Minimizing Flow Time in the Wireless
Gathering Problem*

Vincenzo Bonifaci' Peter Korteweg? Alberto Marchetti-Spaccamela®

Leen Stougiet?

November 5, 2009

Abstract

We address the problem of efficient data gathering in a wireless network through
multi-hop communication. We focus on two objectives related to flow times, i.e., the
times spent by data packets in the system: minimization of the maximum flow time
and minimization of the average flow time of the packets. For both problems we prove
that, unless P = NP, no polynomial time algorithm can approximate the optimal
solution within a factor less than (m!~¢) for any 0 < € < 1, where m is the number
of packets. We then assess the performance of two natural algorithms by proving
that their cost remains within the optimal cost of the respective problem if we allow
the algorithms to transmit data at a speed 5 times higher than that of the optimal
solutions to which we compare them.

Key words and phrases: wireless networks, data gathering, approximation
algorithms, local algorithms

1 Introduction

Wireless networks are used in many areas of practical interest, such as mobile phone com-
munication, ad-hoc networks, and radio broadcasting. Recent advances in miniaturization
of computing devices equipped with short range radios have given rise to strong interest
in sensor networks for their relevance in many practical scenarios (environment control,
accident monitoring, etc.) [1,[23].

*Preliminary versions of this paper appeared as: V. Bonifaci, P. Korteweg, A. Marchetti-Spaccamela,
L. Stougie, Minimizing flow time in the wireless gathering problem, Proc. 25th Symp. on Theoretical
Aspects of Computer Science, 2008, and: V. Bonifaci, P. Korteweg, A. Marchetti-Spaccamela, L. Stougie,
Minimizing average flow time in sensor data gathering, Proc. 4th Workshop on Algorithmic Aspects of
Wireless Sensor Networks, 2008. This work was supported by EU COST Action 293 GRAAL.

fSapienza Universith di Roma and Universita degli Studi di L’Aquila, Italy, E-mail: boni-
faci@dis.uniromal.it. Research partially supported by the Future and Emerging Technologies Unit of
EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

iEindhoven University of Technology, The Netherlands, E-mail: p.korteweg@tue.nl, l.stougie@tue.nl

§Sapienza Universita di Roma, Italy, E-mail: alberto@dis.uniromal.it. Research supported by EU
ICT-FET 215270 FRONTS and MIUR-FIRB Italy-Israel project RBIN047MH9.

TCOWI, Amsterdam, The Netherlands, E-mail: stougie@cwi.nl

Various communication tasks can be distinguished in a wireless network. We focus here
on data gathering. In many applications of wireless networks, data gathering is a critical
operation for extracting useful information from the operating environment: information
collected from multiple nodes in the network should be transmitted to a sink that may
process the data, or act as a gateway to other networks. We remark that, in the case
of wireless sensor networks, sensor nodes have limited computation capabilities, implying
that data gathering is an even more crucial operation. Indeed, gathering has received
significant attention over the last few years; we cite just a few contributions [11, [17]. The
problem finds also applications in Wi-Fi networks, when many users need to access a
gateway using multi-hop wireless relay-routing [3].

In this paper we focus on the problem of designing simple algorithms for data gathering
with good approrimation guarantees in realistic scenarios. In order to formally assess the
performance of the proposed algorithms we focus on objectives that depend on the flow
times of the packets. The flow time of a data packet is the time elapsed between its
release at the release node and its arrival at the sink. Almost all of the previous literature
considered the objective of minimizing the maximum completion time (or makespan), see
for example [2, 13, 15, 11, [12, 117, 24, 25] where this objective is applied to a number of
different communication tasks. However, flow time is a widely used criterion in scheduling
theory that more suitably allows to assess the quality of service when multiple requests
occur over time [§, 9, 14, 22], since the end users of a system are typically interested in
the response time to their own requests, rather than in the makespan.

The problem of modelling realistic scenarios of wireless sensor networks is complicated
by the many parameters that define the communication among nodes and influence the
performance of transmissions (see for example [, 26]). In this paper we assume that
stations have a common clock, so that time can be divided into rounds. Each node is
equipped with a half-duplex interface; as a result it cannot send and receive during the
same round. Typically, not all nodes in the network can communicate with each other
directly, hence packets have to be sent through several nodes before they can be gathered
at the sink; this is called multi-hop routing.

The key issue in our setting is interference. A radio signal has a transmission radius,
the distance over which the signal is strong enough to send data, and an interference radius,
the distance over which the radio signal is strong enough to interfere with other radio
signals. If station i is transmitting data to station j we have interference (or collision) in
communication if j also receives signals from other stations within the interference radius
at the same time. There are several proposals for modelling interferences. The simplest
possibility is when the interference radius equals the transmission radius: the wireless
network is given by a graph, where an edge between nodes ¢ and j represents the fact that
stations ¢ and j are within the transmission range of each other, and there is a collision at
a node v if two neighbors of v transmit at the same time. This model has been extensively
studied in the algorithmic literature (see e.g. [2, 3, 12, 24-26] and references therein). In
this paper, similarly to [3, [L1], we extend this model via an additional parameter d;. The
integer d; models the interference radius: a node j successfully receives a data packet if
one of its neighbors is transmitting, and no other node within distance d; from j in the
graph is transmitting in the same round.

The Wireless Gathering Problem. An instance of the Wireless Gathering Problem
(WaP) is given by a static wireless network which consists of several stations (nodes) and
one base station (the sink), modeled as a graph, together with the interference radius dy;
over time data packets arrive at stations and have to be gathered at the sink. A feasible
solution of an instance of WGP is a schedule without interference which determines for each
packet both the route and times at which it is sent. We consider two different objectives
related to the flow time of packets, defined as the difference between the arrival time at
the sink of a packet, and its release time. One is minimization of the mazimum flow time
over all packets. The other is minimization of the sum of flow times of all packets, also
called total flow time and equivalent to minimization of average flow time. We call these
two problems FMAX-WGP and FSUM-WGP, respectively. On the way we will derive some
results for the objective of minimizing the makespan, i.e., the time needed to gather all
the packets, and for the objective of minimizing the total completion time, i.e., the sum of
the arrival times of the packets at the sink.

Related work. There is an extensive literature on flow time minimization in the area
of machine scheduling, both for on-line and off-line problems, for which we refer to [2(].
Here we remark that the two objectives of minimizing maximum flow time and minimizing
total flow time lead to fundamentally different problem features, and that results for one
problem do not carry over to the other one. In general, minimizing the total flow time
appears to be a more difficult problem than minimizing the maximum flow time.

In fact, if we consider on-line algorithms and if the objective function requires to
minimize the maximum flow time then the First In First Out (FIFO) heuristic is the
natural choice: at each time FIFO schedules the earliest released jobs among the unfinished
jobs. In the case of uniprocessor scheduling FIFO produces an optimal solution while in the
case of parallel machines it gives a 3 — 2/m approximation (where m denotes the number
of used machines) [4]. When the objective function is total flow time the natural heuristic
to be used is Shortest Remaining Processing Time (SRPT) rule, the on-line strategy that
schedules first jobs closer to completion. This heuristic is optimal in the case of one
machine but it does not give a constant approximation in the case of parallel machines.
In fact, SRPT gives a solution that is ©(min(log /*,log P)) approximate, where n and m
denote respectively the number of jobs and the number of machines and P denotes the
ratio between the longest and the smallest processing time [19]. In the same paper it is
shown that no on-line randomized algorithm can achieve a better competitive ratio.

