
Algorithmica manuscript No.
(will be inserted by the editor)

A Constant-Approximate Feasibility Test
for Multiprocessor Real-Time Scheduling

Vincenzo Bonifaci ·
Alberto Marchetti-Spaccamela ·
Sebastian Stiller

the date of receipt and acceptance should be inserted later

Abstract We devise an approximate feasibility test for multiprocessor real-
time scheduling in the sporadic task model. We give an algorithm that, given
a task system and ε > 0, correctly decides either that the task system can be
scheduled using the Earliest Deadline First algorithm on m speed-(2−1/m+ε)
machines, or that the system is not schedulable by any algorithm on m unit
speed machines. This speedup bound is known to be the best possible for EDF.
The running time of the algorithm is polynomial in the size of the task system
and 1/ε. We also provide a generalized tight bound that trades off speed with
additional machines.

Keywords Sporadic task system · Multiprocessor · Real-time scheduling ·
Feasibility test · Earliest Deadline First · Approximation algorithm

1 Introduction

We study the problem of scheduling recurring processes, or tasks, on a mul-
tiprocessor platform. An instance of the problem is given by a finite set T of
tasks which need to be executed by the system; each task can generate an
arbitrarily long or even infinite sequence of jobs.

A preliminary version of this work appeared in Proceedings of the 16th European Symposium
on Algorithms, Lecture Notes in Computer Science, Springer, Berlin, 2008, pp. 210–221.

V. Bonifaci
Max-Planck Institut für Informatik, Saarbrücken, Germany
E-mail: bonifaci@mpi-inf.mpg.de

A. Marchetti-Spaccamela
Sapienza Università di Roma, Rome, Italy
E-mail: alberto@dis.uniroma1.it

S. Stiller
Technische Universität Berlin, Germany
E-mail: stiller@math.tu-berlin.de

2 Vincenzo Bonifaci et al.

In the periodic version of the problem, a task τ ∈ T is characterized by
a quadruple of positive integers: an offset oτ that represents the time instant
when the first job generated by the task is released, an (exact) execution
time Cτ , a relative deadline Dτ and a period Tτ . Each occurrence of task τ
is represented by a job: the k-th occurrence of the task is released at time
oτ + (k − 1)Tτ , requires Cτ units of processor time and must complete its
execution before time oτ + (k − 1)Tτ +Dτ . Note that a periodic task system
defines a single, infinite sequence of jobs.

In the sporadic case, each task is characterized by a triple of positive in-
tegers (Cτ , Dτ , Tτ), where Cτ , Dτ have the same meaning as in the periodic
case, while Tτ denotes the minimum separation between successive occurrences
of the task. Note that in a sporadic task system the time instant when the
next invocation of a task will be released after the minimal separation time
has elapsed is unknown. Thus, in contrast with the periodic case, there are
infinitely many job sequences that conform to the system’s specification.

The correctness of a hard real-time system requires that all jobs complete
by their deadlines. A task system is feasible if every sequence of jobs that is
consistent with the parameters of the task system admits a schedule meeting
all the deadlines, and it is schedulable by a given algorithm if the algorithm
constructs a feasible schedule for every such sequence of jobs. In the sequel we
focus on preemptive scheduling algorithms that are allowed to interrupt the
execution of a job and resume it later; job migration is also allowed.

A feasibility test for a task system is an algorithm that takes as input a
description of the task system and answers whether the system is feasible or
not. A feasibility test is exact if it correctly identifies all feasible and infeasible
task systems and sufficient if it correctly identifies all infeasible task systems,
but may give a wrong answer for feasible task systems. A sufficient feasibility
test is a natural requirement in hard-deadline real-time applications. In fact,
from a practical point of view, there is no difference between a task system
that is not feasible and one that cannot be proven to be feasible.

In the case of a single machine, the problem has been widely studied and ef-
fective scheduling algorithms are quite well understood [7,11,17]. In this paper
we study the feasibility problem for sporadic task systems on identical parallel
machines. The problem is not only interesting from a theoretical point of view
but is also relevant in practice. In fact, real-time multiprocessor systems are
becoming common, both in the form of single-chip architectures characterized
by a small number of processors, and of large-scale signal-processing systems
with many processing units.

Single machine scheduling. In the case of a single machine it is known [7,10,17]
that the Earliest Deadline First scheduling algorithm (EDF), which at each
instant in time schedules the available job with the earliest absolute deadline
(with ties broken arbitrarily), is an optimal scheduling algorithm for scheduling
a sporadic (or periodic) task system, in the following sense: if it is possible to
schedule a given collection of jobs so that all jobs meet their deadlines, then the
schedule generated by EDF for this collection of jobs will meet all deadlines

An Approximate Feasibility Test for Real-Time Scheduling 3

as well. Despite this positive result, the feasibility problem for periodic or
sporadic task systems on one processor is coNP-hard [7, 12,16].

