Chapter 4

Complexity and Approximation in Reoptimization

Giorgio Ausiello, Vincenzo Bonifaci* and Bruno Escoffier

Sapienza University of Rome,
Department of Computer and Systems Science,
00185 Rome, Italy

E-mail: ausiello@dis.uniromal.it

Sapienza University of Rome,
Department of Computer and Systems Science,
00185 Rome, Italy, and
University of L’Aquila,

Department of Electrical and Information Engineering,
67040 L’Aquila, Italy
E-mail: bonifaci@dis.uniromal.it

LAMSADE,
Université Paris Dauphine and CNRS,
75775 Paris Cedex 16, France

E-mail: escoffier@lamsade.dauphine.fr

In this chapter the following model is considered: We assume that an
instance I of a computationally hard optimization problem has been
solved and that we know the optimum solution of such an instance. Then
a new instance I’ is proposed, obtained by means of a slight perturbation
of instance I. How can we exploit the knowledge we have on the solution
of instance I to compute an (approximate) solution of instance I’ in an
efficient way? This computation model is called reoptimization and is
of practical interest in various circumstances. In this chapter we first
discuss what kind of performance we can expect for specific classes of
problems and then we present some classical optimization problems (i.e.
Max Knapsack, Min Steiner Tree, Scheduling) in which this approach
has been fruitfully applied. Subsequently, we address vehicle routing

*This work was partially supported by the Future and Emerging Technologies Unit of
EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

101

102 G. Ausiello, V. Bonifaci, € B. Escoffier

problems and we show how the reoptimization approach can be used to
obtain good approximate solutions in an efficient way for some of these

problems.
Contents
4.1 Introduction e 102
4.2 Basic Definitions and Results 00000 104
4.3 Reoptimization of NP-hard Optimization Problem 106
4.3.1 General properties L L Lo 107
4.3.2 Results on some particular problems 114
4.4 Reoptimization of Vehicle Routing Problems 118
4.4.1 The Minimum Traveling Salesman Problem 120
4.4.2 The Maximum Traveling Salesman Problem 124
4.4.3 The Minimum Latency Problem 125
4.5 Concluding Remarks L L L Lo oo 126
References e 127

4.1. Introduction

In this chapter we illustrate the role that a new computational paradigm
called reoptimization plays in the solution of NP-hard problems in various
practical circumstances. As it is well known a great variety of relevant
optimization problems are intrinsically difficult and no solution algorithms
running in polynomial time are known for such problems. Although the
existence of efficient algorithms cannot be ruled out at the present state
of knowledge, it is widely believed that this is indeed the case. The most
renowned approach to the solution of NP-hard problems consists in resort-
ing to approximation algorithms which, in polynomial time, provide a sub-
optimal solution whose quality (measured as the ratio between the values of
the optimum and approximate solution) is somehow guaranteed. In the last
twenty years the definition of better and better approximation algorithms
and the classification of problems based on the quality of approximation
that can be achieved in polynomial time have been among the most impor-
tant research directions in theoretical computer science and have produced
a huge flow of literature [4, 36].

More recently a new computational approach to the solution of NP-
hard problems has been proposed [1]. This approach can be meaningfully
adopted when the following situation arises: Given a problem II, the in-
stances of II that we need to solve are indeed all obtained by means of a
slight perturbation of a given reference instance I. In such a case we can de-
vote enough time to the exact solution of the reference instance I and then,

Complexity and Approximation in Reoptimization 103

any time that the solution for a new instance I’ is required, we can apply a
simple heuristic that efficiently provides a good approximate solution to I’.
Let us imagine, for example, that we know that a traveling salesman has
to visit a set S of, say, one thousand cities plus a few more cities that may
change from time to time. In such case it is quite reasonable to devote a
conspicuous amount of time to the exact solution of the traveling salesman
problem on the set S and then to reoptimize the solution whenever the
modified instance is known, with a (hopefully) very small computational
effort.

To make the concept more precise let us consider the following simple
example (Max Weighted Sat): Let ¢ be a Boolean formula in conjunctive
normal form, consisting of m weighted clauses over n variables, and let us
suppose we know a truth assignment 7 such that the weight of the clauses
satisfied by 7 is maximum; let this weight be W. Suppose that now a new
clause ¢ with weight w over the same set of variables is provided and that we
have to find a “good” although possibly not optimum truth assignment 7/
for the new formula ¢’ = ¢Ac. A very simple heuristic can always guarantee
a 1/2 approximate truth assignment in constant time. The heuristic is the
following: If W > w then put 7 = 7, otherwise take as 7/ any truth
assignment that satisfies c. It is easy to see that, in any case, the weight
provided by this heuristic will be at least 1/2 of the optimum.

Actually the reoptimization concept is not new. A similar approach
has been applied since the early 1980s to some polynomial time solvable
optimization problems such as minimum spanning tree [16] and shortest
path [14, 32] with the aim to maintain the optimum solution of the given
problem under input modification (say elimination or insertion of an edge
or update of an edge weight). A big research effort devoted to the study of
efficient algorithms for the dynamic maintenance of the optimum solution
of polynomial time solvable optimization problems followed the first results.
A typical example of this successful line of research has been the design of
algorithms for the partially or fully dynamic maintenance of a minimum
spanning tree in a graph under edge insertion and/or edge elimination [12,
22] where at any update, the computation of the new optimum solution
requires at most O(nl/ 3logn) amortized time per operation, much less
than recomputing the optimum solution from scratch.

A completely different picture arises when we apply the concept of reop-
timization to NP-hard optimization problems. In fact, reoptimization pro-
vides very different results when applied to polynomial time optimization
problems with respect to what happens in the case of NP-hard problems.

104 G. Ausiello, V. Bonifaci, € B. Escoffier

In the case of NP-hard optimization problems, unless P=NP polynomial
time reoptimization algorithms can only help us to obtain approximate
solutions, since if we knew how to maintain an optimum solution under
input updates, we could solve the problem optimally in polynomial time
(see Section 4.3.1).

The application of the reoptimization computation paradigm to NP-
hard optimization problems is hence aimed at two possible directions: ei-
ther at achieving an approximate solution of better quality than we would
have obtained without knowing the optimum solution of the base instance,
or achieving an approximate solution of the same quality but at a lower
computational cost (as is the case in our previous example).

In the first place the reoptimization model has been applied to classical
NP-hard optimization problems such as scheduling (see Bartusch et al. [6],
Schéffter [34], or Bartusch et al. [7] for practical applications). More re-
cently it has been applied to various other NP-hard problems such as Steiner
Tree [9, 13] or the Traveling Salesman Problem [1, 5, 8]. In this chapter
we will discuss some general issues concerning reoptimization of NP-hard
optimization problems and we will review some of the most interesting ap-
plications.

The chapter is organized as follows. First, in Section 4.2 we provide
basic definitions concerning complexity and approximability of optimiza-
tion problems and we show simple preliminary results. Then in Section
4.3 the computational power of reoptimization is discussed and results con-
cerning the reoptimization of various NP-hard optimization problems are
shown. Finally Section 4.4 is devoted to the application of the reoptimiza-
tion concept to a variety of vehicle routing problems. While most of the
results contained in Section 4.3 and Section 4.4 derive from the literature,
it is worth noting that a few of the presented results — those for which no
reference is given — appear in this paper for the first time.

4.2. Basic Definitions and Results

In order to characterize the performance of reoptimization algorithms and
analyze their application to specific problems we have to provide first a basic
introduction to the class of NP optimization problems (NPO problems) and
to the notion of approximation algorithms and approximation classes. For
a more extensive presentation of the theory of approximation the reader
can refer to [4].

Complexity and Approximation in Reoptimization 105

Definition 4.1. An NP optimization (NPO) problem II is defined as a
four-tuple (Z, Sol, m, opt) such that:

e 7 is the set of instances of II and it can be recognized in polynomial
time;

e given I € Z, Sol(I) denotes the set of feasible solutions of I; for every
S € Sol(I), |S| (the size of S) is polynomial in |I| (the size of I); given
any I and any S polynomial in |I|, one can decide in polynomial time
if S € Sol(1);

e given I € 7T and S € Sol(I), m(I,S) denotes the value of S; m is
polynomially computable and is commonly called objective function;

e opt € {min, max} indicates the type of optimization problem.

As it is well known, several relevant optimization problems, known as
NP-hard problems, are intrinsically difficult and no solution algorithms run-
ning in polynomial time are known for such problems. For the solution of
NP-hard problems we have to resort to approzimation algorithms, which in
polynomial time provide a suboptimal solution of guaranteed quality.

Let us briefly recall the basic definitions regarding approximation algo-
rithms and the most important approximation classes of NPO problems.