The literature on communication protocols for radio networks is very extensive so
in the following we will limit ourselves to cite the results that are more relevant to our
work. The Wireless Gathering Problem was studied by Bermond et al. [4] in the context
of wireless access to the Internet in villages. The authors proved that the problem of
minimizing the makespan is NP-hard and presented a greedy algorithm with asymptotic
approximation ratio at most 4. In 6] we considered arbitrary release times and proposed
an on-line greedy algorithm with the same approximation ratio.

Bar-Yehuda et al. |3] considered distributed algorithms for WGP when the objective
is the minimization of the makespan. Their model is a special case of our model, with
dr = 1 and no release dates.

Kumar et al. [1§] give an overview of other interference models, including the so-
called distance-2 interference model. The distance-2 interference model is similar to our

interference model with d; = 1, with the added constraint that no two transmitting
nodes should be adjacent; we observe that this requirement might pose an unnecessary
restriction.

Kumar et al. [17] studied the more general end-to-end transmission problem, where
each of the packets may have a different source and destination in the network. Under
the assumption of the above mentioned distance-2 interference model, minimization of
the maximum completion time of the makespan is considered, and hardness results and
approximation algorithms for arbitrary graphs and disk graphs are presented. The authors
present distributed algorithms for packet scheduling over fixed routing paths, and use a
linear program in order to determine the paths. By contrast, we use a shortest paths tree
to fix the routing paths, which is easier to implement in a distributed setting.

Florens et al. [11] considered the minimization of the completion time of data gathering
in a setting with unidirectional antennas. They provided a 2-approximation algorithm for
tree networks and an optimal algorithm for line networks. Gargano and Rescigno [12] gave
a polynomial time algorithm for the special case of the same model in which each node
has exactly one packet to send.

Finally, we observe that many papers study broadcasting in wireless networks [2, 24].
However, we stress that data gathering and broadcasting are substantially different tasks
in the context of packet networks. In particular, the idea of reversing a broadcast schedule
to obtain a gathering schedule could only work if data can be aggregated. In general it
does not and hence results do not carry over.

Results. In the present paper we focus on simple local on-line algorithms for FMAX-
WaP and FSuM-WGP. Our algorithms are neither centralized nor fully distributed, but
local, in the sense that they can be executed using local information only (see also [21]]).
In particular, it suffices that a node is informed about the state of nodes within distance
dr + 1 from it. On the other hand, our lower bounds hold for centralized algorithms as
well. Our algorithms are also on-line. At time ¢ an on-line algorithm makes its decisions
on events that occur at or before ¢, ignoring information about future events. Competitive
analysis compares the solution of the on-line algorithm with the optimal solution obtained
by an omniscient adversary who provides the input instance. We refer the reader to [1]
for a comprehensive survey on on-line algorithms and competitive analysis. We restrict
to simple local algorithms because they may be amenable for implementation or faithfully
represent algorithms used in practice. In fact, we think that algorithms that are too
sophisticated are often impractical and have mainly theoretical interest.

We will give a mathematical formulation of the problems in Section Bl In particular
we will see that they can be modeled as clean combinatorial optimization problems.

In Section B we give inapproximability results for FMAX-WGP and FsuM-Wapr. We
prove that FMAX-WGP and FSuM-WGP on m packets cannot be approximated in poly-
nomial time within Q(m! =€), for any € € (0,1), unless P = NP.

In Sections Bl and [l we present two on-line polynomial time algorithms for FMAX-WaGP
and FsuM-WaGP, respectively. For FMAX-WGP the algorithm is based on the FIFO rule,
whereas for FSUM-WGP it is based on the SRPT rule. Since neither of the two problems
allows for a reasonable approximation ratio, we assess the performance of the algorithms
using resource augmentation.

Resource augmentation was introduced in the context of machine scheduling in [14]:

the idea is to study the performance of on-line algorithms which are given processors faster
than the adversary. Intuitively, this has been done to compensate an on-line scheduler for
its lack of future information. Such an approach has led to a number of interesting results
showing that moderately faster processors are sufficient to attain satisfactory performance
guarantee for various scheduling problems, e.g. [9, [14].

Surprisingly, in the case of FMAX-WGP and FSUM-WGP a modest resource augmen-
tation allows to compensate not only the lack of future information but also the approxi-
mation hardness of the problem. Namely, we show that the algorithms attain an objective
value not larger than that of an optimal solution, assuming that they are run at speed 5
times faster than the optimal solution.

2 Mathematical preliminaries

We formulate WGP as a graph optimization problem. The model can be seen as a gener-
alization of a well-studied model for packet radio networks [2,3]. It has also been used in
more recent work [3, [11]. We summarize it for independent reading,.

An instance of WGP consists of an unweighted, undirected graph G = (V| E), a sink
node s € V, a positive integer dr, and a set of data packets J = {1,2,...,m}. Each packet
J € J has an origin o; € V and a release date r; € Z,..

We assume that time is discrete; we call a time unit a round. The rounds are numbered
0,1,2,.... During each round a node can be in one of three states: sending a packet,
receiving a packet, or inactive. Node u can send a packet to node v during a round, only if
u and v are adjacent. If u sends a packet j to v in some round, then the pair (u,v) is said
to be a call from u to v. For each pair u,v € V, the distance between u and v, denoted
by d(u,v), is the length of a shortest path from u to v in G. Two calls (u,v) and (u/,v")
interfere if they occur in the same round and either d(u’,v) < dj or d(u,v") < dr; otherwise
the calls are compatible. For this reason, the parameter d; is called the interference radius.

For every packet j € J, the release date r; specifies the time at which the packet enters
the network, i.e. packet j cannot be sent before round r;. In the off-line version the entire
instance is completely known at time 0; in the on-line version information about a packet
becomes known only at its release date.

A solution for a WGP instance is a schedule of compatible calls such that all packets are
ultimately sent to the sink. Notice that while in principle each radio transmission could
broadcast the same packet to multiple destinations, in the gathering problem having more
than one copy of the same packet does not help, as it suffices to keep the one that will
arrive first at the sink. Thus, we assume that at any time there is a unique copy of each
packet. Also, in the model we consider, packets cannot be aggregated.

Given a schedule, let x§ be the unique node holding packet j at time ¢. The integer
Cj := min{t : x§ = s} is called the completion time of packet j, while F; := Cj — rj is
the flow time of packet j. In this paper we are interested in the minimization of max; Fj
(FMAX-WGP) and), Fj (FSUM-WGP). As an intermediate step or as a byproduct of
the analysis of these two problems, we also consider the minimization of max; C; (CMAX-
WcP) and of 3, C; (CsuM-WGP).

Some additional notation: we denote by §; := d(0;,s) the minimum number of calls
required for packet j to reach s. We also define v := dj + 2, which, roughly stated, is

an upper bound on the number of rounds during which a packet needs to be forwarded
before a new packet can be forwarded safely from the same origin over the same path.
The critical region is the set {v € V' | d(s,v) < |(dr — 1)/2]}, which is a region around s
in which no two nodes can receive a message in the same round. Related to this region
we define v* := |(dy + 1)/2], which is then a lower bound, because of interference, on the
average inter arrival time at s between any two messages that are released outside the
critical region.

