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Fourier–Mukai and autoduality for
compactified Jacobians. I

By Margarida Melo at Rome, Antonio Rapagnetta at Rome and Filippo Viviani at Rome

Abstract. To every singular reduced projective curve X one can associate, following
Esteves, many fine compactified Jacobians, depending on the choice of a polarization on X ,
each of which yields a modular compactification of a disjoint union of the generalized Jacobian
of X . We prove that, for a reduced curve with locally planar singularities, the integral (or
Fourier–Mukai) transform with kernel the Poincaré sheaf from the derived category of the
generalized Jacobian of X to the derived category of any fine compactified Jacobian of X
is fully faithful, generalizing a previous result of Arinkin in the case of integral curves. As
a consequence, we prove that there is a canonical isomorphism (called autoduality) between the
generalized Jacobian ofX and the connected component of the identity of the Picard scheme of
any fine compactified Jacobian of X and that algebraic equivalence and numerical equivalence
of line bundles coincide on any fine compactified Jacobian, generalizing previous results of
Arinkin, Esteves, Gagné, Kleiman, Rocha, and Sawon.

The paper contains an Appendix in which we explain how our work can be interpreted in
view of the Langlands duality for the Higgs bundles as proposed by Donagi–Pantev.
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1. Introduction

Let C be a smooth irreducible projective curve over an algebraically closed field k and
let J.C / be its Jacobian variety. Then J.C / is an abelian variety that carries lots of informa-
tion about the curve itself. Among abelian varieties, Jacobians have the important property of
being “autodual”, i.e., they are canonically isomorphic to their dual abelian varieties. This is
equivalent to the existence of a Poincaré line bundle P on J.C / � J.C / which is universal as
a family of algebraically trivial line bundles on J.C /. In the breakthrough work [58], Mukai
proved that the Fourier–Mukai transform with kernel P is an auto-equivalence of the bounded
derived category of J.C /.1)

The aim of this paper and its sequel [54], which are strongly based on our previous
paper [53], is to extend these results to fine compactified Jacobians (as defined by Esteves in
[22]) of reduced projective curves with locally planar singularities. The case of integral (i.e.
reduced and irreducible) projective curves with locally planar singularities was dealt with by
Arinkin in [6] and [7], generalizing previous partial results of Esteves, Gagné and Kleiman [23],
Esteves and Kleiman [24] and Sawon [68] for integral projective curves with double point
singularities. Moreover, the autoduality result has recently been extended by Esteves and Rocha
in [25] to tree-like curves, i.e. curves with locally planar singularities such that the unique
singular points lying in more than one irreducible component are separating nodes (e.g. nodal
curves of compact type). Finally, while this paper was under the referee process, two related
papers have appeared on arXiv: Arinkin and Fedorov established in [8] a partial Fourier–Mukai
transform for degenerate abelian schemes (in characteristic zero); Kass proved in [44] that
autoduality holds true for (possibly coarse) compactified Jacobians of nodal curves and stable
quasiabelian varieties (in characteristic zero).

The main motivation for this work comes from the Langlands duality conjecture for
Hitchin systems proposed by Donagi and Pantev in [21] as a classical limit of the conjectural
geometric Langlands correspondence (which we review in more details in the Appendix). In
the special case of the Langlands self-dual linear group GLr , the Langlands duality conjecture
predicts an autoequivalenceˆ W Db.M/

Š
�! Db.M/ of the bounded derived category of quasi-

coherent sheaves of the moduli stack M of Higgs bundles of rank r on a fixed smooth projective
curve C , which should intertwine the classical limit tensorization functors with the classical
limit Hecke functors (see [21, Section 2] for more details). The moduli stack M of Higgs
bundles admits a morphism H WM! A, called the Hitchin morphism, to an affine space A

parametrizing certain degree-r singular covers of C , called spectral curves (see (A.1)). Accord-
ing to the so-called spectral correspondence (see Fact A.3), the fiber of H�1.�C/ over a given
spectral curve �C ! C is the stack of rank-1 torsion-free sheaves on �C , which, for �C reduced,

1) More generally, for an arbitrary abelian variety A with dual abelian variety A_, Mukai proved that the
Fourier–Mukai transform associated to the Poincaré line bundle on A � A_ gives an equivalence between the
bounded derived category of A and that of A_.
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contains any fine compactified Jacobian of �C as an open and projective subscheme. The auto-
equivalence ˆ is expected to be given by a Fourier–Mukai transform with kernel equal to
a universal Poincaré sheaf P on M �A M. Moreover, ˆ is expected to preserve the Hitchin
morphism H , i.e. for any spectral curve �C ! C the restriction P�C of P to H�1.�C/�H�1.�C/
should induce a Fourier–Mukai autoequivalence

ˆP�C W Db.H�1.�C// Š�! Db.H�1.�C//:
Theorem E below (which we will prove in a sequel [54] to this paper) can be regarded as a first
step toward proving the Langlands duality conjecture over the open subset of reduced spectral
curves, thus extending the work of Donagi–Pantev [21] for smooth spectral curves and the work
of Arinkin [7] for integral spectral curves.

Before stating our results, we need to briefly recall how fine compactified Jacobians of
singular curves are defined.

1.1. Fine compactified Jacobians of singular curves. Let X be a reduced projective
connected curve. The generalized Jacobian J.X/ of X is the connected component of the
Picard scheme of X containing the identity. It is not difficult to see that J.X/ is a smooth irre-
ducible algebraic group of dimension equal to the arithmetic genus pa.X/ of X , parametrizing
line bundles on X that have multidegree zero, i.e. degree zero on each irreducible component
of X . However, for a singular curve X , the generalized Jacobian J.X/ is rarely complete. The
problem of compactifying it is very natural and it has attracted the attention of many mathe-
maticians, starting from the pioneering work of Mayer–Mumford and of Igusa in the 1950s,
till the more recent works of Oda–Seshadri, Altmann–Kleiman, Caporaso, Pandharipande,
Simpson, Jarvis, Esteves, etc. (we refer to the introduction of [22] for an account of the different
approaches).

Here we will consider fine compactified Jacobians, as constructed by Esteves in [22].
Fine compactified Jacobians depend upon a polarization on X , which for us will be simply
a collection of rational numbers q D ¹q

Ci
º, one for each irreducible component Ci of X , such

that
jqj WD

X
i

q
Ci
2 Z:

A torsion-free rank-1 sheaf I on X of Euler characteristic

�.I / WD h0.X; I / � h1.X; I /

equal to jqj is called q-semistable (resp. q-stable) if for every proper subcurve Y � X , we have
that

�.IY / �
X
Ci�Y

q
Ci

.resp. >/;

where IY is the biggest torsion-free quotient of the restriction IjY of I to the subcurve Y .
A polarization q is called general if there are no strictly q-semistable sheaves, i.e. if every
q-semistable sheaf is also q-stable (see Definition 2.5 for a numerical characterization of gen-
eral polarizations). A fine compactified Jacobian of X is the fine moduli space JX .q/ of
torsion-free rank-1 sheaves on X that are q-semistable (or equivalently q-stable) with respect
to a general polarization q on X . Indeed, it is known that JX .q/ is a projective scheme over k
(see Fact 2.10) on which the generalized Jacobian J.X/ of X acts naturally by tensor product.
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If the curve X has locally planar singularities, then we proved in [53, Theorem A] that
any fine compactified Jacobian JX .q/ of X has the following remarkable properties:

� JX .q/ is a reduced scheme with locally complete intersection singularities.

� The smooth locus of JX .q/ coincides with the open subset JX .q/ � JX .q/ parametriz-
ing line bundles; in particular, JX .q/ is dense in JX .q/ and JX .q/ is of pure dimension
equal to pa.X/.

� JX .q/ is connected.

� JX .q/ has trivial dualizing sheaf.

� JX .q/ is the disjoint union of a number of copies of J.X/ equal to the complexity c.X/
of the curve X (as defined in [53, Definition 5.12]); in particular, JX .q/ has c.X/ irre-
ducible components, independently of the chosen polarization q.

In the proof of all the above properties, we use in an essential way the fact that the curve has
locally planar singularities and indeed we expect that many of the above properties are false
without this assumptions (see [53, Remark 2.7] and the references therein). The last property
in the above list says that any two fine compactified Jacobians of a given curve X are bira-
tional; however, the authors have found in [53] examples of reducible curves (indeed even
nodal curves) that admit non-isomorphic (and even non-homeomorphic if k D C) fine com-
pactified Jacobians.

After these preliminaries, we can now state our main results.

1.2. Main results. Since any fine compactified Jacobian JX .q/ of X is a fine moduli
space for certain sheaves (as the name suggests), there exists a universal sheaf I onX � JX .q/.
Using this universal sheaf and the formalism of the determinant of cohomology, it is possible to
define a Poincaré line bundle P on JX .q/ � J.X/; we refer the reader to Section 5 for details.

Our first result concerns the Fourier–Mukai transform with kernel P . This result can be
seen as a first partial generalization of the above mentioned result of Mukai [58] in the case of
Jacobians. In Theorem E below (whose proof appears in [54]), we will give a second and more
satisfactory generalization.