Given an NPO problem IT = (Z, Sol, m, opt), an optimum solution of an
instance I of II is denoted S*(I) and its measure m(I, S*(I)) is denoted

opt(I).

Definition 4.2. Given an NPO problem II = (Z, Sol, m, opt), an approxi-
mation algorithm A is an algorithm that, given an instance I of II, returns
a feasible solution S € Sol(I).

If A runs in polynomial time with respect to |I], A is called a polynomial
time approzimation algorithm for II.

The quality of an approximation algorithm is usually measured as the
ratio pa(I), approzimation ratio, between the value of the approximate so-
lution, m(I, A(I)), and the value of the optimum solution opt(I). For mini-
mization problems, therefore, the approximation ratio is in [1, c0), while for
maximization problems it is in [0,1]. According to the quality of approxi-
mation algorithms that can be designed for their solution, NPO problems
can be classified as follows:

Definition 4.3. An NPO problem II belongs to the class APX if there
exists a polynomial time approximation algorithm A and a rational value
r such that, given any instance I of I, pa(I) < 7 (resp. pa(l) > r) if IT is

106 G. Ausiello, V. Bonifaci, € B. Escoffier

a minimization problem (resp. a maximization problem). In such case A is
called an r-approximation algorithm.

Examples of combinatorial optimization problems belonging to the class
APX are Max Weighted Sat, Min Vertex Cover, and Min Metric TSP.

For particular problems in APX a stronger form of approximability can
indeed be shown. For such problems, given any rational » > 1 (or r €
(0,1) for a maximization problem), there exists an algorithm A, and a
suitable polynomial p,. such that A, is an r-approximation algorithm whose
running time is bounded by p,- as a function of |I|. The family of algorithms
A, parametrized by r is called a polynomial time approrimation scheme
(PTAS).

Definition 4.4. An NPO problem II belongs to the class PTAS if it admits
a polynomial time approximation scheme A,..

Examples of combinatorial optimization problems belonging to the class
PTAS are Min Partitioning, Max Independent Set on Planar Graphs, and
Min Euclidean TSP.

Notice that in the definition of PTAS, the running time of A, is poly-
nomial in the size of the input, but it may be exponential (or worse) in
the inverse of |r — 1]. A better situation arises when the running time is
polynomial in both the input size and the inverse of |r — 1]. In the favor-
able case when this happens, the algorithm is called a fully polynomial time
approzimation scheme (FPTAS).

Definition 4.5. An NPO problem II belongs to the class FPTAS if it admits
a fully polynomial time approximation scheme.

It is important to observe that, under the (reasonable) hypothesis that
P + NP, it is possible to prove that FPTAS C PTAS C APX C NPO.

4.3. Reoptimization of NP-hard Optimization Problem

As explained in the introduction, the reoptimization setting leads to inter-
esting optimization problems for which the complexity properties and the
existence of good approximation algorithms have to be investigated. This
section deals with this question, and is divided into two parts: In Sub-
section 4.3.1, we give some general considerations on these reoptimization
problems, both on the positive side (obtaining good approximate solutions)
and on the negative side (hardness of reoptimization). In Subsection 4.3.2,

Complexity and Approximation in Reoptimization 107

we survey some results achieved on reoptimizing three well-known prob-
lems (the Min Steiner Tree problem, a scheduling problem, and the Max
Knapsack problem).

4.3.1. General properties

As mentioned previously, if one wishes to get an approximate solution on
the perturbed instance, she/he can compute it by applying directly, from
scratch, a known approximation algorithm for the problem dealt (on the
modified instance). In other words, reoptimizing is at least as easy as
approximating. The goal of reoptimization is to determine if it is possible
to fruitfully use our knowledge on the initial instance in order to:

e cither achieve better approximation ratios;
e or devise much faster algorithms;
e or both!

In this section, we present some general results dealing with reopti-
mization properties of some NPO problems. We first focus on a class of
hereditary problems, then we discuss the differences between weighted and
unweighted versions of classical problems, and finally present some ways to
achieve hardness results in reoptimization.

Of course, many types of problems can be considered, and for each of
them many ways to modify the instances might be investigated. We mainly
focus here on graph problems where a modification consists of adding a new
vertex on the instance, but show with various examples that the approaches
we present are also valid in many other cases.

4.3.1.1. Hereditary problems

We say that a property on graphs is hereditary if the following holds: If
G = (V, E) satisfies this property, then for any V/ C V', the subgraph G[V’|
induced by V' verifies the property. Following this definition, for instance,
being independent #, being bipartite, or being planar are three hereditary
properties. Now, let us define problems based on hereditary properties.

Definition 4.6. We call Hered the class of problems consisting, given a
vertex-weighted graph G = (V, E,w), of finding a subset of vertices S (i)
such that G[S] satisfies a given hereditary property (i) that maximizes

w(S) = X yes w(v)-

2i.e. having no edge.

108 G. Ausiello, V. Bonifaci, € B. Escoffier

Hereditary problems have been studied before as a natural generaliza-
tion of important combinatorial problems [27]. For instance, Max Weighted
Independent Set, Max Weighted Bipartite Subgraph, Max Weighted Planar
Subgraph are three famous problems in Hered that correspond to the three
hereditary properties given above.

For all these problems, we have a simple reoptimization strategy that
achieves a ratio 1/2, based on the same idea used in the introduction. Note
that this is a huge improvement for some problems respect to their ap-
proximability properties; for instance, it is well known that Max Weighted
Independent Set is not approximable within any constant ratio, if P # NPP.

Theorem 4.1. Let II be a problem in Hered. Under a vertex insertion,
reoptimizing Il is approzimable within ratio 1/2 (in constant time).

Proof. Let I = (G,w) be the initial instance of II, I’ = (G’,w’) be the
final instance (a new vertex v has been inserted), S* be an optimum solution
on I, and S% be an optimum solution on I’. Notice that w'(u) = w(u) for
all u # v.

Getting a 1/2-approximate solution is very easy: just consider the best
solution among S* and (if feasible) S; := {v}. Solution S* is feasible by
heritability. We can also assume S; feasible, as otherwise by heritability
no feasible solution can include v, and S* must be optimal. Finally, by
heritability, S}, \ {v} is a feasible solution on the initial instance. Then,
w'(S7) <w'(S*) + w'(v) = w'(S*) + w'(S1) < 2max(w'(S*),w'(S1)). O

Now, let us try to outperform this trivial ratio 1/2. A first idea that
comes to mind is to improve the solution S; of the previous proof since
it only contains one vertex. In particular, one can think of applying an
approximation algorithm on the “remaining instance after taking v»”. Con-
sider for instance Max Weighted Independent Set, and revisit the proof of
the previous property. If S}, does not take the new vertex v, then our
initial solution S* is optimum. If S}, takes v, then consider the remaining
instance I after having removed v and its neighbors. Suppose that we have
a p-approximate solution Sz on this instance Iz. Then Sy U{v} is a feasible
solution of weight:

w(S2 U {v}) = p(w(ST) — w(v)) +w(v) = pw(ST) + (1 — pJw(v). (4.1)
On the other hand, of course :
w(S*) > w(Sy) — w(v). (4.2)

b And not even within ratio n'~¢ for any & > 0, under the same hypothesis [37].

Complexity and Approximation in Reoptimization 109

If we output the best solution S among S* and Sy U {v}, then, by adding
equations (4.1) and (4.2) with coefficients 1 and (1 — p), we get:

w(S) > 2Lw(s;‘,).

Note that this ratio is always better than p.

This technique is actually quite general and applies to many problems
(not only graph problems and maximization problems). We illustrate this
on two well-known problems: Max Weighted Sat (Theorem 4.2) and Min
Vertex Cover (Theorem 4.3). We will also use it for Max Knapsack in
Section 4.3.2.

Theorem 4.2. Under the insertion of a clause, reoptimizing Max Weighted
Sat is approzimable within ratio 0.81.

Proof. Let ¢ be a conjunction of clauses over a set of binary variables,
each clause being given with a weight, and let 7*(¢) be an initial optimum
solution. Let ¢’ := ¢ A ¢ be the final formula, where the new clause ¢ =
l1 VIa V...V (where [; is either a variable or its negation) has weight
w(c).

We consider k solutions 7;, ¢ = 1,...,k. Each 7; is built as follows:

e We set [; to true;

e We replace in ¢ each occurrence of I; and I; with its value;

e We apply a p-approximation algorithm on the remaining instance (note
that the clause c is already satisfied); together with ;, this is a partic-
ular solution 7;.

Then, our reoptimization algorithm outputs the best solution 7 among
7*(¢) and the 7;s.

