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Abstract. An efficient certifying algorithm is proposed that, given a set
of n points in Rd with binary labels, either returns a hyperplane sepa-
rating the points, or identifies d + 2 of the labeled points that cannot
be separated by any hyperplane. The existence of such d + 2 points in
the inseparable case is known to be guaranteed by Kirchberger’s theorem
in combinatorial geometry; we show how to compute these points effi-
ciently. We then propose a dimension-free and constructive extension of
Kirchberger’s theorem, where for any ε > 0 one finds either a separating
hyperplane, or O(1/ε2) of the labeled points that cannot be separated
with normalized margin ε by any hyperplane. Our algorithms are based
on solving one primal-dual pair of linear programs with d primal and
n dual variables, and at most n − d linear equation systems with O(d)
equations and O(d) unknowns.
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1 Introduction

During the last couple of decades, the notion of certifying algorithm has been
proposed to formalize the idea that algorithms should supplement their answers
with certificates, in order to ease the task of checking solution correctness [3,
15, 19]. A certifying algorithm is an algorithm that produces, along with each
output, a certificate or witness that the particular output indeed satisfies the
input-output relation required by the computational task at hand. For instance,
while a traditional algorithm to check whether a graph is bipartite might only
return a yes/no answer, thus requiring its user to blindly trust the computation,
a certifying algorithm could instead return a 2-coloring of the graph when the
graph is bipartite, and an odd cycle subgraph when the graph is not bipartite; in
both cases the end user can easily check the answer’s correctness. Additionally,
evidence of an odd cycle in the graph makes it simpler for the user to understand
why the search for a proper bipartition was fruitless.

The notion of certifying algorithm has received attention in several sub-areas
of algorithm design, such as graph recognition, and a wealth of significant al-
gorithms have been designed (or redesigned) with the aim of making them cer-
tifying; see for example [10, 11, 15, 20, 25] and references therein. In this work,
we propose to apply the idea of certifying algorithms to machine learning tasks.
Namely, we consider binary linear classification, one of the fundamental tasks in
supervised machine learning [22]. In binary linear classification, one is provided
with a set of n binary-labeled data points in Rd, and the goal is to construct a
hyperplane separating the data points into the two labeled classes (if possible).
Clearly, if an algorithm provides a normal vector v to a supposed separating hy-
perplane, separation can be easily checked by computing inner products between
the data points and the vector v. However, if the algorithm fails to construct a
separating hyperplane, how can the user easily check that, indeed, no separat-
ing hyperplane exists? And can one identify some data points that obstruct the
separation?

For binary linear classification, a result in combinatorial geometry known as
Kirchberger’s theorem ensures that, in the inseparable case, d+2 labeled points
exist, among the n given, that are inseparable (see Theorem 3 for a formal
statement and references). When d << n, this would provide easily checkable
evidence of the impossibility of separation. However, Kirchberger’s theorem is
existential. In this work, we show how to efficiently compute the d + 2 witness
points guaranteed by the theorem. We then provide a constructive, dimension-
free extension of Kirchberger’s theorem, where for any ε > 0 one finds either a
separating hyperplane, or O(1/ε2) of the labeled points that cannot be separated
with normalized margin ε by any hyperplane (the normalized margin being the
minimum distance between the data points and the hyperplane, normalized by
the diameter of the point set; see Section 4 for a formal definition).

We note that, to some extent, one can see the problem of certifying linear
classification as an issue in interpretable machine learning [16,27]. Citing Lipton
et al. [16], “to trust an AI model [...] you might care not only about how often a
model is right, but also for which examples it is right.” In this sense, identification
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of the witness points guaranteed by Kirchberger’s theorem provides the end user
of the binary classification method with concrete, combinatorial counter-evidence
to the linear separability hypothesis.

Main results and techniques Our main results are twofold:

– We show how Kirchberger’s theorem can be made constructive and certi-
fying, by designing an algorithm that given n binary-labeled points in Rd,
either returns a hyperplane separating the points, or identifies d + 2 of the
labeled points that cannot be separated by any hyperplane (Theorem 5).
The algorithm is based on solving one primal-dual pair of linear programs
with d primal and n dual variables, and subsequently solving at most n− d
linear systems in O(d) variables and equations each (Algorithm 1).

– We provide a constructive and dimension-free generalization of Kirchberger’s
theorem, where for any ε > 0 one finds either a separating hyperplane, or
O(1/ε2) of the labeled points that cannot be separated with normalized
margin ε by any hyperplane (Theorem 6). The algorithm is based on linear
programming and random sampling (Algorithm 2).