For this reason, approximate feasibility tests have been proposed that run
efficiently (say, in time polynomial in the description of the system) but intro-
duce a small error in the decision process, controlled by an accuracy param-
eter. Such approaches have been developed for EDF scheduling and for other
scheduling algorithms. Two different paradigms can be used to define approx-
imate feasibility tests: pessimistic and optimistic. If a pessimistic feasibility
test returns “feasible”, then the task system is guaranteed to be feasible. If
the test returns “infeasible”, the task system is guaranteed to be infeasible on
a slower processor, of computing capacity (1 − ε), where ε denotes the error
parameter. Conversely, if an optimistic test returns “feasible”, then the task
system is guaranteed to be feasible on a (1 + ε)-speed processor. If the test
returns “infeasible”, the task system is guaranteed to be infeasible on a unit
speed processor [9]. These two approaches are in fact equivalent, as by scaling
the input parameters it is possible to turn an optimistic test into a pessimistic
one, or vice versa.

Fully polynomial-time approximation schemes (FPTAS) are known for a
single processor. That is, for any ε > 0 there exists a feasibility test that returns
an ε-approximated answer, and the running time of the algorithm is polynomial
in the input size of the task system and in 1/ε (see for example [1,2,9,13] and
references therein).

Finally, we remark that in the uniprocessor case the sporadic feasibility
problem is known to reduce to a special case of the periodic feasibility problem
in which all tasks have zero offset (i.e. each task releases its first job at time
zero) [7]. The fact that this special case remains coNP-hard was established
recently [12].

Multiple machine scheduling. We first observe that in the multiprocessor case
the previously mentioned analogy between sporadic and periodic problems
does not hold; that is, the sporadic feasibility problem cannot be reduced to
the periodic feasibility problem by setting the tasks’ offsets to zero (Figure 1).

(a)
τ1 τ1 τ1

τ2 τ2

τ3

τ3

τ3

0 ∗

(b)
τ1 τ1 τ1

τ2 τ2

τ3 τ3

0 ∗

Fig. 1 In this example, (C1, D1, T1) = (1, 1, 2), (C2, D2, T2) = (2, 2, 3), (C3, D3, T3) =
(3, 4, 6). There are two processors. In case (a), all three tasks are activated simultaneously
at time zero and the periodic sequence is schedulable. In case (b), tasks 2 and 3 are activated
one time unit later and task 3 cannot be completed within its deadline (marked with ∗).

4 Vincenzo Bonifaci et al.

Moreover, in the multiprocessor case EDF is no longer an optimal algo-
rithm and in fact there are sporadic task systems for which no optimal on-line
scheduling algorithm exists [14]. Optimal algorithms are known only for spe-
cial cases (for example, when for each task τ , Dτ = Tτ [19]). However, it is
known that any collection of jobs that is feasible on m unit speed machines is
EDF-schedulable on m machines of speed 2 − 1/m [18]. This result holds for
EDF as well as for other scheduling algorithms. For EDF this result is tight,
while for other algorithms it has not been improved since then. Subsequent
work has analyzed the advantage of trading speed for machines [15], while
further work on conditions for EDF-schedulability has been done by Baker [3].

Note that the result of [18] does not imply an efficient test for deciding
when EDF (possibly with extra speed) can schedule a sporadic task system.
Thus, the main open problem in order to apply the result of Phillips et al. [18]
is the lack of an efficient feasibility test.

This problem attracted attention in recent years (see for example [4] and
references therein for a thorough presentation). A number of special cases have
also been studied; for example, when for each task the deadline is equal to the
period (implicit-deadline task systems), it is known that the condition∑

τ∈T

Cτ
Tτ
≤ m and max

τ∈T

Cτ
Tτ
≤ 1

is both necessary and sufficient for the system to be feasible.
However, not much was known regarding the feasibility of an arbitrary-

deadline task system. In a recent work, Baruah and Baker [6] gave a 2.62-
approximate feasibility test in the case of constrained-deadline sporadic task
systems, that is, task systems in which for each task the deadline is at most
equal to the period. A similar guarantee was later extended to arbitrary-
deadline sporadic task systems [5]. For periodic task systems with offsets,
it turns out that no efficient approximate feasibility test is possible unless
P = NP [8]. We refer the reader to the survey [4] for feasibility tests that are
known for other special cases.

Our contribution. We give an efficient approximate feasibility test for
arbitrary-deadline sporadic task systems with an approximation guarantee of
2 − 1/m + ε, for any fixed ε > 0. More precisely, we give a test that, given a
sporadic task system T and ε > 0, decides either that the system can be sched-
uled by EDF on m speed-(2−1/m+ ε) machines, or that the instance violates
at least one of two basic conditions which are both necessary for feasibility on
m unit speed machines. The running time is polynomial in the input size of
T and 1/ε. In fact, we give a slightly more general result, allowing to trade
some extra speed for extra machines. Note that extra machines are in general
less powerful than extra speed: a speed-k machine can simulate k unit speed
machines via processor sharing, while the converse is in general impossible,
since a single job cannot be processed in parallel on multiple machines.

One of the two basic conditions of our test is trivial. The other condition is
the crucial one; it provides a lower bound on the processing requirement of an

An Approximate Feasibility Test for Real-Time Scheduling 5

arbitrary time interval. We call this processing requirement the forward forced
demand. This concept is strong enough to approximately capture the feasibility
of a sporadic task system on a multiprocessor platform, but also simple enough
to be approximable in polynomial time up to an arbitrarily small ε > 0: we
give an algorithm that checks this condition in time polynomial in the input
size of T and 1/ε, for any desired error bound ε > 0.