Theorem A. Let X be a reduced projective connected curve with locally planar singu-
larities over an algebraically closed field k. Let J.X/ be the generalized Jacobian of X and
let JX .q/ be a fine compactified Jacobian of X . Denote by Db.J.X// and Db.JX .q// the
bounded derived categories of quasi-coherent sheaves of J.X/ and of JX .q/, respectively. Let
P be a Poincaré line bundle on JX .q/ � J.X/. Then the Fourier–Mukai transform (or integral
transform) with kernel P

ˆP
W Db.J.X//! Db.JX .q//;

E� 7! Rp1�.p
�
2 .E

�/˝P /

is fully-faithful, where with pi we denote the projection of JX .q/ � J.X/ on the i -th factor.

As a corollary of Theorem A, we can compute the cohomology of the line bundles
PM WD P

jJ�¹M º on JX .q/, as M varies in J.X/, generalizing the classical result for abel-
ian varieties (see [60, Section 13]).
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Corollary B. Same assumptions as in Theorem A. For any M 2 J.X/, let

PM WD P
jJX .q/�¹M º

2 Pic.JX .q//:

Then we have that

H i .JX .q/;PM / D

´
0 if M ¤ ŒOX �;Vi

H 1.X;OX / if M D ŒOX �:

As we mentioned in the introduction, Jacobians of smooth curves are autodual. In other
words, given a smooth projective curve C , its Jacobian J.C / is canonically isomorphic to the
dual abelian variety which, by definition, is equal to Pico.J.C //, i.e. the connected component
of the Picard scheme of J.C / containing the origin. Our next result is a generalization of this
autoduality result to fine compactified Jacobians.

Theorem C. Same assumptions as in Theorem A. The morphism

ˇq W J.X/! Pico.JX .q//;

M 7! PM WD P
jJX .q/�¹M º

is an isomorphism of algebraic groups.

Finally, it is well known that a line bundle on an abelian variety A is algebraically equiv-
alent to zero if and only if it is numerically equivalent to zero (see [60, Corollary 2, p. 178]).
In other words, the connected component Pico.A/ of the Picard scheme Pic.A/ of A con-
taining the identity (which also parametrizes line bundles algebraically equivalent to zero)
coincides with the open and closed subset Pic� .A/ � Pic.A/ parametrizing line bundles nu-
merically equivalent to zero. This is equivalent to say that the Néron–Severi group

NS.A/ D Pic.A/=Pico.A/

of A is torsion-free, since the torsion subgroup of NS.A/ is equal to Pic� .A/=Pico.A/. We
prove that the same holds true for fine compactified Jacobians.

Theorem D. Same assumptions as in Theorem A. Then we have that

Pico.JX .q// D Pic� .JX .q//:

Equivalently, the Néron–Severi group NS.JX .q// is torsion-free.

Note that the above Theorem D is new even for irreducible curves in positive character-
istic: the proof of Theorem D for irreducible curves by Arinkin (see [6, Proposition 12]) uses
in a crucial way that char.k/ D 0.

In a sequel of this paper [54], we will use the results of this article to prove the following.

Theorem E ([54]). Let X be a reduced projective and connected curve with locally
planar singularities and arithmetic genus pa.X/ over an algebraically closed field k of char-
acteristic zero or greater than pa.X/. Let JX .q/ and JX .q0/ be two (possibly equal) fine
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compactified Jacobians of X . There exists a (naturally defined) Cohen–Macaulay sheaf P on
JX .q/ � JX .q

0/ such that the Fourier–Mukai transform (or integral transform) with kernel P

ˆP
W Db.JX .q

0//! Db.JX .q//;

E� 7! Rp1�.p
�
2 .E

�/
L
˝P /

is an equivalence.

Note that in the special case when JX .q/Š JX .q0/, Theorem E can be seen as a strength-
ening of Theorem A and a further generalization of Mukai’s result in [58] to the case of singular
reduced curves. Moreover, this result provides a first step towards the proof of the Langlands
duality for Higgs bundles (see (A.3)) over the open subset of reduced spectral curves (i.e. over
the so-called regular locus of the Hitchin morphism); see the Appendix for more details.

On the other hand, in the general case when JX .q/ 6Š JX .q0/, Theorem E implies that
any two fine compactified Jacobians of X (which are birational, but possibly non-isomorphic,
Calabi–Yau singular projective varieties by what said above) are derived equivalent. This result
seems to suggest an extension to (mildly) singular varieties of the conjecture of Kawamata [45],
which predicts that birational Calabi–Yau smooth projective varieties should be derived equiv-
alent. Moreover, a topological counterpart of the above result is obtained by the third author,
together with Migliorini and Schende, in [57]: any two fine compactified Jacobians of a com-
plex curve X (under the same assumptions on X ) have the same perverse Leray filtration on
their cohomology. This result again seems to suggest an extension to (mildly) singular varieties
of the result of Batyrev [10] which says that birational Calabi–Yau smooth projective complex
varieties have the same Hodge numbers.

1.3. Sketch of the proofs. Let us now give a brief outline of the proofs of the main
results, trying to highlight the main ingredients that we use.

Theorem A follows easily from the formula

(1.1) Rp2�P Š k.0/Œ�g�;

where k.0/ denotes the skyscraper sheaf supported at the origin 0 D ŒOX � 2 J.X/, g D pa.X/
is the arithmetic genus of X and p2 W JX .q/ � J.X/! J.X/ is the projection onto the sec-
ond factor. Indeed, formula (1.1) is a generalization of a well-known result of Mumford (see
[60, Section III.13]) for abelian varieties which was indeed the crucial step for the celebrated
original result of Mukai [58].

In order to prove (1.1), the key idea, which we learned from Arinkin in [6] and [7]2),
is to prove a similar formula for the effective semiuniversal deformation family of X (see
Section 3.1 for more details):

X

��

� � //

�

X

�

��

Spec k �
�

// SpecRX .

2) In loc. cit., Arinkin considers the stack of all integral curves with locally planar singularities, which is of
finite type. Here, we replace this stack with the semiuniversal deformation space of X since the stack of all reduced
curves with locally planar singularities is not of finite type.
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The generalized Jacobian J.X/ and the fine compactified Jacobian JX .q/ deform over
SpecRX to, respectively, the universal generalized Jacobian

v W J.X/! SpecRX

(see Fact 3.12) and the universal fine compactified Jacobian

u W JX.q/! SpecRX

with respect to the polarization q (see Theorem 3.10). Therefore we get the diagram

JX.q/ �SpecRX J.X/

�u
ww

�v
((

J.X/

v

((

� JX.q/

u

vv

SpecRX ,
�

OO

where the central square is Cartesian and � is the zero section of v. Moreover, the Poincaré line
bundle P on JX .q/ � J.X/ deforms to the universal Poincaré line bundle P un on the fiber
product JX.q/ �SpecRX J.X/ (see Section 7).

Equation (1.1) will follow, by restricting to the central fiber of v, from the following
universal version of it (which we prove in Theorem 8.1):

(1.2) R�u�.P un/ Š ��.OSpecRX /Œ�g�:

A key intermediate step in proving (1.2) consists in showing that

R�u�.P un/Œg� Š Rg�u�.P un/ is a Cohen–Macaulay sheaf(�)

such that supp.Rg�u�.P un// D Im.�/:

The proof of (�) has two main ingredients. The first ingredient is the study of the cohomol-
ogy of the line bundles PM 2 Pic.JX .q//, for M 2 J.X/; see Section 6. Here, we use in an
essential way the Abel map AL W X ! JX , for L 2 Pic.X/, with values in the scheme JX
parametrizing all simple torsion-free rank-1 sheaves on X , which was studied by the authors in
[53, Section 6] (see Section 2.3 for a review). The second ingredient is the equigeneric strati-
fication of SpecRX , i.e. the stratification of SpecRX according to the arithmetic genus of the
normalization of the geometric fibers of the universal family X ! SpecRX . If X has locally
planar singularities, then each equigeneric stratum has codimension at least equal to the total
ı-invariant and all its generic points correspond to nodal curves: a result that is certainly well
known to the experts (and proved partially by Teissier [73] and Diaz–Harris [20] over k D C
and by [52] over an algebraically closed field k of large characteristic), and of which we will
give a detailed proof in [65]. These properties allow us to prove (�) over the generic points of
each equigeneric stratum, using in an essential way Theorem C for nodal curves; see Section 7.

The proof of Theorem C follows the same idea of using the semiuniversal deformation
family X ! SpecRX of X . Under the assumption that

h1.JX .q/;OJX .q// D pa.X/;(��)

the map ˇq of Theorem C deforms over SpecRX to a homomorphism

ˇun
q W J.X/! Pico.JX.q//
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between two group schemes which are smooth, separated and of finite type over SpecRX (see
Fact 3.12, Theorem 4.1 (iii) and Proposition 7.2). We note here that the representability of
Pico.JX.q// and its smoothness over SpecRX (proved in Theorem 4.1 (iii)) use in a crucial
way assumption (��).

In Theorem 7.4, we prove that the map ˇun
q is an isomorphism (assuming that (��)

holds true), which therefore implies Theorem C restricting to the closed point of SpecRX .
The proof of Theorem 7.4 uses the fact (due to Esteves–Gagné–Kleiman [23]) that ˇun

q is an
isomorphism over the open subset U � SpecRX (whose complement has codimension at least
two by Lemma 3.1 (iii) (b)) of curves having at most one node, which combined with Van der
Waerden’s theorem on the purity of the ramification locus and Zariski’s main theorem, gives
that ˇun

q is an open embedding, hence an isomorphism.
Formula (��) is proved for nodal curves in Proposition 7.1 using results of Oda–Seshadri

[64] and Alexeev–Nakamura [2]. Note that Theorem C for nodal curves plays a key role
in establishing (1.2), hence in the proof of Theorem A and Corollary B. For an arbitrary
curve X with locally planar singularities, formula (��) follows from Corollary B, hence from
the Fourier–Mukai type result of Theorem A. A direct proof of (��) would allow to give
a Fourier–Mukai’s free proof of Theorem C (and also of Theorem D as we will see below).