Our techniques are based on linear duality combined with ideas from combi-
natorial convexity. In particular, we extend proof ideas from Carathéodory’s
theorem [7] and, for the dimension-free generalization, from the so-called Ap-
proximate Carathéodory’s theorem [1, 21, 28]. Both are results in combinatorial
convexity: indeed, the inseparability certificates constructed by our algorithms
are partly combinatorial in nature. The second algorithm is randomized, as the
proof of the Approximate Carathéodory’s theorem uses a probabilistic method.

Related work While the notion of efficiently checkable certificates is pervasive in
theoretical computer science, viewing certificates as a pragmatic approach to re-
sult checking was a later development [5,19]. According to McConnell et al. [19],
the term “certifying algorithm” was first used in [15]. McConnell et al. [19] ex-
plicitly define the notion of certifying algorithm and put forward the thesis (that
we subscribe to) that “certifying algorithms are much superior to non-certifying
algorithms, and that for complex algorithmic tasks, only certifying algorithms
are satisfactory.” An introduction to certifying algorithms can be found in the
survey by Alkassar et al. [3]. Certifying algorithms have been designed for sev-
eral problems [10, 11, 15, 20, 25], including graph connectivity, planarity testing,
convex hulls, network flows, and matching; the LEDA algorithmic library im-
plemented many checkers for such problems [20]. As far as we could establish
however, certifying algorithms have not been explicitly advocated or studied in
the context of machine learning tasks.

Binary linear classification is one of the fundamental problems in supervised
machine learning [22]. Linear and convex programming techniques have been
used to approach binary classification since at least the 1960s [9, 17, 24], later
giving rise to the idea of Support Vector Machines (SVMs) [6]. In such a context,
the usefulness of convex duality theory is well-known [22, Section 5.2].
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Kirchberger’s theorem [13] was proved by mathematician Paul Kirchberger
(a student of David Hilbert) in 1902, in the context of approximation theory.
Several proofs of the theorem are known, all relating the theorem to results in
combinatorial convexity and discrete geometry, such as Carathéodory’s theorem
and Helly’s theorem [29,30].

Carathéodory’s theorem itself has seen several applications in linear and com-
binatorial optimization [4,21,26]. Closer to our setting, Haghighatkhah et al. [12]
have used a constructive version of Carathéodory’s theorem for bias removal in a
classification context. Although the overarching goal of the algorithms is rather
different, we reuse such a subroutine from [12, Section 2] in one of our algorithms.
Our second algorithm is instead based on the Approximate Carathéodory theo-
rem, the proof of which applies a probabilistic method [1, 28].

Organization In Section 2 we recall the main definitions and results relating
to linear separability and combinatorial convexity, and we define the Certified
Linear Classification problem. In Section 3 we present an algorithm for Certified
Linear Classification and prove its correctness; this algorithm can be interpreted
as a constructive and certifying extension of Kirchberger’s theorem. In Section
4 we propose a dimension-free extension of Kirchberger’s theorem, outline a
corresponding algorithm and prove its correctness. We give some concluding
remarks in Section 5.

2 Problem and Notation

Linear separability Let P and Q be two subsets in Rd. Then P and Q are called
(strictly) linearly separable if there exists a hyperplane H separating the two
subsets, that is, if there exist a vector v ∈ Rd and constants b, c ∈ R (c ̸= 0)
such that

v⊤x+ b ≥ c , for all x ∈ P and v⊤x+ b ≤ −c , for all x ∈ Q.

Without loss of generality one can take c = 1 after rescaling. The above condition
is then equivalent to the existence of v ∈ Rd+1 such that

yv⊤
(
x
1

)
≥ 1, for all x ∈ P ∪Q, (1)

where y = 1 whenever x ∈ P and y = −1 whenever x ∈ Q.

Convexity We recall some notions from combinatorial convexity. Given a set P ,
the convex hull of P ⊆ Rd is the smallest convex set that contains P , and it is
denoted as CH(P ). One can also characterize the convex hull CH(P ) as the set
of every convex combination of all finite collections of points in P :

CH(P ) =

{
m∑
i=1

λix
i

∣∣∣∣∣ m ∈ N,
m∑
i=1

λi = 1 and ∀ 1 ≤ i ≤ m : xi ∈ P, λi ≥ 0

}
The relevance of convex hulls for binary classification is due to the following

observation (see for example [24, Section 2] for a proof).
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Fig. 1. Examples of linearly separable and inseparable sets. In the left subfigure, the
convex hulls do not intersect; thus, it is possible to find a hyperplane H separating the
two sets. On the other hand, in the right subfigure, the convex hulls have a non-empty
intersection, making the sets linearly inseparable.