Apart from improving the bound in [5], our result is tight from the point
of view of EDF-schedulability. It might be possible to improve the bound by
considering schedulability with respect to an algorithm different from EDF,
but notice that such an improvement would have to break the long standing
bound of Phillips et al. [18]. As a byproduct of our analysis, we also obtain an
alternative proof of the optimality of EDF for uniprocessor systems.

A remark on execution times. We have assumed, above and in the following,
that the execution time Cτ of a task τ is always attained by each job of τ .
However, allowing jobs from τ to have actual execution time less than Cτ does
not affect the feasibility of the task system: if a job happens to complete its
execution before the worst-case is attained, we can simply ignore this fact and,
whenever we would execute the job, we idle the processor instead. If a task
system is feasible with the assumption that the worst-case execution time is
always attained, it is also feasible without the assumption. Thus, our results
still hold when Cτ represents only the worst-case execution time of task τ .

Outline of the paper. The rest of the paper is structured as follows. In Section
2 we give the necessary definitions and introduce the concept of forward forced
demand. Section 3 provides the main connection between forward forced de-
mand and EDF-schedulability. In Section 4 we complete the description of the
feasibility test by providing a fully polynomial time approximation scheme to
estimate the worst-case forward forced demand of a sporadic task system.

2 Preliminaries

An instance of the feasibility problem for sporadic task systems is a finite set
of tasks T. Each task τ ∈ T is defined by three positive integers: an execution
time Cτ , a relative deadline Dτ and a minimum separation time Tτ . Every
task may generate jobs from time to time. A job j is defined by the task τ(j)
it belongs to and by a release date rj , a nonnegative integer. We abbreviate
Cj := Cτ(j), Dj := Dτ(j) and Tj := Tτ(j), and we call dj := rj + Dj the
absolute deadline of job j. Each job j requires a processor to be allocated to
for Cj time units during the interval [rj , rj +Dj). Jobs can be preempted and
migrated without penalty, but each job may execute on at most one processor
at any given instant in time, and jobs from the same task cannot be processed
in parallel.

A sporadic job sequence R is any countable set of jobs from tasks in T

with the following property: any distinct jobs j and k from the same task

6 Vincenzo Bonifaci et al.

τ satisfy |rj − rk| ≥ Tτ . Job sequence R is schedulable when there exists a
schedule satisfying the execution requirements of all jobs in R. A task system
T is feasible if all job sequences from T are schedulable.

Given a real number x we denote by x+ its positive part, that is x+ :=
max (x, 0).

Definition 1 Let T be a task system, R a job sequence, ∆ = [t, t′) an interval,
τ a task and j a job. We define the following quantities.

ffd(j,∆) :=

{
(Cj − (t− rj)+)+ if dj ∈ ∆ or dj = t′,
0 otherwise.

ffdR(τ,∆) :=
∑

j∈R: τ(j)=τ

ffd(j,∆).

ffdR(∆) :=
∑
τ∈T

ffdR(τ,∆).

Quantity ffd(j,∆) is called the forward forced demand of j in ∆. Similarly, the
quantity ffdR(∆) is called the forward forced demand of the interval. We write
ffd(τ,∆) and ffd(∆), respectively, when the task system T and the sequence R
are implicitly fixed. The quantity ffd(∆)/‖∆‖ is called the load of interval ∆.

Note that when rj ∈ ∆ the forward forced demand equals the execution time
of the job. If Cτ ≤ Tτ for all tasks τ , then each task τ can have at most one job
with release date outside the interval that has strictly positive forward forced
demand in the interval.

The following proposition easily follows from the fact that the forward
forced demand of a job in an interval is a lower bound on the amount of work
that has to be performed on the job during the interval, if the job’s deadline
has to be met.

Proposition 1 Let R, ∆ and m be such that ffdR(∆) > m‖∆‖. Then R is
not schedulable on m unit speed machines.

Proposition 2 Let τ ∈ T be such that Cτ > min(Dτ , Tτ). Then T is not
feasible on any number of unit speed machines.

Proof If Cτ > Dτ , then the sequence consisting of a single τ -job is clearly not
schedulable (recall that a job can be processed on at most one processor at
any given time). If Cτ > Tτ , then any sufficiently long periodic sequence of
τ -jobs with period Tτ is not schedulable (jobs from the same task have to be
processed sequentially). ut

We use the notation EDF[M,σ] to denote the Earliest Deadline First
scheduling algorithm executed on M speed-σ machines (σ ≥ 1). We do not
assume any particular tie-breaking rule for the algorithm. A job sequence R
is EDF-schedulable if, on input R, EDF produces a schedule that meets the
requirements of all jobs in R. A task system T is EDF-schedulable if every job
sequence from T is EDF-schedulable.

An Approximate Feasibility Test for Real-Time Scheduling 7

Definition 2 Let T be a task system and R a job sequence. For a task τ ∈ T,
an interval ∆ = [t′, t) is called τ -busy before t if executing algorithm EDF[M,σ]
on the sequence R yields at any time in ∆ a positive remaining execution time
for at least one of the jobs of task τ .