Finally, let us sketch the proof of Theorem D, which will be given in Section 9.
In Theorem 9.1, we will first prove Theorem D in the special case where the curve X

does not admit separating nodes and the fine compactified Jacobian JX .q/ admits an Abel
map, i.e. if there exists L 2 Pic.X/ such that Im AL � JX .q/. Note that this hypothesis is
quite restrictive for a fine compactified Jacobian since in general only a few of them will admit
an Abel map (see e.g. [53, Section 7]). Once again, the strategy will be to work on the semiuni-
versal deformation family X ! SpecRX . Indeed, we can deform the line bundle L 2 Pic.X/
that gives the Abel map AL W X ! JX .q/ to a line bundle L on X in order to obtain a uni-
versal Abel map AL W X ! JX.q/. By taking the pull-back via AL, we obtain the following
commutative diagram of group schemes (all of which are smooth, separated and of finite type
over SpecRX , by Fact 3.12 and Theorem 4.1):

Pic� .JX.q//

A
�;�
L

%% %%

J.X/

Pico.JX.q//,
A
�;o
L

Š

99

?�

i

OO

where i is the natural open embedding and A�;o
L

is an isomorphism since it is the right inverse
of ˇun

q (by Proposition 5.6), which is an isomorphism by Theorem 7.4. The morphism A
�;�
L

is
an isomorphism over the open subset U � SpecRX of curves having at most one node (as it
follows from [23]); using that SpecRX n U has codimension at least two, together with Van der
Waerden’s theorem on the purity of the ramification locus and Zariski’s main theorem, we con-
clude that A�;�

L
is an open embedding, hence an isomorphism. Therefore i must be an equality

and Theorem D in this special case follows by restricting to the closed point of SpecRX .
In order to prove Theorem D in the general case, i.e. if either X does have separating

nodes or JX .q/ does not admit an Abel map, we first reduce to curves without separating
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nodes using that any fine compactified Jacobians of a curve X is the product of fine compact-
ified Jacobians of subcurves of X without separating nodes (see Theorem 2.12) and that the
formation of Pico and Pic� commutes with products (provided that they are smooth algebraic
groups) by a result of Langer [48, Corollary 4.7]. Then, if X does not have separating nodes
but the fine compactified Jacobian JX .q/ does not admit an Abel map, we consider another
fine compactified Jacobian JX .q0/ of X that does admit an Abel map (such a fine compacti-
fied Jacobian JX .q0/ exists by Theorem 2.12 (iii)) and we are able to deduce Theorem D for
JX .q/ knowing that it does hold true for JX .q0/ (by Theorem 9.1). The key ingredient is to
compare their universal fine compactified Jacobians JX.q/ and JX.q

0/ by showing that they
are isomorphic over the open subset U � SpecRX of curves having at most one node (see
Lemma 9.2). We refer to Section 9 for more details.

1.4. Outline of the paper. The paper is organized as follows.
Section 2 is devoted to collecting several facts on fine compactified Jacobians of reduced

curves. In Section 2.1, we consider the scheme JX parametrizing all simple torsion-free rank-1
sheaves on a curveX (see Fact 2.2) and we recall its properties under the assumption thatX has
locally planar singularities (see Theorem 2.3). In Section 2.2, we introduce fine compactified
Jacobians of X (see Fact 2.10) and we recall their properties under the assumption that X has
locally planar singularities (see Theorem 2.11). Finally, in Section 2.3, we recall the definition
of the L-twisted Abel map of degree one and its main properties (see Theorem 2.12).

Section 3 is devoted to collecting several results on the universal fine compactified Jacobi-
ans. In Section 3.1, we recall some basic facts about the semiuniversal deformation space of
a curveX and the properties of its equigeneric stratification in the case whereX has locally pla-
nar singularities. In Section 3.2, we introduce the universal fine compactified Jacobians relative
to the semiuniversal deformation of a curveX (see Fact 3.5 and Theorem 3.10) and study these
Jacobians under the assumption that X has locally planar singularities (see Theorem 3.11).

Section 4 is devoted to studying the representability of the relative Picard scheme of the
universal fine compactified Jacobians and of its subfunctors parametrizing line bundles that are
fiberwise algebraically or numerically equivalent to the trivial line bundle (see Theorem 4.1).
In Section 5, we define the Poincaré line bundle and study its behavior with respect to the Abel
maps (see Proposition 5.6). In Section 6, we study the cohomology of the restricted Poincaré
line bundles on a fine compactified Jacobian, obtaining some special cases of Corollary B.

Section 7 contains a proof of Theorem C for nodal curves while Section 8 contains the
proof of Theorem A, Corollary B and the general case of Theorem C. Finally, Theorem D is
proved in Section 9.

In the Appendix, we first discuss the Hitchin fibration and the description of its fibers in
terms of compactified Jacobians of spectral curves (see Fact A.3). Then we state the conjectural
Langlands duality for Higgs bundles (see Conjecture A.5) and its fiberwise version for each
spectral curve (see (A.3)).

The following notations will be used throughout the paper.

Notations.

1.1. k will denote an algebraically closed field (of arbitrary characteristic), unless oth-
erwise stated. All schemes are k-schemes, and all morphisms are implicitly assumed to respect
the k-structure.
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10 Melo, Rapagnetta and Viviani, Fourier–Mukai and autoduality for compactified Jacobians

1.2. A curve is a reduced projective scheme over k of pure dimension 1. Unless other-
wise specified, a curve is meant to be connected.

Given a curve X , we denote by Xsm the smooth locus of X , by Xsing its singular locus
and by � W X� ! X the normalization morphism. We denote by 
.X/, or simply by 
 when
there is no danger of confusion, the number of irreducible components of X .

We denote by pa.X/ the arithmetic genus of X , i.e.

pa.X/ WD 1 � �.OX / D 1 � h
0.X;OX /C h

1.X;OX /:

We denote by g�.X/ the geometric genus of X , i.e. the sum of the genera of the connected
components of the normalization X� . Note that g�.X/ D h1.X� ;OX� /.

1.3. A subcurve Z of a curve X is a closed k-subscheme Z � X that is reduced and of
pure dimension 1. We say that a subcurve Z � X is non-trivial if Z ¤ ;; X .

Given two subcurvesZ andW ofX without common irreducible components, we denote
by Z \W the 0-dimensional subscheme of X that is obtained as the scheme-theoretic inter-
section of Z and W and we denote by jZ \W j its length.

Given a subcurveZ � X , we denote byZc WD X nZ the complementary subcurve ofZ
and we set ıZ D ıZc WD jZ \Zcj.

1.4. A curve X is called Gorenstein if its dualizing sheaf !X is a line bundle.

1.5. A curve X has locally complete intersection (l.c.i.) singularities at p 2 X if the
completion bOX;p of the local ring of X at p can be written asbOX;p D kŒŒx1; : : : ; xr ��=.f1; : : : ; fr�1/;
for some r � 2 and some fi 2 kŒŒx1; : : : ; xr ��. A curve X has locally complete intersection
(l.c.i.) singularities if X is l.c.i. at every p 2 X . It is well known that a curve with l.c.i. singu-
larities is Gorenstein.

1.6. A curve X has locally planar singularities at p 2 X if the completion bOX;p of the
local ring of X at p has embedded dimension at most two, or equivalently if it can be written
as bOX;p D kŒŒx; y��=.f /;
for a reduced series f D f .x; y/ 2 kŒŒx; y��. A curve X has locally planar singularities if X
has locally planar singularities at every p 2 X . Clearly, a curve with locally planar singularities
has l.c.i. singularities, hence it is Gorenstein. A (reduced) curve has locally planar singularities
if and only if it can be embedded in a smooth surface (see [3]).

1.7. A curve X has a node at p 2 X if the completion bOX;p of the local ring of X at p
is isomorphic to bOX;p D kŒŒx; y��=.xy/:

1.8. A separating point is a closed point n 2 X for which there exists a subcurve
Z � X such that ıZ D 1 and Z \Zc D ¹nº. Often, we will deal with reduced curves satis-
fying the following condition:

Every separating point is a node.(�)
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Every Gorenstein curve satisfies condition (�) by [17, Proposition 1.10]. However, the union
of the three coordinate axes in A3 is a (non-Gorenstein) reduced curve that does not satisfy
condition (�) (see [53, Example 6.5]).

1.9. Given a scheme S proper over a field k (not necessarily algebraically closed),
we denote by Pic.S/ its Picard scheme, which exists by a result of Murre (see [26, Corol-
lary 9.4.18.3] and the references therein). The connected component of the identity of Pic.S/,
denoted by Pico.S/, parametrizes line bundles on S which are algebraically equivalent to the
trivial line bundle (see [26, Section 9.5] for details). The torsion component of the identity
of Pic.S/, denoted by Pic� .S/, parametrizes line bundles on S which are numerically equiv-
alent to the trivial line bundle or, equivalently, such that some powers of them lie in Pico.S/
(see [26, Section 9.6] for details). The scheme Pic� .S/ is an open and closed group subscheme
of Pic.S/ which is of finite type over k (see [26, Proposition 9.6.12]).