Remark 1. Two finite point sets P , Q are linearly separable if and only if CH(P )
and CH(Q) do not intersect (see Figure 1 for an illustration).

The following results in combinatorial convexity will be useful. We use the
notation diam(P ) for the diameter of P , namely diam(P )

def
= supx,x′∈P ∥x− x′∥2.

Theorem 1 (Carathéodory [7, 28]). Every point in the convex hull of a set
P ⊆ Rd can be expressed as a convex combination of at most d+ 1 points from
P .

Theorem 2 (Approximate Carathéodory [1,28]). Consider a set P ⊆ Rd.
Then, for every point x ∈ CH(P ) and every integer k ≥ 1, one can find points
x1, . . . , xk ∈ P such that ∥∥∥∥∥ x− 1

k

k∑
j=1

xj

∥∥∥∥∥
2

≤ diam(P )√
k

. (2)

Theorem 3 (Kirchberger [13,30]). Let P and Q be two finite sets of points
in Rd. Then, P and Q are linearly separable if and only if, for every set T of
d+ 2 points chosen arbitrarily from P ∪Q, there exists a hyperplane separating
P ∩ T and Q ∩ T .

Linear programming duality A linear program consists of the problem of mini-
mizing a given linear function over the set of all vectors v ∈ Rd that satisfy a set
of affine constraints, that is, a system of linear equalities and inequalities. Each
linear program can be rewritten as

minimize b⊤v

subject to Av ≥ c, v ≥ 0
(3)

where A is a n×d real matrix, while b and c are vectors in Rd and Rn, respectively.
The problem defined in Eq. (3) will be called the primal linear program.
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The dual linear program relies on maximizing a dual cost function:

maximize c⊤z

subject to A⊤z ≤ b, z ≥ 0.
(4)

For further details on deriving the dual from its primal, see [18].
We refer to a vector v ∈ Rd satisfying all given constraints as a feasible

solution. Moreover, each v∗ ∈ Rd that minimizes the value b⊤v over all feasible
solutions is called an optimal solution or an optimum.

Theorem 4 (Strong Duality [18]). For the primal and dual programs (3)
and (4), exactly one of the following holds:

1. Neither the primal nor the dual have a feasible solution.
2. The primal is unbounded (from below) and the dual has no feasible solution.
3. The primal has no feasible solution and the the dual is unbounded (from

above).
4. Both the primal and the dual have a feasible solution. Then, both have an

optimal solution. Furthermore, if v∗ is an optimal solution of the primal and
z∗ is an optimal solution of the dual, then

b⊤v∗ = c⊤z∗ (5)

Certifying algorithm (informal definition) For the purposes of this work, an in-
formal definition of certifying algorithm will be sufficient. A (strongly) certifying
algorithm [3,19] for a problem is, loosely speaking, an algorithm that produces,
for each input x, either a witness w showing that x does not satisfy the prob-
lem’s precondition, or an output y and a witness w showing that the pair (x, y)
satisfies the problem’s postcondition. The witness w is also called a certificate.
The triple (x, y, w) can be forwarded to a checker C, another algorithm that ac-
cepts the triple if and only if w indeed proves that either x does not satisfy the
precondition, or that (x, y) satisfies the postcondition. A fully formal definition
of certifying algorithm can be found in [19, Section 5.1].

Problem definition Throughout this work, we assume to be working with n points
x1, . . . , xn in Rd with binary labels yi ∈ {−1, 1}, for i = 1, . . . , n. Furthermore,
we assume, without loss of generality, that the given points satisfy xi

d = 1; if
not, we can simply add an additional dimension, with the extra coordinate of
every point fixed to 1. This assumption is merely for notational convenience, as
it allows to rewrite the condition of Eq. (1) as

yiv
⊤xi ≥ 1 for i = 1, . . . , n (6)

where v ∈ Rd.

