IN550 Machine Learning Modelli ad albero e combinazione di modelli

Vincenzo Bonifaci

Decision stump

Uno dei modi più semplici di associare un valore o una decisione ad un input x consiste nel confrontarlo con una soglia s:

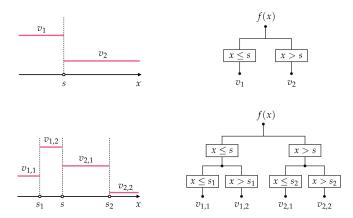
$$f(x) = \begin{cases} v_1, & \text{se } x \le s \\ v_2, & \text{se } x > s \end{cases}$$

f è una funzione con 3 parametri interni (v_1, v_2, s)

f è detta decision stump [ceppo di decisione], in quanto rappresentabile con una struttura ramificata

 v_1 e v_2 sono i valori associati alle due *foglie* dello stump

Rappresentazioni di un decision stump



Rappresentazioni di un modello ad albero di profondità due

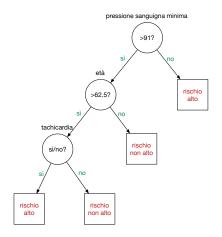
Decision stump per input d-dimensionali

Se $x = (x_0, x_1, \dots, x_d) \in \mathbb{R}_d$, un decision stump si focalizza su una particolare componente x_k dell'input:

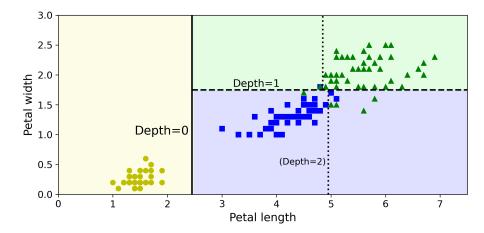
$$f(x) = \begin{cases} v_1 & x_k \le s \\ v_2 & x_k > s \end{cases}$$

Applicando ricorsivamente i decision stump alle foglie, otteniamo un *albero di decisione* di profondità due, tre, ...

Identificazione di pazienti a rischio immediato dopo un attacco di cuore



Modelli ad albero di profondità non eccessiva sono facili da interpretare per gli esseri umani



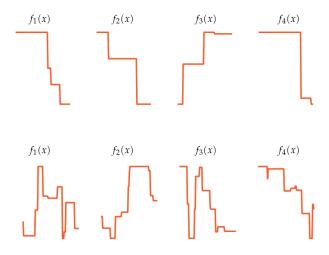
Regressione e classificazione

I modelli ad albero possono essere utilizzati per:

- Regressione (alberi di regressione)
- Classificazione (alberi di classificazione)

Chiamati anche genericamente alberi di decisione [decision trees]

Modelli ad albero come approssimatori universali

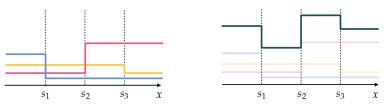


C'è una differenza con gli approssimatori a forma fissa e approssimatori neurali: le unità degli alberi di decisione sono definite in modo locale

Vincenzo Bonifaci IN550 Machine Learning 8 / 42

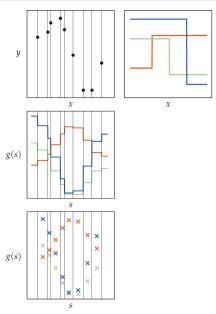
Somma di alberi

La somma di alberi è ancora rappresentabile con un albero, più profondo

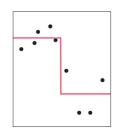


In generale, 2^D-1 decision stump possono essere combinati in un albero binario di profondità ${\cal D}$

Ottimizzare la soglia (a foglie fisse)



Ottimizzare le foglie (a soglia fissa)

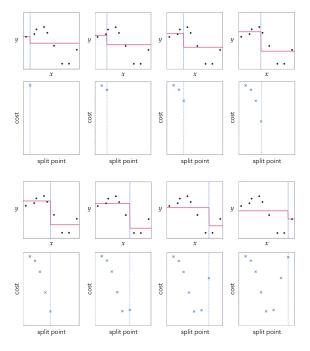


$$g(v_L) = \frac{1}{|S_L|} \sum_{i \in S_L} (v_L - y^{(i)})^2 \qquad g(v_R) = \frac{1}{|S_R|} \sum_{i \in S_R} (v_R - y^{(i)})^2$$
$$v_L^* = \frac{1}{|S_L|} \sum_{i \in S_L} y^{(i)} \qquad v_R^* = \frac{1}{|S_R|} \sum_{i \in S_R} y^{(i)}$$