We analyze the performance of our algorithms using the standard worst case analysis
techniques of approximation ratio analysis, as well as resource augmentation. Given a
WarP instance Z and an algorithm ALG, we define C(Z) as the cost of ALG and C*(Z)
as the cost of the optimal solution on Z. A polynomial-time algorithm is called an «-
approximation if for any instance Z we have C(Z) < a - C*(Z).

In the resource augmentation paradigm, the algorithm is allowed to use more resources
than the adversary. We consider augmentation based on speed, meaning that the algorithm
can schedule compatible calls with higher speed than an optimal algorithm. For any o > 1,
we call an algorithm a o-speed algorithm if the time used by the algorithm to schedule a
set of compatible calls is 1/ time units. Thus, the ith round occurs during time interval
[i/o,(i +1)/0). Notice that the input and, in particular, the release dates of packets, are
not affected by the value of 0. We finally call a o-speed algorithm optimal if its cost is
bounded above by the cost of an optimal unit-speed solution.

3 Inapproximability

In this section we prove inapproximability results for FMAX-WGP and FsuM-Wap. To
prove these results we consider the so-called induced matching problem. A matching M
in a graph G is an induced matching if no two edges in M are joined by an edge of G E

INDUCED BIPARTITE MATCHING (IBM)
Instance: a bipartite graph GG and an integer k.
Question: does G have an induced matching of size at least k7

The following rather straightforward relation between compatible calls in a bipartite
graph and induced matchings will be crucial in the following.

Proposition 3.1. Let G = (U,V, E) be a bipartite graph with node sets (U, V) and edge
set . Then, a set M C E is an induced matching if and only if the calls corresponding
to edges of M, directed from U to V, are all pairwise compatible, assuming dy = 1. U

A grid graph is a graph whose nodes can be represented as points of the integer grid Z2
so that two nodes are connected by an edge if and only if the Euclidean distance between
the corresponding points is at most 1. Notice that grid graphs are always bipartite.

Lemma 3.2. INDUCED BIPARTITE MATCHING is NP-hard even when restricted to grid
graphs.

Proof. Recall that a dominating set of a graph G = (V, E) is a set of nodes S C V such
that every node in V' \ S is adjacent to some node in S. Given a graph G and an integer

"Induced matchings are also known as distance-2 matchings [11].

Figure 1: The network N constructed in the proof of Theorem

k, the DOMINATING SET problem consists in determining whether G has a dominating set
of size at most k. We will use the fact that DOMINATING SET is NP-hard for grid graphs
[10]. Let mds(G) and mim(G) denote, respectively, the size of a minimum dominating set
and of a maximum induced matching of a graph G. Moreover, let S(G) denote the graph
obtained from G by subdividing every edge in two; that is, each edge of G is replaced
by a path of two edges. Then Ko and Shepherd [15] assert (without proof) that for any
graph G, mds(G) + mim(S(G)) = n where n is the number of nodes of G. From this
relationship it follows that if DOMINATING SET is NP-hard for a class of graphs G, then
INDUCED BIPARTITE MATCHING is NP-hard for the class {S(G) : G € G}. This implies
that INDUCED BIPARTITE MATCHING is NP-hard for grid graphs, because S(G) is a grid
graph whenever G is a grid graph.

For completeness, we also include a proof of Ko and Shepherd’s assertion. Let D C
V(G) be a minimum dominating set for G and let D’ = V(G)\ D. Since D is a dominating
set, every node v € D’ has at least a neighbor in D; call it dom(v). Since (v,dom(v)) is an
edge in G, there is a corresponding node in S(G); call this node e(v). We now claim that
the edge set M := {(v,e(v)) : v € D'} is an induced matching in S(G). If this is not the
case, then there exist v1,v2 € D’ such that (vi,e(vy)) € M, (vg,e(ve)) € M, and (v1, e(v2))
is an edge of S(G). But this implies that dom(v2) = v1, contradicting the assumption that
vy € D’. This shows that mim(S(G)) > |[M| =n — |D| = n — mds(G).

In the other direction, let M be a maximum induced matching in S(G). Let D be the
set of nodes of G to which M is not incident; so |D| = n — |M|. Let v be any node not
in D; since M is incident to v, v has one mate in M, call it ¢/(v), that has degree 2 in
S(G). Then the other neighbor of €'(v) in S(G) (other than v) cannot have an edge of M
incident to it and thus must belong to D. This shows that D must be a dominating set
and so mds(G) < |D| =n — |M| =n — mim(G). O

Theorem 3.3. Unless P = NP, no polynomial-time algorithm can approximate FMAX-
WGP or FSUM-WGP within a ratio better than Q(m!'=¢) for any € € (0,1).

Proof. Let (G, k) be an instance of IBM, with G = (U, V, E) a grid graph. Without loss
of generality we assume k > 1. We construct a 4-layer network N with a unique source
o (first layer), a clique on U and a clique on V' (middle layers), and a sink s (last layer).
Source o is adjacent to each node in U, and s to each node in V. The edges between U
and V' are the same as in G (see Figure[ll). We set d; = 1.

The WcP instance consists of m packets with origin o, where m will be specified later.
They are divided into m/k groups of size k. Each packet in the h-th group has release
date (k+ 1)h, h=0,...,m/k — 1. Rounds (k + 1)h till (k+1)(h + 1) — 1 together are a
phase.

We prove that if G has an induced matching of size k, there is a gathering schedule
in NV such that every message has flow time at most 2k + 1, while if G has no induced
matching of size more than k£ — 1, then every schedule will have large maximum and total
flow time.

Assume G has an induced matching M of size k, say (u;,v;), i = 0...k — 1. Then
consider the following gathering schedule. In each phase, the k new packets at o are
transmitted, necessarily one by one, to layer U while old packets at layer V (if any) are
absorbed at the sink; then, in a single round, the k new packets move from U to V' via the
matching edges. More precisely, each phase can be scheduled in k + 1 rounds as follows:

1. for i =0,...,k — 1 execute in the ith round the two calls (o0,u;) and (V; 1 mod k, 9);
2. in the kth round, execute simultaneously all the calls (u;,v;), 1 =0,...,k— 1.

The maximum flow time of the schedule is 2k + 1, as a packet released in phase h reaches
the sink before the end of phase h+1. This implies that the total flow time of this schedule
is bounded by (2k + 1)m.

In the other direction, assume that each induced matching of G is of size at most k—1.
By Proposition B, at most £ — 1 calls can be scheduled in any round from layer U to
layer V. We ignore potential interference between calls from o to U and calls from V to s;
doing so may only decrease the cost of a schedule. As a consequence, we can assume that
each packet follows a shortest path from o to s. Notice however that, due to the cliques
on the layers U and V, no call from U to V is compatible with a call from o to U, or with
a call from V to s.