Problem 1 (Certified Linear Classification).
Given: n points x1, . . . , xn in Rd with binary labels yi ∈ {−1, 1}.
Return: either a vector v ∈ Rd satisfying (6), or a subset of d+2 labeled points
that no hyperplane can separate.
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Example 1. Consider the sets P = {x1, x2, x4} and Q = {x3, x5, x6} depicted
in Figure 1. In the left subfigure, the convex hulls CH(P ) and CH(Q) do not
intersect; hence, the sets are linearly separable, and a certifying algorithm may
output a (properly scaled) vector normal to the hyperplane H. Conversely, the
convex hulls of the sets in the right subfigure have a non-empty intersection,
as the sets are linearly inseparable. A certifying algorithm thus may return any
d + 2 = 4 points that cannot be linearly separated; for example, the subsets
P ′ = P and Q′ = {x3}.

A note on the computational model For the purpose of the running time analysis,
we assume the unit-cost RAM model [2, 8].

3 A Certifying Algorithm

We now discuss a certifying algorithm for linear classification, the pseudo-code
of which is given in Algorithm 1. The main intuition behind the algorithm is to
exploit linear programming duality to construct, in the inseparable case, a point
that acts as a negative witness using Remark 1.

We begin from a (standard) encoding of the separability problem as a linear
optimization problem, which we call the primal problem.

minimize 0⊤v

subject to (Y X)v ≥ 1, v ∈ Rd,
(7)

Here, X = (x1 · · ·xn)⊤ is the n × d matrix of data points, and Y is the n × n
diagonal matrix whose i-th entry is the label yi of the i-th example xi (recall
that the last column of X consists entirely of ones since we assumed xi

d = 1 for
all data points). Any feasible solution v of problem (7) is a vector identifying a
separating hyperplane, which can be interpreted as a positive certificate for the
linear classification problem. The cost function is identically zero, but writing it
as a linear function of v will be convenient for what follows.

To be able to deal with the negative (inseparable) case, we form the dual
linear program to (7):

maximize 1⊤z

subject to (Y X)⊤z = 0, z ∈ Rn
≥0

(8)

Applying strong duality to (7)–(8), we now get the following lemma.

Lemma 1. Either both (7) and (8) have optimal solutions and the value of both
programs is zero, or (7) is infeasible and (8) has a nonzero feasible solution.

Proof. Observe that the set of feasible solutions for the dual problem in Eq. (8)
is non-empty: indeed, the zero vector 0 ∈ Rn always satisfies the constraints of
the dual.
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Algorithm 1: Certified Linear Classification
Input: n points x1, . . . , xn in Rd with binary labels yi ∈ {−1, 1}.
Output: a vector v satisfying Eq. (6), or a set of d+ 2 labeled points P ′ ∪Q′

that no hyperplane can separate.

1 Y ← Diag(y)
2 Solve the primal-dual pair (7)–(8)
3 if the primal has a solution v∗ then
4 return (True, v∗) // Return a separating hyperplane
5 else
6 z∗ ← a nonzero dual solution // Lemma 1
7 IP ′ ← {i ∈ {1, . . . , n} | yi = +1} // Separate the indices
8 IQ′ ← {i ∈ {1, . . . , n} | yi = −1}
9 x∗ ←

∑
i∈IP ′

z∗i x
i/

∑
k∈IP ′

z∗k // Lemma 2

10 while |IP ′ ∪ IQ′ | > d+ 2 do // Reduce to d+ 2 points (Lemma 3)
11 if there exists i such that z∗i = 0 then
12 IP ′ ← IP ′ \ {i}, IQ′ ← IQ′ \ {i}
13 else
14 α← a nonzero solution of Equations (16)-(18)
15 ρP ′ ← min{z∗i /αi | i ∈ IP ′ , αi > 0}
16 ρQ′ ← min{z∗i /αi | i ∈ IQ′ , αi > 0}
17 ρ← min{ρP ′ , ρQ′}
18 z∗ ← z∗ − ρα
19 Find i such that z∗i = 0
20 IP ′ ← IP ′ \ {i}, IQ′ ← IQ′ \ {i}
21 end
22 end
23 return (False, IP ′ , IQ′ , x∗, z∗) // Return a negative witness
24 end

By strong duality (Theorem 4), since the dual has a feasible solution, we
can deduce that either both programs have an optimal solution, or the primal
has no feasible solution and the dual is unbounded: respectively, cases 3 and 4
in Theorem 4. If both programs have an optimal solution, the programs’ value
must be zero due to the primal objective and (5). On the other hand, if the dual
is unbounded, a nonzero dual feasible solution must exist. ⊓⊔

By problem definition and Lemma 1, if both programs return an optimum,
then the points x1, . . . , xn can be linearly separated. Furthermore, the vector v∗
output as the primal solution is a normal vector associated with a separating
hyperplane, which we can use as a positive certificate for linear separability.