As previously, if the optimum solution 7*(¢’) on the final instance does
not satisfy ¢, then 7%(¢) is optimum. Otherwise, at least one literal in ¢,
say l;, is true in 7*(¢'). Then, it is easy to see that

w(ri) 2 p(w(r™(¢)) — w(c)) + wlc) = pw (7" (¢")) + (1 = p)w(c).

On the other hand, w(7*(¢)) > w(7*(¢’)) — w(c), and the following
result follows:

1
w(r) > rpw(T*(éf’/))-
The fact that Max Weighted Sat is approximable within ratio p = 0.77 [3]
concludes the proof. O

110 G. Ausiello, V. Bonifaci, € B. Escoffier

It is worth noticing that the same ratio (1/(2 — p)) is achievable for
other satisfiability or constraint satisfaction problems. For instance, using
the result of Johnson [24], reoptimizing Max Weighted E3SAT® when a new
clause is inserted is approximable within ratio 8/9.

Let us now focus on a minimization problem, namely Min Vertex Cover.
Given a vertex-weighted graph G = (V, E, w), the goal in this problem is
to find a subset V' C V such that (i) every edge e € F is incident to at
least one vertex in V', and (ii) the global weight of V', that is, > ., w(v)
is minimized.

Theorem 4.3. Under a vertex insertion, reoptimizing Min Vertex Cover is
approximable within ratio 3/2.

Proof. Let v denote the new vertex and S* the initial given solution.
Then, S* U {v} is a vertex cover on the final instance. If S}, takes v, then
S* U {v} is optimum.

From now on, suppose that S7, does not take v. Then it has to take all
its neighbors N(v). S* U N(v) is a feasible solution on the final instance.
Since w(S*) < w(S},), we get:

w(S* UN (@) < w(Sh) +w(N (). (4.3)

Then, as for Max Weighted Independent Set, consider the following feasible
solution Si:

e Take all the neighbors N(v) of v in Sy;

e Remove v and its neighbors from the graph;

e Apply a p-approximation algorithm on the remaining graph and add
these vertices to Si.

Since we are in the case where S5, does not take v, it has to take all its
neighbors, and finally:

w(S1) < p(w(S7)—w(N(v)))+w(N(v)) = pw(S7) = (p=1)w(N(v)). (44)

Of course, we take the best solution S among S* U N(v) and S;. Then, a
convex combination of equations (4.3) and (4.4) leads to:

w(ST).

The results follows since Min Vertex Cover is well known to be approximable
within ratio 2. U

“Restriction of Max Weighted Sat when all clauses contain exactly three literals.

Complexity and Approximation in Reoptimization 111

To conclude this section, we point out that these results can be general-
ized when several vertices are inserted. Indeed, if a constant number k£ > 1
of vertices are added, one can reach the same ratio with similar arguments
by considering all the 2¥ possible subsets of new vertices in order to find
the ones that will belong to the new optimum solution. This brute force
algorithm is still very fast for small constant k, which is the case in the
reoptimization setting with slight modifications of the instance.

4.3.1.2. Unweighted problems

In the previous subsection, we considered the general cases where vertices
(or clauses) have a weight. It is well known that all the problems we
focused on are already NP-hard in the unweighted case, i.e. when all ver-
tices/clauses receive weight 1. In this (very common) case, the previous
approximation results on reoptimization can be easily improved. Indeed,
since only one vertex is inserted, the initial optimum solution has an abso-
lute error of at most one on the final instance, i.e.:

5% > S5 — 1.

Then, in some sense we don’t really need to reoptimize since S* is
already a very good solution on the final instance (note also that since
the reoptimization problem is NP-hard, we cannot get rid of the constant
—1). Dealing with approximation ratio, we derive from this remark, with
a standard technique, the following result:

Theorem 4.4. Under a vertexr insertion, reoptimizing any unweighted
problem in Hered admits a PTAS.

Proof. Let e > 0, and set k = [1/e]. We consider the following algo-
rithm:

(1) Test all the subsets of V of size at most k, and let S; be the largest
one such that G[S1] satisfies the hereditary property;
(2) Output the largest solution S between S; and S*.

Then, if S} has size at most 1/, we found it in step 1. Otherwise, |S},| >
1/e and:
S0 ISil-1

— 2> — o > 1—e
|53 |53

Of course, the algorithm is polynomial as long as ¢ is a constant. g

112 G. Ausiello, V. Bonifaci, € B. Escoffier

In other words, the PTAS is derived from two properties: the absolute
error of 1, and the fact that problems considered are simple. Following [30],
a problem is called simple if, given any fixed constant k, it is polynomial to
determine whether the optimum solution has value at most k£ (maximiza-
tion) or not.

This result easily extends to other simple problems, such as Min Vertex
Cover, for instance. It also generalizes when several (a constant number
of) vertices are inserted, instead of only 1.

However, it is interesting to notice that, for some other (unweighted)
problems, while the absolute error 1 still holds, we cannot derive a PTAS as
in Theorem 4.4 because they are not simple. One of the most famous such
problems is the Min Coloring problem. In this problem, given a graph G =
(V, E), one wishes to partition V into a minimum number of independent
sets (called colors) Vi,...,Vi. When a new vertex is inserted, an absolute
error 1 can be easily achieved while reoptimizing. Indeed, consider the
initial coloring and add a new color which contains only the newly inserted
vertex. Then this coloring has an absolute error of 1 since a coloring on the
final graph cannot use fewer colors than an optimum coloring on the initial
instance.

However, deciding whether a graph can be colored with 3 colors is an
NP-hard problem. In other words, Min Coloring is not simple. We will
discuss the consequence of this fact in the section on hardness of reopti-
mization.

To conclude this section, we stress the fact that there exist, obviously,
many problems that do not involve weights and for which the initial opti-
mum solution cannot be directly transformed into a solution on the final
instance with absolute error 1. Finding the longest cycle in a graph is such
a problem: adding a new vertex may change considerably the size of an
optimum solution.

4.3.1.3. Hardness of reoptimization

As mentioned earlier, the fact that we are interested in slight modifications
of an instance on which we have an optimum solution makes the problem
somehow simpler, but unfortunately does not generally allow a jump in
complexity. In other words, reoptimizing is generally NP-hard when the
underlying problem is NP-hard.

In some cases, the proof of NP-hardness is immediate. For instance,

Complexity and Approximation in Reoptimization 113

consider a graph problem where modifications consists of inserting a new
vertex. Suppose that we had an optimum reoptimization algorithm for this
problem. Then, starting from the empty graph, and adding the vertices one
by one, we could find an optimum solution on any graph on n vertices by us-
ing iteratively n times the reoptimization algorithm. Hence, the underlying
problem would be polynomial. In conclusion, the reoptimization version is
also NP-hard when the underlying problem is NP-hard. This argument is
also valid for other problems under other kinds of modifications. Actually,
it is valid as soon as, for any instance I, there is a polynomial-time solvable
instance I' (the empty graph in our example) that can be generated in poly-
nomial time and such that a polynomial number of modifications transform
I’ into I.

In other cases, the hardness does not directly follow from this argument,
and a usual polynomial time reduction has to be provided. This situation
occurs, for instance, in graph problems where the modification consists of
deleting a vertex. As we will see later, such hardness proofs have been
given, for instance, for some vehicle routing problems (in short, VRP).

Let us now focus on the hardness of approximation in the reoptimization
setting. As we have seen in particular in Theorem 4.4, the knowledge of the
initial optimum solution may help considerably in finding an approximate
solution on the final instance. In other words, it seems quite hard to prove a
lower bound on reoptimization. And in fact, few results have been obtained
so far.

One method is to transform the reduction used in the proof of NP-
hardness to get an inapproximability bound. Though more difficult than
in the usual setting, such proofs have been provided for reoptimization
problems, in particular for VRP problems, mainly by introducing very large
distances (see Section 4.4).

Let us now go back to Min Coloring. As we have said, it is NP-hard to
determine whether a graph is colorable with 3 colors or not. In the usual
setting, this leads to an inapproximability bound of 4/3 — ¢ for any € > 0.
Indeed, an approximation algorithm within ratio p = 4/3 — ¢ would allow
us to distinguish between 3-colorable graphs and graphs for which we need
at least 4 colors. Now, we can show that this result remains true for the
reoptimization of the problem:

Theorem 4.5. Under a vertez insertion, reoptimizing Min Coloring cannot
be approzimated within a ratio 4/3 — €, for any e > 0.