Let m, and my be the number of packets at o and U, respectively, at the beginning of
a given phase. We associate to the phase a potential value ¥ := km, + m7, and we show
that at the end of the phase the potential must have increased by at least one unit. Let
co and cy denote the number of calls from o to U and from U to V, respectively, during
the phase. Since a phase consists of k£ 4+ 1 rounds, and in each round at most k — 1 calls
are scheduled from U to V, we have ¢, + cy/(k — 1) < k + 1, or, equivalently,

(k= 1)co +co < (k= 1)(k+1). (1)

If m,, my; are the number of packets at o and U at the beginning of the next phase, and
Y' = km], + my; is the new potential, we have

m'O = mot+tk—c
my = my+ce—cy
W= = k(m—my) +mpy —my

= k(k—co)+co—cu
= kQ—(k—l)CO—CU
k2 —(k—1)(k+1)
=1

Y

where the inequality uses ().

Thus, consider the situation after ¥ := m/k phases. The potential has become at
least U. By definition of the potential, this implies that at least W/k = m/k? packets
reside at either o or U; in particular, they have been released but not yet absorbed at the

sink. Since the sink cannot receive more than one packet per round, this clearly implies a
maximum flow time of at least m/k?, and a total flow time of at least m?/4k*.

In the case of FMAX-WGP, we now set m = @(k%) The maximum flow time of any
schedule is thus at least m/k? = @(ml_%g). Comparison to the 2k +1 bound in case there
exists an induced matching of size k implies now the inapproximability bound of Q(m!~¢).

Similarly, in the case of FSUM-WGP we can set m = @(k‘%) The total flow time of
any schedule is in this case at least m?/4k* = @(mzfge) and comparison to the (2k+1)m
bound in case there exists an induced matching of size k implies the inapproximability

bound of Q(m!~¢). O

In cases where the packets are routed via shortest paths to the sink — a behavior
common to many gathering protocols — the result of Theorem can be strengthened
further to an Q(m) lower bound, the proof of which we omit (cf. [@]).

The reader might wonder if the inapproximability result of Theorem also holds
when the underlying network has to satisfy geometric constraints. The answer is yes, as
we argue in the following.

A (3-dimensional) unit ball graph is a graph whose nodes can be represented as points
in R3 so that two nodes are connected by an edge if and only if the Euclidean distance
between the corresponding points is at most 1. A quasi-unit disk graph with threshold
p € (0,1] is a graph whose nodes can be represented as points in R? so that two nodes
are connected by an edge whenever the distance between the corresponding points is at
most p, and are not connected by an edge whenever the distance is larger than 1; when
the distance is between p and 1, the nodes may or may not be adjacent. Both unit ball
graphs and quasi-unit disk graphs are well-studied models for wireless networks [26].

Theorem 3.4. Theorem [T:3 holds even when FMAX-WGP or FSUM-WGP are restricted
to unit ball graphs.

Proof. We will show that the graph IV which is part of the input for FMAX-WGaGP or FsuMm-
WGP (the one depicted in Figure[ll) is a unit ball graph; that is, it can be embedded into
R?3 with the Euclidean metric. To this end, let G = (U, V, E) be the (bipartite) grid graph
that is the input to the reduction. Recall that the network N constructed in the proof of
Theorem B3 (Figure [) consists of a copy of G plus two nodes — the source o and the sink
s — as well as the edges that connect {o} UU as a clique and {s} UV as clique.

Let fu, fy : UUV — Z be the embedding of the grid graph G into Z2. Notice that
because G is a grid graph, the bipartition of G can be chosen such that f,(w) + f,(w) is
odd when w € U and even when w € V. Also, let

Ai=max /(o) = L)) + () - fy(w)2,
or in other words, let A be the maximum Euclidean distance between two nodes in the
bidimensional embedding of G.

In the following we assume that two nodes are connected if and only if they are at most
at distance v A2 + 1, instead of unit distance, in the embedding; this is clearly equivalent,
as we can always scale coordinates. We use the following embedding:

e any u € U is mapped to (fz(u), fy(u), A);

(a) (b)

Figure 2: a grid graph G; @ the three-dimensional embedding of the resulting network
N as a unit ball graph (the cliques on U and V are not shown)

e any v € V is mapped to (fz(v), fy(v),0);

e the source o is mapped to (f5(v), fy(v), A+1), where v is an arbitrarily chosen node
of UUV;

e the sink s is mapped to (fz(v), fy(v), —1), where v is an arbitrarily chosen node of
Uuv.

See Figure @ for an illustration of the embedding (the edges of the cliques on U and V
have not been drawn). Observe that any two nodes that are adjacent in G are at distance
exactly vA? + 1 in the embedding. On the other hand, nodes on the same side of the
bipartition of G are at distance at most A in the embedding, and so they form a clique.
We leave it to the reader to verify that the resulting edges are in fact exactly the edges of
N. O

Theorem 3.5. Theorem [3:3 holds even when FMAX-WGP or FSUM-WGP are restricted
to quasi-unit disk graphs (for any threshold p < 1).

Proof. We have to show that the graph N can be represented as a quasi-unit disk graph
for any p < 1. The embedding of N in R? is simple: we map any node in U U {0} to
point (0,0) and any node in V U {s} to ((p+ 1)/2,0). All the nodes in U U {0} will then
form a clique, as they need to; similarly for nodes in V' U {s}. Because p < (p+1)/2 < 1,
edges between U U {o} and V U {s} are arbitrary, and so the corresponding edges of N
can certainly be represented. O

An even more restrictive model for wireless networks is that of unit disk graphs, which
is the restriction of unit ball graphs to points in R?, or, equivalently, the restriction of
quasi-unit disk graphs to the case where the threshold p is exactly 1. We leave open
the problem of proving hardness results for FMAX-WaP and FSUM-WGP on this class of
graphs.

10

4 Approximation Algorithms for Maximum Flow Time

In this section we present and analyze a FIFO algorithm for WGP. First, we show that
FIFO is a 5-approximation for CMAX-WGP. Note that the best approximation algorithm
known for CMAX-WGP is 4-approximate [6]; the main interest in analyzing FIFO is that
we use it as a subroutine in an algorithm for FMAX-WGP which uses resource augmenta-
tion. Next, we prove that this algorithm with resource augmentation is a o-speed optimal
algorithm, for any o > 5, for both CMAX-WGP and FMAX-WGP.

4.1 An approximation algorithm for Cmax-Wap

In this section we extend the results from [f] to show that a FIFO-type algorithm achieves
a constant approximation for CMAX-WGP. This fact, together with the specific properties
of the algorithm, will then be used in Section to derive bounds for the minimization
of maximum flow time.

The algorithm can be seen a special case of a general scheme for which it is possible
to prove an upper bound on the completion time [6]. In this scheme, called PRIORITY
GREEDY, each packet is assigned a unique priority based on some algorithm-specific rules.
Then, in each round, packets are considered in order of decreasing priority and are sent
towards the sink as long as there is no interference with higher priority packets (Algorithm

m).

Algorithm 1 PrRIORITY GREEDY
Let 1,...,m be the packets in order of decreasing priority
fort=0,1,2,... do
for j =1 tomdo
In round ¢, send j (if available) to the next hop along an arbitrary shortest path
from mz to the sink, unless this creates interference with a packet j’ with 7/ < j
end for
end for

We first derive upper bounds on the completion time C} of each packet j in a PRIORITY
GREEDY solution.

