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Data Gathering in Wireless Networks
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Marchetti-Spaccamela

Abstract In this chapter, we address the problem of gathering information in a
specific node of a radio network when interference constraints are present. Nodes
can communicate data using a radio device; we consider a synchronous time model,
where time is divided into rounds. The interference constraints limit the possibility
of simultaneous data communication of nodes to the same region of the network.
The survey focuses on two interference models, the general interference model and
the distance-2 interference model. We survey recent complexity results and approx-
imation algorithms for several variants of the problem. We consider several inter-
ference scenarios, the uniform and non-uniform data models, different optimization
parameters, and the off-line and online settings of the problem. The objective func-
tions we consider are the minimization of maximum completion time, maximum
flow time, and average flow time.
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bonifaci@dis.uniroma1.it

Ralf Klasing
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A.M.C.A. Koster, X. Muñoz (eds.), Graphs and Algorithms in Communication 357
Networks, Texts in Theoretical Computer Science. An EATCS Series,
DOI 10.1007/978-3-642-02250-0 14, c© Springer-Verlag Berlin Heidelberg 2010



358 V. Bonifaci et al.

Key words: data gathering, packet radio network, interference, completion time,
flow time, approximation algorithm, online algorithm

14.1 Introduction

The wireless gathering problem was proposed by FRANCE TELECOM in the con-
text of providing wireless Internet access to villages [12]. The houses of a village are
equipped with a computer, and the computers are interconnected through a wireless
local network. To provide Internet access to each of the houses, the computers have
to send (and receive) information to a gateway, or sink node, which connects the vil-
lage with the Internet. This creates a special many-to-one information flow demand
in which access to the gateway must be provided through multi-hop communication.
The radio transmissions which are necessary for data communication are subject to
different interference constraints. We are interested in providing interference-free
data gathering, minimizing a function of the time required to do so. The underlying
problem of gathering data under interference constraints is a fundamental problem
in wireless communication, and is also an important building block in more complex
communication problems [1, 4]. We call this class of problems wireless gathering
problems (WGPS). In this chapter we present an overview of recent models and
results that are related to WGP.

First, we briefly describe several important features which influence models for
wireless gathering in radio networks. These features are all related to the use of radio
signals to communicate data, which distinguishes WGP from gathering problems in
wired networks.

In radio networks nodes communicate with each other using a radio transmitter.
A node broadcasts data to a region surrounding its radio transmitter; the radio signals
are transmitted at a certain frequency or within a certain range of frequencies, called
the broadcast channel. We restrict our discussion to WGP models with a single
broadcast channel.

There are two types of transmitters, based on the antennas being either unidi-
rectional or omnidirectional. In the omnidirectional case the signal is broadcast in
every direction. In this case, under ideal circumstances, the broadcast region can be
described as a ball centered at the sender node. In the unidirectional case, the an-
tenna is pointed in a specific direction; hence, the broadcast region can be described
as a narrow cone centered at the sender node.

There are two models for radio communication. There is thehalf-duplex model,
in which at any instant a node can either send or receive data, and there is the full-
duplex model, in which a node can both send and receive data simultaneously. We
only consider WGP in the half-duplex model. When two nodes communicate, we
assume that there is a sender node, which has data to send, and a receiver node
which wishes to receive the data. Data is communicated from the sender node to the
receiver node, but the receiver node may use acknowledgement packets (ACKs) to
confirm the data reception.
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Radio signals have two important properties: fading and interference. Fading is
the effect of radio signal loss due to physical circumstances. These circumstances
are the composition of the space between the sender and receiver nodes, e.g., free
space or obstacles, and the distance between the sender and receiver nodes. The
strength of a radio signal is a decreasing function of the distance d between the
sender node and the receiver node, and the function is in the order of d−2 to
d−6 [1, 18, 37]. For a transmitter to receive data, the radio signal should be of a
certain strength. As a consequence of this minimum signal strength and fading, the
reachable broadcast region can be described as a closed ball centered at the sender
node, where the radius of the ball is called the communication radius.

Interference, also called collision, is the effect of radio signal loss due to the fact
that multiple nodes communicate simultaneously on the same broadcast channel,
within the same geographical region. As with data communication, interference oc-
curs if the radio signal is strong enough. When a node broadcasts data, its radio
signal is propagated to a region surrounding this node. This interference region is
a closed ball centered at the sender node, similarly to the transmission region. We
call the radius of this ball the interference radius. Note that if a node sends data
at a certain power, the interference radius is at least as large as the communication
radius, but may be larger, with typical factors between 2 and 3 [22, 37]. A typical
assumption is that if a node receives signals from multiple nodes, all data is lost. In
some scenarios it could be possible to detect that a collision has occurred, but in this
chapter we will assume that no such a collision detection mechanism is available.

The properties of fading and interference highly influence the design of wireless
networks and communication algorithms. On the one hand, fading makes communi-
cation over long distances costly, and interference limits the data throughput of the
network. On the other hand, fading allows multiple nodes to use the same broadcast
channel simultaneously, as long as the receiver nodes are sufficiently far apart. This
is known as spatial frequency reuse [33, 34].

We assume that not all nodes can communicate directly with the sink, either
due to physical constraints or because such communication is too costly in terms
of energy usage. We assume nodes use multi-hop communication to communicate
data to the sink node. We also assume that the routing network is given. Typically,
this routing network is set up via some distributed algorithm [32].

Another feature of many problems is the distinction between a uniform and a
non-uniform data model [7, 13, 22, 25]. In a uniform data model one assumes that
each node has the same demand for data communication, and offers the same supply
of data communication. In the case of gathering problems this translates into the
assumption that each node, except the sink, has an equal number of packets to send;
we focus on the case where each node has exactly one packet to communicate to the
sink. A non-uniform data model does not impose any restrictions on data demand.
Also, most of the models studied in the literature allow the buffering of packets
at each node of the network. For a study of gathering protocols in a model where
buffering is not allowed see [9].