114 G. Ausiello, V. Bonifaci, € B. Escoffier

Proof. The proof is actually quite straightforward. Assume you have
such a reoptimization algorithm A within aratio p = 4/3—¢. Let G = (V, E)
be a graph with V' = {vy,--- ,v,}. We consider the subgraphs G; of G
induced by V; = {v1,v2,---,v;} (in particular G,, = G). Suppose that
you have a 3-coloring of G;, and insert v;11. If G;41 is 3-colorable, then
A outputs a 3-coloring. Moreover, if GG; is not 3-colorable, then neither is
Giy+1. Hence, starting from the empty graph, and iteratively applying A,
we get a 3-coloring of G; if and only if G; is 3-colorable. Eventually, we are
able to determine whether G is 3-colorable or not. O

This proof is based on the fact that Min Coloring is not simple (ac-
cording to the definition previously given). A similar argument, leading
to inapproximability results in reoptimization, can be applied to other non
simple problems (under other modifications). It has been in particular
applied to a scheduling problem (see Section 4.3.2).

For other optimization problems however, such as MinTSP in the metric
case, finding a lower bound in approximability (if any!) seems a challenging
task.

Let us finally mention another kind of negative result. In the reopti-
mization setting, we look somehow for a possible stability when slight modi-
fications occur on the instance. We try to measure how much the knowledge
of a solution on the initial instance helps to solve the final one. Hence, it
is natural to wonder whether one can find a good solution in the “neigh-
borhood” of the initial optimum solution, or if one has to change almost
everything. Do neighboring instances have neighboring optimum/good so-
lutions? As an answer to these questions, several results show that, for
several problems, approximation algorithms that only “slightly” modify
the initial optimum solution cannot lead to good approximation ratios. For
instance, for reoptimizing MinTSP in the metric case, if you want a ratio
better than 3/2 (guaranteed by a simple heuristic), then you have to change
(on some instances) a significant part of your initial solution [5]. This kind
of result, weaker than an inapproximability bound, provides information on
the stability under modifications and lower bounds on classes of algorithms.

4.3.2. Results on some particular problems

In the previous section, we gave some general considerations on the reop-
timization of NP-hard optimization problems. The results that have been
presented follow, using simple methods, from the structural properties of

Complexity and Approximation in Reoptimization 115

the problem dealt with and/or from known approximation results. We now
focus on particular problems for which specific methods have been devised,
and briefly mention, without proofs, the main results obtained so far. We
concentrate on the Min Steiner Tree problem, on a scheduling problem, and
on the Max Knapsack problem. Vehicle routing problems, which concen-
trated a large attention in reoptimization, deserve, in our opinion, a full
section (Section 4.4), in which we also provide some of the most interesting
proofs in the literature together with a few new results.

4.3.2.1. Min Steiner Tree

The Min Steiner Tree problem is a generalization of the Min Spanning Tree
problem where only a subset of vertices (called terminal vertices) have to
be spanned. Formally, we are given a graph G = (V| E), a non-negative
distance d(e) for any e € E, and a subset R C V of terminal vertices.
The goal is to connect the terminal vertices with a minimum global dis-
tance, i.e. to find a tree T' C E that spans all vertices in R and minimizes
d(T) = >_.crd(e). It is generally assumed that the graph is complete, and
the distance function is metric (i.e. d(z,y) + d(y, z) > d(z, z) for any ver-
tices x,y, z): indeed, the general problem reduces to this case by initially
computing shortest paths between pairs of vertices.

Min Steiner Tree is one of the most famous network design optimization
problems. It is NP-hard, and has been studied intensively from an approx-
imation viewpoint (see [18] for a survey on these results). The best known
ratio obtained so far is 1 4 In(3)/2 ~ 1.55 [31].

Reoptimization versions of this problem have been studied with modi-
fications on the vertex set [9, 13]. In Escoffier et al. [13], the modification
consists of the insertion of a new vertex. The authors study the cases where
the new vertex is terminal or non-terminal.

Theorem 4.6 ([13]). When a new vertex is inserted (either terminal or
not), then reoptimizing the Min Steiner Tree problem can be approximated
within ratio 3/2.

116 G. Ausiello, V. Bonifaci, € B. Escoffier

Moreover, the result has been generalized to the case in which several
vertices are inserted. Interestingly, when p non-terminal vertices are in-
serted, then reoptimizing the problem is still 3/2-approximable (but the
running time grows very fast with p). On the other hand, when terminal
vertices are added, the obtained ratio decreases (but the running time re-
mains very low). The strategies consist, roughly speaking, of merging the
initial optimum solution with Steiner trees computed on the set of new
vertices and/or terminal vertices. The authors tackle also the case where
a vertex is removed from the vertex set, and provide a lower bound for a
particular class of algorithms.

Bockenhauer et al. [9] consider a different instance modification. Rather
than inserting/deleting a vertex, the authors consider the case where the
status of a vertex changes: either a terminal vertex becomes non-terminal,
or vice versa. The obtained ratio is also 3/2.

Theorem 4.7 ([9]). When the status (terminal / non-terminal) of a ver-
tex changes, then reoptimizing the Min Steiner Tree problem can be approz-
imated within ratio 3/2.

Moreover, they exhibit a case where this ratio can be improved. When
all the distances between vertices are in {1,2,---,r}, for a fixed constant
7, then reoptimizing Min Steiner Tree (when changing the status of one
vertex) is still NP-hard but admits a PTAS.

Note that in both cases (changing the status of a vertex or adding a
new vertex), no inapproximability results have been achieved, and this is
an interesting open question.

4.3.2.2. Scheduling

Due to practical motivations, it is not surprising that scheduling problems
received attention dealing with the reconstruction of a solution (often called
rescheduling) after an instance modification, such as a machine breakdown,
an increase of a job processing time, etc. Several works have been proposed
to provide a sensitivity analysis of these problems under such modifica-
tions. A typical question is to determine under which modifications and/or
conditions the initial schedule remains optimal. We refer the reader to the
comprehensive article [20] where the main results achieved in this field are
presented.

Complexity and Approximation in Reoptimization 117

Dealing with the reoptimization setting we develop in this chapter,
Schéffter [34] proposes interesting results on a problem of scheduling with
forbidden sets. In this problem, we have a set of jobs V = {vy, -+ ,v,},
each job having a processing time. The jobs can be scheduled in parallel
(the number of machines is unbounded), but there is a set of constraints
on these parallel schedules: A constraint is a set F' C V of jobs that cannot
be scheduled in parallel (all of them at the same time). Then, given a set
F ={F, -+, F}} of constraints, the goal is to find a schedule that respects
each constraint and that minimizes the latest completion time (makespan).
Many situations can be modeled this way, such as the m-Machine Prob-
lem (for fixed m), hence the problem is NP-complete (and even hard to
approximate).

Schaffter considers reoptimization when either a new constraint F' is
added to F, or a constraint F; € F disappears. Using reductions from the
Set Splitting problem and from the Min Coloring problem, he achieves the
following inapproximability results:

Theorem 4.8 ([34]). If P # NP, for any € > 0, reoptimizing the schedul-
ing with forbidden sets problem is inapproxzimable within ratio 3/2—¢c under
a constraint insertion, and inapproximable within ratio 4/3 —¢ under a con-
straint deletion.

Under a constraint insertion Schéffter also provides a reoptimization
strategy that achieves approximation ratio 3/2, thus matching the lower
bound of Theorem 4.8. It consists of a simple local modification of the
initial scheduling, by shifting one task (at the end of the schedule) in order
to ensure that the new constraint is satisfied.

4.3.2.3. Max Knapsack

In the Max Knapsack problem, we are given a set of n objects O =
{01,...,0n}, and a capacity B. Each object has a weight w; and a value
v;. The goal is to choose a subset O of objects that maximizes the global
value > o v; but that respects the capacity constraint), o w; < B.

This problem is (weakly) NP-hard, but admits an FPTAS [23].
Obviously, the reoptimization version admits an FPTAS too. Thus,
Archetti et al. [2] are interested in using classical approximation algorithms
for Max Knapsack to derive reoptimization algorithms with better approx-
imation ratios but with the same running time. The modifications consid-
ered consist of the insertion of a new object in the instance.

118 G. Ausiello, V. Bonifaci, € B. Escoffier

Though not being a graph problem, it is easy to see that the Max
Knapsack problem satisfies the required properties of heritability given in
Section 4.3.1 (paragraph on hereditary problems). Hence, the reoptimiza-
tion version is 1/2-approximable in constant time; moreover, if we have
a p-approximation algorithm, then the reoptimization strategy presented
in Section 4.3.1 has ratio ﬁ [2]. Besides, Archetti et al. [2] show that
this bound is tight for several classical approximation algorithms for Max
Knapsack.

Finally, studying the issue of sensitivity presented earlier, they show
that any reoptimization algorithm that does not consider objects discarded
by the initial optimum solution cannot have ratio better than 1/2.

