, u) \mapsto$ class of I

Proposition

The following sequence is exact.

$$0 \longrightarrow T^0 \stackrel{\phi_1}{\longrightarrow} Pic_F^0 \stackrel{\phi_2}{\longrightarrow} Cl_F \longrightarrow 0.$$

Proposition

The following sequence is exact.

$$0\longrightarrow T^0 \stackrel{\phi_1}{\longrightarrow} \textit{Pic}_F^0 \stackrel{\phi_2}{\longrightarrow} \textit{CI}_F \longrightarrow 0.$$

Remark

- T^0 is a compact topological group and $\#Cl_F < \infty \Rightarrow Pic_F^0$ is a compact topo. gp.
- The compactness of $Pic_F^0 \Rightarrow$ the Dirichlet unit theorem and the finiteness of the class group.
- $D, D' \in Pic_F^0$ on the same connected component, then there exists unique $u \in T^0$ st $D D' = (O_F, u)$.

 $vol(T^0) = \sqrt{n}2^{-r_2/2}R_F$ with R_F the regulator of F. The number of connected components of Pic_F^0 is the class number h_F .

 $vol(T^0) = \sqrt{n}2^{-r_2/2}R_F$ with R_F the regulator of F. The number of connected components of Pic_F^0 is the class number h_F .

$$F = \mathbb{Q}$$
 then $Pic_F^0 = 0$.

 $vol(T^0) = \sqrt{n}2^{-r_2/2}R_F$ with R_F the regulator of F. The number of connected components of Pic_F^0 is the class number h_F .

Pic⁰_F of complex quadratic field

$$r_1 = 0, r_2 = 1$$
 so T^0 is a point.

 $vol(T^0) = \sqrt{n}2^{-r_2/2}R_F$ with R_F the regulator of F. The number of connected components of Pic_F^0 is the class number h_F .

 $r_1 = 2, r_2 = 0$ so T^0 is a circle.

 $vol(T^0) = \sqrt{n}2^{-r_2/2}R_F$ with R_F the regulator of F. The number of connected components of Pic_F^0 is the class number h_F .

 $r_1 = 3, r_2 = 1$ so T^0 is a real torus in \mathbb{R}^3 .

 $vol(T^0) = \sqrt{n}2^{-r_2/2}R_F$ with R_F the regulator of F. The number of connected components of Pic_F^0 is the class number h_F .

Note: Buchmann's algorithm to find the regulator and class number of the number field.

Let
$$D=(I,u)$$
. $z\in I, \Phi(z)=(\sigma(z))_{\sigma}\in F_{\mathbb{R}}$, $uz:=(u_{\sigma}\cdot\sigma(z))_{\sigma}\in F_{\mathbb{R}}$. We define

$$q_u(x,y) := \langle ux, uy \rangle$$
 for any $x, y \in I$.

(the scalar product defined on $F_{\mathbb{R}}$)

Let D=(I,u). $z\in I, \Phi(z)=(\sigma(z))_{\sigma}\in F_{\mathbb{R}}$, $uz:=(u_{\sigma}\cdot\sigma(z))_{\sigma}\in F_{\mathbb{R}}$. We define

$$q_u(x,y) := \langle ux, uy \rangle$$
 for any $x, y \in I$.

(the scalar product defined on $F_{\mathbb{R}}$)

Proposition

 (I, q_u) is an ideal lattice.

Proof. Ex.

Let D = (I, u). $z \in I$, $\Phi(z) = (\sigma(z))_{\sigma} \in F_{\mathbb{R}}$, $uz := (u_{\sigma} \cdot \sigma(z))_{\sigma} \in F_{\mathbb{R}}$. We define

$$q_u(x,y) := \langle ux, uy \rangle$$
 for any $x, y \in I$.

(the scalar product defined on $F_{\mathbb{R}}$)

Proposition

 (I, q_u) is an ideal lattice.

Proof. Ex.

We called (I, q_u) the ideal lattice associated to D.

Let D=(I,u). $z\in I, \Phi(z)=(\sigma(z))_{\sigma}\in F_{\mathbb{R}}$, $uz:=(u_{\sigma}\cdot\sigma(z))_{\sigma}\in F_{\mathbb{R}}$. We define

$$q_u(x,y) := \langle ux, uy \rangle$$
 for any $x, y \in I$.

(the scalar product defined on $F_{\mathbb{R}}$)

Proposition

 (I, q_u) is an ideal lattice.

Proof. Ex.

We called (I, q_u) the ideal lattice associated to D. In particular, $||x||_u^2 = q_u(x, x) = ?$

Theorem

Let F be a number field of discriminant Δ_F . There is a bijection

$$Pic_F^0 \stackrel{\psi}{ o} \{ ext{Isometry classes of ideal lattices of covol. } \sqrt{|\Delta_F|} \}$$
 class of $D = (I, u) \longmapsto ext{class of } (I, q_u).$

Proof. ψ is injective ψ is surjective

Proof. ψ is injective:

Proof. ψ is injective: Assume $\psi(D) = \psi(D')$ for some $D = (I, u), D' = (I', u') \in Pic_F^0$ we have to show that

$$D' \equiv D \text{ in } Pic_F^0$$

 $\Leftrightarrow D' - D = (f) \text{ for some } f \in F^*.$

Proof. ψ is injective: Assume $\psi(D) = \psi(D')$ for some $D = (I, u), D' = (I', u') \in Pic_F^0$