We present an overview of recent advances in wireless gathering problems. As
even recent literature on wireless networks is vast, we have to limit the scope of
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the models that we consider. In particular, we will mostly consider the case of om-
nidirectional antennas, which is where the interference constraints play a key role.
When we consider unidirectional antennas we will explicitly say so.

WGP consists of finding an interference-free schedule, in which packets are sent
to the sink as fast as possible. We use completion times and flow times as per-
formance measures for the schedule. A completion time model is appropriate for
wireless networks which partition data reception and data communication into two
phases [22, 25], while a flow time model is appropriate for wireless networks where
data reception and communication occur simultaneously.

We focus on theoretical results, which consist of complexity results and worst-
case analyses of algorithms using approximation theory and competitive analysis.
For complexity theory we refer to Garey and Johnson [23] and Papadimitriou [31].
For a background on approximation theory see the books of Ausiello et al. [2],
Hromkovič [26], and Vazirani [39]. For a background on online algorithms and
competitive analysis see Borodin and El-Yaniv [17]. We do not consider any empir-
ical studies.

The outline of this chapter is the following. In Section 14.2 we formulate the
basic wireless gathering problem mathematically. In Section 14.3 we analyze the
complexity of several variants of the problem. In Section 14.4 we present online
algorithms for several variants and we analyze their performance using approxima-
tion theory and competitive analysis. In Section 14.5 we summarize the models and
results presented in this chapter, and outline some interesting open problems.

14.2 The Mathematical Model

The communication model for the wireless gathering problem is a generalization of
the classic packet radio network model [3, 4, 7, 8]. Given are a graph G = (V,E)
with |V | = n, a sink s ∈ V , and a set of packets J = {1,2, . . . ,m}. We assume that
each edge has unit length. For each pair of nodes u,v ∈ V we define the distance
between u and v, denoted by d(u,v), as the length of a shortest path from u to v in
G. We have integers dT and dI , for the communication radius and interference radius
respectively, where naturally we have dI ≥ dT . Each packet j ∈ J has a release node
v j ∈ V and a release date r j ∈ Z+ at which it enters the network. We consider the
case where r j = 0 for all j as a special case, which we refer to as WGP without
release dates. If there is a single packet j released at each node v ∈V \{s}, the data
is said to be uniform; otherwise, it is said to be non-uniform.

We assume that time is discrete; we call a time unit a round. The rounds are
numbered 0,1, . . .. During each round a node may be sending a packet, be receiving
a packet, or be inactive. If d(u,v) ≤ dT then u can send some packet j to v during a
round. If node u sends a packet j to v in some round, then the pair (u,v) is called a
call of packet j during that round.

We consider two interference models: the general interference model and the
distance-2 interference model. In the general interference model two calls (u,v) and
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(u′,v′) interfere if d(u′,v) ≤ dI or d(u,v′) ≤ dI ; otherwise, the calls are compati-
ble [7, 8, 13]. The case dT = dI = 1 is a special case [3, 4]. In the distance-2 inter-
ference model [29] one assumes unit communication radius, and two calls (u,v) and
(u′,v′) are compatible only if minx∈{u,v},y∈{u′,v′} d(x,y) ≥ 2; that is, nodes involved
in different calls should be apart at distance at least 2, so at any given round the set
of calls forms a matching in the underlying graph. We observe the following relation
between the distance-2 interference model and the general interference model: each
feasible distance-2 interference schedule is a feasible general interference schedule
for dT = 1 and dI = 1, and each feasible general interference schedule for dT = 1
and dI = 2 is a feasible distance-2 interference schedule.

A solution to WGP is a schedule of compatible calls such that all packets are sent
to the sink. In principle, each radio transmission could broadcast the same packet
to multiple nodes, but in the gathering problem, having more than one copy of each
packet does not help – it suffices to keep the one that will arrive first at the sink.
Thus, we assume that at any time there is a unique copy of each packet. Also, we
assume that packets cannot be aggregated at nodes.

Given a schedule, let vt
j be the unique node holding packet j at the beginning of

round t. The completion time of a packet j is Cj = min{t : vt
j = s}. A packet j can

be sent for the first time in round r j. The flow time of a packet j is Fj = Cj − r j.
We consider the minimization of max j Cj, called the makespan, the minimization of
max j Fj, and the minimization of ∑ j Fj. We refer to WGP minimizing the maximum
completion time as CMAX-WGP, to WGP minimizing the maximum flow time as
FMAX-WGP, and to WGP minimizing the total or average flow time as FSUM-
WGP.

14.3 Complexity and Lower Bounds

We give an overview of complexity results and lower bounds on the competitive
ratio for WGP.

14.3.1 Minimizing Makespan

The first NP-hardness proof for CMAX-WGP has been given by Bermond et al.
[7, 8] by means of a reduction from a satisfiability problem. Here we give a proof
that gives more insight into the graph-theoretical nature of the gathering problem.
It is based on a reduction from the well-known NP-hard problem of determining
the chromatic number of a graph [23] (a similar proof, but within a more general
interference model, has been given by Coleri [20]). The chromatic number of a
graph is the minimum number of colors needed to color all vertices of the graph so
that no two adjacent vertices have the same color.
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CHROMATIC NUMBER

Instance: a graph G and an integer k.
Question: does G have chromatic number at most k?

Theorem 14.1. CMAX-WGP is NP-hard in the general interference model.

Proof. Consider an instance of CHROMATIC NUMBER, that is, an integer k and
a graph G, with vertex set V (G) = {v1, . . . ,vn}. Let H be the graph consisting of
n isolated vertices {u1, . . . ,un}. We construct a graph G′ with vertex set V (G′) =
V (H)∪V (G)∪ {s} and edge set E(G′) = E(G)∪ {[ui,vi] : i = 1, . . . ,n}∪ {[vi,s] :
i = 1, . . . ,n} (see Figure 14.1). There is one packet in each vertex of H, the sink is
the vertex s, dT = 1, and dI = 2.

We prove the theorem by showing that if G has chromatic number at most k, then
there is a schedule for the CMAX-WGP instance on G′ with makespan at most k+n,
while if G has chromatic number at least k +1, then every schedule for the CMAX-
WGP instance on G′ has makespan at least k + n + 1. The theorem then follows
since CHROMATIC NUMBER is NP-hard.

