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54 3 Using AdaBoost to Minimize Training Error

3.1 A Bound on AdaBoost’s Training Error

We begin by proving a fundamental bound on AdaBoost’s training error. In proving this
main theorem, we make no assumptions about the training set and how it was generated,
nor about the weak learner. The theorem simply gives a bound on the training error in terms
of the error rates of the weak hypotheses.

In the simple version of AdaBoost shown as algorithm 1.1 (p. 5), D1 is initialized to the
uniform distribution over the training set. Here, however, we give a slightly more general
proof applicable to an arbitrary initialization of D1. The resulting proof provides an upper
bound on the weighted fraction of examples misclassified by H , where each example i

is weighted by D1(i). A bound on the ordinary, unweighted training error, when D1 is
initialized as in algorithm 1.1, follows immediately as a special case.

Theorem 3.1 Given the notation of algorithm 1.1, let γt
.= 1

2 − �t , and let D1 be an arbitrary
initial distribution over the training set. Then the weighted training error of the combined
classifier H with respect to D1 is bounded as

Pri∼D1 [H(xi) �= yi] ≤
T�

t=1

�
1 − 4γ 2

t ≤ exp

�
−2

T�

t=1

γ 2
t

�
.

Note that because �t = 1
2 − γt , the edge γt measures how much better than the random-

guessing error rate of 1
2 is the error rate of the t-th weak classifier ht . As an illustration

of the theorem, suppose all of the γt ’s are at least 10% so that no ht has error rate above
40%. Then the theorem implies that the training error of the combined classifier is at
most
��

1 − 4(0.1)2
�T ≈ (0.98)T .

In other words, the training error drops exponentially fast as a function of the number of
base classifiers combined. More discussion of this property follows below.

Here is the informal idea behind the theorem: On every round, AdaBoost increases
the weights (under distribution Dt ) of the misclassified examples. Moreover, because the
final classifier H is a (weighted) majority vote of the weak classifiers, if some example is
misclassified by H , then it must have been misclassified by most of the weak classifiers
as well. This means that it must have had its weight increased on many rounds, so that
its weight under the final distribution DT +1 must be large. However, because DT +1 is a
distribution (with weights that sum to 1), there can be only a few examples with large
weights, that is, where H makes an incorrect prediction. Therefore, the training error of H

must be small.
We now give a formal argument.
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Proof Let

F(x)
.=

T�

t=1

αt ht (x). (3.1)

Unraveling the recurrence in algorithm 1.1 that defines Dt+1 in terms of Dt gives

DT +1(i) = D1(i) × e−yiα1h1(xi )

Z1
× · · · × e−yiαT hT (xi )

ZT

=
D1(i) exp

�
−yi


T
t=1 αt ht (xi)

�

�T
t=1 Zt

= D1(i) exp (−yiF (xi))�T
t=1 Zt

. (3.2)

Since H(x) = sign(F (x)), if H(x) �= y, then yF(x) ≤ 0, which implies that e−yF(x) ≥ 1.
That is, 1{H(x) �= y} ≤ e−yF(x). Therefore, the (weighted) training error is

Pri∼D1 [H(xi) �= yi] =
m�

i=1

D1(i) 1{H(xi) �= yi}

≤
m�

i=1

D1(i) exp (−yiF (xi)) (3.3)

=
m�

i=1

DT +1(i)

T�

t=1

Zt (3.4)

=
T�

t=1

Zt (3.5)

where equation (3.4) uses equation (3.2), and equation (3.5) uses the fact that DT +1 is a
distribution (which sums to 1). Finally, by our choice of αt , we have that

Zt =
m�

i=1

Dt(i)e
−αt yiht (xi )

=
�

i:yi=ht (xi )

Dt (i)e
−αt +

�
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Dt (i)e
αt (3.6)

= e−αt (1 − �t ) + eαt �t (3.7)
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2
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�
(3.8)

=
�

1 − 4γ 2
t . (3.9)
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Here, equation (3.6) uses the fact that both yi and ht (xi) are {−1, +1}-valued; equation (3.7)
follows from the definition of �t ; and equation (3.9) uses the definition of αt , which, as we
will discuss shortly, was chosen specifically to minimize equation (3.7).

Plugging into equation (3.5) gives the first bound of the theorem. For the second bound,
we simply apply the approximation 1 + x ≤ ex for all real x.

From the proof, it is apparent where AdaBoost’s choice of αt comes from: The proof
shows that the training error is upper bounded by

�
t Zt . To minimize this expression, we can

minimize each Zt separately. Expanding Zt gives equation (3.7), which can be minimized
over choices of αt using simple calculus giving the choice of αt used in algorithm 1.1. Note
that αt is being chosen greedily on each round t without consideration of how that choice
will affect future rounds.

As discussed above, theorem 3.1 assures a rapid drop in training error when each weak
classifier is assumed to have error bounded away from 1

2 . This assumption, that �t ≤ 1
2 − γ

for some γ > 0 on every round t , is a slight relaxation of the empirical γ -weak learning
assumption, as discussed in section 2.3.3. When this condition holds, theorem 3.1 implies
that the combined classifier will have training error at most
��

1 − 4γ 2
�T ≤ e−2γ 2T ,

an exponentially decreasing function of T for any γ > 0. Although the bound on training
error is easier to understand in light of the weak-learnability condition, it is important to
remember that AdaBoost and its analysis do not require this condition. AdaBoost, being
adaptive, does not need to assume an a priori lower bound on the γt ’s, and the analysis takes
into account all of the γt ’s. If some γt ’s are large, then the progress (in terms of reducing
the bound on the training error) will be that much greater.

Although the bound implies an exponential drop in training error, the bound itself is
nevertheless rather loose. For instance, figure 3.1 shows a plot of the training error of the
combined classifier compared to the theoretical upper bound as a function of the number of
rounds of boosting for the heart-disease dataset described in section 1.2.3. The figure also
shows the training errors �t of the base classifiers ht with respect to the distributions Dt on
which they were trained.

3.2 A Sufficient Condition for Weak Learnability

The assumption of empirical γ -weak learnability is fundamental to the study of boosting,
and theorem 3.1 proves that this assumption is sufficient to ensure that AdaBoost will drive
down the training error very quickly. But when does this assumption actually hold? Is it
possible that this assumption is actually vacuous, in other words, that there are no natural
situations in which it holds? What’s more, our formulation of weak learnability is somewhat
cumbersome, depending as it does on the weighted training error of base hypotheses with
respect to virtually any distribution over the training set.