Conversely, if the primal has no feasible solution, the points x1, . . . , xn are
not linearly separable. Hence, we would like to extrapolate a negative certificate
from the non-zero solution z∗ obtained from the dual problem. Using Theorem
3, our goal will be to convert z∗ into a subset of d + 2 non-linearly-separable
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points. This part of our algorithm is split into two subsequent steps, discussed
in the following subsections.

3.1 Finding a point in the convex hulls’ intersection

Suppose the dual is unbounded and we have computed a non-zero solution z∗ ∈
Rn

≥0 to the dual problem constraints in Eq. (8), meaning we found a non-zero
and non-negative vector in the kernel of (Y X)⊤. Since z∗ is dual feasible,

(Y X)⊤z∗ = 0. (9)

A non-zero vector z∗ verifying Equation (9) can also be interpreted as a non-
zero weight assignment to the points x1, . . . , xn, each multiplied by its associated
label yi, such that the weighted sum is the zero vector:

(Y X)⊤z∗ = 0 ⇔
n∑

i=1

z∗i yix
i = 0. (10)

Let P and Q be the sets containing the points with positive and negative labels,
respectively. We can thus rewrite Equation (10) as∑

i∈IP

z∗i x
i =

∑
j∈IQ

z∗j x
j , (11)

where we used IP and IQ to denote the sets of indices of elements in P and Q
respectively. Since we are assuming xi

d = 1 for all points, from the vector sums
in Equation (11) we also deduce that the sum of the weights of elements in P
equals the sum of weights of elements in Q, that is∑

i∈IP

z∗i =
∑
j∈IQ

z∗j . (12)

Using Equation (12), we can divide both members of Equation (11) by their
respective weights’ sum, obtaining∑

i∈IP

z∗i∑
k∈IP

z∗k
xi =

∑
j∈IQ

z∗j∑
k∈IQ

z∗k
xj (13)

Since z∗ ∈ Rn
≥0, the coefficients in both terms of Equation (13) are non-negative,

and their sums are such that∑
i∈IP

z∗i∑
k∈IP

z∗k
=

∑
j∈IQ

z∗j∑
k∈IQ

z∗k
= 1. (14)

Therefore, the left and right hand sums in Equation (13) are indeed two convex
combinations in CH(P ) and CH(Q), respectively. These convex combinations
coincide and so they identify a point x∗ ∈ CH(P ) ∩CH(Q), which, by Remark
1, already constitutes a numerical certificate of non-separability. We have shown
the following.
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Lemma 2. If (8) has a non-zero solution z∗, then the point

x∗ def
=

∑
i∈IP

z∗i∑
k∈IP

z∗k
xi (15)

satisfies x∗ ∈ CH(P ) ∩ CH(Q). ⊓⊔

It is this intersection point x∗ we are now going to use to compute the d+ 2
inseparable points composing the combinatorial part of the certificate.

3.2 Computing the Kirchberger points

To compute the d+2 points guaranteed by Kirchberger’s theorem (Theorem 3),
we use the following lemma and its proof, which expands on standard proofs of
Caratheodory’s theorem (Theorem 1); see Haghighatkhah et al. [12] for a similar
algorithmic construction in a different context.

Lemma 3. Let P and Q be two finite sets in Rd and x∗ ∈ CH(P ) ∩ CH(Q).
Then one can find in time O(nd3) two subsets P ′ ⊆ P and Q′ ⊆ Q such that
x∗ ∈ CH(P ′) ∩ CH(Q′) and |P ′|+ |Q′| ≤ d+ 2, where n = |P ∪Q|.

Proof. Let p
def
= |P | and q

def
= |Q|. If P and Q have a point in common, we can

simply return that point, so assume that P ∪ Q = {x1, . . . , xp+q}; as before,
we use IP , IQ ⊆ {1, . . . , p + q} to denote the sets of indices of points in P and
Q, respectively. We show that if p + q ≥ d + 3, then one point from either
P or Q can be removed with the new convex hulls still intersecting. Let x∗ ∈
CH(P ) ∩ CH(Q). By definition of convex hull (Eq. (2)), there are coefficients
λ1, . . . , λp+q ≥ 0 such that

∑
i∈IP

λi = 1,
∑

j∈IQ
λj = 1 and∑

i∈IP

λix
i = x∗ =

∑
j∈IQ

λjx
j .