Costruzione di un albero di regressione di profondità 1

Costruzione di un albero di regressione di profondità 1

- 1 Per ogni variabile di input $x_k \in \{x_1, \dots, x_d\}$:
 - Per ognuno degli (al più) m-1 possibili valori intermedi di x_k :
 - Fissa la soglia s a quel valore intermedio
 - Ottimizza i valori v_L , v_R delle foglie (con s fissata)
 - Valuta il rischio empirico risultante RE (k, s, v_L, v_R)
- 2 Restituisci la combinazione (k, s, v_L, v_R) che minimizza il rischio empirico



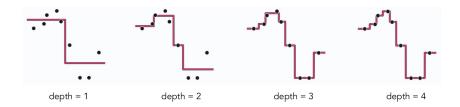
Costruzione di alberi di profondità > 1

Alberi di profondità maggiore possono essere creati attraverso uno schema di dicotomizzazione iterativa

Costruzione di un albero di profondità D

- Costruisci un albero di profondità 1 (decision stump)
- $lue{}$ Sostituisci ricorsivamente ciascuna foglia con un albero di profondità D-1

Nota. Si tratta di un'euristica. Non vi è garanzia che l'albero costruito in tal modo abbia rischio empirico minimo. In effetti, trovare un albero dal rischio empirico minimo è un problema NP-arduo.



Con una profondità sufficientemente alta, il rischio empirico sarà zero

Alberi di classificazione

- Ottimizzare le foglie (a soglia fissa): due possibili approcci:
 - basato su una funzione costo
 - basato su un voto di maggioranza (pesato)
- Ottimizzare la soglia (a foglie fisse) e la variabile di decisione: basato su una misura di qualità (purezza) delle foglie risultanti:
 - accuratezza bilanciata
 - cross-entropia binaria
 - coefficiente di Gini

Ottimizzare le foglie (a soglia fissa) – Approccio 1

In questo caso, l'ottimizzazione è guidata da una qualche funzione di costo Esempio: con etichette ± 1 e funzione costo $log\ loss$,

$$g(v_L) = \frac{1}{|S_L|} \sum_{i \in S_L} \log(1 + \exp(-y^{(i)}v_L))$$

$$g(v_R) = \frac{1}{|S_R|} \sum_{i \in S_R} \log(1 + \exp(-y^{(i)}v_R))$$

dove S_L ed S_R sono i sottoinsiemi di esempi a "sinistra" e a "destra" della soglia

Si applica un algoritmo di ottimizzazione convessa per trovare v_L^* e v_R^* (il problema di ottimizzazione è unidimensionale)

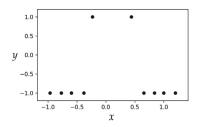
Ottimizzare le foglie (a soglia fissa) – Approccio 2

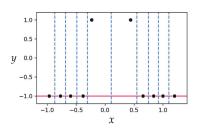
In questo caso si combinano direttamente gli output in ognuna delle due regioni (sopra e sotto la soglia)

Restituire la media ora non ha più senso, perché siamo in un problema di classificazione

La possibilità più semplice è utilizzare la moda, ovvero basarsi sull'output di maggioranza nella regione

Output a maggioranza e sbilanciamento tra classi





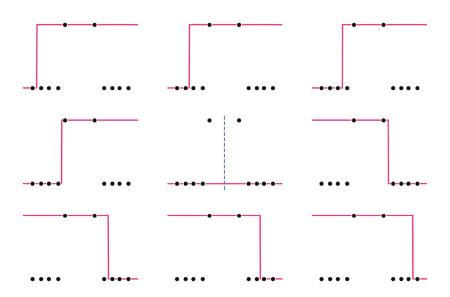
In questo esempio, qualunque sia la soglia, prendendo una maggioranza pura ogni decision stump sarebbe completamente piatto

Output a maggioranza pesata

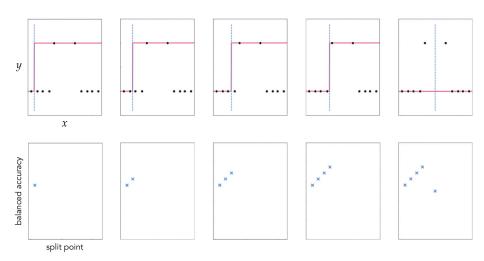
L'output a maggioranza può essere problematico se c'è sbilanciamento tra le classi, quindi può convenire calcolare una maggioranza pesata:

 $\underset{k \in \{1, \dots, K\}}{\operatorname{argmax}} \quad \frac{\operatorname{numero \ di \ esempi \ di \ classe} \ k \ \operatorname{della \ foglia}}{\operatorname{numero \ di \ esempi \ di \ classe} \ k \ \operatorname{in \ entrambe \ le \ foglie}}$