We say that packet j is blocked in round ¢ if ¢ > r; but j is not sent in round ¢. Note
that in a PRIORITY GREEDY algorithm a packet can only be blocked due to interference
with a higher priority packet. We define the following blocking relation on the packets of
a PRIORITY GREEDY schedule: k < j if, in the last round ¢ in which j is blocked, k is a
packet that is sent in that round, satisfies d(xz,x};) < dy + 1, and has a priority higher
than j. Such a k must exist as long as j has been blocked at least once. In case there are
multiple candidates for k, we break ties arbitrarily, so that there exists at most one k such
that k < j.

The blocking relation induces a directed graph F' = (J, A) on the packet set J with
an arc (k, j) for each k,j € J such that k < j. Observe that, for any PRIORITY GREEDY
schedule, F' is a directed forest and the root of each tree of F'is a packet which is never
blocked. For each j let T'(j) € F be the tree of F containing j, b(j) € J be the root
of T'(j), and P(j) the set of packets along the path in F' from b(j) to j. Finally, define
mj = min{d;,7*} and R; := rj + §; — m; (recall from Section B that J; is the initial

11

distance of packet j to the sink, while v* = |(d; + 1)/2] gives the minimum number of
rounds during which a packet initially released outside the critical region will necessarily
impede the transmission of any other packet inside the region).

We make use of an upper bound on the completion time of each packet and a lower
bound on the maximum completion time of subsets of packets, both of which were derived
for the first time in [6]. We include short proofs for the sake of completeness.

The intuition behind the upper bound is that packets can only interfere with each
other if they are within distance dy + 1, so if a packet is blocked, its distance to the sink is
almost the same as the blocking packet. Since the blocking packet has a higher priority, if
we already know by induction that it has small completion time — and thus short distance
to the sink at the time the blocking occurred — then the completion time of the blocked
packet cannot be much larger.

Lemma 4.1 ([6]). For each packet j € J, Cj < Ry(j) + 5 > e pj) Ti-

Proof. Consider any packet j. The proof is by induction on the height of T'(j). If the
height of T'(j) is zero, then j is never blocked, b(j) equals j, and the lemma is easily seen
to hold. Otherwise, let ¢t be the last round during which j is blocked by some packet k,
k =< j, so that d(z},2}) < dr +1. Observe that d(zf,s) < Ck — t, otherwise k does not
reach the sink by time C%. From round ¢ 4 1 on, j traverses an edge each round, reaching
the sink at time

Cj < t+1+4d(a},x}) + d(zj, s)
<t+14di+1+Cp—t
:Ck—l—'y.

In addition, C; < C} + 9;, since j is never at distance larger than J; from the sink, and
is never blocked from time Cj, on. Thus C; < Cy + min{d;,v} < Cy + (v/7*)7; and the
lemma follows by applying the induction hypothesis to Cj. O

The lower bound follows easily from the fact that the critical region cannot be used
simultaneously for different transmissions.

Lemma 4.2 ([6]). Let S C J be a nonempty set of packets, and let C; denote the
completion time of packet i in some feasible schedule. Then there is k € S such that
max;es Cf > Ry + Y . c g 7.

Proof. Any feasible solution to WGP gives a feasible solution to a preemptive single ma-
chine scheduling problem, in which the release time of job j (corresponding to packet j) is
R; and its processing time is 7;. Ignoring interference outside the critical region can only
decrease the cost of a solution. The lemma now follows by noticing that, in the scheduling
problem, the makespan must be at least the release date of some job k, plus the sum of
the processing times of all the jobs. O

The algorithm we analyze is a special case of the PRIORITY GREEDY scheme, in which
higher priority is given to packets with earlier release dates (ties broken arbitrarily). In
other words, we analyze Algorithm [l under the assumption that j has higher priority than
k if and only if either 7; < 7y, or r; = 1, and j < k. We call the resulting algorithm FIFO
after the well-known First In, First Out policy in scheduling and service systems, though
in our case packets do not necessarily arrive at the sink in order of their priority.

12

Theorem 4.3. FIFO is a (1 + %)—appmm’matz’on algorithm for CMAX-WaP.

Proof. Let j be the packet having maximum Cj, and consider 7'(j), the tree containing
j in the forest induced by the blocking relation. With some abuse of notation, in the
following we also regard T'(j) as a set of packets (the nodes of T'(j)). We can now apply
Lemma B2 with S = T'(j) to obtain

max C; > ry + 0 + 0 (2)
i€1(j) ;m Z
ik

where k is some packet in T'(j). On the other hand, by using Lemma ET]

¢; < >+7— >
i€P(j)

v
= Ty O — T T D, T
i€P(5)

= ()+—mln{5kﬁ}+— Z 7Tz+6b()_77b(j)

i€P(7)
i#k

Vl<7"k+5k+ > 7Tz>+5b() 3)

i€T(4)
itk

IN

where we used the fact that, by definition of FIFO, we have 73(;y < 7. Equations () and
@), together with the observation that max;er(j) Cf > dy(;), prove the theorem. O
It is easy to verify that 2 < ~v/4* <4 for all d;, and that v/7* = 3 when d; = 1.

Corollary 4.4. FIFO is a 5-approximation algorithm for CMAX-WapP. When dy = 1,
FIFO is a 4-approximation for CMAX-WGP.

The bound on the approximation ratio of FIFO is slightly worse than that of a PRIOR-
ITY GREEDY algorithm where priorities are based on R;, which is a y/y*-approximation
(see |16, Theorem 5.7, p.77] for a construction showing that FIFO is strictly worse than a
~v/7v*-approximation). As mentioned before, the interest of this result is its importance in
proving good bounds for the minimization of the maximum flow time, where we will use
FIFO as a subroutine of our algorithm.

4.2 A resource augmentation bound for FMAX-WGP

Motivated by the hardness result of Section B, we study algorithms under resource aug-
mentation. In this context we study o-speed algorithms, in which data packets are sent
at a speed that is o times faster than the solution we compare them to. In particular,
consider the following algorithm (Algorithm [).

The schedule constructed by o-FIFO is a feasible o-speed solution to the original
problem because of step 1. We will show that ¢-FIFO is optimal for both CMAX-WGP
and FMAX-WGp, if 0 > v/v* 4+ 1. The following lemma is crucial.

13

Algorithm 2 o-FIFO

1. Create a new instance Z' by multiplying release dates: 7";
2. Run FIFO on Z’;

3. Speed up the schedule thus obtained by a factor of o.

=0Ty,

Lemma 4.5. If 0-FIFO is a o-speed optimal algorithm for CMAX-WGP, then it is also
a o-speed optimal algorithm for FMAX-WGP.