Observe that when at time t there is some pending job from task τ , the
maximal τ -busy interval before t is well-defined, unique, and starts with the
release date of some job of τ . Moreover, all the execution requirements from τ -
jobs released before a maximal τ -busy interval ∆ are satisfied by EDF strictly
before ∆.

3 A feasibility test

In this section we present and discuss the conditions that will be used for
testing feasibility of a sporadic task system. The main result of this section is
the following.

Theorem 1 Let M be a positive integer and σ ≥ 1. Consider a task system
T satisfying Cτ ≤ min(Dτ , Tτ) for all τ ∈ T. If R is a job sequence which
cannot be scheduled by EDF on M speed-σ machines, then there is an interval
∆ such that ffdR(∆)/‖∆‖ > M(σ − 1) + 1.

Before giving the proof we explain the main intuition. Given a job sequence
on which EDF fails, we will inductively construct an interval with high load;
this interval will be a witness of the non-schedulability of R. The interval
will be composed of several subintervals, each of which will be τ -busy for
some appropriate task τ . Whenever EDF does not process a job of τ in the
subinterval, it must have all machines busy.

In order to conclude that the load of the whole interval is large, we establish
two facts: first, that the fraction of a subinterval in which its associated task
is processed is small, i.e., in a large part of the subinterval all machines must
be busy; second, that what is processed in those busy subintervals is part of
the forward forced demand of the witness interval.

From now on we assume that R is a job sequence which cannot be scheduled
by EDF[M,σ], and that t0 is the first point in time when EDF fails a deadline.
We can without loss of generality assume that no job has absolute deadline
after t0: after removing such jobs, EDF still fails some deadline at t0 and the
forward forced demand has not increased.

We define inductively a finite sequence of pairs (ti, ji), for 1 ≤ i ≤ k,
where ti is a time and ji is a job. The sequence is defined in Algorithm 1 and
illustrated in Figure 2. We use the notation EDF(j, S) for the total work that
EDF[M,σ] allocates to a job j in a given subset S of R+.

The sequence defines time intervals ∆i := [ti, t0) and ∆̂i := [ti, ti−1). Each

interval ∆̂i is partitioned into two subsets Xi and Yi := ∆̂i\Xi. The subset Xi

is the set of time instants in ∆̂i for which a job of task τ(ji) is being processed

8 Vincenzo Bonifaci et al.

Algorithm 1 Construction of an Infeasibility Certificate
j1 := job that missed its deadline at t0
∆̂1 := [t1, t0) := maximal τ(j1)-busy interval before t0
∆1 := ∆̂1

X1 := time intervals in ∆̂1 when a job of task τ(j1) is being processed

Y1 := ∆̂1 \X1

i := 2
repeat

Let ji denote a job such that:

(i) the release date of ji is strictly before ti−1;

(ii) EDF
(
ji,
⋃i−1
s=1 Ys

)
> ffd(ji,∆i−1).

∆̂i := [ti, ti−1) := maximal τ(ji)-busy interval before ti−1

∆i := [ti, t0)

Xi := time intervals in ∆̂i when a job of task τ(ji) is being processed

Yi := ∆̂i \Xi
i := i+ 1

until no such job exists

by EDF. Due to the way EDF schedules, Xi is a finite union of intervals.
Further, we set xi := ‖Xi‖ and yi := ‖Yi‖.

Let ξ be the amount of work that EDF[M,σ] failed to complete before t0
for jobs of task τ(j1). By assumption, ξ > 0. The last definitions we need are

Ŵi := Mσyi + σxi and Wi :=
∑i
s=1 Ŵs + ξ.

Lemma 1 Assume that Algorithm 1 produces the sequence of pairs
((t1, j1), (t2, j2), . . . , (tk, jk)). Then the following hold for all i = 1, . . . , k.

1. ti < ti−1;
2. During interval Yi all M machines are busy;
3. All jobs scheduled by EDF[M,σ] during Yi have absolute deadline in ∆i;
4. Wi > m′‖∆i‖, where m′ := M(σ − 1) + 1.

Proof The proof is by induction on i.

Basis of the induction. Job j1 is defined as one of the jobs that EDF[M,σ]

failed to complete within t0, though they were due. Then ∆̂1 (= ∆1) is the
maximal τ(j1)-busy interval before t0. This also defines t1 as the lower endpoint
of this interval. Clearly, t1 < t0 since relative deadlines are strictly positive;
thus property 1 holds.

Now, if at a certain time in ∆̂1 no job of τ(j1) is processed by EDF, then
at that time all machines must be busy with jobs that have deadlines not later
than t0. This yields properties 2 and 3. For property 4 we use the fact that
EDF failed at t0 for j1:

W1 = Ŵ1 + ξ

> Mσy1 + σx1 = Mσ
(
‖∆̂1‖ − x1

)
+ σx1.