4.4. Reoptimization of Vehicle Routing Problems

In this section we survey several results concerning the reoptimization of
vehicle routing problems under different kinds of perturbations. In particu-
lar, we focus on several variants of the Traveling Salesman Problem (TSP),
which we define below.

The TSP is a well-known combinatorial optimization problem that has
been the subject of extensive studies — here we only refer the interested
reader to the monographs by Lawler et al. [26] and Gutin and Punnen [19].
The TSP has been used since the inception of combinatorial optimization
as a testbed for experimenting a whole array of algorithmic paradigms and
techniques, so it is just natural to also consider it from the point of view of
reoptimization.

Definition 4.7. An instance I,, of the Traveling Salesman Problem is given
by the distance between every pair of n nodes in the form of an n x n matrix
d, where d(i,j) € Z4 for all 1 < 4,5 < n. A feasible solution for I, is a
tour, that is, a directed cycle spanning the node set N := {1,2,...,n}.

Notice that we have not defined an objective function yet; so far we
have only specified the structure of instances and feasible solutions. There
are several possibilities for the objective function and each of them gives
rise to a different optimization problem. We need a few definitions. The
weight of a tour T'is the quantity w(T) := >_(; ;) cr d(i, j). The latency of
a node i € N with respect to a given tour 7' is the total distance along the
cycle T from node 1 to node i. The latency of T, denoted by £(T), is the
sum of the latencies of the nodes of T.

Complexity and Approximation in Reoptimization

119

Table 4.1. Best known results on the approximability of the standard and
reoptimization versions of vehicle routing problems (AR = approximation ra-
tio, II+ = vertex insertion, II— = vertex deletion, II+ = distance variation).
[Problem II || AR(IT) Ref. | AR(II4+) AR(II-)AR(II+) Ref. |
Min TSP unbounded [33] unb. unb. unb. [5, 8]
Min MTSP 1.5 [11] 1.34 - 1.4 [1, 9]
Min ATSP O(logn) [15] 2 2 - this work
Max TSP 0.6 [25] |0.66 — O(n~1) - this work
Max MTSP 0.875 [21] |1—0O(n~1/?) - [5]
MLP 3.59 [10] 3 - - this work

The matrix d obeys the triangle inequality if for all ¢, j,k € N we have
d(i,j) < d(i, k) +d(k, j). The matrix d is said to be a metric if it obeys the
triangle inequality and d(7, j) = d(j,4) for all i,j € N.

In the rest of the section we will consider the following problems:

Minimum Traveling Salesman Problem (Min TSP): find a tour of min-
imum weight;

Minimum Metric TSP (Min MTSP): restriction of Min TSP to the case
when d is a metric;

Minimum Asymmetric TSP (Min ATSP): restriction of Min TSP to
the case when d obeys the triangle inequality;

Maximum TSP (Max TSP): find a tour of maximum weight;
Maximum Metric TSP (Max MTSP): restriction of Max TSP to the
case when d is a metric;

Minimum Latency Problem (MLP): find a tour of minimum latency; d
is assumed to be a metric.

TSP-like problems other than those above have also been considered in
the literature from the point of view of reoptimization; in particular, see
Bockenhauer et al. [8] for a hardness result on the TSP with deadlines.

Given a vehicle routing problem II from the above list, we will consider
the following reoptimization variants, each corresponding to a different type
of perturbation of the instance: insertion of a node (II+), deletion of a node
(II-), and variation of a single entry of the matrix d (II+).

In the following, we will sometimes refer to the initial problem II as
the static problem. In Table 4.1 we summarize the approximability results
known for the static and reoptimization versions of the problems above
under these types of perturbations.

120 G. Ausiello, V. Bonifaci, € B. Escoffier

Some simple solution methods are common to several of the problems
we study in this section. We define here two such methods; they will be
used in the remainder of the section.

Algorithm 1 (Nearest Insertion). Given an instance I,,+; and a tour
T on theset {1,...,n}, find anode i* € argmin, «;«,, d(i,n+1). Obtain the
solution by inserting node n + 1 either immedia%efy before or immediately
after ¢* in the tour (depending on which of these two solutions is best).

Algorithm 2 (Best Insertion). Given an instance I,,+1 and a tour T" on
the set {1,...,n}, find a pair (i*,7*) € argming ;epd(i,n + 1) + d(n +
1,7) — d(4, 7). Obtain the solution by inserting node n + 1 between ¢* and

*

7% in the tour.

4.4.1. The Minimum Traveling Salesman Problem

4.4.1.1. The general case

We start by considering the Min TSP. It is well known that in the standard
setting the problem is very hard to approximate in the sense that it can-
not be approximated within any factor that is polynomial in the number
of nodes [33]. It turns out that the same result also holds for the reopti-
mization versions of the problem, which shows that in this particular case
the extra information available through the optimal solution to the original
instance does not help at all.

Theorem 4.9 ([5, 8]). Let p be a polynomial. Then each of Min TSP+,
Min TSP—, and Min TSP+ is not 2P -approzimable, unless P=NP.

Proof. We only give the proof for Min TSP—; the other proofs follow a
similar approach. We use the so-called gap technique from Sahni and Gon-
zales [33]. Consider the following problem, Restricted Hamiltonian Cycle
(RHC): Given an undirected graph G = (V, E') and a Hamiltonian path P
between two nodes a and b in G, determine whether there exists a Hamilto-
nian cycle in G. This problem is known to be NP-complete [28]. We prove
the claim of the theorem by showing that any approximation algorithm for
Min TSP— with ratio 2°(™ can be used to solve RHC in polynomial time.

Consider an instance of RHC, that is, a graph G = (V| E) on n nodes,
two nodes a,b € V and a Hamiltonian path P from a to b. Without loss
of generality we can assume that V' = {1,...,n}. We can construct in
polynomial time the following TSP instance I,,+; on node set {1,...,n,n+

1}:

Complexity and Approximation in Reoptimization 121

-dn+1,a)=db,n+1)=1;
- all other entries of the matrix d have value 2°(") . p + 1.

Since all entries are at least 1, the tour Tpy,, := PU{(b,n+1),(n+1,a)}
is an optimum solution of I,;1, with weight w(7};,;) = n + 1. Thus,
(In41, T, 1) is an instance of Min TSP—. Let 7}, be an optimum solution
of instance I,,. Then w(T)) = n if and only if G has a Hamiltonian cycle.
Finally, a 2P(")-approximation algorithm for Min TSP— allows us to decide
whether w(T}) = n. O

4.4.1.2. Minimum Metric TSP

In the previous section we have seen that no constant-factor approximation
algorithm exists for reoptimizing the Minimum TSP in its full generality.
To obtain such a result, we are forced to restrict the problem somehow.
A very interesting case for many applications is when the matrix d is a
metric, that is, the Min MTSP. This problem admits a 3/2-approximation
algorithm, due to Christofides [11], and it is currently open whether this
factor can be improved. Interestingly, it turns out that the reoptimization
version Min MTSP+ is (at least if one considers the currently best known
algorithms) easier than the static problem: It allows a 4/3-approximation —
although, again, we do not know whether even this factor may be improved
via a more sophisticated approach.

Theorem 4.10 ([5]). Min MTSP+ is approzimable within ratio 4/3.

Proof. The algorithm used to prove the upper bound is a simple combi-
nation of Nearest Insertion and of the well-known algorithm by Christofides
[11]; namely, both algorithms are executed and the solution returned is the
one having the lower weight.

Consider an optimum solution 7};,, of the final instance I, 11, and the
solution 77 available for the initial instance I,,. Let ¢ and j be the two
neighbors of vertex n + 1 in 77, , and let 71 be the tour obtained from
T with the Nearest Insertion rule. Furthermore, let v* be the vertex in
{1,...,n} whose distance to n + 1 is the smallest.

Using the triangle inequality, we easily get w(T1) < w(Th,;)+2d(v*, n+
1) where, by definition of v*, d(v*,n+1) = min{d(k,n+1) : k=1,...,n}.
Thus

w(Th) < w(T) ;1) +2max(d(i,n + 1),d(j,n + 1)). (4.5)

122 G. Ausiello, V. Bonifaci, € B. Escoffier

Now consider the algorithm of Christofides applied on I, 1. This gives
a tour T3 of length at most (1/2)w(T};, 1) +MST(I,,41), where MST (I, 41)
is the weight of a minimum spanning tree on I,,11. Note that MST(/,,11) <
w(T), 1) —max(d(i,n +1),d(j,n +1)). Hence

n

w(Ty) < gw(T;H) —max(d(i,n 4+ 1),d(j,n + 1)). (4.6)

The result now follows by combining equations (4.5) and (4.6), because
the weight of the solution given by the algorithm is min(w(Ty), w(7T2)) <
(1/3)w(Th) + (2/3)w(Ts) < (4/3)w(T;11)- O

The above result can be generalized to the case when more than a
single vertex is added in the perturbed instance. Let Min MTSP+k be the
corresponding problem when k vertices are added. Then it is possible to
give the following result, which gives a trade-off between the number of
added vertices and the quality of the approximation guarantee.