Suppose G has chromatic number at least k+1. We claim that at any round, in any
schedule, the vertices in V (G) that are acting as receivers must form an independent
set in G. To see this, notice that any useful transmission to vertex vi must come from
vertex ui. But then, if (ui,vi) and (u j,v j) are compatible calls, it must be the case
that [vi,v j] is not an edge of G; otherwise, interference would occur. Thus, at least
k+1 rounds are needed to transmit all the packets to vertices in V (G). Additionally,
when a vertex vi transmits to s, no other vertex v j can receive a packet, because v j
is at distance 2 from vi. So, calls of the type (vi,s) are not compatible with calls of
the type (u j,v j), and a total of k +1+n rounds is needed to gather all packets.

Assume now that G has chromatic number at most k. In a single round, we can
forward from V (H) to V (G) any set of packets that corresponds to an independent
set of G. Thus, in k rounds we can forward each packet to a vertex of V (G). The
remaining n rounds can be used to collect all packets at the sink, one by one. '(

s

H

G

Fig. 14.1 The construction in the proof of Theorem 14.1

The complexity of uniform CMAX-WGP has been analyzed by Korteweg [28].
Kumar et al. [29] presented an inapproximability proof for packet routing in the
distance-2 interference model; packet routing is a generalization of WGP in which
each packet has to be sent from an arbitrary origin to an arbitrary destination. For
both interference models, the NP-hardness of CMAX-WGP can be established by
a reduction from the well-known problem of determining the chromatic number of
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a graph [23]. The following theorems can be shown to hold using proof ideas and
techniques from Korteweg [28] and Kumar et al. [29].

Theorem 14.2. Uniform CMAX-WGP is NP-hard.

Theorem 14.3. CMAX-WGP is NP-hard in the distance-2 interference model.

We now discuss lower bounds on the approximability and competitive ratio of
CMAX-WGP. The following proposition, proved by Korteweg [28], provides a
lower bound on the competitive ratio of any online algorithm for CMAX-WGP. No-
tice that, as is usual in lower bounds for online algorithms, the bound is independent
of any hardness assumption.

Proposition 14.1. No online algorithm for CMAX-WGP is better than 7/6-compe-
titive, even if dI = dT .

Proof. We give the proof for dI = dT = 1, the generalization to larger values being
straightforward. Consider the graph depicted in Figure 14.2. The adversary releases
packet 1 at u at time 0. Observe that for any algorithm that does not send packet
1 in the first round the lemma trivially holds. We assess both deterministic and
randomized algorithms by applying Yao’s minimax principle [40]. The adversary
releases a second packet in round 1 either at u3 or u4, each with probability 1/2.
Now, the expected number of rounds for any algorithm that sends a packet in the
first round is 1/2 ·4 + 1/2 ·3. In the optimal schedule packet 1 is sent to u2 (u1) in
the first round if the adversary releases a packet at u3 (u4), which yields a makespan
of 3. '(

u s

u1

u2

u3

u4

Fig. 14.2 No online algorithm for CMAX-WGP is better than 7/6-competitive (dT = dI = 1)

It is interesting to note that the example of Proposition 14.1 contains three pack-
ets, and there are no known constant lower bound results which hold for instances
with an arbitrary number of packets.

Bonifaci et al. provided lower bounds on the approximability of shortest paths
following algorithms [13]. A shortest paths following algorithm is an algorithm
where each packet is sent over some shortest path towards the sink. This is a natu-
ral class of algorithms for routing problems, and in case of packet routing without
interference it has been demonstrated that for some well-known greedy algorithms
there is a gap between the completion times of routing over arbitrary paths and over
shortest paths, in favor of routing over shortest paths [19]. The algorithms for WGP
that we describe in the next section are shortest paths following. Following [13], for



364 V. Bonifaci et al.

such algorithms we present a lower bound of 4− 16/(m + 4) on their approxima-
tion ratio for solving CMAX-WGP on m packets using a shortest paths following
algorithm, in the case where dT = 1 and dI = 2.

Consider Figure 14.3. The nodes u1, . . ., um have one packet each. Any shortest
paths following algorithm sends all packets via u, yielding max j Cj = 4m. There is
a solution with no packet passing u that implies max j C∗

j ≤ 4+m. The example can
easily be extended for arbitrary dT ,dI = 2dT , such that no shortest path following
algorithm is better than 4-approximate. In Section 14.4 we discuss a matching upper
bound.

u s
u1

. . .

um

Fig. 14.3 No shortest paths following algorithm is better than 4-approximate for CMAX-WGP
(dT = 1,dI = 2)

14.3.2 Minimizing Flow Times

Bonifaci et al. [15, 16] considered the problems FMAX-WGP and FSUM-WGP. For
these versions even stronger results are possible than the one of Theorem 14.1. We
present the result for FMAX-WGP.

The lower bound is based on the induced matching problem. A matching M in a
graph G is an induced matching if no two edges in M are joined by an edge of G.
The following rather straightforward relation between compatible calls in a bipartite
graph and induced matchings will be crucial in the proof.

Proposition 14.2. Let G = (U,V,E) be a bipartite graph with node sets (U,V ) and
edge set E. Then, a set M ⊆ E is an induced matching if and only if the calls corre-
sponding to edges of M, directed from U to V , are all pairwise compatible, assuming
dT = dI = 1.

INDUCED BIPARTITE MATCHING (IBM)
Instance: a bipartite graph G and an integer k.
Question: does G have an induced matching of size at least k?

The proof by Bonifaci et al. uses the fact that the optimization version of IBM
is hard to approximate: there exists an α > 1 such that it is NP-hard to distinguish
between graphs with induced matchings of size k and graphs in which all induced
matchings are of size at most k/α . The current best bound for α is 6600/6599 [21].
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Theorem 14.4. Unless P = NP, no polynomial-time algorithm can have approxima-
tion ratio better than Ω(m1/3) for FMAX-WGP in the general interference model,
even when dT = dI = 1.