Proof. Let C7 and C7 be the completion time of data packet j in an optimal solution and
in a o-FIFO solution, respectively, and let F]’»k and FY be the flow time of data packet j in
these solutions. Suppose o-FIFO is a o-speed optimal algorithm for CMAX-WGP, hence
we have max;¢ s C}’ < maxjey C]’»‘ . We show that this inequality implies, for any time t,

max C7 < max Cf. 4)

jeJ,rj=t jeJ,ri<t
We prove inequality (@) by contradiction. Suppose it is false, then there is an instance of
minimum size (number of data packets) for which it is false. Also, let ¢y be the first round
in such an instance for which it is false. By definition, o-FIFO schedules each data packet
J definitively in round r;; no data packet is rescheduled strictly after its release time. ILe.,
the algorithm determines the completion time C'j“7 in round r;. Thus, if inequality @) were
false, then
¢y > max C7, (5)
]EJ T <t0
for some data packet 7 with r; = ¢y, and because Z is a minimum size instance the instance
does not contain any data packets released after round ¢y. But then (B) would contradict
maxjcj Cjo < max;cj C]* .
Using () we have

max FY = max| max Cf —t) <max| max Cj—t
jeJ t JEJ, Ti=t i jed,ri<t

< max max F]’»k :maxF;.
t jeJ,r;<t jeJ

O

Theorem 4.6. For o > v/v*+1, o-FIFO is a o-speed optimal algorithm for both CMAX-
WaP and FMAX-WGP.

Proof. By Lemma 0l it suffices to prove that o-FIFO is a o-speed optimal algorithm for
CMAX-WGP.

Let C; be the completion time of any data packet j in the o-FIFO solution on instance
Z, and let CJ'- be the completion time of j in the FIFO solution on the instance Z’ (see the
algorithm description). By construction C; = C]’~ /o. Then the upper bound of Lemma BTl
implies that C? < Rb(]) (0 —1) > sep(j) ™i» where Rg(j) = orp(j) + Op(j) — Te(j)- Hence,

o—1
Cj=Cijo < Rb(] Z T <)t 51,(] Z . (6)
i€P(j) i€P(j)

14

Since in any solution packet b(j) has to reach the sink, we clearly have

C; = Cfy = o) + Ougy)- 7
e CF 2 Gy 2) + 9b) (7)

Also, by Lemma B2 for some k € P(j),

m]__;;xxC >Rk+2w12rk+277127“b(]+z7h, (8)
€P(j) 1€P(j5) 1€P(5) 1€P(5)

where the last inequality follows from b(j) having lowest release time in P(j), by definition
of FIFO. Combining (@), (@) and (&), we obtain

max Cf = = max C] + max Cf
ieP(j) 0 i€P(j) o i€P(j)
1 oc—1
= ;(Tb(j)”b(j)) Tt (Tb(j) + > ”i)

1€P(j)

-1
= Tu(j) + 5b J Z T > C
1€P(j)

0

We use again that 2 < v/~* < 4 for all dy, and that v/7* = 3 when d; = 1 to obtain
the main result of this section.

Corollary 4.7. 5-FIFO is a 5-speed optimal algorithm for CMAX-WGP and FMAX-WGP.
When df = 1, 4-FIFO is a 4-speed optimal algorithm for CMAX-WGP and FMAX-WGP.

4.3 FIFO without resource augmentation

We show here that, modulo some constant factor, FIFO is best possible among algorithms
that use shortest paths. As we have seen in Section Bl FMAX-WGP is extremely hard to
approximate without resource augmentation: no bound better than Q(m!~¢) is possible.
Moreover, algorithms that route along shortest paths cannot do better than Q(m) (recall
the remark after Theorem B3]).

Theorem 4.8. FIFO is an O(m)-approzimation for FMAX-WGP.

Proof. Since every packet must be gathered at the sink, clearly max; F]’F > max;d; >
max; 7;. Now let j be the packet incurring the maximum flow time in the schedule
obtained by FIFO. Since r; > ry(;) (by definition of FIFO), we have

Ry = 15 = 7o(j) T Ov(g) — Toj) — 15 < () (9)

15

Using Lemma EJl and [@)), we get

Fj:Cj—’l“j < Rb(j)—’l“j—i—l* T
v 1€P(4)
= 517(])"'1* Z i
1€P(5)
< max F} + - |P(j)| - max F}
i i

5 Approximation Algorithms for Total Flow Time

In this section we study FsuM-Wacp. We first observe that o-FIFO is a not a o-speed
optimal algorithm for FSUM-WGP, for any constant o.

Proposition 5.1. There is no o > 1 such that o-FIFO is a o-speed optimal algorithm
for FsuM-WaGP.

Proof. Consider an instance where the network is a path on m + 1 nodes, with the sink
at one end, and d;y = m + 1. There are m packets. Packet 1 has a release date of 0 and
is released at distance m from the sink. Packet j, for j = 2,...,m, has a release date of
j—1 and is released at distance 1 from the sink. If packets are processed one at a time, in
the order 2,3,...,m,1, the total flow time is O(m). On the other hand, because o-FIFO
gives priority to packet 1, which is completed at time m/o, none of the other packets
will be completed before time m/o. In particular, packets 2,3, ..., |m/20| will each have
a flow time of at least m /20, implying a total flow time of Q(m?/a?) for o-FIFO. The
approximation ratio is thus at least (m/o?), which can be made arbitrarily large for any
fixed o (in fact, for any o = o(m'/?)). O

We introduce an algorithm that we call INTERLEAVED SRPT and prove that a
constant-factor speed augmentation is enough to enable this algorithm to outperform the
optimal total flow time of the original instance. The algorithm is based on a well-known
scheduling algorithm, the Shortest Remaining Processing Time rule (SRPT) [27]. We
first describe SRPT in the context of WGP (Algorithm).

Every iteration k in the algorithm corresponds to a round of the schedule. We notice
that this algorithm is a dynamic-priority algorithm, in the sense that the ordering in which
packets are scheduled can change from round to round. As such, it cannot be cast in the
priority-based framework presented in the previous section.

We also notice that, if §; < +* for each packet j € J (that is, when all packets are
released inside the critical region), then WGP reduces to a single machine scheduling prob-
lem with preemption; compare with the proof of Lemma The problem of minimizing
total flow time is in that case equivalent to the single machine scheduling problem with the
same objective, allowing preemption and with jobs having release times: 1|r;, pmtn|) i
in terms of classical scheduling notation [13]. Schrage [27] showed that SRPT solves the

16

Algorithm 3 SRPT
for k=0,1,2,... do
At time t = k/o, let 1,...,m’ be the available packets in order of non-decreasing
distance to the sink (that is, d(z},s) < d(z},s) < ... <d(a!,,s))
for j =1 tom' do
Send j to the next hop along an arbitrary shortest path from xz to the sink, unless
this creates interference with a packet j’ with 5 < j
end for
end for

latter problem to optimality. In fact he proved it for the problem of minimizing total
completion times, which, if solved to optimality, is equivalent to that of minimizing total
flow time.

Consider a schedule generated by o-speed SRPT, that is, every round is executed in
time 1/0. It will be convenient to refer to round k, corresponding to the time interval
[k/o,(k+1)/0), as “round k/o”.

We denote the ith packet to arrive at the sink in this schedule as p(i), for 1 <i < m.
We define a component as a maximal set T of packets with the following properties:

1. There is an index a such that T'= {p(a),p(a + 1),...,p(a+ |T| = 1)};
2. Foralli=1,2,...,|T| -1, Cp(a+i) < Cp(aJri,l) +7/0o;

That is, a component is a maximal set of packets arriving subsequently at the sink, each
within time /o of the previous packet. It follows from the definition that the set J of all
packets can be partitioned into components 17, ..., Ty, for some /.