Now, there are two possibilities:

– If any of the λi coefficients is zero, then we can eliminate the corresponding
point xi while keeping x∗ in the intersection of the convex hulls.

– If none of the λi coefficients is zero, we look for coefficients α1, . . . , αp+q such
that ∑

i∈IP

αix
i =

∑
j∈IQ

αjx
j (16)

∑
i∈IP

αi = 0 (17)

∑
j∈IQ

αj = 0. (18)

This linear system has d + 2 equations and p + q ≥ d + 3 variables. Hence,
nonzero coefficients must exist that satisfy these equations.
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Let ρP = min{λi/αi | αi > 0, i ∈ IP }, ρQ = min{λj/αj | αj > 0, j ∈ IQ} and
ρ = min{ρP , ρQ}. Additionally, define the new coefficients as

λ′
i = λi − ραi, for i = 1, . . . , p+ q. (19)

By construction, we have λ′
i ≥ 0 for 1 ≤ i ≤ p+q,

∑
i∈IP

λ′
i =

∑
j∈IQ

λ′
j = 1,

and
∑

i∈IP
λ′
ix

i =
∑

j∈IQ
λ′
jx

j = x∗. But at least one of the λ′
i coefficients

is zero, and we can remove the corresponding point.

The above process can be repeated until p+q = d+2. Assuming we already have
a point x∗ ∈ CH(P ) ∩ CH(Q) and its decomposition λ in terms of P and Q,
finding the d+2 points relies on iteratively removing a point from P∪Q or solving
a linear system of equations to eliminate a point and update the coefficients.
The computational bottleneck resides in solving the linear system (16)–(18).
This linear system can be defined using only d + 3 arbitrarily chosen points
from P ∪ Q, and thus can be solved in time O(d3) using Gaussian elimination
(of course, in a practical implementation, any fast linear solver can be used).
Hence, computing the desired sets P ′ and Q′ takes at most O(nd3) time, where
n = |P ∪Q|. ⊓⊔

In summary, solving the dual problem (8) leads us to a point x∗ in CH(P )∩
CH(Q) and its decomposition in terms of elements of P and Q (Line 9 of Algo-
rithm 1, justified by Lemma 2). From here on (Lines 10–22 of the algorithm), we
follow the proof of Lemma 3 to eliminate elements from the convex combinations,
while maintaining the invariant x∗ ∈ CH(P ) ∩ CH(Q). By the end of the com-
putation, we are left with two reduced subsets P ′ and Q′ that, by construction,
cannot be linearly separated. The indices of points in P ′ and Q′ are returned
as a negative certificate, together with the point x∗ and its decomposition (Line
23).

Theorem 5. The Certified Linear Classification problem can be solved in time
O(n3.5L+ nd3), where L is the input size.

Proof. The primal and dual problems (problems (7)–(8)) can be efficiently solved
using any primal-dual linear programming algorithm; interior-point algorithms
applied to (8) run in O(n3.5L) time [14,23]. When P and Q are linearly separable,
a separating hyperplane is identified without further computation needed. On
the other hand, if P and Q are not linearly separable, we compute x∗ ∈ CH(P )∩
CH(Q) in linear time from the dual solution using (15) and then estimate the
d+ 2 Kirchberger points from x∗ following the procedure outlined in Lemma 3,
which requires solving at most n− d linear systems in d+ 3 variables and d+ 2
constraints each. ⊓⊔

3.3 Accompanying checker

The last piece to our algorithm is its accompanying checker. A checking algorithm
should have a simple definition, and its running time should be lower than the
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associated certifying algorithm [19]. Here we briefly outline a possible checker
for Algorithm 1.

When Algorithm 1 returns True, it also returns a vector v∗ ∈ Rd identifying a
candidate separating hyperplane. To check correctness of this answer, the checker
can simply test whether all points in P and Q satisfy Equation (6), by computing
n inner products in Rd. The checker thus runs in O(nd) time (i.e. linear in the
data size) when Algorithm 1 returns a True statement.

On the other hand, when Algorithm 1 returns False, it also returns the
(at most) d + 2 points in P ′ ∪ Q′, the point x∗ and the decomposition vector
z∗. The checker can then simply verify that z∗ ≥ 0 (in O(n) time) and that
Equations from (11) to (15) hold; this proves that x∗ ∈ CH(P ′) ∩ CH(Q′) ⊆
CH(P )∩CH(Q), which by Remark 1 certifies the inseparability of P and Q. Each
of the equations can be checked in O(d2) time, by computing the appropriate
linear combination of points. This is again linear in the data size as long as
d = O(n).