On the other hand, given an arbitrary scheme S , we denote by Pic.S/ the Picard group
of S , i.e. the abstract group consisting of all isomorphism classes of line bundles on S with the
operation of tensor product.

1.10. Given a curve X over an algebraically closed field, we call Pico.X/ the gener-
alized Jacobian of X . It is easy that the k-valued points of Pico.X/ coincide with the group
of line bundles on X of multidegree 0 (i.e. having degree 0 on each irreducible component
of X ) together with the multiplication given by the tensor product. The generalized Jacobian
of X is a connected commutative smooth algebraic group of dimension equal to h1.X;OX /
and it coincides with Pic� .X/. We also use the notation J.X/ and Pic0.X/ for the generalized
Jacobian of X .

1.11. Given a scheme X , let D.X/ be the derived category of complexes of OX -mod-
ules with quasi-coherent cohomology sheaves and Db.X/ � D.X/ the bounded derived cate-
gory consisting of complexes with only finitely many non-zero cohomology sheaves.

1.12. Given a scheme X and a closed point x 2 X , we denote by k.x/ the skyscraper
sheaf supported at x.

2. Fine compactified Jacobians

The aim of this section is to collecting several facts about fine compactified Jacobians of
reduced curves with locally planar singularities, following [53, Section 2].

2.1. Simple rank-1 torsion-free sheaves. Fine compactified Jacobians on a connected
reduced curve X parametrize simple rank-1 torsion free sheaves on X .

Definition 2.1. A coherent sheaf I on a connected reduced curve X is said to be:

(i) rank-1 if I has generic rank 1 at every irreducible component of X ,

(ii) torsion-free if Supp.I / D X and dim Supp.J / D 1 for every non-zero subsheaf J � I ,

(iii) simple if Endk.I / D k.
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12 Melo, Rapagnetta and Viviani, Fourier–Mukai and autoduality for compactified Jacobians

Note that any line bundle on X is a simple rank-1 torsion-free sheaf.
Consider the functor

J
�

X W ¹Schemes=kº ! ¹Setsº

which associates to a k-scheme T the set of isomorphism classes of T -flat, coherent sheaves on
X �k T whose fibers over T are simple rank-1 torsion-free sheaves. The functor J

�

X contains
the open subfunctor

J�X W ¹Schemes=kº ! ¹Setsº

which associates to a k-scheme T the set of isomorphism classes of line bundles on X �k T .

Fact 2.2 (Murre–Oort, Altman–Kleiman [4] and Esteves [22]). Let X be a connected
reduced curve. Then:

(i) The étale sheafification of J�X is represented by a k-scheme Pic.X/ D JX , locally of finite
type over k. Moreover, JX is formally smooth over k.

(ii) The étale sheafification of J
�

X is represented by a k-scheme JX , locally of finite type
over k. Moreover, JX is an open subset of JX and JX satisfies the existence part of the
valuative criterion for properness3).

(iii) There exists a sheaf I on X � JX such for every F 2 J
�

X .T / there exists a unique map
˛F W T ! JX with the property that

F D .idX � ˛F /
�.I/˝ ��2 .N /

for some N 2 Pic.T /, where �2 W X � T ! T is the projection onto the second factor.
The sheaf I is uniquely determined up to tensor product with the pull-back of an invertible
sheaf on JX and it is called a universal sheaf.

Proof. See [53, Fact 2.2] and the references therein.

Since the Euler–Poincaré characteristic �.I / WD h0.X; I / � h1.X; I / of a sheaf I on X
is constant under deformations, we get a decomposition8̂̂̂<̂

ˆ̂:
JX D

a
�2Z

J
�

X ;

JX D
a
�2Z

J�X ;

where J
�

X (resp. J�X ) denotes the open and closed subscheme of JX (resp. JX ) parametriz-
ing simple rank-1 torsion-free sheaves I (resp. line bundles L) such that �.I / D � (resp.
�.L/ D �).

If X has locally planar singularities, then JX has the following properties.

3) Note that JX is not universally closed because it is not quasi-compact, in general.
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Theorem 2.3. Let X be a connected reduced curve with locally planar singularities.
Then:

(i) JX is a reduced scheme with locally complete intersection singularities.

(ii) JX is dense in JX .

(iii) JX is the smooth locus of JX .

Proof. See [53, Theorem 2.3].

2.2. Fine compactified Jacobians. For an integer � 2 Z, the scheme J
�

X is not of finite
type nor separated over k (and similarly for J�X ) if X is not irreducible. However, they can be
covered by open subsets that are proper (and even projective) over k: the fine compactified
Jacobians of X . Fine compactified Jacobians depend on the choice of a polarization, whose
definition is as follows.

Definition 2.4. A polarization on a connected curve X is a tuple of rational numbers
q D ¹q

Ci
º, one for each irreducible component Ci ofX , such that jqj WD

P
i qCi

2 Z. We call
jqj the total degree of q.

Given any subcurve Y � X , we set

q
Y
WD

X
j

q
Cj
;

where the sum runs over all the irreducible components Cj of Y . Note that giving a polarization
q is the same as giving an assignment

.Y � X/ 7! q
Y

such that q
X
2 Z and which is additive on Y , i.e. such that if Y1; Y2 � X are two subcurves

of X without common irreducible components, then

q
Y1[Y2

D q
Y1
C q

Y2
:

Definition 2.5. A polarization q is called integral at a subcurve Y � X if q
Z
2 Z for

any connected component Z of Y and of Y c .
A polarization is called general if it is not integral at any proper subcurve Y � X .

Remark 2.6. It is easily seen that q is general if and only if q
Y
62 Z for any proper

subcurve Y � X such that Y and Y c are connected.

For each subcurve Y of X and each torsion-free sheaf I on X , the restriction IjY of I
to Y is not necessarily a torsion-free sheaf on Y . However, IjY contains a biggest subsheaf, call
it temporarily J , whose support has dimension zero, or in other words such that J is a torsion
sheaf. We denote by IY the quotient of IjY by J . It is easily seen that IY is torsion-free on Y
and it is the biggest torsion-free quotient of IjY : it is actually the unique torsion-free quotient
of I whose support is equal to Y . Moreover, if I is torsion-free rank-1, then IY is torsion-free
rank-1.
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14 Melo, Rapagnetta and Viviani, Fourier–Mukai and autoduality for compactified Jacobians

Definition 2.7. Let q be a polarization on X . Let I be a torsion-free rank-1 sheaf on X
such that �.I / D jqj (not necessarily simple).

(i) We say that I is semistable with respect to q (or q-semistable) if for every proper sub-
curve Y � X , we have

(2.1) �.IY / � qY
:

(ii) We say that I is stable with respect to q (or q-stable) if it is semistable with respect to q
and if the inequality (2.1) is always strict.

Remark 2.8. (i) It is easily seen that a torsion-free rank-1 sheaf I is q-semistable
(resp. q-stable) if and only if (2.1) is satisfied (resp. is satisfied with strict inequality) for
any subcurve Y � X such that Y and Y c are connected.

(ii) Let q be a polarization on X and I a torsion-free rank-1 sheaf on X that is stable with
respect to q. Then it is easy to see that, by slightly perturbing q, we get a general polar-
ization q0 on X for which I remains stable.

(iii) If X has locally planar singularities, we can write inequality (2.1) in terms of the degree
of IY as

(2.2) �.IY / � �.OY / WD degY .I / � qY � �.OY / D qY C
degY .!X /

2
�
ıY

2
;

where we used the adjunction formula (see [17, Lemma 1.12])

degY .!X / D 2pa.Y / � 2C ıY D �2�.OY /C ıY :

Inequality (2.2) was used to define stable rank-1 torsion-free sheaves on nodal curves
in [55] and in [16].

The geometric meaning for a polarization being general is clarified by the following
result.

Lemma 2.9. Let X be a connected reduced curve and let q be a general polarization
on X . Then every q-semistable sheaf I is also q-stable and hence simple.

Proof. See [53, Lemmas 2.18].

For a general polarization q on a connected reduced curve X , we will denote by JX .q/
the open subscheme of JX parametrizing simple rank-1 torsion-free sheaves I on X which are
q-semistable (or equivalently q-stable by Lemma 2.9). The scheme JX .q/ is called the fine
compactified Jacobian with respect to the polarization q.

Fact 2.10 (Esteves [22]). Let X be a connected reduced curve.

(i) If q is general polarization on X , then JX .q/ is a projective scheme over k (not neces-
sarily reduced).

(ii) JX D
S
q general JX .q/:
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Proof. Part (i) follows from [22, Theorem A (1) and Theorem C (4)]. Part (ii) follows
from [22, Corollary 15], which asserts that a simple torsion-free rank-1 sheaf is stable with
respect to a certain polarization, together with Remark 2.8 (ii), which asserts that it is enough
to consider general polarizations.

We collect the properties of fine compactified Jacobians in the following theorem.

Theorem 2.11. Let X be a connected reduced curve with locally planar singularities.
Then every fine compactified Jacobian JX .q/ satisfies the following properties:

(i) JX .q/ is a reduced scheme with locally complete intersection singularities.

(ii) The smooth locus of JX .q/ coincides with the open subset JX .q/ � JX .q/ parametriz-
ing line bundles. In particular, JX .q/ is dense in JX .q/ and JX .q/ is of pure dimension
equal to pa.X/.