Proof. ψ is injective: Assume $\psi(D) = \psi(D')$ for some $D = (I, u), D' = (I', u') \in Pic_F^0$

- $(I, q_u) \simeq (I', q_{u'}).$
- $\exists f \in F^*$ st I' = fI and $q_{u'}(fx, fx) = q_u(x, x), \forall x \in I$. Hence ||u'fx|| = ||ux|| for all $x \in I$.
- Extend q_u and $q_{u'}$ to $I \otimes \mathbb{R} = F_{\mathbb{R}}$. $\Rightarrow ||u'fx|| = ||ux||, \forall x \in F_{\mathbb{R}}$.
- For each σ , let $e_{\sigma} \in F_{\mathbb{R}} : \sigma(e_{\sigma}) = 1$ while $\sigma'(e_{\sigma}) = 0$ for all $\sigma' \neq \sigma$.
- Substituting e_{σ} with $x \Rightarrow |\sigma(f)u'_{\sigma}| = |u_{\sigma}|, \forall \sigma \Rightarrow |f| = u'/u$.

$$\Rightarrow D' - D = (f).$$

Proof.

 ψ is injective: done

 $\boldsymbol{\psi}$ is surjective

Proof. ψ is surjective:

Proof. ψ is surjective: Let (I,q) be an ideal lattice. We have to show that

$$(I,q) \simeq \psi(D)$$
 for some $D = (J,u) \in Pic_F^0$

Proof. ψ is surjective: Let (I,q) be an ideal lattice. We have to show that

$$(I,q) \simeq \psi(D)$$
 for some $D = (J,u) \in Pic_F^0$

$$\Leftrightarrow$$
 $(I,q) \simeq (J,q_u)$ for some $D = (J,u) \in Pic_F^0$.

Proof. ψ is surjective: Let (I,q) be an ideal lattice. We have to show that

$$(I,q) \simeq \psi(D)$$
 for some $D = (J,u) \in Pic_F^0$

$$\Leftrightarrow$$
 $(I,q) \simeq (J,q_u)$ for some $D = (J,u) \in Pic_F^0$.
Here we let $J = I$ and

construct u

and then construct q_u using q st $(I,q) \simeq (I,q_u)$.

Proof. ψ is surjective: Let (I, q) be an ideal lattice.

Proof. ψ is surjective: Let (I, q) be an ideal lattice.

- Extend q to $F_{\mathbb{R}}$.
- $u = \sum_{\sigma} q(e_{\sigma}, e_{\sigma})^{1/2} e_{\sigma} \in F_{\mathbb{R}}^*, D = (I, u).$

Proof. ψ is surjective: Let (I, q) be an ideal lattice.

- Extend q to $F_{\mathbb{R}}$.
- $u = \sum_{\sigma} q(e_{\sigma}, e_{\sigma})^{1/2} e_{\sigma} \in F_{\mathbb{R}}^*$, D = (I, u).
- $e_{\sigma}^2 = e_{\sigma}$, q is Hermitian and $e_{\sigma}e_{\tau} = 0$,

$$\Rightarrow q(e_{\sigma}, e_{\tau}) = q(e_{\sigma}^2, e_{\tau}) = q(e_{\sigma}, e_{\sigma}e_{\tau}) = 0, \forall \sigma \neq \tau.$$

• For all $x, y \in F_{\mathbb{R}}$,

$$egin{aligned} q_u(x,y) &= \langle ux,uy
angle = \sum_{\sigma} u_{\sigma}^2 x_{\sigma} \overline{y_{\sigma}} \ &= \sum_{\sigma} q(e_{\sigma},e_{\sigma}) x_{\sigma} \overline{y_{\sigma}} = q(x,y). \end{aligned}$$

$$\Rightarrow$$
 $(I,q) \simeq (I,q_u).$

Show at least 2 points that have been lacked in the proof!
Prove these points!

```
Oh, no: (:(:(
```

Show at least 2 points that have been lacked in the proof!

Prove these points!

Your exercise: (.

```
Oh, no: (:(:(
```

Show at least 2 points that have been lacked in the proof!

Prove these points!

Your exercise: (.

There will be a gift for this :).

Recap

- Arakelov divisors (1, u).
- The degree, norm.
- Principal Arakelov divisors.
- The Hermitian line bundle.
- The Arakelov class group $Pic_F^0 = Div_F^0/Princ_F$.
- The structure of the Arakelov class group. $0 \longrightarrow T^0 \xrightarrow{\phi_1} Pic_F^0 \xrightarrow{\phi_2} Cl_F \longrightarrow 0$ is exact.
- There is a bijection

$$Pic_F^0 \stackrel{\psi}{ o} \{ \text{Isometry classes of ideal lattices of covol. } \sqrt{|\Delta_F|} \}$$
 class of $D = (I, u) \longmapsto \text{class of } (I, q_u).$

References

Eva Bayer-Fluckiger. Lattices and number fields.
In Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), volume 241 of Contemp. Math., pages 69–84. Amer. Math. Soc., Providence, RI, 1999.

Hendrik W. Lenstra, Jr. Lattices.

In Algorithmic number theory: lattices, number fields, curves and cryptography, volume 44 of Math. Sci. Res. Inst. Publ., pages 127–181. Cambridge Univ. Press, Cambridge, 2008.

René Schoof. Computing Arakelov class groups.

In Algorithmic number theory: lattices, number fields, curves and cryptography, volume 44 of Math. Sci. Res. Inst. Publ., pages 447–495. Cambridge Univ. Press, Cambridge, 2008.