4 A Dimension-Free Extension

We now discuss an alternative certifying algorithm for linear separation based
on the Approximate Carathéodory’s theorem (Theorem 2). This approach may
reduce the number of points in the negative certificate, as this number becomes
independent of the ambient dimension d.

Let us assume once again to be working with n points x1, . . . , xn in Rd with
binary labels yi ∈ {−1, 1} and xi

d = 1. Furthermore, we keep referring to P and
Q as the sets of elements with positive and negative labels, respectively. Our goal
is still to determine whether these n points can be separated by some hyperplane
H = {x ∈ Rd | v⊤x = 0} where v satisfies Equation (6). Recall that the margin
of a hyperplane H is the minimum distance between H and the data points:

min
x∈P∪Q,x′∈H

∥x− x′∥2 .

We note that the margin depends on the scale of the data and thus should
be related to the diameter of the dataset, D def

= max{diam(P ),diam(Q)}. If a
hyperplane has margin εD for some ε > 0, we will say that it has normalized
margin ε with respect to the given dataset. To simplify exposition and without
loss of generality, we assume that D is known. We remark that an approximation1

of D within a factor of 2 can be computed in time linear in the data size.
If the points in P and Q can be separated (with any margin), our certifying

algorithm will identify a separating hyperplane as a positive witness; otherwise,
the algorithm will identify O(1/ε2) points (possibly with duplicates) that cannot
be separated with normalized margin ε as a negative witness. In other words,
the algorithm will solve the following problem.

1 One can approximate e.g. diam(P ) as D̃P
def
= 2maxx∈P ∥p− x∥2, after selecting

an arbitrary p ∈ P , which satisfies diam(P ) ≤ D̃P ≤ 2 diam(P ) by the triangle
inequality. Therefore, D ≤ max{D̃P , D̃Q} ≤ 2D.
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Problem 2 (Approximate Certified Linear Classification).
Parameter: ε > 0 (normalized margin).
Given: n points x1, . . . , xn in Rd with binary labels yi ∈ {−1, 1}.
Return: a vector v ∈ Rd satisfying Equation (6), or O(1/ε2) labeled points that
no hyperplane can separate with normalized margin ε.

The main technical ingredient is the following.

Lemma 4. Let P and Q be two finite sets in Rd and assume x∗ ∈ CH(P ) ∩
CH(Q). Then, for any ε > 0, there are two subsets P ′ ⊆ P and Q′ ⊆ Q such
that:

1. |P ′| = |Q′| = O(1/ε2);
2. P ′ and Q′ cannot be separated with normalized margin ε.

Proof. By Theorem 2 applied to P (respectively, Q) and x∗ with k =
⌈
4/ε2

⌉
,

there are k points p′1, . . . p
′
k in P (resp., q′1, . . . , q′k in Q) such that, if we define

x+ = (1/k)
∑

i p
′
i (resp., x− = (1/k)

∑
i q

′
i),∥∥x+ − x∗∥∥

2
≤ εD/2,∥∥x− − x∗∥∥

2
≤ εD/2.

(20)

Therefore let us define P ′ = {p′1, . . . , p′k}, Q′ = {q′1, . . . , q′k}. We note that by
construction, x+ ∈ CH(P ′), x− ∈ CH(Q′) (in fact, x+ and x− are the centroids
of P ′ and Q′ respectively). By (20) and the triangle inequality,∥∥x+ − x−∥∥

2
≤ εD. (21)

But if P ′ and Q′ were separable with normalized margin ε, the distance between
any point in CH(P ′) and any point in CH(Q′) would be at least 2εD, contra-
dicting (21). Therefore the claim is proved. ⊓⊔

We give the full algorithm’s pseudocode in Algorithm 2. The main steps are
the following:

1. Find z∗ by solving the primal-dual pair (7)–(8) (lines 1–6 of Algorithm 2);
2. Find x∗ ∈ CH(P )∩CH(Q) and its convex decompositions in terms of points

of P and Q using Equation (13): x∗ =
∑

i λipi, x∗ =
∑

i µiqi (lines 7–11);
3. Sample k

def
=

⌈
16/ε2

⌉
times the two probability distributions λ and µ, to

obtain points p′1, . . . , p
′
k and q′1, . . . , q

′
k (lines 12–15).