Proof. Let (G,k) be an instance of IBM, G = (U,V,E). We construct a four-layer
network with a unique source o (first layer), a clique on U and a clique on V (middle
layers), and a sink s (last layer). Source o is adjacent to each node in U , and s to
each node in V . The edges between U and V are the same as in G (see Figure 14.4).
We set dT = dI = 1.

o

s

G

U

V

Fig. 14.4 The construction in the proof of Theorem 14.4

The FMAX-WGP instance consists of m = (1− 1/α)−1(1 + k/α)(2k + 1)k =
Θ(k3) packets with origin o. They are divided into m/k groups of size k. Each packet
in the hth group has release date (k + 1)h, h = 0, . . ., m/k− 1. Rounds (k + 1)h to
(k +1)(h+1)−1 together are a phase.

We prove that if G has an induced matching of size k, there is a gathering schedule
of cost 2k + 1, while if G has no induced matching of size more than k/α , every
schedule has cost at least (2k + 1)k = (2k + 1)Θ(m1/3). The theorem then follows
directly.

Assume G has an induced matching M of size k, say (ui,vi), i = 0 . . .k−1. Then
consider the following gathering schedule. In each phase, the k new packets at o are
transmitted, necessarily one by one, to layer U while old packets at layer V (if any)
are absorbed at the sink; then, in a single round, the k new packets move from U
to V via the matching edges. More precisely, each phase can be scheduled in k + 1
rounds as follows:

1. for i = 0, . . ., k−1 execute in round i the two calls (o,ui) and (vi+1 mod k,s);
2. in round k, execute simultaneously all the calls (ui,vi), i = 0, . . ., k−1.

The maximum flow time of the schedule is 2k + 1, as a packet released in phase h
reaches the sink before the end of phase h+1.

In the other direction, assume that each induced matching of G is of size at most
k/α . By Proposition 14.2, at most k/α calls can be scheduled in any round from
layer U to layer V . We ignore potential interference between calls from o to U and
calls from V to s; doing so may decrease the cost of a schedule. As a consequence,
we can assume that each packet follows a shortest path from o to s. Notice however
that, due to the cliques on the layers U and V , no call from U to V is compatible
with a call from o to U , or with a call from V to s.
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Let mo and mU be the number of packets at o and U , respectively, at the beginning
of a given phase. Also, let β = 1 + k/α . We associate with the phase a potential
value ψ = βmo + mU , and we show that at the end of the phase the potential will
have increased proportionally to k. Let co and cU denote the number of calls from o
to U and from U to V , respectively, during the phase. Since a phase consists of k+1
rounds, and in each round at most k/α calls are scheduled from U to V , we have
co + cU/(k/α) ≤ k +1, or, equivalently since k/α = β −1,

(β −1)co + cU ≤ (β −1)(k +1). (14.1)

If m′
o, m′

U are the number of packets at o and U at the beginning of the next phase,
and ψ ′ = βm′

o +m′
U is the new potential, we have

m′
o = mo + k− co

m′
U = mU + co − cU

ψ ′ −ψ = β (m′
o −mo)+m′

U −mU

= β (k− co)+ co − cU

= βk− (β −1)co − cU

≥ βk− (β −1)(k +1)
= k− (β −1)
= (1−1/α)k

where the inequality uses (14.1).
Thus, consider the situation after m/k phases. The potential has become at least

Ψ = (1− 1/α)m. By definition of the potential, this implies that at least Ψ/β =
(1− 1/α)(1 + k/α)−1m = (2k + 1)k packets reside at either o or U ; in particular,
they have been released but not yet absorbed at the sink. Since the sink cannot
receive more than one packet per round, this clearly implies a maximum flow time
of (2k +1)k = (2k +1)Θ(m1/3) for one of these packets. '(

A similar construction shows that the same problem with minimization of total
flow time FSUM-WGP cannot be approximated within a ratio better than Ω(m1−ε)
for any 0 < ε < 1 [15]. We also notice that a similar instance as that used in Sec-
tion 14.3.1 constructed for proving inapproximability of shortest paths following
algorithms for CMAX-WGP can be constructed here to prove that shortest paths
following algorithms cannot approximate optimal solutions of FMAX-WGP and
FSUM-WGP within a ratio better than Ω(m).

For the distributed model, Bonifaci et al. [14] provided lower bounds for FMAX-
WGP which do not depend on the assumption P += NP. They consider a scenario in
which the network is partitioned into layers based on distance to the sink. They as-
sume that interference conflicts between transmissions from one layer of the tree to
the next are resolved randomly: whenever several transmissions from a layer occur
in the same round, only a uniformly chosen one succeeds; this is called the random
selection model. This assumption seems natural for distributed algorithms, as they
have no simple means of coordinating the transmitting nodes (or more precisely,
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coordinating the transmitting nodes is as hard as the original communication task).
For distributed algorithms following a random selection model they present the fol-
lowing lower bound.

Theorem 14.5. In the random selection model the approximation ratio of any algo-
rithm for FMAX-WGP is at least Ω(logm).

In fact, Bonifaci et al. [14] argue that even resource augmentation using speed as a
resource is not likely to improve this lower bound. The reason is that the lower bound
is due to an adversarial selection of which packet to advance; and the probability of
obtaining such a selection depends on the number of packets, and not on the speed
of the algorithm.

14.4 Online Algorithms

14.4.1 Minimizing Makespan

14.4.1.1 Omnidirectional Antennas

Several authors have presented centralized online algorithms for omnidirectional
WGP. The first algorithm, PIPELINE, was presented by Bermond et al. [7, 8]. The
algorithm was analyzed in an off-line context, but can be implemented in an online
setting. The idea of the algorithm is to pipeline packets towards the sink by parti-
tioning the graph into intervals. The lengths of the intervals are chosen such that
packets can advance in parallel without interfering with each other.