An Approximate Feasibility Test for Real-Time Scheduling 9

We obtain
W1

‖∆̂1‖
> Mσ − (M − 1)

σx1

‖∆̂1‖
. (1)

In ∆̂1, EDF’s schedule devotes x1 time units to jobs of task τ(j1) at

processing speed σ. Since the interval ∆̂1 is maximally τ(j1)-busy before t0
and j1 is not completed within t0, all these jobs must be released in the
interval, and all except j1 have their deadline in the interval. The interval
∆̂1 starts with the release date of some job of task τ(j1) (possibly j1 it-

self). Therefore the number of τ(j1)-jobs processed by EDF in ∆̂1 is at most

b(‖∆̂1‖−Dj1 + Tj1)/Tj1c+ = b(‖∆̂1‖−Dj1 + Tj1)/Tj1c (since ‖∆̂1‖ ≥ Dj1 by
construction), and we can bound:

σx1

‖∆̂1‖
≤ Cj1

‖∆̂1‖
· ‖∆̂1‖ −Dj1 + Tj1

Tj1
≤ max

(
Cj1
Dj1

,
Cj1
Tj1

)
≤ 1. (2)

The middle inequality can be verified by distinguishing the cases Dj1 ≤ Tj1
and Dj1 > Tj1 : in the case Dj1 ≤ Tj1 , using ‖∆̂1‖ ≥ Dj1 one has

Cj1

‖∆̂1‖
· ‖∆̂1‖ −Dj1 + Tj1

Tj1
=
Cj1
Tj1

(
1 +

Tj1 −Dj1

‖∆̂1‖

)

≤ Cj1
Tj1

(
1 +

Tj1 −Dj1

Dj1

)
=
Cj1
Dj1

.

In the case Dj1 > Tj1 ,

Cj1

‖∆̂1‖
· ‖∆̂1‖ −Dj1 + Tj1

Tj1
=
Cj1
Tj1

(
1− Dj1 − Tj1

‖∆̂1‖

)
≤ Cj1
Tj1

.

Combining (1) and (2) we get property 4:

W1

‖∆̂1‖
> M(σ − 1) + 1 = m′.

The inductive step. As the release date of ji is strictly before ti−1, we have
ti < ti−1 so that property 1 holds. Properties 2 and 3 again follow from the

fact that ∆̂i is τ(ji)-busy. Here, take into account for property 3 that ji has a
deadline in ∆i−1 by induction.

To prove property 4 it suffices to show Ŵi ≥ m′‖∆̂i‖, because by induction

Wi−1 > m′‖∆i−1‖. By definition, Ŵi = Mσyi+σxi = Mσ‖∆̂i‖− (M −1)σxi,
so

Ŵi

‖∆̂i‖
= Mσ − (M − 1)

σxi

‖∆̂i‖
.

We want to establish σxi ≤ ‖∆̂i‖. Having established that, property 4 follows
as it did in the base case of the induction. For this part we use a simplified
notation by setting τ := τ(ji), C := Cτ(ji), T := Tτ(ji), and D := Dτ(ji).

10 Vincenzo Bonifaci et al.

∆̂k

. . .

. . .

∆̂3 ∆̂2 ∆̂1

t0t1

τ(j1)
t2

τ(j2)
t3

τ(j3)
tk

τ(jk)

Fig. 2 Illustration of the construction in Lemma 1. Shaded rectangles represent busy in-
tervals. The interval’s label is the task τ for which the interval is τ -busy.

We will bound σxi by the work performed by EDF on job ji during ∆̂i,
plus the amount of work done for other jobs of task τ that are released during
∆̂i and before rji (jobs of τ released later than ji are not processed in ∆̂i).
Assume there are q ≥ 0 such jobs. Then

σxi ≤ q · C + EDF(ji, ∆̂i). (3)

As the deadline of ji is in ∆i−1, by definition of forward forced demand and
by choice of ji,

EDF(ji, ∆̂i) ≤ C − EDF(ji, ∆i−1) (4)

≤ C − EDF

(
ji,

i−1⋃
s=1

Ys

)
≤ C − ffd(ji, ∆i−1)

≤ ti−1 − rji .

As q jobs of τ have been released in [ti, rji), we also have

ti−1 − rji ≤ ‖∆̂i‖ − q · T. (5)

Combining (3),(4) and (5) gives

σxi

‖∆̂i‖
≤ 1− q · (T − C)

‖∆̂i‖
≤ 1,

where the last inequality holds since q ≥ 0 and C ≤ T by assumption. Property
4 now follows as in the base case of the induction. ut

Proof (of Theorem 1) At each step of Algorithm 1 the interval ∆i is strictly
extended backwards to the release date of at least one job which is released
before t0. As there are finitely many tasks, all with a positive minimum sepa-
ration time, there are finitely many such jobs. So at some point the breaking
condition, namely that there is no job ji with the required properties, must
hold.

An Approximate Feasibility Test for Real-Time Scheduling 11

ti ti−1

σxi

Mσyi

Fig. 3 Illustration of the analysis in Theorem 1. The shaded area corresponds to the con-
tribution σxi, the dotted area to the contribution Mσyi. When τ(ji) is not executing, all
M processors are busy.