(iii) JX .q/ is connected.

(iv) JX .q/ has trivial dualizing sheaf.

(v) JX .q/ is the disjoint union of a number of copies of the generalized Jacobian J.X/ of X
equal to the complexity c.X/ of the curve X . In particular, JX .q/ has c.X/ irreducible
components, independently of the chosen polarization q.

Proof. See [53, Theorem A].

The complexity c.X/ of a reduced curve X with planar singularities is an invariant of X
that depends on the pairwise intersection numbers of the irreducible components of X ; see
[53, Definition 5.10] for a definition. Raynaud showed in [66] that, for any one-parameter
regular smoothing of X , c.X/ is the number of connected components of the special fiber
of the Néron model of the Jacobian of the generic fiber. Part (v) of the above Theorem 2.11
follows then from a result of Kass [43], which says that, for a one-parameter regular smoothing
of X , any relative fine compactified Jacobian is a compactification of the Néron model of its
generic fiber.

2.3. Abel maps. In this subsection, we review, for later use, the construction and main
properties of (twisted) Abel maps of degree one into fine compactified Jacobians, following
[53, Section 6].

To this end, we restrict ourselves to a connected reduced curveX satisfying condition (�),
as in Section 1.8. Let ¹n1; : : : ; nr�1º be the separating points ofX , which are nodes by assump-
tion. Denote by �X the partial normalization of X at the set ¹n1; : : : ; nr�1º. Since each ni is
a node, the curve �X is a disjoint union of r connected reduced curves ¹Y1; : : : ; Yrº such that
each Yi does not have separating points. We have a natural morphism

� W �X Da
i

Yi ! X:

We can naturally identify each Yi with a subcurve of X in such a way that their union is X and
that they do not have common irreducible components. We call the components Yi (or their
image in X ) the separating blocks of X .
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16 Melo, Rapagnetta and Viviani, Fourier–Mukai and autoduality for compactified Jacobians

Theorem 2.12. Let X be a connected reduced curve satisfying condition (�).

(i) The pull-back map

�� W JX !
rY
iD1

JYi ;

I 7! .IjY1 ; : : : ; IjYr /

is an isomorphism. Moreover, given any fine compactified Jacobians J Yi .q
i / on Yi ,

i D 1; : : : ; r , there exists a (uniquely determined) fine compactified Jacobian JX .q/
on X such that

�� W JX .q/
Š
�!

Y
i

J Yi .q
i /;

and every fine compactified Jacobian on X is obtained in this way.

(ii) For every L 2 Pic.X/, there exists a unique morphism AL W X ! J
�.L/�1

X such that for
every 1 � i � r and every p 2 Yi it holds

��.AL.p// D .M
i
1; : : : ;M

i
i�1;mp ˝ LjYi ;M

i
iC1; : : : ;M

i
r /

for some (uniquely determined) elements M i
j 2 JYj for j ¤ i , where mp is the ideal of

the point p in Yi .

(iii) If, moreover, X is Gorenstein, then for every L 2 Pic.X/ there exists a general polariza-
tion q with jqj D �.L/ � 1 such that ImAL � JX .q/.

(iv) For every L 2 Pic.X/, the morphism AL is an embedding away from the separating
blocks of arithmetic genus zero (which are isomorphic to P1) while it contracts each
rational separating block Yi Š P1 into a seminormal point of AL.X/, i.e. an ordinary
singularity with linearly independent tangent directions.

Proof. See [53, Theorem D].

The map AL in Theorem 2.12 (ii) is called the (L-twisted) Abel map ofX . Fine compacti-
fied Jacobians JX .q/ for which there existsL 2 Pic.X/with the property that ImAL � JX .q/

are said to admit an Abel map. Theorem 2.12 (iii) says that any connected reduced Gorenstein
curve has some fine compactified Jacobians which admit an Abel map. However, not every fine
compactified Jacobian of X (even for a nodal curve) admits an Abel map, see [53, Section 7]
for some examples.

Note that if JX .q/ is a fine compactified Jacobian of X and L 2 Pic.X/ is such that
ImAL � JX .q/, then the L-twisted Abel map AL W X ! JX .q/ � JX induces via pull-back
a homomorphism

(2.3) A�L W Pic.JX .q//! Pic.X/ D JX ;

which clearly sends Pico.JX .q// into Pico.X/ D J.X/.

3. Universal fine compactified Jacobians

The aim of this subsection is to review the definition and main properties of the universal
fine compactified Jacobians, following [53, Sections 4–5].

Brought to you by | Universita degli Studi di Roma La Sapienza
Authenticated

Download Date | 2/12/20 1:24 PM



Melo, Rapagnetta and Viviani, Fourier–Mukai and autoduality for compactified Jacobians 17

3.1. Deformation theory of X . We start by recalling in this subsection some well-
known facts about the deformation theory of a (reduced) curve X . For basic facts on deforma-
tion theory, we refer to the book of Sernesi [70].

Let DefX be the deformation functor ofX . According to [70, Corollary 2.4.2], the functor
DefX admits a semiuniversal4) formal couple .RX ;X/, where RX is a Noetherian complete
local k-algebra with maximal ideal mX and residue field k and

X 21DefX .RX / WD lim
 �

DefX

�
RX

mn
X

�
is a formal deformation of X over RX . Recall that this means that the morphism of functors

hRX WD Hom.RX ;�/! DefX

determined by X is smooth and induces an isomorphism of tangent spaces

TRX WD .mX=m
2
X /
_ Š
�! T DefX

(see [70, Section 2.2]). The formal couple .RX ;X/ can be also viewed as a flat morphism of
formal schemes

(3.1) � W X ! Spf RX ;

where Spf denotes the formal spectrum, such that the fiber over o WD ŒmX � 2 SpfRX is iso-
morphic to X (see [70, p. 77]). Note that the semiuniversal formal couple .RX ;X/ is unique
by [70, Proposition 2.2.7].

Since X is projective and H 2.X;OX / D 0, it follows that Grothendieck’s existence
theorem (see [70, Theorem 2.5.13]) gives that the formal deformation (3.1) is effective, i.e.
there exists a deformation � W X ! SpecRX of X over SpecRX whose completion along
X D ��1.o/ is isomorphic to (3.1). In other words, we have a Cartesian diagram

X

��

� � //

�

X //

�

��

�

X

�

��

Spec k Š o �
�

// SpfRX // SpecRX .

Note also that the deformation � is unique by [70, Theorem 2.5.11]. For later reference, we
collect the properties of the effective semiuniversal deformation morphism � W X ! SpecRX
into the following:

Lemma 3.1. Let X be a (reduced and connected) curve.

(i) The effective semiuniversal deformation � W X ! SpecRX is a flat and projective mor-
phism with geometrically reduced and geometrically connected fibers.

(ii) IfX has l.c.i. singularities, thenRX is a power series ring (hence SpecRX is irreducible)
and the generic fiber of � is smooth.

4) Some authors use the word miniversal instead of semiuniversal. We prefer to use the word semiuniversal
in order to be coherent with the terminology of the book of Sernesi [70].
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18 Melo, Rapagnetta and Viviani, Fourier–Mukai and autoduality for compactified Jacobians

(iii) Assume that X has locally planar singularities. Then the following hold true:

(a) All the fibers of � have locally planar singularities.

(b) Let U be the open subset of SpecRX consisting of all the (schematic) points s in
SpecRX such that the geometric fiber Xs of the universal family � W X ! SpecRX
is smooth or has a unique singular point that is a node. Then the codimension of the
complement of U inside SpecRX is at least two.

Proof. Part (i): The fact that � is flat is part of the definition of a deformation and the
fact that � is projective follows directly from the proof of Grothendieck’s existence theorem
(see [70, Theorem 2.5.13]) using that the central fiber X is projective. Since the central fiber
X is (geometrically) reduced and the property of having geometrically reduced fibers is open
for a flat, proper morphism of finite presentation by [34, Theorem 12.2.4 (v)], it follows that
all the fibers of � are geometrically reduced. Moreover, the fibers of � are geometrically con-
nected because X is (geometrically) connected and the number of geometric connected com-
ponents of the fibers is locally constant for a universally open (e.g. flat) and proper morphism
by [34, Proposition 15.5.7].

Part (ii): By the definition of semiuniversal deformation ring and [70, Theorem C.4], the
ring RX is a power series ring if and only if DefX is smooth; this last property does hold true
if X has locally planar singularities (see e.g. [67, Corollary 4.13]). The generic fiber of � is
smooth because a reduced curve is smoothable if and only if it has locally formally smoothable
singularities (see [38, Corollary 29.10]) and l.c.i. singularities are locally formally smoothable
(see [38, Example 29.0.1]). For another proof of the last statement, see [49, Proposition 4.1.1].

Part (iii) (a): This follows from the well-known fact that the property of having locally
planar singularities is open in a projective family of curves, see e.g. [52, Proof of Proposi-
tion 3.5].

Part (iii) (b): See [53, Lemma 4.3].

The space SpecRX admits two stratifications into closed subsets according to either the
arithmetic genus or the geometric genus of the normalization of the fibers of the family � .
More precisely, using the notation introduced in Section 1.2, we have two functions

p�a W SpecRX ! N; s 7! p�a.Xs/ WD pa.X
�
s /;

g� W SpecRX ! N; s 7! g�.Xs/ D g
�.X�

s /;

where Xs WD �
�1.s/ is the fiber of the family � over the (schematic) point s 2 SpecRX and

Xs WD Xs �k.s/ k.s/ is the geometric fiber over s. Since the number of connected components
of X�

s is the number 
.Xs/ of irreducible components of Xs , we have the relation

(3.2) p�a.Xs/ D g
�.Xs/ � 
.Xs/C 1 � g

�.Xs/:

Lemma 3.2. The functions p�a and g� are lower semicontinuous.