Theorem 4.11 ([5]). For any k > 1, Min MTSP+k is approzimable
within ratio 3/2 — 1/(4k + 2).

Reoptimization under variation of a single entry of the distance ma-
trix (that is, problem Min MTSP+) has been considered by Bdcken-
hauer et al. [9].

Theorem 4.12 ([9]). Min MTSP= is approzimable within ratio 7/5.

4.4.1.3. Minimum Asymmetric TSP

The Minimum Asymmetric Traveling Salesman Problem is another variant
of the TSP that is of interest for applications, as it generalizes the Metric
TSP. Unfortunately, in the static case there seems to be a qualitative differ-
ence with respect to the approximability of Minimum Metric TSP: While in
the latter case a constant approximation is possible, for Min ATSP the best
known algorithms give an approximation ratio of ©(logn). The first such
algorithm was described by Frieze et al. [17] and has an approximation guar-
antee of log, n. The currently best algorithm is due to Feige and Singh [15]
and gives approximation (2/3)log, n. The existence of a constant approxi-
mation for Min ATSP is an important open problem.

Turning now to reoptimization, there exists a non-negligible gap be-
tween the approximability of the static version and of the reoptimiza-

Complexity and Approximation in Reoptimization 123

tion version. In fact, reoptimization drastically simplifies the picture:
Min ATSP+ is approximable within ratio 2, as we proceed to show.

Theorem 4.13. Min ATSP+ is approximable within ratio 2.

Proof. The algorithm used to establish the upper bound is extremely
simple: just add the new vertex between an arbitrarily chosen pair of con-
secutive vertices in the old optimal tour. Let T be the tour obtained by
inserting node n+1 between two consecutive nodes ¢ and j in 7,;. We have:

w(T) =w(Ty)+di,n+1)+dn+1,j7) —d(,j).
By triangle inequality, d(n + 1,5) < d(n + 1,%) + d(3, j). Hence
w(T) <w(T})+d(i,n+1)+d(n+1,1).

Again by triangle inequality, w(T};) < w(T},), and d(i,n+1)+d(n+1,7) <
w(Tyr 1), which concludes the proof. O

n

We remark that the above upper bound of 2 on the approximation ratio
is tight, even if we use Best Insertion instead of inserting the new vertex
between an arbitrarily chosen pair of consecutive vertices.

Theorem 4.14. Min ATSP— is approzimable within ratio 2.

Proof. The obvious idea is to skip the deleted node in the new tour,
while visiting the remaining nodes in the same order. Thus, if ¢ and j are
respectively the nodes preceding and following n + 1 in the tour 7, ,, we
obtain a tour T such that

w(T) =w(T;) +d(i,j) —d(i,n+1) —d(n+1,7). (4.7)

Consider an optimum solution 7} of the modified instance I,,, and the node
[that is consecutive to ¢ in this solution. Since inserting n+1 between ¢ and
[would yield a feasible solution to I,,11, we get, using triangle inequality:

w(Tiy,) < w(Tr) +d(i,n+1) +d(n+1,1) — d(i,1)
<w(T}))+d(i,n+1)+d(n+1,i).

By substituting in (4.7) and using triangle inequality again,
w(T) < w(Ty;) +d(i, j) + d(j,9).

Hence, w(T) < 2w(T})). O

124 G. Ausiello, V. Bonifaci, € B. Escoffier

4.4.2. The Maximum Traveling Salesman Problem
4.4.2.1. Mazimum TSP

While the typical applications of the Minimum TSP are in vehicle rout-
ing and transportation problems, the Maximum TSP has applications to
DNA sequencing and data compression [25]. Like the Minimum TSP, the
Maximum TSP is also NP-hard, but differently from what happens for
the Minimum TSP, it is approximable within a constant factor even when
the distance matrix can be completely arbitrary. In the static setting, the
best known result for Max TSP is a 0.6-approximation algorithm due to
Kosaraju et al. [25]. Once again, the knowledge of an optimum solution to
the initial instance is useful, as the reoptimization problem under insertion
of a vertex can be approximated within a ratio of 0.66 (for large enough n),
as we show next.

Theorem 4.15. Max TSP+ is approximable within ratio (2/3)-(1—1/n).

Proof. Let i and j be such that (i,n+ 1) and (n + 1, j) belong to T}y ;.
The algorithm is the following:

(1) Apply Best Insertion to T)F to get a tour T7;

(2) Find a maximum cycle cover C = (Cy,...,C}) on I,+1 such that:
(a) (4,n+1) and (n+ 1,5) belong to Cp;
(b) [Col > 4;

(3) Remove the minimum-weight arc of each cycle of C and patch the paths
obtained to get a tour Th;
(4) Select the best solution between T; and Tb.

Note that Step 2 can be implemented in polynomial time as follows: We
replace d(i,n + 1) and d(n + 1,7) by a large weight M, and d(j,7) by —M
(we do not know ¢ and j, but we can try each possible pair of vertices and
return the best tour constructed by the algorithm). Hence, this cycle cover
will contain (i,m + 1) and (n + 1,7) but not (j,¢), meaning that the cycle
containing n + 1 will have at least 4 vertices.

Let a :=d(i,n + 1) +d(n + 1, 7). Clearly, w(T,; ;) < w(T}y) + a. Now,
by inserting n + 1 in each possible position, we get

w(Th) = (1 =1/n)w(Ty) = (1 =1/n)(w(T;) — a).

Since Cy has size at least 4, the minimum-weight arc of Cy has cost at
most (w(Cy) — a)/2. Since each cycle has size at least 2, we get a tour Th

Complexity and Approximation in Reoptimization 125

of value:
Co) — C) — w(C
(T 2 w(ey - MO8 €)= w(C)
~wC)+a S w(Ty) +a
2T 2
Combining the two bounds for 77 and T5, we get a solution which is
(2/3) - (1 — 1/n)-approximate. O

The above upper bound can be improved to 0.8 when the distance ma-
trix is known to be symmetric [5].

4.4.2.2. Mazimum Metric TSP

The usual Maximum TSP problem does not admit a polynomial-time ap-
proximation scheme, that is, there exists a constant ¢ such that it is NP-
hard to approximate the problem within a factor better than ¢. This result
extends also to the Maximum Metric TSP [29]. The best known approxi-
mation for the Maximum Metric TSP is a randomized algorithm with an
approximation guarantee of 7/8 [21].

By contrast, in the reoptimization of Max MTSP under insertion of a
vertex, the Best Insertion algorithm turns out to be a very good strategy:
It is asymptotically optimum. In particular, the following holds:

Theorem 4.16 ([5]). Max MTSP+ is approzimable within ratio 1 —
O(n=1/2).

Using the above result one can easily prove that Max MTSP+ admits
a polynomial-time approximation scheme: If the desired approximation
guarantee is 1 — ¢, for some € > 0, just solve by enumeration the instances
with O(1/€?) nodes, and use the result above for the other instances.

4.4.3. The Minimum Latency Problem

Although superficially similar to the Minimum Metric TSP, the Minimum
Latency Problem appears to be more difficult to solve. For example, in
the special case when the metric is induced by a weighted tree, the MLP is
NP-hard [35] while the Metric TSP is trivial. One of the difficulties in the
MLP is that local changes in the input can influence the global shape of the
optimum solution. Thus, it is interesting to notice that despite this fact,
reoptimization still helps. In fact, the best known approximation so far for
the static version of the MLP gives a factor of 3.59 and is achieved via a

126 G. Ausiello, V. Bonifaci, € B. Escoffier

sophisticated algorithm due to Chaudhuri et al. [10], while it is possible
to give a very simple 3-approximation for MLP+, as we show in the next
theorem.

Theorem 4.17. MLP+ s approximable within ratio 3.

Proof. We consider the Insert Last algorithm that inserts the new node
n + 1 at the “end” of the tour, that is, just before node 1. Without loss
of generality, let T, = {(1,2),(2,3),...,(n—1,n)} be the optimal tour for
the initial instance I,, (that is, the kth node to be visited is k). Let T}y, | be
the optimal tour for the modified instance I,,41. Clearly ¢(T},) > ¢(T};)
since relaxing the condition that node n + 1 must be visited cannot raise
the overall latency.