Output a maggioranza pesata

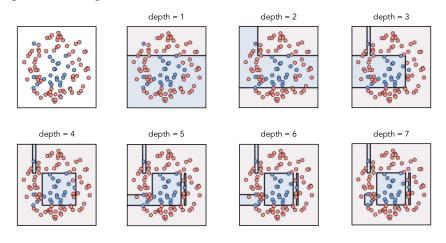


Scelta della soglia con l'accuratezza bilanciata

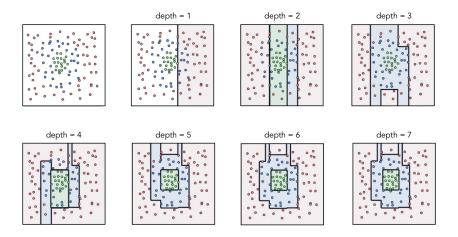


Costruzione di alberi di classificazione a profondità >1

Si ottiene ricorsivamente (per dicotomizzazione iterativa) come nel caso degli alberi di regressione



Esempio con 3 classi (K = 3)



Vari criteri di terminazione (purezza sufficiente, albero con troppi nodi...)

Vantaggi e svantaggi dei modelli ad albero

- Applicabili a dati sia numerici che categorici
- Applicabili a regressione o classificazione (anche multiclasse)
- Alta interpretabilità
- Sono approssimatori universali
- Come tutti gli approssimatori universali, possono dare overfitting

Limitare l'overfitting nei modelli ad albero

Per limitare la possibilità di overfitting, si può:

- Terminare la costruzione dell'albero quando le foglie sono sufficientemente pure
- Terminare la costruzione dell'albero quando l'albero raggiunge una certa grandezza o profondità
- Costruire l'albero completamente e poi "potarlo" utilizzando un validation set (si veda ad es. cost-complexity pruning in scikit-learn)

Combinazione di modelli (ensemble methods)

Supponiamo di avere un certo numero di modelli (funzioni ipotesi)

$$h_1, h_2, \ldots,$$

dalle prestazioni non eccelse

Possiamo combinarli per ottenere un modello *H* migliore di tutti i precedenti?

Due approcci generali:

- Boosting
- Bagging

Li discuteremo nel contesto di ceppi/alberi per la classificazione binaria

Classificatori deboli

Consideriamo un problema di classificazione binaria

Classificatore debole

Una funzione ipotesi $h: \mathcal{X} \to \mathcal{Y}$ è un *classificatore debole* se $\exists \gamma > 0$:

$$\Pr_{(x,y)\in\mathcal{D}}[h(x)\neq y]\leq \frac{1}{2}-\gamma$$

Un *apprendista debole* è un algoritmo di apprendimento in grado di generare classificatori deboli

Come incrementare [dare un boost] la qualità di un apprendista debole?

Schema del boosting

Dato: un dataset $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})$

- Inizialmente, tutti gli esempi hanno lo stesso peso
- Ripeti per t = 1, 2, ...:
 - Fornisci il dataset pesato all'apprendista debole, ottenendo un classificatore debole h_t
 - Ri-pesa gli esempi dando enfasi agli esempi misclassificati da h_t
- Combina tutti i modelli h_t linearmente

Notazione. D_t è il vettore dei pesi associati al t-esimo dataset pesato

$$\sum_{i=1}^{m} D_t(i) = 1, \qquad D_t(i) \ge 0$$

 ϵ_t è l'errore (inaccuratezza) di h_t sul t-esimo dataset Per assunzione, $\epsilon_t \leq 1/2 - \gamma < 1/2$

Un algoritmo di boosting: AdaBoost

AdaBoost

Dato: dataset $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)}), y^{(i)} \in \{-1, +1\}$

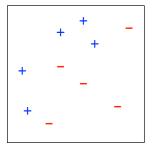
- 1 Inizializza $D_1(i) = 1/m$ per ogni i = 1, 2, ..., m
- **2** Per ogni t = 1, 2, ..., T:
 - lacksquare Fornisci D_t all'apprendista debole, ottieni $h_t:\mathcal{X} o\{-1,1\}$
 - Calcola il margine di correttezza di h_t :

$$r_{t} = \sum_{i=1}^{m} D_{t}(i) y^{(i)} h_{t}(x^{(i)}) = 1 - 2\epsilon_{t} \in [0, 1]$$

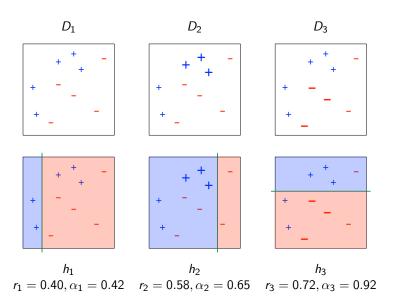
$$\alpha_{t} = \frac{1}{2} \log \left(\frac{1}{\epsilon_{t}} - 1 \right)$$

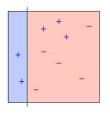
- Aggiorna i pesi: $D_{t+1}(i) \propto D_t(i) \exp(-\alpha_t y^{(i)} h_t(x^{(i)}))$
- 3 Classificatore complessivo: $H(x) = \operatorname{sgn}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