First, we introduce some notation to facilitate the exposition of the algorithm.
An important concept used in this and other algorithms is that of critical radius.
The critical radius R∗ is the greatest integer R such that no two nodes at distance
at most R from s can receive a packet in the same round. It is not hard to show
that R∗ ≥

⌊ dI−dT
2

⌋
(see, for example, [7, 8]). The critical region is the ball centered

at s of radius R∗. Thus, at any round at most one node in the critical region can
receive a packet. We define K∗ =

⌈R∗+1
dT

⌉
≥ 1 and K = 1+

⌈ dI+1
dT

⌉
. Roughly stated,

K gives an upper bound on the number of rounds during which a packet needs to be
forwarded before a new packet can be safely forwarded from the same origin over
the same path, while K∗ gives a lower bound on the number of rounds during which
a packet has to move inside the critical region, assuming it starts outside. We also
let K0 = 1+

⌈ R∗
dT

⌉
, Rad = maxu∈V d(u,s), and L = 1+

⌈Rad−K0dT
KdT

⌉
.

The algorithm partitions the set of distances to the sink [1,Rad] into L intervals
I0, . . ., IL−1. These are defined by I0 = [1,K0dT ] and, for i = 1, . . ., L − 1, Ii =
[K0dT +1+(i−1)KdT ,K0dT + iKdT ].

Additionally, each Ii is split into areas of length dT , so I0 is split into K0 areas
I j
0 = [K0dT + 1− jdT ,K0dT − ( j− 1)dT ], j = 1, . . ., K0; and Ii, i = 1, . . ., L− 1 is

split into K areas I j
i = [K0dT + 1 + iKdT − jdT ,K0dT + iKdT − ( j − 1)dT ], j = 1,
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. . ., K. We denote the set of vertices whose distance is in Ii (respectively I j
i ) by Vi

(respectively V j
i ). Figure 14.5 shows a partition with K = 4,K0 = 3,dT = 2.

$I_2$

1 2 3 4 6 7 9 11 12 13 14 15 16 1785 1810

$I_0^3$ $I_0^2$ $I_0^1$ $I_1^4$ $I_1^3$ $I_1^2$ $I_1^1$ $I_2^4$ $I_2^3$

$I_0$ $I_1$

Fig. 14.5 Partitioning of distance intervals for K = 4,K0 = 3,dT = 2

We are now in position to describe the algorithm (Algorithm 14.1).

Algorithm 14.1 PIPELINE

The algorithm works in phases. Each phase, except possibly the last, consists of K rounds t j ,
j = 1, . . . ,K. The algorithm uses the concepts of intervals and areas to construct a set of feasible
calls in each round.

for each phase do
for each round t j , j = 1,2, . . . ,K do

Select in each interval Ii a vertex u j
i in V j

i with an available packet to transmit (if such
a vertex exists). Vertex u j

i calls the closest vertex in the preceding area, i.e., if d(u j
i ,s) =

K0dT +1+ iKdT − jdT +α for some 0≤α < dT , then u j
i calls a vertex v such that d(v,s) =

K0dT + iKdT − jdT . This means that if i = 0 and j < K0 (or i > 0 and j < K) then v∈V j+1
i ,

if i > 0 and j = K then v ∈V 1
i−1, and if i = 0 and j = K0 then v = s.

We claim that PIPELINE creates a feasible schedule for WGP. First, let us show
that for any round the calls scheduled by PIPELINE are all pairwise compatible. In-
deed, consider two calls (u,v) += (u′,v′) of the same round t j. Then d(u,s) = K0dT +
1+ iKdT − jdT +α , for some i ≥ 0,0 ≤ α < dT , and d(v′,s) = K0dT + i′KdT − jdT
for some i′ += i (as v += v′). Therefore, d(u,v′)≥ |(i′− i)KdT −1−α|≥ dI +dT −α ≥
dI +1. Similarly one can show d(u′,v)≥ dI +1, and the calls are compatible. To see
why the algorithm delivers all the packets, observe that after a phase of K rounds,
the protocol ensures that if a vertex of Vi contains a packet, then the last vertex of
Vi−1 has received a new packet.

To illustrate PIPELINE we show one phase of the algorithm in Figure 14.6.
Bonifaci et al. [13] presented a class of online centralized algorithms for CMAX-

WGP, called PRIORITY GREEDY. In a PRIORITY GREEDY algorithm each packet
is assigned a unique priority based on some algorithm-specific rules, and the priority
ordering does not change over time. Then, in each round, packets are considered in
order of decreasing priority and are sent towards the sink as far as possible while
avoiding interference with higher priority packets. Thus, the schedule output by the
algorithm is feasible by construction.
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0 I2
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0 I4
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I2

1s 2 3 4 6 7 9 11 12 13 14

Fig. 14.6 A phase of PIPELINE, consisting of K = 4 rounds. Here, packets are represented as small
balls. Notice that packets in the same cell are at the same distance from the sink, but they can be in
different vertices

Algorithm 14.2 PRIORITY GREEDY

for each round t = 0,1,2, . . . do
Consider the available packets in order of decreasing priority, and send each packet as far as
possible along a shortest path from its current node to the sink, without causing interference
with any higher-priority packet.

Both Bermond et al. and Bonifaci et al. use similar concepts to derive upper
bounds on their algorithms, as well as a lower bound on the makespan of an off-line
optimal solution [7, 8, 13].

The lower bound on the completion time of any schedule is based on the obser-
vation that at most one packet can be sent from a node within the critical region. Let
δ j =

⌈ d(v j ,s)
dT

⌉
, the minimum number of calls required for packet j to reach s. Define

also π j = min{δ j,K∗} and R j = r j + δ j − π j. Informally, π j gives the number of
rounds during which packet j has to move inside the critical region (irrespective of
whether it originated inside or outside of it); R j is the first possible time at which
packet j can reach the border of the critical region. The following bound on the cost
of an optimal solution can be proved by considering only the processing that has to
be done inside the critical region [13].

Lemma 14.1. Let S ⊆ J be a nonempty set of packets, and let C∗
i denote the com-

pletion time of packet i in some feasible schedule. Then there is k ∈ S such that
maxi∈S C∗

i ≥ Rk +∑i∈S πi.