Proof. This is known to the experts: a proof over the complex numbers can be found in
[73, I. Theorem 1.3.2], [20, Proposition 2.4] or [28, Chapter II, Theorem 2.54]; a proof over
an arbitrary field for integral curves (in which case p�a D g

�) can be found in [49, Proposi-
tion A.2.1]. See [65] for a complete proof in our more general setting.

Brought to you by | Universita degli Studi di Roma La Sapienza
Authenticated

Download Date | 2/12/20 1:24 PM



Melo, Rapagnetta and Viviani, Fourier–Mukai and autoduality for compactified Jacobians 19

Using the above lemma, formula (3.2) and the fact that the arithmetic genus pa stays
constant in the family � because of flatness, we get that

pa.X
�/ D p�a.X/ � p

�
a.Xs/ � g

�.Xs/ � pa.Xs/ D pa.X/:

Therefore for any pa.X�/ � l � pa.X/ we have two closed subsets of SpecRX :

.SpecRX /g
��l
WD ¹s 2 SpecRX W g�.Xs/ � lº(3.3)

� .SpecRX /p
�
a�l WD ¹s 2 SpecRX W p�a.Xs/ � lº:

If X has locally planar singularities, then the stratification by the arithmetic genus of the
normalization (which is sometimes called the equigeneric stratification) is particularly well-
behaved.

Theorem 3.3. Assume that X has locally planar singularities. Then, for any l with
pa.X

�/ � l � pa.X/, we have that:

(i) The closed subset .SpecRX /p
�
a�l � SpecRX has codimension at least pa.X/ � l .

(ii) Each generic point � of .SpecRX /p
�
a�l is such that X� is a nodal curve.

Part (i) of the above Theorem follows over k D C from [20, Theorem 4.15, Proposi-
tion 4.17] and over an algebraically closed field k of characteristic 0 or bigger than the max-
imum of the multiplicities of the points of X from [52, Proposition 3.5]. Part (ii) est bien
connue mais ne semble être démontrée nulle part (not even for k D C!) as Laumon points out
in [49, sentence preceding Theorem A.4.2]. The result is certainly well known to the experts
and it has been used many times in the literature (see e.g. [56, 57]). We will give a complete
proof of the above theorem in [65].

From the above Theorem 3.3 together with the inclusion in (3.3), we get the following.

Corollary 3.4. Assume that X has locally planar singularities. Then, for any l with
pa.X

�/ � l � pa.X/, the codimension of the closed subset .SpecRX /g
��l inside SpecRX is

at least pa.X/ � l .

3.2. Universal fine compactified Jacobians. In this subsection, we introduce the uni-
versal fine compactified Jacobians relative to the effective semiuniversal deformation

� W X ! SpecRX

introduced in Section 3.1. To this end, consider the functor

J
�

X W ¹SpecRX � schemesº ! ¹Setsº

which sends a scheme T ! SpecRX to the set of isomorphism classes of T -flat, coherent
sheaves on XT WD T �SpecRX X whose fibers over T are simple rank-1 torsion-free sheaves.
The functor J

�

X contains the open subfunctor

J�X W ¹SpecRX � schemesº ! ¹Setsº

which sends a scheme T ! SpecRX to the set of isomorphism classes of line bundles on XT .
Analogously to Fact 2.2, we have the following.
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20 Melo, Rapagnetta and Viviani, Fourier–Mukai and autoduality for compactified Jacobians

Fact 3.5 (Altman–Kleiman, Esteves). The following statements hold.

(i) The étale sheafification of J
�

X is represented by a scheme JX endowed with a mor-
phism u W JX ! SpecRX , which is locally of finite type and satisfies the existence part
of the valuative criterion for properness. The scheme JX contains an open subset JX

which represents the étale sheafification of J�
X

and the restriction u W JX ! SpecRX
is formally smooth. Moreover, the geometric fiber of JX (resp. of JX) over any point
s 2 SpecRX is isomorphic to JXs

(resp. JXs
).

(ii) There exists a sheaf bI on X �SpecRX JX such that for every F 2 J
�

X.T / there exists
a unique SpecRX -map ˛F W T ! JX with the property that

F D .idX �˛F /
�.bI/˝ ��2 .N /

for some N 2 Pic.T /, where �2 W X �SpecRX T ! T is the projection onto the second
factor. The sheafbI is uniquely determined up to tensor product with the pull-back of an
invertible sheaf on JX and it is called a universal sheaf on JX . Moreover, the restriction
ofbI to X � JX is equal to a universal sheaf as in Fact 2.2 (iii).

Proof. See [53, Fact 4.4] and the references therein.

In [53, Theorem 4.5], the authors proved that the completed local ring of JX at a point I
of the central fiber u�1.ŒmX �/ D JX is a semiuniversal deformation ring for the deformation
functor Def.X;I/ of the pair .X; I /. Applying a result of Fantechi–Göttsche–van Straten [27]
which says that Def.X;I/ is unobstructed if X has locally planar singularities, we get the fol-
lowing result.

Theorem 3.6. Let X be a connected reduced curve with locally planar singularities.
Then the scheme JX is regular.

Proof. See [53, Theorem 4.5 (iii)].

The universal fine compactified Jacobians will be certain open subschemes of JX , proper
over SpecRX , whose definition will depend on a general polarization q on X , see Defini-
tion 2.5. Indeed, the polarization q induces a polarization on each fiber of the effective semi-
universal deformation family � W X ! SpecRX , in the following way. Recall that for any
(schematic) point s 2 SpecRX , we denote by Xs WD �

�1.s/ the fiber of � over s and by
Xs WD Xs �k.s/ k.s/ the geometric fiber over s.

There is a natural specialization map

†s W ¹Subcurves of Xsº ! ¹Subcurves of Xº;(3.4)

Xs � Z 7! Z \X � X;

where Z denotes the Zariski closure inside X of the image of Z under the natural morphism
Xs ! Xs ,! X and the intersection Z \X is endowed with the reduced scheme structure.
The properties of this map are studied in [53, Section 5]. Here we notice that the function
Z 7! ıZ D jZ \Z

cj is lower semicontinuous with respect to †s .5) More precisely, we have
the following.

5) Indeed, we strongly believe that the functionZ 7! ıZ is invariant under the map†s , but we do not know
how to prove this and also we do not need this stronger result.
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Lemma 3.7. Assume that X is a (reduced and connected) curve with locally planar
singularities. For any subcurve Z of Xs we have that ı†s.Z/ � ıZ .

Proof. Consider the relative dualizing sheaf !� of the family � W X ! SpecRX . As X
has locally planar singularities by assumption, all the geometric fibers of � have locally planar
singularities by Lemma 3.1 (iii) (a). In particular, all the geometric fibers of � are Gorenstein,
which implies that !� is a line bundle and its restriction to every geometric fiber Xs is the
dualizing sheaf of Xs .

The claim in the proof of [53, Theorem 5.4] applied to the line bundle !� implies that

(3.5) degZ.!Xs
/ D deg†s.Z/.!X /:

On the other hand, the subcurveZ has also locally planar singularities (hence it is Gorenstein),
and the adjunction formula [17, Lemma 1.12] gives that

(3.6)

´
degZ.!Xs

/ D 2pa.Z/ � 2C ıZ ;

deg†s.Z/.!X / D 2pa.†s.Z// � 2C ı†s.Z/:

Consider now the image Y of Z � Xs in the (usual) fiber Xs over s. Since the irreducible
components of Xs are geometrically integral by Lemma 3.1 (i) and [53, Lemma 5.1], we get

(3.7) pa.Y / D pa.Z/:

Now, arguing as in Step II of the proof of Lemma 3.2, we can find a discrete valuation
ring R with residue field k, together with a morphism f W SpecR! ¹sº that maps the generic
point � of SpecR to s 2 SpecRX and the special point 0 of SpecR to ŒmX � 2 SpecRX . Denote
by � W Y ! SpecR the pull-back of � W Y ! ¹sº via the morphism f and consider the closure
Z WD Y� of the generic fiber Y� inside Y, i.e. the unique closed subscheme Z � Y which is
flat over SpecR and such that its generic fiber Z� is equal to Y� (see [33, Proposition 2.8.5]).
Since the arithmetic genus is constant for a flat and proper family of curves, we deduce that the
arithmetic genus of the special fiber Z0 of Z satisfies

(3.8) pa.Z0/ D pa.Z�/ D pa.Y�/ D pa.Y /:

As proved in [53, Proof of the Claim in Theorem 5.4], the 1-cycle associated to Z0 coincides
with the 1-cycle associated to †s.Z/, or in other words Z0 coincides with the reduced curve
†s.Z/ except for the possible presence of embedded points. Since the presence of embedding
points decreases the arithmetic genus, we get

(3.9) pa.Z0/ � pa.†s.Z//:

We conclude that ı†s.Z/ � ıZ by putting together (3.5), (3.6), (3.7), (3.8) and (3.9).

From the above lemma, we deduce a corollary that will be used in what follows (see
Theorem 9.1).