Lemma 5.2. For any component T, minjer Cj = minjer(r; + 0;/0).

Proof. Consider the partition of the packet set J into components 77, ...,7Ty. The com-
ponents are ordered so that maxjer, C; < minger, , Cp for each i; by definition of a
component such an ordering exists.

Let S(i) = U, T, for 1 < i < . We define ¢ := minjcg(;)(r; + 0;/0), the carliest
possible completion time of any packet in (i), and ¢; := max{r; : j € S(i) and r;40;/0 =
t;}, the maximum release date of a packet in S(i) with earliest possible completion time
t;. Consider the following set of packets, for any ¢ with ¢, <t <t;:

M;(t) = {j € S(i) : 7j <t < Cj and d(zf,s) < d(xf, s) for all k € 5(i)},

That is, M;(t) is the set of packets in S(7) that have been released but not completed, and

that have minimum distance from the sink among the packets in S(i). Note that M;(t) is

nonempty for t € [t;,;], because no packet in S(i) arrives at the sink before round ;.
The proof of the lemma relies on the following claim.

Claim. For i =1,2,...,¢ and for any round t € [t;,t;] there exists j € M;(t) such that
d(z,s) < a(t; —t).

17

Suppose the claim holds. Then taking ¢ = ¢; implies that for each i = 1,...,¢, there
is a packet j € M;(#;) which arrives at the sink in round #; = mingeg(;) 7% + /0. As a
consequence j € T;, and t; = rj + d;/o, which proves the lemma.

Proof of Claim. The claim trivially holds for ¢ = t;, because some packet j € S(i) with
earliest possible arrival time ¢; is released in round ¢;, hence zi—l—d(az?, s)/o =rj+0;/0 =1;.

Suppose that during each round ¢ € [t;,¢;] some packet in M;(t) is sent towards the
sink. Then the inequality of the claim follows, as it is true when ¢ = ¢;, and both sides
decrease by one unit after ¢ is increased by 1/0 (that is, after every round).

Otherwise, there must be a latest round ¢’ € [¢;, ;] in which no packet in M; (') is sent
towards the sink. Then by definition of SRPT there must be a packet k € J\ S(i) which
is sent, and a packet j € M;(t') for which d(x?,xg) < d; + 1. Since j is not sent during

round t’; we also have d(x?H/U,x}Z) < dr + 1. Additionally, d(z%, s)/o < C), — t' because
otherwise k could not reach the sink by time Cj. Now for each round t € [t' + 1/0,t;] a
packet in M;(t) is sent. In particular, there must be a packet from the set U,y 41 /57,1 Mi(t),
call it 5/, that arrives at the sink no later than j would arrive if j were always sent from

round ¢’ + 1/0 onwards. We have

Cy < (¢ +1/0) + (A7, af) + d(af,5)) /o < Ch+ (dr +2)/o = Ci+ 7/
That is, packet j/ € S(i) arrives at most /o time units after packet k € J \ S(¢), which
contradicts the fact that 5/ and k are in different components. Thus this case never occurs
and the claim holds. O

We now describe INTERLEAVED SRPT. The algorithm partitions the set of packets
J in two subsets, J" := {j € J :d; < v*} and JOU = {j € J : §; > +v*}. The two
subsets are scheduled in an interleaved fashion using SRPT. The pseudocode is given as
Algorithm @l

Algorithm 4 INTERLEAVED SRPT
Inizialization: c:=1
loop
if ¢ # 0 (mod 5) then
execute one round of SRPT on the set JOUt
else
execute one round of SRPT on the set J*
end if
c:=c+1
end loop

In the performance analysis of INTERLEAVED SRPT we use the following lower bound
on the sum of optimal completion times of subsets of jobs in J°%, which is proved similarly
to Lemma

18

Lemma 5.3. Let S C JoU, If C75 denotes the completion time of packet j in any feasible
schedule, we have

1S]—1
Y Cr= Y (Cs+iv)
jes =0

where Cg := minjegrj + 0;.

Proof. Because all packets in S are at distance at least v* from the sink, each of them
needs to be transmitted in the critical region for 4* (not necessarily consecutive) rounds,
thus blocking the transmission of any other packet inside the region. Also, the earliest
packet in S to enter the critical region cannot enter it before time Cg — v*, so the ith
packet to arrive at the sink cannot reach it before time Cg — v* + (i + 1)y*. Thus, the
total completion time of packets in S is at least

1S|—1 1S|—1
5] (Cs =7)+ > _ i+ 1)y = > (Cs+ir*). O
=0 =0

We denote the o-speed version of INTERLEAVED SRPT as o-ISRPT.
Theorem 5.4. For o > v/v* 4+ 1, o-ISRPT is optimal for FSuM-WGp.

Proof. Let C; be the completion time of packet j in a o-speed ISRPT schedule, and
let C7 be the completion time of packet j in any feasible (possibly optimal) unit
speed schedule. We prove the theorem by showing that Zje gnCj < Zje gin C7 and
ZjGJO‘“ Cj < ZJGJO‘“ C;')

Consider first the packets in J™. Since we are executing ISRPT at speed o, and
the set J" is considered once every o iterations, we have that during every time interval
[t,t +1), t = 0,1,..., a round of SRPT is executed on the set J. So the completion
times of the packets in J™™ are not worse than those that would be obtained by running
SRPT with unit speed on J™ alone. On the other hand, inside the critical region the
gathering problem is nothing else than the scheduling problem 1|r;, pmtn| > ; C, meaning
that SRPT is optimal. It follows that >, ;in Cj < > c jin CF.

Consider now the packets in J°". Because in the first four out of every five rounds
of o-ISRPT this set is scheduled using SRPT, the completion time of each packet in
JOU is not larger than the completion time of the same packet in a (0 — 1)-speed SRPT
(non-interleaved) schedule of Jout:

C; < Cj for all j € JO™, (10)
where Uj is the completion time of j in a (¢ — 1)-speed SRPT schedule of J°U. Consider
any component 71" in this latter schedule. By Lemma and the definition of component

1

ZEJS Z (CT+O__1i’y). (11)

JET 0<i<|T]|

On the other hand by Lemma B3],

dcr= > (Cr+iv). (12)

jer 0<i<|T|

19

For any o > /7" + 1, combining (), () and (Z) implies that > ;. C; < > ..+ C}.
The result follows after summing over all the components, and subtracting jes i from
both sides. O

As in the previous section, we use that 2 < v/4* < 4 for all d;, and that v/~4* = 3
when d;y = 1, to obtain the main result of this section.

Corollary 5.5. 5-ISRPT is a 5-speed optimal algorithm for FSUM-WGP. When df =1,
3-SRPT is a 3-speed optimal algorithm for FSUM-WGP.

Proof. When d; = 1, one has v* = 1 and the set J™™ is empty, so there is no need for
interleaving and it suffices to run SRPT with speed v/~* < 3. O

As a further corollary of the preceding analysis, we obtain a bound on the approxi-
mation ratio of WGP when the objective is the minimization of the sum of completion
times.

Corollary 5.6. There is a 5-approrimation algorithm for CSUM-WGP. When djf = 1,
there is a 3-approximation algorithm for CSUM-WGP.