The first two steps are exactly the same as in Algorithm 1, while the third
step is different and is based on random sampling. Indeed, the points p′1, . . . , p

′
k

and q′1, . . . , q
′
k referred to in the proof of Lemma 4 can be obtained as random

samples (with replacement) from the sets P and Q according to the proba-
bility distributions that, interpreted as convex combinations, give rise to the
point x∗ ∈ CH(P ) ∩ CH(Q). This idea is implicit in the proof of the Approxi-
mate Carathéodory theorem and is sometimes called the “empirical method” of
B. Maurey [28, Chapter 0].
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Algorithm 2: Approximate Certified Linear Classification
Input: ε > 0 and n points x1, . . . , xn in Rd with binary labels yi ∈ {−1, 1}.
Output: a vector v satisfying Equation (6), or O(1/ε2) labeled points that no

hyperplane can separate with normalized margin ε.

1 Y ← Diag(y)
2 Solve the primal-dual pair (7)–(8)
3 if the primal has a solution v∗ then
4 return (True, v∗) // Return a separating hyperplane
5 else
6 z∗ ← a nonzero dual solution // Lemma 1
7 IP ← {i ∈ {1, . . . , n} | yi = +1} // Separate the indices
8 IQ ← {i ∈ {1, . . . , n} | yi = −1}
9 x∗ ←

∑
i∈IP

z∗i x
i/

∑
k∈IP

z∗k // Lemma 2
10 λ← {z∗i /

∑
j∈IP

z∗j | i ∈ IP }
11 µ← {z∗i /

∑
j∈IQ

z∗j | i ∈ IQ}
12 k ←

⌈
16/ε2

⌉
13 IP ′ ← sequence of k indices sampled from distribution λ
14 IQ′ ← sequence of k indices sampled from distribution µ
15 return (False, IP ′ , IQ′) // Return a negative witness
16 end

Theorem 6. The Approximate Certified Linear Classification problem can be
solved in randomized polynomial time.

Proof. The only randomized step is the computation of the sets P ′ and Q′. It
is enough to show that, with probability at least (say) 1/2, the points x+ =
(1/k)

∑
i p

′
i, x− = (1/k)

∑
i q

′
i satisfy the inequalities (20); this probability can

be increased as desired by increasing k. We take k =
⌈
16/ε2

⌉
(note that this

is slightly larger than the value of k used in the proof of Lemma 4, which was
only concerned with proving existence). Following the proof of the Approximate
Carathéodory theorem as in [28, Chapter 0], we can bound

E
∥∥x+ − x∗∥∥2

2
≤ D2

k
,

E
∥∥x− − x∗∥∥2

2
≤ D2

k
.

(22)

Therefore, by (22) and Markov’s inequality, if γ def
= εD/2,

Pr[
∥∥x+ − x∗∥∥

2
≥ γ] = Pr[

∥∥x+ − x∗∥∥2
2
≥ γ2] ≤ D2

kγ2
=

4

kε2
≤ 1

4
,

and similarly Pr[∥x− − x∗∥2 ≥ γ] ≤ 1/4. Thus, by a union bound, (20) is satisfied
with probability at least 1/2. The rest of the argument proceeds as in the proof
of Lemma 4 and allows us to conclude that P ′ and Q′ cannot be separated with
normalized margin ε. ⊓⊔
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Finally, the associated checker to Algorithm 2 retraces the strategy of the
checker presented in Subsection 3.3 in the positive case. In the negative case,
on the other hand, one only need compute the centroids of the two sets P ′ and
Q′ and check that their distance is at most εD. This requires O(d/ε2) time and
O(d) time, respectively. Combining the positive and negative cases, the running
time of the checker is O(nd+ d/ε2).

5 Conclusions

In this work we proposed to apply the idea of certifying algorithms to machine
learning problems, and we focused on one of the fundamental tasks in this con-
text, binary linear classification. We have shown that both the Certified Linear
Classification problem and the Approximate Certified Linear Classification prob-
lem can be solved efficiently and that they admit simple checkers. The running
time of the checker for Algorithm 1 is at most linear in the data size as long
as d = O(n), and the running time of the checker for Algorithm 2 is at most
linear in the data size as long as 1/ε2 = O(n). It would be interesting to study
the Certified Linear Classification problem in a high-dimensional regime where
d ≫ n. It would also be interesting to design certifying algorithms for multi-class
classification.

More generally, there are clearly other relevant machine learning problems,
such as clustering, that one could also investigate from the point of view of
certifying algorithms; we hope that this work can stimulate further research in
this area.
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