We sketch the idea behind the upper bound on the completion times; the sketch
is based on the upper bound proof of the PRIORITY GREEDY algorithm. The idea is
that if a packet is delayed, i.e., it is not sent as far as possible in each round until it
reaches the sink, then this packet must be close to some other packet that is sent in
that round. As a result we can provide a bound on the completion time of a packet
by relating it to the completion time of another packet that delays this packet. This
provides an upper bound on the makespan of a set of packets. Formally, we say that
packet j is blocked in round t if t ≥ r j but j is not sent over distance dT in round
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t. Note that in a PRIORITY GREEDY algorithm a packet can only be blocked due to
interference with a higher priority packet. We define the following blocking relation
on a PRIORITY GREEDY schedule: k ≺ j if in the last round in which j is blocked,
k is the packet closest to j that is sent in that round and has a priority higher than j
(ties broken arbitrarily). The blocking relation induces a directed graph F = (J,A)
on the packet set J with an arc (k, j) for each k, j ∈ J such that k ≺ j. Observe that,
for any PRIORITY GREEDY schedule, F is a directed forest and the root of each tree
of F is a packet which is never blocked. For each j, let T ( j) ⊆ F be the tree of F
containing j, b( j) ∈ J be the root of T ( j), and P( j) be the set of packets along the
path in F from b( j) to j.

Lemma 14.2. For each packet j ∈ J in a PRIORITY GREEDY schedule, Cj ≤Rb( j) +
(K/K∗) ·∑i∈P( j) πi.

Bonifaci et al. [13] considered a particular PRIORITY GREEDY algorithm called
RPG in which packet j has higher priority than packet k if R j < Rk (ties broken
arbitrarily). Combining Lemmas 14.1 and 14.2 they proved the following theorem.

Theorem 14.6. RPG is K/K∗-competitive for CMAX-WGP.

Similarly, Bermond et al. [7] presented the following theorem.

Theorem 14.7. PIPELINE is K/K∗-competitive for CMAX-WGP without release
dates.

The exact ratio depends on dT and dI , but is always bounded: it is straightforward
to verify that 2≤K/K∗ ≤ 4 for all dT and dI , while K/K∗ ≤ 3 for dI = dT . Similarly,
Korteweg [28] proved that PRIORITY GREEDY is (K/K∗ + 1)-competitive for any
fixed priority on the packets, using Lemmas 14.1 and 14.2. An interesting open
problem is whether there exists a polynomial-time approximation scheme, or a (1+
ε)-approximation algorithm for general graphs for small values of ε > 0.

Notice that the algorithms PIPELINE and PRIORITY GREEDY can be imple-
mented using only local information. Namely, it suffices that a node is informed
about the state of nodes within distance dI +1.

Kumar et al. [29] presented a decentralized algorithm for packet routing under the
distance-2 interference model. The authors presented an O(∆ log2 n)-approximation
algorithm, where ∆ is the maximum graph degree and n is the number of nodes.
Their algorithm assumes that each node knows upper bounds on the maximum num-
ber of packets per node and the network diameter. The first assumption seems re-
strictive from a practical point of view, where packets arrive online over time. The
algorithm proceeds in phases, and at the start of each phase nodes communicate with
nodes up to a distance 3 to determine interference-free schedules for the round in
the next phase. As such the algorithm, like those discussed above, is decentralized,
but not distributed in the sense that nodes use information about neighboring nodes.

Bar-Yehuda et al. [4] considered a distributed algorithm for CMAX-WGP in the
special case where dT = dI = 1 and there are no release dates. We refer to their
algorithm as DISTRIBUTED GREEDY (DG). The idea behind DG is the following.
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To reduce interference between nodes, DG partitions nodes into layers, and assigns
a label to nodes in a layer. A layer is a set of all nodes at the same distance from the
sink. A node at distance d from the sink is assigned label d mod 3. Each node can
be either active during a round or inactive; only active nodes will transmit a packet.
A node will not be active if its packet buffer is empty.

DG uses a procedure to establish communication from a set of active nodes. The
procedure, first introduced and studied by Bar-Yehuda, Goldreich, and Itai [3], is
called DECAY and requires 2 log∆ rounds; the time needed for a single execution of
the procedure is called a phase.

Algorithm 14.3 DECAY(u,v)
for j = 1,2, . . . ,2log∆ do

u sends to v the oldest packet from its buffer;
u deactivates itself for the rest of the phase with probability 1/2.

In fact, the original description does not describe which packet v to advance from
the buffer, because for the analysis of completion times the choice of this packet is
not relevant. For flow times the choice can be relevant; hence, we choose to advance
the oldest packet. We now present the description of the DISTRIBUTED GREEDY

algorithm (Algorithm 14.4).

Algorithm 14.4 DISTRIBUTED GREEDY (DG)
for each phase k = 1,2, . . . do

Activate each node with label k mod 3 that has a nonempty packet buffer;
Execute DECAY(u,parent(u)) in parallel for each active node u.

Although the algorithm does not model acknowledgement of packets explicitly,
it is easy to include them, e.g., by doubling the number of rounds, having com-
munication in odd rounds and acknowledgements in even rounds, as observed by
Bar-Yehuda et al. Using this, we can assume that successful receipt of a packet (by
the parent of the sending node in the communication tree) is acknowledged imme-
diately. Only at that time does it get removed from the sender’s buffer.

By the transmission protocol in DG, where in phase k only nodes of layer k
mod 3 transmit, if two nodes transmit, then either they are at the same layer or they
are at least distance 3 apart. Hence, in DG two nodes can only interfere if both
sender nodes are in the same layer.

A superphase consists of three consecutive phases. Another important ingredient
in the analysis of DG is the following, proved by Bar-Yehuda et al. [4].

Theorem 14.8. Let i be any layer of the tree containing some packet at the beginning
of a superphase. There is probability at least µ = e−1(1− e−1) that during this
superphase DG sends successfully a packet from at least one node u in layer i to the
parent node of u in the communication tree.
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This theorem shows that, during a superphase, each nonempty layer forwards
a packet with probability µ to the following layer. Notice however that there is
no guarantee on which particular packet is advanced. The use of superphases and
labels, i.e., a synchronous model, is essential to the proof of Theorem 14.8. If the
DECAY procedure is applied in an asynchronous model, it is not clear whether a
similar constant probability µ is attainable.