Let k be the last index for which an appropriate job jk was found. We claim
that ffd(∆k) ≥ Wk. In the value Wk we count σxi for each Xi, because the
whole τ -demand processed in a τ -busy interval is part of the forward forced
demand of that interval. Also, the demand that EDF failed to process before t0
is part of the forward forced demand of ∆k. For each Yi part we count Mσyi,
which is by Lemma 1(2) exactly what is processed in those times by EDF; see
Figure 3 for an illustration. By Lemma 1(3) all jobs processed in some Yi have
their deadline in the interval ∆i and therefore also in ∆k. Finally, there is no
job among those processed in some Yi with release date before tk, which has
been counted in the term Mσyi with more than its forward forced demand in
∆i. The forward forced demand in the greater interval ∆k can only be greater,
and thus we count for no job more in Wk than in ffd(∆k). We conclude

ffd(∆k) ≥Wk.

On the other hand, by Lemma 1(4) applied to i = k, Wk > m′‖∆k‖. The
theorem follows. ut

We required Cτ ≤ min(Dτ , Tτ) for all τ ∈ T. This condition can be trivially
tested, and as we saw in Proposition 2 it is necessary for feasibility.

Now, assume σ ≥ 1 + m−1
M . We get m′ = M(σ − 1) + 1 ≥ m. Then, if

a task system T allows for a job sequence R with an interval ∆ generating a
forward forced demand ffdR(∆) > m‖∆‖ as in the theorem, by Proposition 1
it cannot be scheduled by any algorithm on m unit speed machines. So both
the conditions of the theorem,

(1) Cτ ≤ min(Dτ , Tτ) for each task τ ∈ T, and
(2) ffdR(∆) ≤ m‖∆‖ for each job sequence R and interval ∆

are necessary for feasibility on m unit speed machines. By Theorem 1 they
are also sufficient for EDF-schedulability on M speed-σ machines. Therefore,
all that is missing for an approximate feasibility test is an efficient procedure
testing whether a task system T admits a job sequence R with an interval ∆
generating a forward forced demand ffdR(∆) > m‖∆‖. For this we will provide

12 Vincenzo Bonifaci et al.

t t+ `∆

D1T1T1T1T1 k1 = 4

D2T2T2 k2 = 3

D3T3T3T3T3T3 k3 = 5

Fig. 4 Example illustrating the construction in Lemma 2. Each interval is labeled with the
corresponding length.

an FPTAS in the following section. As this procedure determines the maximal
load only up to an arbitrary positive error term, we will need to choose σ
slightly larger than 1 + m−1

M to obtain the efficient test.
We remark that the minimum speed-up factor of 1 + m−1

M implicit in The-
orem 1 cannot be improved, as it is known to be tight for EDF [15]. In fact a
corollary of Theorem 1 is the well-known fact that EDF is an optimal schedul-
ing algorithm for a single processor [17]. To see this, consider Theorem 1 when
σ = 1 and M = m = 1. The theorem then states that if EDF fails to schedule
a sequence, there is an interval ∆ such that ffd(∆) > ‖∆‖. But then by Propo-
sition 1 no algorithm can successfully schedule the same sequence of jobs on a
unit speed processor.

4 A fully polynomial-time approximation scheme for load
estimation

In this section we show how to efficiently compute an arbitrarily good estimate
of the worst-case load of a sporadic task system. Together with Theorem 1,
this will yield an efficient feasibility test. We remark that one cannot expect to
design a polynomial-time algorithm for computing the worst-case load exactly:
for one processor, by Theorem 1 such an algorithm would decide feasibility of
a sporadic task system in polynomial time, thus solving a coNP-hard problem
[12].

The following observation will facilitate the computation.

Lemma 2 Assume Cτ ≤ min(Dτ , Tτ) for all tasks τ of a sporadic task system
T, and let ` ∈ N. Then

sup
R,∆: ‖∆‖=`

ffdR(∆) =
∑
τ∈T

kτ · Cτ + (Cτ + `−Dτ − kτ · Tτ)+,

where

kτ :=

⌊
`+ Tτ −Dτ

Tτ

⌋+

.

An Approximate Feasibility Test for Real-Time Scheduling 13

Proof To see that the supremum is at least as claimed, consider the interval
∆ = [t, t+`) and the sequence R where, for each task τ , t+` is the deadline of
some τ -job, and jobs are separated according to the minimum separation time
Tτ ; more precisely, there is a τ -job released at time t+`−Dτ−i·Tτ , for all i ≥ 0
such that the absolute deadline of the job is in ∆ (see Figure 4 for an example).
There are kτ + 1 jobs that can contribute to ffdR(τ,∆). Of these, the last kτ
have both release date and absolute deadline within ∆, and thus contribute
kτ ·Cτ to the forward forced demand; the remaining job has release date before
∆ and forward forced demand equal to (Cτ − (Tτ − (`−Dτ − (k − 1)Tτ)))+.
After rearranging terms, the total forward forced demand is seen to be the
same as in the claim.

To see that this is maximal, consider any job sequence R and any interval
∆ with ‖∆‖ = `. As Cτ ≤ Tτ for all τ , at most k + 1 jobs can contribute to
ffdR(τ,∆), and all such jobs have deadline in ∆. Now we modify the sequence
in the following way: we first eliminate jobs that are not contributing to the
forward forced demand; then, for each contributing job, starting with the one
released last, we delay its release date as much as possible so that 1) the
deadline of the job remains inside the interval; 2) the release date of the job
does not violate the minimum separation time constraint. Notice that this
modification does not decrease the total forward forced demand. On the other
hand, after the modification we obtain a pair (R,∆) that can be analyzed
exactly as in the first part of the claim. ut

In view of Lemma 2, we define for a given instance T the functions

wτ (`) := kτ · Cτ + (Cτ + `−Dτ − kτ · Tτ)+

w(`) :=
∑
τ∈T

wτ (`).