The quantity ¢(T) can be expressed as Y .-, t;, where for i = 1,...,n,
t, = Z;;ll d(j,7 + 1) can be interpreted as the “time” at which node i is
first visited in the tour 7T}r.

In the solution constructed by Insert Last, the time at which each node
1 # n+ 1 is visited is the same as in the original tour (¢;), while t,4+1 =
tn+d(n,n+1). The latency of the solution is thus Y77 t; = 37 ti+t,+
d(n,n+1) < 20(Ty) + (T,) < 30(T},), where we have used ¢(T};,) >
d(n,n + 1) (any feasible tour must include a subpath from n to n + 1 or
vice versa). O

4.5. Concluding Remarks

In this chapter we have seen how the reoptimization model can often be
applied to NP-hard combinatorial problems in order to obtain algorithms
with approximation guarantees that improve upon the trivial approach of
computing an approximate solution from scratch.

Apart from designing algorithms with good approximation guarantees
for reoptimization problems — and from obtaining sharper negative results
— there are some general open directions in the area. One is to investigate
the more general issue of maintaining an approximate solution under input
modifications. In our model we assumed that an optimal solution was
available for the instance prior to the modification, but it is natural to
relax this constraint by assuming only an approximate solution instead. In
some cases the analysis of the reoptimization algorithm can be carried out
in a similar way even with such a relaxed assumption, but this needs not
be always true.

Complexity and Approximation in Reoptimization 127

Another general question is that of studying the interplay between run-
ning time, approximation guarantee, and amount of data perturbation. If
we devote enough running time (for example, exponential time for prob-
lems in NPO) to the solution of an instance, we can find an optimal solution
independently of the amount of perturbation. On the other hand we saw
that for many problems it is possible to find in polynomial time an almost
optimal solution for any slightly perturbed instance. One could expect that
there might be a general trade-off between the amount of data perturbation
and the running time needed the reconstruct a solution of a given quality.
It would be interesting to identify problems for which such trade-offs are
possible.

References

[1] C. Archetti, L. Bertazzi, and M. G. Speranza, Reoptimizing the traveling
salesman problem, Networks. 42(3), 154-159, (2003).

[2] C. Archetti, L. Bertazzi, and M. G. Speranza. Reoptimizing the 0-1 knap-
sack problem. Technical Report 267, Department of Quantitative Methods,
University of Brescia, (2006).

[3] T. Asano, K. Hori, T. Ono, and T. Hirata. A theoretical framework of hy-
brid approaches to MAX SAT. In Proc. 8th Int. Symp. on Algorithms and
Computation, pp. 153-162, (1997).

[4] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
and M. Protasi, Complexity and approximation — Combinatorial optimiza-
tion problems and their approximability properties, Springer, Berlin, (1999).

[5] G. Ausiello, B. Escoffier, J. Monnot, and V. T. Paschos. Reoptimization of
minimum and maximum traveling salesman’s tours. In Proc. 10th Scandina-
vian Workshop on Algorithm Theory, pp. 196-207, (2006).

[6] M. Bartusch, R. Mohring, and F. J. Radermacher, Scheduling project net-
works with resource constraints and time windows, Ann. Oper. Res.. 16,
201-240, (1988).

[7] M. Bartusch, R. Méhring, and F. J. Radermacher, A conceptional outline
of a DSS for scheduling problems in the building industry, Decision Support
Systems. 5, 321-344, (1989).

[8] H.-J. Bockenhauer, L. Forlizzi, J. Hromkovic, J. Kneis, J. Kupke, G. Proietti,
and P. Widmayer. Reusing optimal TSP solutions for locally modified input
instances. In Proc. 4th IFIP Int. Conf. on Theoretical Computer Science,
pp. 251-270, (2006).

[9] H.-J. Béckenhauer, J. Hromkovic, T. Moémke, and P. Widmayer. On the
hardness of reoptimization. In Proc. 84th Conf. on Current Trends in Theory
and Practice of Computer Science, pp. 5065, (2008).

[10] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and mini-
mum latency tours. In Proc. 44th Symp. on Foundations of Computer Sci-

128

[11]

[12]

[13]

(14]

(15]

[19]
[20]
21]
22]

[23]

(26]

27]

(28]

G. Ausiello, V. Bonifaci, € B. Escoffier

ence, pp. 36-45, (2003).

N. Christofides. Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical Report 388, Graduate School of Industrial Ad-
ministration, Carnegie-Mellon University, Pittsburgh, PA, (1976).

D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig, Sparsification-
a technique for speeding up dynamic graph algorithms, J. ACM. 44(5),
669696, (1997).

B. Escoffier, M. Milanic, and V. T. Paschos, Simple and fast reoptimiza-
tions for the Steiner tree problem, Cahier du LAMSADE 245, LAMSADE,
Université Paris-Dauphine, (2007).

S. Even and H. Gazit, Updating distances in dynamic graphs, Methods Oper.
Res. 49, 371-387, (1985).

U. Feige and M. Singh. Improved approximation ratios for traveling sales-
person tours and paths in directed graphs. In Proc. 10th Int. Workshop on
Approximation, Randomization, and Combinatorial Optimization, pp. 104—
118, (2007).

G. N. Frederickson, Data structures for on-line updating of minimum span-
ning trees, with applications, SIAM J. Comput.. 14(4), 781-798, (1985).
A. M. Frieze, G. Galbiati, and F. Maffioli, On the worst-case performance of
some algorithms for the asymmetric traveling salesman problem, Networks.
12(1), 23-39, (1982).

C. Gropl, S. Hougardy, T. Nierhof, and H. Prémel. Approximation algo-
rithms for the Steiner tree problem in graphs. In eds. D.-Z. Du and X. Cheng,
Steiner Trees in Industry, pp. 235—279. Kluwer Academic Publishers, Dor-
drecht, (2000).

G. Gutin and A. P. Punnen, Eds., The Traveling Salesman Problem and its
Variations. Kluwer, Dordrecht, (2002).

N. G. Hall and M. E. Posner, Sensitivity analysis for scheduling problems,
J. Sched.. 7(1), 49-83, (2004).

R. Hassin and S. Rubinstein, A 7/8-approximation algorithm for metric Max
TSP, Inform. Process. Lett.. 81(5), 247-251, (2002).

M. R. Henzinger and V. King, Maintaining minimum spanning forests in
dynamic graphs, SIAM J. Comput.. 31(2), 367-374, (2001).

O. H. Ibarra and C. E. Kim, Fast approximation algorithms for the knapsack
and sum of subset problems, J. ACM. 22(4), 463-468, (1975).

D. S. Johnson, Approximation algorithms for combinatorial problems, J.
Comput. Systems Sci.. 9, 256278, (1974).

S. R. Kosaraju, J. K. Park, and C. Stein. Long tours and short superstrings.
In Proc. 35th Symp. on Foundations of Computer Science, pp. 166—177,
(1994).

E. L. Lawler, J. K. Lenstra, A. Rinnoy Kan, and D. B. Shymois, Eds., The
Traveling Salesman Problem: A Guided Tour of Combinatorial Optimiza-
tion. Wiley, Chichester, (1985).

J. M. Lewis and M. Yannakakis, The node-deletion problem for hereditary
properties is NP-complete, J. Comput. Systems Sci.. 20(2), 219-230, (1980).
C. H. Papadimitriou and K. Steiglitz, On the complexity of local search for

29]
(30]
31]
32]
[33]
[34]
[35]

[36]
[37]

Complexity and Approximation in Reoptimization 129

the traveling salesman problem, SIAM J. Comput.. 6(1), 76-83, (1977).

C. H. Papadimitriou and M. Yannakakis, The traveling salesman problem
with distances one and two, Math.Oper. Res.. 18(1), 1-11, (1993).

A. Paz and S. Moran, Non-deterministic polynomial optimization problems
and their approximations, Theoret. Comput. Sci.. 15, 251-277, (1981).

G. Robins and A. Zelikovsky, Tighter bounds for graph Steiner tree approx-
imation, SIAM J. Discrete Math.. 19(1), 122-134, (2005).

H. Rohnert. A dynamization of the all-pairs least cost problem. In Proc. 2nd
Symp. on Theoretical Aspects of Computer Science, pp. 279-286, (1985).

S. Sahni and T. F. Gonzalez, P-complete approximation problems, J. ACM.
23(3), 555-565, (1976).

M. W. Schaffter, Scheduling with forbidden sets, Discrete Appl. Math.. T2
(1-2), 155-166, (1997).

R. Sitters. The minimum latency problem is NP-hard for weighted trees. In
Proc. 9th Integer Programming and Combinatorial Optimization Conf., pp.
230-239, (2002).