Training set:



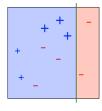
Come classificatori deboli, usiamo dei ceppi di decisione



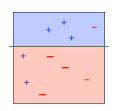


$$h_1$$

$$\alpha_1 = 0.42$$



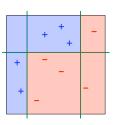
$$h_2 \\ \alpha_2 = 0.65$$



$$h_3 \\ \alpha_3 = 0.92$$

Final classifier:

$$sign (0.42h_1(x) + 0.65h_2(x) + 0.92h_3(x))$$



Proprietà del boosting

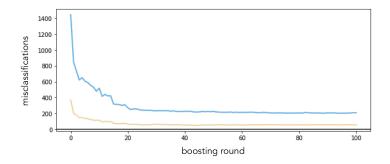
Teorema (performance di AdaBoost)

Si supponga che ad ogni iterazione t, il modello h_t restituito dall'apprendista debole abbia un errore (sulla distribuzione D_t) pari a $\epsilon_t \leq 1/2 - \gamma$. Allora, dopo T iterazioni, l'errore di training della regola combinata

$$H(x) = \operatorname{sgn}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

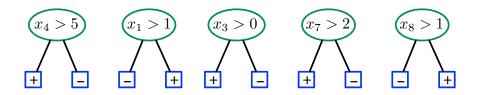
è al più $\exp(-2\gamma^2 T)$.

Evoluzione dell'errore durante il boosting



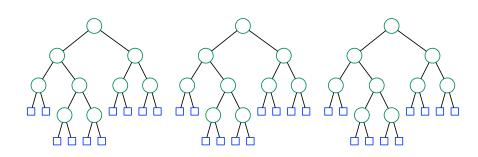
Curva blu: errori sul training set Curva gialla: errori sul validation set

Boosting di ceppi di decisione vs. un albero



Possiamo vedere una combinazione lineare di ceppi come un singolo albero (perché la somma di ceppi è rappresentabile da un albero)

Boosting di alberi



Anziché boosting di ceppi, si può fare il boosting di interi alberi, ottenendo una *foresta*

Osservazione. Il procedimento (come nel boosting di ceppi) è sequenziale

Vincenzo Bonifaci IN550 Machine Learning 37 / 42

Dal boosting al bagging

Per velocizzare il processo, perché non costruire gli alberi in parallelo anziché sequenzialmente?

Problematica: se diamo T volte all'apprendista debole lo stesso identico training set S, i T alberi costruiti potrebbero essere esattamente gli stessi, il che è totalmente inutile

Idea: costruiamo dataset parzialmente diversi ri-campionando il dataset originale T volte (bagging)

Bagging per alberi di classificazione: Random forest

Random Forest

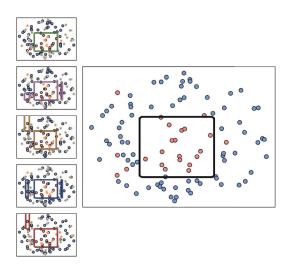
Dato un dataset S di m esempi etichettati:

- Per t = 1, ..., T:
 - Seleziona m' esempi casualmente, con rimpiazzo, da S
 - Costruisci un albero di decisione h_t su quegli m' esempi
 - Ogni nodo si basa sul valore di una feature tra k scelte a caso

Classificatore finale: voto a maggioranza di h_1, \ldots, h_T

Esempio di impostazioni di default di scikit-learn:

- m'=m'
- $k = \sqrt{d}$ per input d-dimensionali



Metodi ensemble

Sia il boosting che il bagging sono esempi di metodi *ensemble* (assemblativi): ci permettono di ottenere modelli combinati più performanti dei modelli individuali di partenza

Svantaggio: un modello combinato sarà meno interpretabile dei modelli di partenza

In scikit-learn:

from sklearn.ensemble import AdaBoostClassifier, AdaBoostRegressor from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor

Modelli ad albero e metodi ensemble in scikit-learn

		Interfaccia
Approccio	lperpar.	scikit-learn
Albero di regressione	D	DecisionTreeRegressor(max_depth)
Albero di classificazione	D	<pre>DecisionTreeClassifier(max_depth)</pre>
Boosting (regressione)	<i>T</i>	AdaBoostRegressor(n_estimators)
Boosting (classificazione)	T	AdaBoostClassifier(n_estimators)
Bagging (regressione)	T, m', k	RandomForestRegressor(n_estimators,
	'	<pre>max_samples, max_features)</pre>
Bagging (classificazione)	T, m', k	RandomForestClassifier(n_estimators
		<pre>max_samples, max_features)</pre>

Il criterio di purezza è specificato dal parametro Python criterion (es. criterion='gini', criterion='log loss')