Corollary 3.8. Assume that X is a (reduced and connected) curve with locally planar
singularities. If X does not have separating nodes, then every geometric fiber Xs of the effec-
tive semiuniversal deformation � W X ! SpecRX does not have separating nodes.

Brought to you by | Universita degli Studi di Roma La Sapienza
Authenticated

Download Date | 2/12/20 1:24 PM



22 Melo, Rapagnetta and Viviani, Fourier–Mukai and autoduality for compactified Jacobians

Proof. Assume that Xs has a separating node p and we are going to show that X has
also a separating node. By Section 1.8, there exists a subcurveZ of Xs whose scheme-theoretic
intersection with the complementary subcurve Zc is equal to ¹pº. In particular, ıZ D 1. Con-
sider now the subcurve †s.Z/ of X . Lemma 3.7 implies ı†s.Z/ � ıZ D 1. However, since
X is connected and †s.Z/ is a non-trivial subcurve (because †s.Z/c D †s.Zc/ ¤ ; by
[53, Lemma 5.2]), we should have ı†s.Z/ ¤ 0, which forces then ı†s.Z/ D 1. Since X is
Gorenstein, condition (�) of Section 1.8 implies that †s.Z/ intersects scheme-theoretically its
complementary subcurve †s.Z/c into a separating node q of X .

Using the specialization map †s , we can show that a polarization on X induces a polar-
ization on each geometric fiber Xs .

Lemma–Definition 3.9. Let s 2 SpecRX and let q be a polarization on X . The polar-
ization qs induced by q on the geometric fiber Xs is defined by

qs
Z
WD q

†s.Z/
2 Q

for every subcurve Z � Xs . If q is general, then qs is general.

Proof. See [53, Lemma–Definition 5.1].

Given a general polarization q on X , by the next theorem we get an open subset of JX
which is proper over SpecRX .

Theorem 3.10. Let q be a general polarization on X . Then there exists an open sub-
scheme JX.q/ � JX which is projective over SpecRX and such that the geometric fiber of
u W JX.q/! SpecRX over a point s 2 SpecRX is isomorphic to JXs

.qs/. In particular,
the fiber of JX.q/! SpecRX over the closed point ŒmX � 2 SpecRX is isomorphic to JX .q/.

We call the scheme JX.q/ the universal fine compactified Jacobian of X with respect to
the polarization q. We denote by JX.q/ the open subset of JX.q/ parametrizing line bundles,
i.e. JX.q/ D JX.q/ \ JX � JX .

Proof. See [53, Theorem 5.2].

If the curveX has locally planar singularities, then the universal fine compactified Jacobi-
ans of X have several nice properties that we collect in the following statement.

Theorem 3.11. Assume that X has locally planar singularities and let q be a general
polarization on X . Then we have:

(i) The scheme JX.q/ is regular and irreducible.

(ii) The surjective morphism u W JX.q/! SpecRX is projective and flat of relative dimen-
sion pa.X/.

(iii) The relative dualizing sheaf of u is trivial.

(iv) The smooth locus of u is JX.q/.

Proof. See [53, Theorem C].
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Finally, note that the universal fine compactified Jacobians are acted upon by the universal
generalized Jacobian, whose properties are collected into the following:

Fact 3.12 (Bosch–Lütkebohmert–Raynaud). There is an open subset of JX , called the
universal generalized Jacobian of � W X ! SpecRX and denoted by v W J.X/! SpecRX ,
whose geometric fiber over any point s 2 SpecRX is the generalized Jacobian J.Xs/ of the
geometric fiber Xs of � over s.

The morphism v makes J.X/ into a smooth and separated group scheme of finite type
over SpecRX .

Proof. The existence of a group scheme v W J.X/! SpecRX whose fibers are the gen-
eralized Jacobians of the fibers of � W X ! SpecRX follows by [12, Section 9.3, Theorem 7],
which can be applied since SpecRX is a strictly henselian local scheme (because RX is a com-
plete local ring) and the geometric fibers of � W X ! SpecRX are reduced and connected since
X is assumed to be so. The result of loc. cit. gives also that the map v is smooth, separated and
of finite type.

Let � W SpecRX ! J.X/ be the zero section of the group scheme v W J.X/! SpecRX ;
in other words, � is the morphism which sends a geometric point s lying over a point s in
SpecRX into the trivial line bundle on the geometric fiber Xs of � W X ! SpecRX over s.

4. The Picard scheme of the universal fine compactified Jacobians

The aim of this section is to discuss the properties of the Picard scheme of the uni-
versal fine compactified Jacobians u W JX.q/! SpecRX , introduced in Section 3. Follow-
ing [26, Section 9.2] and [12, Section 8.1], we define the relative Picard functor Picu as the
fppf-sheaf associated to the contravariant Picard functor

Picu W Sch=RX ! Grps;

T 7! Pic.JX.q/ �SpecRX T /;

where Sch=RX is the category of schemes over SpecRX , Grps is the category of abelian groups
and Pic denotes the Picard group as defined in Section 1.9.

Following [26, Sections 9.5 and 9.6] and [12, Section 8.4], we consider the two subfunc-
tors of the relative Picard functor

Picou � Pic�u � Picu;

such that Picou (resp. Pic�u) consists of the elements of Picu whose restriction to every fiber
u�1.s/ for s 2 SpecRX belongs to Pico.u�1.s// (resp. Pic� .u�1.s//), see Section 1.9.

We summarize the properties of the above functors in the following

Theorem 4.1. Let X be a curve with locally planar singularities of arithmetic genus
pa.X/ and let q be a general polarization on X .

(i) Picu is represented by a group scheme Pic.JX.q// locally of finite type over SpecRX .

(ii) Pic�u is represented by an open subgroup scheme Pic� .JX.q// � Pic.JX.q// which is
of finite type and separated over SpecRX .
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(iii) Assume that h1.JX .q/;OJX .q// D pa.X/. Then Picou is represented by an open sub-
group scheme

Pico.JX.q// � Pic� .JX.q//;

and both of them are of finite type, separated and smooth over SpecRX .

Proof. Observe that the morphism u is projective and flat by Theorem 3.11 (ii) and the
fibers of u are geometrically connected by Theorem 2.11 (iii). Therefore, part (i) will follow
from Mumford’s representability criterion for the Picard scheme (see [12, Section 8.2, Theo-
rem 2] or [26, Theorem 9.4.18.1]) once we have proved the following:

Claim 1. The irreducible components of the fibers of u are geometrically irreducible.

To this end, let V be the biggest open subset of JX.q/ where the restriction of the mor-
phism u W JX.q/! SpecRX is smooth. Since u is flat, it follows that the fiber Vs of V over
a point s 2 SpecRX is the smooth locus of the fiber u�1.s/, which is geometrically reduced
because u�1.s/˝k.s/ k.s/ Š JXs

.qs/ is reduced by Theorem 2.11 (i). In particular,

Vs WD �
�1.s/ � u�1.s/ and Vs WD Vs �k.s/ k.s/ � u

�1.s/˝k.s/ k.s/ Š JXs
.qs/

are dense open subsets.
Therefore, the irreducible components of Xs (resp. of Xs) are equal to the irreducible

components of u�1.s/ (resp. of JXs
.qs/). However, since Vs is smooth over k.s/ by con-

struction, the irreducible components of Vs coincide with the connected components of Vs
and similarly for Vs . In conclusion, we have to show that the connected components of Vs are
geometrically connected for any point s 2 SpecRX .

Let C be a connected component of Vs , for some point s 2 SpecRX . The closure �C of C
inside JX.q/ will contain some irreducible component of the central fiber JX .q/ by the upper
semicontinuity of the dimension of the fibers (see [34, Lemma 13.1.1]) applied to the projective
surjective morphism �C ! ¹sº. Hence, the closure C of C inside V will contain some (not
necessarily unique) connected component Co of the central fiber Vo D VŒmX �. Now, since RX
is a strictly henselian ring and V ! SpecRX is smooth, given any point p 2 Co � Vo, we can
find a section � of V ! SpecRX passing through p (see [12, Section 2.2, Proposition 14]).
Clearly, �.s/ is a k.s/-rational point of C . Therefore we conclude that C is geometrically
connected by [33, Corollary 4.5.14], which proves the claim.

Let us now prove part (ii). Since u is proper and Picu is represented by a scheme, a result
of Kleiman [46, Theorem 4.7] gives that Pic�u is represented by an open subgroup scheme
Pic� .JX.q// � Pic.JX.q// which is moreover of finite type over SpecRX . In order to prove
that f � W Pic� .JX.q//! SpecRX is separated, it is enough to prove, using the valuative crite-
rion of separatedness (see [30, Proposition 7.2.3]), that for any map SpecR! SpecRX , where
R is a discrete valuation ring, the base change map

f �R W Pic� .JX.q// �SpecRX SpecR Š Pic� .JX.q/ �SpecRX SpecR/! SpecR

is separated. Since the fibers of JX.q/ �SpecRX SpecR! SpecR are geometrically reduced
by Theorem 2.11 (i) andR is a discrete valuation ring, a result of Raynaud [66, Corollary 6.4.5]
guarantees that the map f �R is separated. Part (ii) is now proved.

Before proving the remaining assertions, we prove the following.
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Claim 2. Assume that

h1.JX .q/;OJX .q// D pa.X/:

Then the geometric fibers of f W Pic.JX.q//! SpecRX are smooth of dimension pa.X/.