V. V. Vazirani, Approzimation Algorithms. Springer, Berlin, (2001).

D. Zuckerman, Linear degree extractors and the inapproximability of max
clique and chromatic number, Theory Comput.. 3(1), 103-128, (2007).

	Contents
	Preface
	1. Computation, Information, and the Arrow of Time P. Adriaans & P. van Emde Boas
	1.1. Introduction
	1.2. A Formal Framework: Meta-computational Space
	1.3. Time Symmetries in Meta-computational Space
	1.4. The Interplay of Computation and Information
	1.5. Discussion
	1.6. Conclusion
	References

	2. The Isomorphism Conjecture for NP M. Agrawal
	Contents
	2.1. Introduction
	2.2. Definitions
	2.3. Formulation and Early Investigations
	2.4. A Counter Conjecture and Relativizations
	2.5. The Conjectures for Other Classes
	2.6. The Conjectures for Other Reducibilities
	2.6.1. Restricting the input head movement
	2.6.2. Reducing space
	2.6.3. Reducing depth
	2.6.4. Discussion

	2.7. A New Conjecture
	2.8. Future Directions
	References

	3. The Ershov Hierarchy M. M. Arslanov
	Contents
	3.1. The Hierarchy of Sets
	3.1.1. The finite levels of the Ershov hierarchy
	3.1.2. The properties of productiveness and creativeness on the n-c.e. sets
	3.1.3. The class of the !-c.e. sets
	3.1.4. A description of the 0 2-sets using constructive ordi- nals
	3.1.5. The infinite levels of the Ershov hierarchy
	3.1.6. Levels of the Ershov hierarchy containing Turing jumps

	3.2. The Turing Degrees of the n-c.e. Sets
	3.2.1. The class of the n-c.e. degrees
	3.2.2. The degrees of the n-c.e. sets in the n-CEA hierarchy
	3.2.3. The relative arrangement of the n-c.e. degrees
	3.2.4. The cupping, capping and density properties
	3.2.5. Splitting properties
	3.2.6. Isolated d-c.e. degrees
	3.2.7. A generalization
	3.2.8. Further results and open questions

	References

	4. Complexity and Approximation in Reoptimization G. Ausiello, V. Bonifaci, & B. Escoffer
	Contents
	4.1. Introduction
	4.2. Basic Definitions and Results
	4.3. Reoptimization of NP-hard Optimization Problem
	4.3.1. General properties
	4.3.1.1. Hereditary problems
	4.3.1.2. Unweighted problems
	4.3.1.3. Hardness of reoptimization

	4.3.2. Results on some particular problems
	4.3.2.1. Min Steiner Tree
	4.3.2.2. Scheduling
	4.3.2.3. Max Knapsack

	4.4. Reoptimization of Vehicle Routing Problems
	4.4.1. The Minimum Traveling Salesman Problem
	4.4.1.1. The general case
	4.4.1.2. Minimum Metric TSP
	4.4.1.3. Minimum Asymmetric TSP

	4.4.2. The Maximum Traveling Salesman Problem
	4.4.2.1. Maximum TSP
	4.4.2.2. Maximum Metric TSP

	4.4.3. The Minimum Latency Problem

	4.5. Concluding Remarks
	References

	5. Definability in the Real Universe S. B. Cooper
	Contents
	5.1. Introduction
	5.2. Computability versus Descriptions
	5.3. Turing’s Model and Incomputability
	5.4. The Real Universe as Discipline Problem
	5.5. A Dissenting Voice . . .
	5.6. The Quantum Challenge
	5.7. Schr¨odinger’s Lost States, and the Many-Worlds Interpretation
	5.8. Back in the One World . . .
	5.9. The Challenge from Emergence
	5.10. A Test for Emergence
	5.11. Definability the Key Concept
	5.12. The Challenge of Modelling Mentality
	5.13. Connectionist Models to the Rescue?
	5.14. Definability in What Structure?
	5.15. The Turing Landscape, Causality and Emergence . . .
	5.16. An Informational Universe, and Hartley Rogers’ Programme
	References

	6. HF-Computability Y. L. Ershov, V. G. Puzarenko, & A. I. Stukachev
	Contents
	6.1. Introduction
	6.2. HF-Logic
	6.3. -Subsets on Hereditarily Finite Superstructures
	6.4. Reducibilities on Hereditarily Finite Superstructures
	6.5. Descriptive Properties on Hereditarily Finite Superstructures
	6.6. -Definability of Structures
	6.6.1. -Definability on structures: general properties
	6.6.2. -Definability on special structures
	6.6.3. Special cases of -definability

	6.7. Semilattices of Degrees of Presentability of Structures
	6.8. Closely Related Approaches to Generalized Computability
	6.8.1. BSS-computability
	6.8.2. Search computability
	6.8.3. Montague computability

	6.9. KPU. Examples of Admissible Structures
	6.9.1. Elements of KPU
	6.9.2. -subsets
	6.9.3. Gandy’s Theorem

	Acknowledgements
	References

	7. The Mathematics of Computing between Logic and Physics G. Longo & T. Paul
	Contents
	7.1. Introduction
	7.2. Computability and Continuity
	7.3. Mathematical Computability and the Reality of Physics
	7.4. From the Principle of Least Action to the Quantum Theory of Fields
	7.5. Chaotic Determinism and Predictability
	7.6. Return to Computability in Mathematics
	7.7. Non-determinism?
	7.8. The Case of Quantum Mechanics
	7.9. Randomness, Between Unpredictability and Chaos
	7.10. General Conclusions
	Acknowledgements
	References

	8. Liquid State Machines: Motivation, Theory, and Applications W. Maass
	Contents
	8.1. Introduction
	8.2. Why Turing Machines are Not Useful for Many Important Computational Tasks
	8.3. Formal Definition and Theory of Liquid State Machines
	8.4. Applications
	8.5. Discussion
	Acknowledgements
	References

	9. Experiments on an Internal Approach to Typed Algorithms in Analysis D. Normann
	Contents
	9.1. Introduction
	9.1.1. Classical computability theory
	9.1.2. Generalizing computability theory
	9.1.3. Generalizing finiteness
	9.1.4. Computability at higher types

	9.2. Computational Analysis
	9.2.1. Type two enumerability
	9.2.2. Domain representability
	9.2.3. Quotients of countably based spaces
	9.2.4. A purely internal approach?

	9.3. Some Typed Hierarchies of Limit Spaces
	9.3.1. Total versus partial functionals
	9.3.2. The problem with density
	9.3.3. Probabilistic projections

	9.4. Domain Representations and Density
	Acknowledgements
	References

	10. Recursive Functions: An Archeological Look P. Odifreddi
	Contents
	10.1. Types of Recursion
	10.1.1. Iteration
	10.1.2. Primitive recursion
	10.1.3. Primitive recursion with parameters
	10.1.4. Course-of-value recursion

	10.2. The First Recursion Theorem
	10.2.1. Differentiable functions
	10.2.2. Contractions
	10.2.3. Continuous functions

	10.3. The Second Recursion Theorem
	10.3.1. The diagonal method
	10.3.2. The diagonal
	10.3.3. The switching function
	10.3.4. Selfreference

	References

	11. Reverse Mathematics and Well-ordering Principles M. Rathjen & A. Weiermann
	Contents
	11.1. Introduction
	11.2. The Ordering 'X0
	11.4. Main Theorem
	11.4.1. Deduction chains in !-logic
	11.4.2. The infinitary calculus 1 1-CRQ 1

	11.5. Ramified Analysis RA1
	11.5.1. Finishing the proof of the main theorem

	11.6. Finishing the Proof of Theorem 11.1.3
	11.7. Prospectus
	References

	12. Discrete Transfinite Computation Models P. D. Welch
	Contents
	12.1. Introduction
	12.1.1. The contents
	12.1.2. Argument

	12.2. Computation on Integers
	12.2.1. Transcending the finite through stacking Turing ma- chines
	12.2.1.1. General relativistic models: Malament–Hogarth Spacetimes
	12.2.1.2. Etesi & N´emeti’s rotating black hole model
	12.2.1.3. Hogarth’s arithmetically deciding spacetime regions
	12.2.1.4. A universal constant upper bound for any computation

	12.2.2. Allowing supertasks
	12.2.2.1. Punch-hole machines
	12.2.2.2. Infinite Time Register Machines (ITRMs)
	12.2.2.3. Infinite Time Turing Machines (ITTMs)

	12.3. Computation on Reals
	12.3.1. ITTM computations on reals

	12.4. Computation on Ordinals, and Ordinal Length Machines
	12.4.1. Ordinal length tapes
	12.4.1.1. -length tapes

	12.4.2. Ordinal Register Machines

	12.5. Theoretical Machine Strength
	Acknowledgements
	References