Lemma 2 states that w(`) is the maximum forward forced demand of any job
sequence of T in any interval of length `. The construction of the lemma also
showed that the maximal forward forced demand is achieved for each task
independently. As a consequence it only remains to find the optimal length of
the interval: the value of ` that maximizes the load w(`)/`.

We use Algorithm 2 to approximate the maximum of w(`)/` within a fac-
tor of ε in time polynomial in the input size of T and 1/ε. In fact, we devise
a polynomial-time computable function φ which pointwise approximates the
load. We also show that there is a polynomial size set of integers, a priori
determinable, in which the function φ must achieve its maximum. The ap-
proximation algorithm then simply consists in evaluating φ for every point
from this subset. This approach can be seen as a multiprocessor extension of
the uniprocessor approximate test of Albers and Slomka [1].

Lemma 3 For any task system T and ε ∈ (0, 1) Algorithm 2 outputs λ ∈ Q
such that (1 − ε)λ∗ ≤ λ ≤ λ∗, where λ∗ := supR,∆

ffdR(∆)
‖∆‖ . The running time

of the algorithm is polynomial in the size of T and 1/ε.

14 Vincenzo Bonifaci et al.

Algorithm 2 Load Estimation(T, ε)

For each τ ∈ T, compute:

threshold(τ) := Dτ + Tτ/ε,

S′(τ) := {` ∈ (0, threshold(τ)] : ` = q · Tτ +Dτ for some q ∈ N},
S′′(τ) := {` ∈ (0, threshold(τ)] : ` = q · Tτ +Dτ − Cτ for some q ∈ N}.

Let S := ∪τ∈T (S′(τ) ∪ S′′(τ) ∪ {threshold(τ)}) ∪ {1,∞}.
Output

λ := max
`∈S

 ∑
τ :`≤threshold(τ)

wτ (`)

`
+

∑
τ :`>threshold(τ)

(
1−

Dτ

`

)
Cτ

Tτ

 .

Proof We will show that for all ` ∈ N the function

φ(`) :=
∑

τ :`≤threshold(τ)

wτ (`)

`
+

∑
τ :`>threshold(τ)

(
1− Dτ

`

)
Cτ
Tτ

approximates the load w(`)/` in the sense that for all ` ≥ 1,

(1− ε)w(`)

`
≤ φ(`) ≤ w(`)

`
. (6)

We will also show that one can find the maximum of φ by only considering
points in S. This will complete the proof, since the number of points in S is
polynomial in the input, and similarly φ can be evaluated in polynomial time
for any given point.

Recall that by definition,

wτ (`) =

⌊
`+ Tτ −Dτ

Tτ

⌋+

Cτ +

(
Cτ + `−Dτ −

⌊
`+ Tτ −Dτ

Tτ

⌋+

· Tτ

)+

.

(7)
As the second term is nonnegative, after multiplying both sides by Tτ we

obtain

wτ (`) · Tτ ≥ Cτ · (`−Dτ) (8)

which implies

wτ (`)

`
≥ Cτ
Tτ
·
(

1− Dτ

`

)
.

If we sum this inequality over all tasks τ we obtain the upper bound on φ in
(6).

To obtain the lower bound in (6) it suffices to consider tasks τ for which
threshold(τ) < ` (for each other task, the term wτ (`)/` in φ(`) exactly accounts
for the contribution of the task). This condition is equivalent to Dτ +Tτ/ε < `,
implying Tτ < (`−Dτ) · ε. Using again (8) gives Cτ < wτ (`) · ε.

An Approximate Feasibility Test for Real-Time Scheduling 15

If we start again from (7) and use the shorthand

zτ :=

⌊
`+ Tτ −Dτ

Tτ

⌋+

· Tτ − (`−Dτ),

after observing that zτ ∈ [0, Tτ] we can bound

wτ (`)− (`−D)
Cτ
Tτ

= zτ ·
Cτ
Tτ

+ (Cτ − zτ)+ ≤ Cτ .

We thus obtain

wτ (`)− (`−Dτ) · Cτ/Tτ
wτ (`)

≤ Cτ
wτ (`)

< ε,

which can be equivalently expressed as

`−Dτ

`
· Cτ
Tτ

> (1− ε)wτ (`)

`
.

Summing this last bound over all tasks completes the proof of (6).
To conclude the proof we observe that S has been defined so that between

any two consecutive points `1, `2 ∈ S the function ` · φ(`) is linear (compare
with the definitions of φ(`) and w(`)). This implies that within any such inter-
val [`1, `2] the maximum of φ is achieved at an extreme point of the interval.
Therefore, the global maximum of φ is attained at some point in S, and the
lemma follows. ut

Theorem 2 Let m,M ∈ N, ε ∈ (0, 1), and σ ≥ 1 + M−1(m
1−ε − 1). There

exists a feasibility test that, given a task system T, ε and m, decides whether
T is EDF-schedulable on M speed-σ machines, or T is not feasible on m unit
speed machines. The running time of the test is polynomial in the input size
of T, 1/ε and logm.