Theorem 14.8 suffices to bound the completion time of packets in a schedule
constructed by DG.

Theorem 14.9. DISTRIBUTED GREEDY is in expectation O(log∆)-competitive for
CMAX-WGP without release dates, and dI = dT = 1.

14.4.1.2 Special Topologies

The hardness results for CMAX-WGP on general graphs of Section 14.3 motivate
the study of specific topologies, such as the path, balanced stars, and the two-
dimensional grid. With the additional assumption that the data is uniform (every
node holds exactly one packet) it is possible to provide algorithms whose perfor-
mance differs only by an additive constant from the theoretical minimum. We are
not aware of studies for specific topologies in the case of non-uniform data (in par-
ticular, it is unknown whether optimal polynomial-time algorithms are possible for
path or tree topologies), although it is certainly possible to at least improve the ap-
proximation guarantees in this setting.

As an example of the uniform data model on a specific topology, Figure 14.7
shows an optimal gathering schedule using 18 rounds for a path of seven vertices
(each having one data packet), with dT = 1, dI = 2, and s = 0. The schedule has
a regular structure and this regularity can be exploited to give a general algorithm
for paths whose cost differs by the optimal one only by an additive constant term
(though the constant may depend on dT and dI).
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21$s=0$ 3 4 5 6
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Fig. 14.7 A gathering schedule in the path when dT = 1, dI = 2, and every vertex has one packet
to send to the sink s = 0

In fact, the uniform model has first been studied in the case of specific graph
topologies for specific values of dI and dT . In particular, the case dT = 1 was studied
in [5] for the case where the graph is a path, and in [10] for the case where the graph
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is the two-dimensional square grid. An optimal algorithm for trees when dT = dI = 1
is given by Bermond and Yu [11].

Bermond et al. [6, 30] consider the uniform model for paths and grids, for any
value of dT . Even though their algorithms do not match the lower bounds, they are
again larger by an additive constant that depends only on dI and dT . The authors
also study the case of stars and show that the general lower bound of [7, 8] is tight
up to a constant that does not depend on the size of the network. Table 14.1 shows
the main results of Bermond et al. [6, 30]. The notation is the following:

• LB (UB) is a lower bound (upper bound) on the number of rounds for gathering
in the corresponding topology.

• Pn is the path with n vertices 0,1, . . . ,n− 1. Vertex i is adjacent to vertex i + 1
for any i = 1, . . ., n − 2. Therefore, the sink s is simply an integer such that
0 ≤ s ≤ n−1.

• SK,l is the balanced spider graph with K branches. SK,l consists of K copies of Pl
(called branches) sharing a common extreme, the sink s.

• G2(p,q) is the two-dimensional grid, i.e., the graph G = (V,E) where V = {(i, j) :
−p ≤ i ≤ p,−q ≤ j ≤ q}. So n = (2p + 1)(2q + 1), and (x,y) and (x′,y′) are
connected when |x− x′|+ |y− y′| = 1. We assume that p,q ≥ dI + dT + 1 and
s = (0,0).

In Table 14.1, O(1) is used to denote a constant that may depend on dI and dT
but not on the size n of the network.

Table 14.1 Approximation results for gathering in specific topologies

Topology LB UB

Pn
dI+dT +1

dT
max[s,n− s]−O(1) dI+dT +1

dT
max[s,n− s]+O(1)

SK,l , -dI/dT . odd 1
2 (1+ -dI/dT .)n−O(1) 1

2 (1+ -dI/dT .)n+O(1)
SK,l , -dI/dT . even 1

2 -dI/dT .n+ n
K −O(1) 1

2 -dI/dT .n+ n
K +O(1)

G2(p,q), -dI/dT . odd 1
2 (1+ -dI/dT .)n−O(1) 1

2 (1+ -dI/dT .)n+O(1)
G2(p,q), -dI/dT . even 1

2 -dI/dT .n+ n
4 −O(1) 1

2 -dI/dT .n+ n
4 +O(1)

14.4.1.3 Unidirectional Antennas

We discuss here some results for gathering problems with unidirectional antennas.
Florens et al. [22] study makespan minimization in a model where each each node
is equipped with directional antennas and has no buffering capacity. Furthermore,
it is assumed that a node cannot receive and send simultaneously, that the com-
munication radius is 1, and that there is no interference but each node can only
receive one message at a time. Under these assumptions, Florens et al. give optimal
(polynomial-time) gathering algorithms for path and tree networks. Their work has



374 V. Bonifaci et al.

been extended to general graphs in the uniform case by Gargano and Rescigno [25].
Other results for specific topologies are discussed by Revah and Segal [35, 36] and
Segal and Yedidsion [38].

A discussion of some algorithmic and graph-theoretic problems related to wire-
less data gathering with minimum makespan is contained in [24]. Finally, another
related model can be found in Klasing et al. [27], where the authors study the case
in which steady-state flow demands between each pair of nodes have to be satisfied.

14.4.2 Minimizing Flow Times

Most literature on gathering problems focuses on minimizing completion times. In
this subsection we highlight some results on minimizing flow times. First, we con-
sider the centralized model. Bonifaci et al. [16] analyzed FMAX-WGP in the general
interference model. For this version they analyzed the performance of a particular
PRIORITY GREEDY algorithm. Because it follows from Theorem 14.4 that there is
no constant approximation algorithm for this problem, unless P = NP, they used
resource augmentation to analyze the quality of the algorithm. They study a variant
of PRIORITY GREEDY which orders packets based on release dates, i.e., packet j
precedes k if r j ≤ rk; ties (r j = rk) are broken arbitrarily. They call this variant FIFO
after the well known first-in-first-out algorithm in scheduling theory, although in this
case the term FIFO refers to the priority ordering; observe that the first packet in the
system does not have to arrive earliest at the sink using FIFO. They use FIFO as
a sub-routine in an algorithm which can be used in a resource augmentation setting
based on speed. The algorithm is the so-called σ -speed algorithm, where the pa-
rameter σ denotes the ratio between the clock speed of the algorithm and the clock
speed of the optimal solution to which the algorithm is compared. The algorithm is
the following (Algorithm 14.5).