Proof. Notice that the analysis of the above theorem also yields that

> G265

jeJ jeJ

where Cj is the completion time of packet j in the schedule generated by 5-ISRPT. We can
now simulate the schedule generated by 5-ISRPT by running it at a lower speed: whatever
5-ISRPT does at time ¢, a unit-speed algorithm can do at time 5¢. The schedule can be
constructed online and clearly it respects the release dates. If C']’~ is the completion time
of packet j in the new schedule, we obtain

Y=Y 5C;<5y C;

jeM jeEM jEM

A similar analysis shows a 3-approximation when dy = 1. U

6 Conclusions

We considered the wireless gathering problem with the objectives of minimizing the max-
imum flow time (FMAX-WGP) and total flow time of data packets (Fsum-Wap). We
showed that the simple on-line algorithm FIFO and a slightly adapted version of SRPT
have favorable behavior, although the problems are both extremely hard to approximate
in general, even on geometric graphs. For FMAX-WGP, augmenting the transmission rate
by a factor of 5 allows FIFO to achieve a cost bounded by that of an optimal solution. A
similar result holds for FSumM-WGaPp, if we resort to the ISRPT algorithm.

For both problems, it is an open question whether optimality can be achieved by
augmenting the transmission rate by a factor smaller than 5. With respect to Fsum-
WaP, we have not been able to prove a resource augmentation result for SRPT, but only

20

for the modified algorithm with interleaving. It would be interesting to show a similar
result for SRPT.

Another interesting set of questions concerns resource augmentation by allowing the
algorithms to use extra frequencies, meaning that more than several data packets can
be sent simultaneously using different channels. It would be interesting to compare the
relative power of increasing the channels with that of increasing the speed.

Another open problem of a more theoretical nature is to settle the complexity of
FMAX-WGP and FSUM-WGP when restricted to unit disk graphs. We conjecture that both
problems remain NP-hard in that case, but even then, it would be interesting to determine
whether the unit disk graph assumption allows for better approximation guarantees.

For the minimization of the completion time (CMAX-WGP), the existence of a poly-
nomial time approximation scheme is still open. It is known that no algorithm that uses
shortest paths to route the data packets to the sink can give an improvement over the cur-
rently best approximation ratio. It appears challenging to design and analyze congestion
avoiding algorithms with better ratios.

Finally, the gathering problem can be generalized to an end-to-end problem, where
packets have different origins and destinations. We observe that the lower bounds used
in our proofs on the cost of an optimal solution do not extend to this setting, because in
that case multiple packets can reach their destinations in a single round. Extending our
positive results to this setting is thus an interesting open question.

Acknowledgments

We thank the anonymous referees for several suggestions that helped us improve the
presentation of the paper, as well as its content.

References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor
networks: a survey. Computer Networks, 38(4):393-422, 2002.

[2] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the time-complexity of broadcast in
multi-hop radio networks: an exponential gap between determinism and randomiza-
tion. Journal of Computer and Systems Sciences, 45(1):104-126, 1992.

[3] R. Bar-Yehuda, A. Israeli, and A. Itai. Multiple communication in multihop radio
networks. SIAM Journal on Computing, 22(4):875-887, 1993.

[4] M. A. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch metrics for
scheduling continuous job streams. In Proc. 9th Symp. on Discrete Algorithms, pages
270-279, 1998.

[5] J.-C. Bermond, J. Galtier, R. Klasing, N. Morales, and S. Pérennes. Hardness and
approximation of gathering in static radio networks. Parallel Processing Letters, 16
(2):165-183, 2006.

21

[6]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

V. Bonifaci, P. Korteweg, A. Marchetti-Spaccamela, and L. Stougie. An approxima-
tion algorithm for the wireless gathering problem. Operations Research Letters, 36
(5):605-608, 2008. doi: 10.1016/j.0r].2008.06.001.

A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge, 1998.

H.-L. Chan, T. W. Lam, and K.-S. Liu. Extra unit-speed machines are almost as
powerful as speedy machines for competitive flow time scheduling. In Proc. 17th
Symp. on Discrete Algorithms, pages 334-343, 2006.

C. Chekuri, A. Goel, S. Khanna, and A. Kumar. Multi-processor scheduling to min-
imize flow time with epsilon resource augmentation. In Proc. 36th Symp. on Theory
of Computing, pages 363-372, 2004.

B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Mathe-
matics, 86(1-3):165-177, 1990.

C. Florens, M. Franceschetti, and R. J. McEliece. Lower bounds on data collection

time in sensory networks. IEEE Journal on Selected Areas in Communications, 22:
1110- 1120, 2004.

L. Gargano and A. A. Rescigno. Optimally fast data gathering in sensor networks. In
Proc. 31st Symp. on Mathematical Foundations of Computer Science, pages 399-411,
2006.

R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. Ann. Dis-
crete Math., 5:287-326, 1979.

B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of
the ACM, 47(4):617-643, 2000.

C. W. Ko and F. B. Shepherd. Bipartite domination and simultaneous matroid covers.
SIAM Journal on Discrete Mathematics, 16(4):517-523, 2003.

P. Korteweg. Online gathering algorithms for wireless networks. PhD thesis, Tech-
nische Universiteit Eindhoven, 2008.

V. S. Anil Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan. End-to-end
packet-scheduling in wireless ad-hoc networks. In J. I. Munro, editor, Proc. 15th
Symp. on Discrete Algorithms, pages 1021-1030, 2004.

V. S. Anil Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan. Algorithmic
aspects of capacity in wireless networks. In Measurement and Modeling of Computer
Systems, pages 133-144, 2005.

S. Leonardi and D. Raz. Approximating total flow time on parallel machines. Journal
of Computer and Systems Sciences, 73(6):875-891, 2007.

J. Y.-T. Leung, editor. Handbook of Scheduling. CRC Press, Boca Raton, USA, 2004.

22

[21]

[22]

[23]

[24]

[25]

[26]

[27]

N. Linial. Locality in distributed graph algorithms. SIAM Journal on Computing, 21
(1):193-201, 1992.

J. McCullough and E. Torng. SRPT optimally utilizes faster machines to minimize
flow time. In J. I. Munro, editor, Proc. 15th Symp. on Discrete Algorithms, pages
350-358, 2004.

K. Pahlavan and A. H. Levesque. Wireless information networks. Wiley, New York,
1995.

A. Pelc. Broadcasting in radio networks. In Handbook of Wireless Networks and
Mobile Computing, pages 509-528. Wiley and Sons, 2002.

S. Ramanathan and E. L. Lloyd. Scheduling algorithms for multihop radio networks.
IEEE/ACM Transactions on Networking, 1(2):166-177, 1993.

S. Schmid and R. Wattenhofer. Algorithmic models for sensor networks. In Proc.
20th Int. Parallel and Distributed Processing Symp., 2006.

L. Schrage. A proof of the optimality of the shortest remaining processing time
discipline. Operations Research, 16(3):687—690, 1968.

23

	Introduction
	Mathematical preliminaries
	Inapproximability
	Approximation Algorithms for Maximum Flow Time
	An approximation algorithm for Cmax-Wgp
	A resource augmentation bound for Fmax-Wgp
	FIFO without resource augmentation

	Approximation Algorithms for Total Flow Time
	Conclusions