Proof By Lemma 3 we can verify within the claimed time bound the following
conditions:

(C1) For all tasks τ ∈ T, Cτ ≤ min(Dτ , Tτ).

(C2) λ ≤ m, where (1− ε)λ∗ ≤ λ ≤ λ∗ and λ∗ := supR,∆
ffdR(∆)
‖∆‖ .

Both conditions are necessary for scheduling T on m unit speed machines; this
follows from Proposition 2 for (C1), and from Proposition 1 for (C2).

On the other hand, (C2) implies, by definition of λ∗, that there is no job
sequence R and interval ∆ such ffdR(∆) > m

1−ε‖∆‖. By the assumption on σ,
M(σ − 1) + 1 ≥ m

(1−ε) , and the claim follows from Theorem 1. ut

Corollary 1 Let m ∈ N and ε ∈ (0, 1). There exists a feasibility test that,
given a task system T, ε and m, decides whether T is EDF-schedulable on m
speed-(2− 1/m+ ε) machines, or T is not feasible on m unit speed machines.
The running time of the test is polynomial in the input size of T, 1/ε and
logm.

16 Vincenzo Bonifaci et al.

Acknowledgments. The authors thank Sanjoy Baruah and Enrico Bini for help-
ful discussions, as well as the anonymous referees for suggesting several im-
provements of both the content and the presentation of the paper.

References

1. K. Albers and F. Slomka. An event stream driven approximation for the analysis of real-
time systems. In Proceedings of the 16th Euromicro Conference on Real-Time Systems,
pages 187–195. IEEE, 2004.

2. K. Albers and F. Slomka. Efficient feasibility analysis for real-time systems with EDF
scheduling. In Proceedings of the Conference on Design, Automation and Test in Eu-
rope, pages 492–497. IEEE, 2005.

3. T. P. Baker. An analysis of EDF schedulability on a multiprocessor. IEEE Transactions
on Parallel and Distributed Systems, 16(8):760–768, 2005.

4. T. P. Baker and S. K. Baruah. Schedulability analysis of multiprocessor sporadic task
systems. In S. H. Son, I. Lee, and J. Y.-T. Leung, editors, Handbook of Real-Time and
Embedded Systems, chapter 3. CRC Press, 2007.

5. T. P. Baker and S. K. Baruah. An analysis of global EDF schedulability for arbitrary-
deadline sporadic task systems. Real-Time Systems, 43(1):3–24, 2009.

6. S. K. Baruah and T. P. Baker. Schedulability analysis of global EDF. Real-Time
Systems, 38(3):223–235, 2008.

7. S. K. Baruah, R. R. Howell, and L. E. Rosier. Feasibility problems for recurring tasks
on one processor. Theoretical Computer Science, 118(1):3–20, 1993.

8. V. Bonifaci, H.-L. Chan, A. Marchetti-Spaccamela, and N. Megow. Algorithms and
complexity for periodic real-time scheduling. In M. Charikar, editor, Proceedings of the
21st Symposium on Discrete Algorithms, pages 1350–1359. SIAM, 2010.

9. S. Chakraborty, S. Künzli, and L. Thiele. Approximate schedulability analysis. In
Proceedings of the 23rd Real-Time Systems Symposium, pages 159–168. IEEE, 2002.

10. M. L. Dertouzos. Control robotics: The procedural control of physical processes. In
Proceedings of the International Federation for Information Processing Congress, pages
807–813. North-Holland, 1974.

11. F. Eisenbrand and T. Rothvoß. A PTAS for static priority real-time scheduling with
resource augmentation. In Proceedings of the 35th International Colloquium on Au-
tomata, Languages and Programming, pages 246–257. Springer, 2008.

12. F. Eisenbrand and T. Rothvoß. EDF-schedulability of synchronous periodic task systems
is coNP-hard. In Proceedings of the 21st Symposium on Discrete Algorithms, pages
1029–1034. SIAM, 2010.

13. N. Fisher and S. K. Baruah. A fully polynomial-time approximation scheme for feasibil-
ity analysis in static-priority systems with arbitrary relative deadlines. In Proceedings
of the 17th Euromicro Conference on Real-Time Systems, pages 117–126. IEEE, 2005.

14. N. Fisher, J. Goossens, and S. K. Baruah. Optimal online multiprocessor scheduling of
sporadic real-time tasks is impossible. Real-Time Systems, 45(1):26–71, 2010.

15. T. W. Lam and K.-K. To. Trade-offs between speed and processor in hard-deadline
scheduling. In Proceedings of the 10th Symposium on Discrete Algorithms, pages 623–
632. SIAM, 1999.

16. J. Y.-T. Leung and M. L. Merrill. A note on preemptive scheduling of periodic, real-time
tasks. Information Processing Letters, 11(3):115–118, 1980.

17. C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the ACM, 20(1):46–61, 1973.

18. C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via
resource augmentation. Algorithmica, 32(2):163–200, 2002.

19. A. Srinivasan and J. H. Anderson. Optimal rate-based scheduling on multiprocessors.
Journal of Computer and System Sciences, 72(6):1094–1117, 2006.