Algorithm 14.5 σ -FIFO
1. Create a new instance I ′ by multiplying release dates: r′j = σr j;
2. Run FIFO on I ′;
3. Speed up the schedule thus obtained by a factor of σ .

The schedule constructed by σ -FIFO is a feasible σ -speed solution to the orig-
inal problem because of step 1. Bonifaci et al. [16] prove that this algorithm is
optimal for some σ which depends on K and K∗, but is never larger than 5.

Theorem 14.10. For σ ≥ K/K∗ + 1, σ -FIFO is a σ -speed optimal algorithm for
FMAX-WGP in the general interference model.

In [15] complementary and indeed similar results have been obtained for the prob-
lem with the average completion time as objective, FSUM-WGP.
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For the distributed model, for WGP minimizing flow times in the general inter-
ference model, the performance of algorithm DG is studied by Bonifaci et al. [14].
Again, the performance of the algorithm was studied in a resource augmentation
setting with an increase in speed of factor σ , similarly to the centralized model.
We refer to this version as σ -speed DG, although the algorithm is identical to DIS-
TRIBUTED GREEDY. Also, they focused on minimizing average flow times instead
of minimizing maximum flow times. The motivation for this objective over the ob-
jective minimizing maximum flow times is based on the proof of the lower bound
of Theorem 14.5. As described above the proof indicates that for a general class of
distributed algorithms, i.e., algorithms which base decisions on random selection,
it is rather unlikely that there exists a constant competitive algorithm for this prob-
lem, even if one allows resource augmentation using extra speed. The same authors
presented the following positive result.

Theorem 14.11. Let 0 < ε ≤ 1 and σ = 6µ−1 · log∆ · ln(δ/ε). Then σ -speed DG
is in expectation (1+3ε)-competitive when minimizing the average flow time.

14.5 Conclusion

The chapter surveys recent complexity results and approximation algorithms for
several variants of the wireless gathering problem. It considers different interference
models, the uniform and non-uniform data models, different optimization parame-
ters, and the off-line and online settings of the problem.

Many interesting directions of future work arise from the considered problems.
These include the attempt to close the existing gaps between the upper and lower
bounds for the specific problems. Where good solutions on general graphs are not
possible or not available, the focus on graph classes that are of interest from a prac-
tical point of view is of high importance. In the non-uniform data model many im-
portant questions are still to be resolved. Also, more work remains to be done on
unidirectional antennas with or without buffering capabilities at the nodes. Finally,
especially from a practical perspective, the study of distributed algorithms needs to
be further intensified.
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France Telecom R & D 22, 16–18 (2005)

13. Bonifaci, V., Korteweg, P., Marchetti-Spaccamela, A., Stougie, L.: An approximation algo-
rithm for the wireless gathering problem. Operations Research Letters 36(5), 605–608 (2008)

14. Bonifaci, V., Korteweg, P., Marchetti-Spaccamela, A., Stougie, L.: The distributed wireless
gathering problem. In: Proc. Int. Conf. on Algorithmic Aspects in Information and Manage-
ment, Lecture Notes in Computer Science, vol. 5034, pp. 72–83. Springer (2008)

15. Bonifaci, V., Korteweg, P., Marchetti-Spaccamela, A., Stougie, L.: Minimizing average flow
time in sensor data gathering. In: Proc. 4th Workshop on Algorithmic Aspects of Wireless
Sensor Networks, Lecture Notes in Computer Science, vol. 5389, pp. 18–29. Springer (2008)

16. Bonifaci, V., Korteweg, P., Marchetti-Spaccamela, A., Stougie, L.: Minimizing flow time in
the wireless gathering problem. In: Proceedings of the 25th International Symposium on
Theoretical Aspects of Computer Science, pp. 109–120 (2008)

17. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge Univer-
sity Press (1998)

18. Boukerche, A. (ed.): Handbook of Algorithms for Wireless Networking and Mobile Comput-
ing. Chapman & Hall (2005)

19. Cidon, I., Kutten, S., Mansour, Y., Peleg, D.: Greedy packet scheduling. SIAM Journal on
Computing 24(1), 148–157 (1995)



14 Data Gathering in Wireless Networks 377

20. Coleri, S.: PEDAMACS: Power Efficient and Delay Aware Medium Access Protocol for Sen-
sor Networks. Master’s thesis, University of California, Berkeley (2002)

21. Duckworth, W., Manlove, D., Zito, M.: On the approximability of the maximum induced
matching problem. Journal of Discrete Algorithms 3(1), 79–91 (2005)

22. Florens, C., Franceschetti, M., McEliece, R. J.: Lower bounds on data collection time in sen-
sory networks. IEEE Journal on Selected Areas in Communications 22, 1110– 1120 (2004)

23. Garey, M. R., Johnson, D. S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman (1979)

24. Gargano, L.: Time optimal gathering in sensor networks. In: Proceedings of the 14th Interna-
tional Colloquium on Structural Information and Communication Complexity, Lecture Notes
in Computer Science, vol. 4474, pp. 7–10. Springer (2007)

25. Gargano, L., Rescigno, A. A.: Optimally fast data gathering in sensor networks. In: Pro-
ceedings of the 31st Symposium on Mathematical Foundations of Computer Science, Lecture
Notes in Computer Science, vol. 4162, pp. 399–411. Springer (2006)
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27. Klasing, R., Morales, N., Pérennes, S.: On the complexity of bandwidth allocation in radio
networks. Theoretical Computer Science 406, 225–239 (2008)

28. Korteweg, P.: Online Gathering Algorithms for Wireless Networks. Ph.D. thesis, Eindhoven
Technical University (2008)

29. Kumar, V. S. A., Marathe, M. V., Parthasarathy, S., Srinivasan, A.: End-to-end packet-
scheduling in wireless ad-hoc networks. In: J. I. Munro (ed.) Proceedings of the 15th Sympo-
sium on Discrete Algorithms, pp. 1021–1030 (2004)
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