Indeed, if s is the generic point of SpecRX , then Xs is a smooth projective curve of genus
equal to pa.X/ by Lemma 3.1 (ii) and therefore JXs

.q/ is an abelian variety of dimension
equal to pa.X/. This implies that Pic.JXs

.q// is a smooth group scheme of dimension pa.X/
over k.s/. Consider now the function

Pic.JX.q// 3 x 7! dimx f �1.f .x// 2 N;

which is upper semicontinuous by Chevalley’s theorem (see [34, (13.1.3)]). Since the fibers of
f are group schemes (because f is such), the local dimension stays constant on each fiber
which implies that dimx f �1.s/ D dimf �1.s/ for any s 2 SpecRX and any x 2 f �1.s/.
Moreover, since the dimension of a scheme locally of finite type over a field is invariant under
field extensions (see [33, (4.1.4)]), we also have that dimf �1.s/ D dim Pic.JXs

.q// for any
s 2 SpecRX . Putting everything together we deduce that

(4.1) dim Pic.JXs
.q// � pa.X/ for any s 2 S:

On the other hand, if h1.JX .q/;OJX .q// D pa.X/ then by upper semicontinuity of the coho-
mology groups, we get that

(4.2) h1.JXs
.q/;OJXs

.q// � pa.X/ for any s 2 S:

Combining (4.1) and (4.2), we infer that

dim Pic.JXs
.q// � h1.JXs

.q/;OJXs
.q//

for any s 2 S . This implies that, for every s 2 S , Pic.JXs
.q// is smooth of dimension equal

to pa.X/ (see [26, Corollary 9.5.13]) which proves the claim.
Let us now prove part (iii). Since the geometric fibers of f are smooth of the same

dimension by Claim 2, it follows that Picou is represented by an open subgroup scheme

Pico.JX.q// � Pic� .JX.q//;

smooth and of finite type over SpecRX , by [26, Proposition 9.5.20]. Moreover, Pico.JX.q//

is separated over SpecRX because Pic� .JX.q// is separated over SpecRX by (ii). Therefore
it remains to prove that f � W Pic� .JX.q//! SpecRX is smooth.

For any n 2 N, denote by �n W Pic.JX.q//! Pic.JX.q// the group scheme homomor-
phism sending an element to its n-th power. Following [29, Section 1], consider the following
open subgroup schemes of Pic� .JX.q//:

f � W Pic� .JX.q// WD
[

.n;p/D1

��1n
�
Pico.JX.q//

�
! SpecRX ;

f � W Pic�.JX.q// WD
[
nDpr

��1n
�
Pico.JX.q//

�
! SpecRX ;

where p denotes the characteristic of the base field k and .n; p/ denotes the greatest common
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divisor of n and p. Clearly, the multiplication map induces a surjective homomorphism of
SpecRX -group schemes (see also [29, Section 1])

(4.3) m W Pic� .JX.q// �SpecRX Pic�.JX.q//� Pic� .JX.q//:

According to [29, Theorem 2.5], the n-th power morphism �n is étale, hence in particular
universally open, if .n; p/ D 1. This implies that:

(a) f � W Pic� .JX.q//! SpecRX is smooth (hence universally open), using the fact that
Pico.JX.q//! SpecRX is smooth and [29, Proposition 2.10 (i)],

(b) f � W Pic�.JX.q//! SpecRX is universally open by [29, Theorem 1.1 (iv)].

Therefore, Pic� .JX.q//�SpecRXPic�.JX.q//! SpecRX is universally open, since the prop-
erty of being universally open is stable by base change and composition (see [34, (14.3.4)]).
This indeed implies that f � W Pic� .JX.q//! SpecRX is universally open, using that the mul-
tiplication map m of (4.3) is surjective and [34, (14.3.4) (i)].

Now, since f � is universally open and of finite type, the fibers of f � are geometrically
reduced (being smooth) and the codomain SpecRX of f � is locally Noetherian and reduced
(being Noetherian and regular), we conclude that f � is flat by [34, (15.2.3)]. Finally, since
f � is flat and of finite presentation (being of finite type over a Noetherian codomain) and the
geometric fibers of f � are smooth, it follows that f � is smooth by [12, Section 2.4, Proposi-
tion 8].

5. The Poincaré bundle

The aim of this section is to introduce the Poincaré line bundle for fine compactified
Jacobians and to study its properties. Throughout this section, we fix a reduced connected
curve X (not necessarily with locally planar singularities).

With this in mind, consider the triple product X � JX � JX and, for any 1 � i < j � 3,
denote by pij the projection onto the product of the i -th and j -th factors. Choose a universal
sheaf I on X � JX as in Fact 2.2 (iii) and denote by I0 its restriction to X � JX � X � JX .
Consider the trivial family of curves

p23 W X � JX � JX ! JX � JX

and form the line bundle on JX � JX , called the Poincaré bundle,

(5.1) P WD Dp23.p
�
12I ˝ p

�
13I

0/�1 ˝Dp23.p
�
13I

0/˝Dp23.p
�
12I/;

where Dp23 denotes the determinant of cohomology with respect to the morphism p23. For the
basic properties of the determinant of cohomology, we refer to [47] (see also [22, Section 6.1]
for a summary).

In the sequel we will be often interested in the line bundles

PM WD P
jJX�¹M º

2 Pic.JX /;

where M 2 JX is a line bundle on X . Although the Poincaré line bundle (5.1) depends on the
chosen universal sheaf I, the restriction PM does not if M has degree 0.
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Lemma 5.1. If M 2 J1�pa.X/X , i.e. if �.M/ D 1 � pa.X/ (or, equivalently, if M has
degree 0), then the line bundle PM 2 Pic.JX / is given by

(5.2) PM D D�2.I ˝ �
�
1M/�1 ˝D�2.�

�
1M/˝D�2.I/;

where as usual �i denotes the projection of X � JX onto the i -th factor (for i D 1; 2) and I

is any universal sheaf on X � JX as in Fact 2.2 (iii). In particular, PM is independent of the
chosen universal sheaf I.

Proof. Formula (5.2) (for any M 2 JX ) with respect to the universal sheaf I used
in (5.1) follows from the fact that the determinant of cohomology commutes with base change.

The fact that (5.2) is independent from the chosen I if �.M/ D 1 � pa.X/ follows from
the projection formula for the determinant of cohomology using that any universal sheaf�I on
X � JX is related to I via �I D I ˝ ��2 .N /;

for some N 2 Pic.JX /, where �2 W X � JX ! JX denotes the projection onto the second
factor. The computation is similar to the one in [23, Proof of Proposition 2.2] and left to the
reader.

For any general polarization q on X , the restriction of the Poincaré bundle P to the
product JX .q/ � J1�pa.X/X defines, via the universal property of Pic.JX .q//, an algebraic
morphism

�̌
q W J

1�pa.X/
X ! Pic.JX .q//;

M 7! .PM /jJX .q/:

Lemma 5.1, together with the fact that J1�pa.X/X is reduced by Fact 2.2 (i), implies that the
morphism ˇq is independent of the chosen Poincaré bundle P .

Note that, from (5.2), it follows that �̌q.OX / D .POX /jJX .q/ D OJX .q/: Therefore the
morphism �̌

q restricts to a morphism

ˇq W J.X/ D Pico.X/! Pico.JX .q//;(5.3)

M 7! .PM /jJX .q/:

Proposition 5.2. For any general polarization q on X , the maps �̌q and ˇq are homo-
morphisms of group schemes.

Proof. Since we have already observed that the maps in question are algebraic mor-
phisms, it remains to prove that

(5.4) PM1˝M2 Š PM1 ˝PM2

for any M1;M2 2 J1�pa.X/X .
In order to prove this, observe that we can write (for i D 1; 2) Mi D OX .�
i C ıi /,

where 
i and ıi are effective divisors contained in the smooth locus of X . Moreover, we can
clearly assume that ı1 and ı2 (resp. 
1 and 
2) have disjoint support.
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Consider the following two exact sequences that are derived from the two exact sequences
defining O
i and Oıi :

0! OX .�
i /! OX ! O
i ! 0;(5.5)

0! OX .�
i /!Mi !Mi jıi Š Oıi ! 0:

Pulling back (5.5) via �1 and using the additivity of the determinant of cohomology, we get

D�2.�
�
1Mi / Š D�2.�

�
1Mi /˝D�2.�

�
1OX /

�1(5.6)

Š D�2.�
�
1Oıi /˝D�2.�

�
1O
i /

�1:

Similarly, by tensoring the pull-back via �1 of two exact sequences (5.5) with I and using the
additivity of determinant of cohomology, we get

(5.7) D�2.I ˝ �
�
1Mi /

�1
˝D�2.I/ Š D�2.I ˝ �

�
1Oıi /

�1
˝D�2.I ˝ �

�
1O
i /:

Note that the above exact sequences make sense since I is locally free along ��11 .ıi / and
��11 .
i / (because 
i and ıi are contained in the smooth locus of X ), hence I ˝ ��1Oıi and
I ˝ ��1O
i are flat over JX and we can consider their determinant of cohomology with respect
to �2. By plugging (5.6) and (5.7) into the (5.2), we get

(5.8) PMi Š D�2.I˝�
�
1Oıi /

�1
˝D�2.I˝�

�
1O
i /˝D�2.�

�
1Oıi /˝D�2.�

�
1O
i /

�1:

Since M1 ˝M2 D OX .�
1 � 
2 C ı1 C ı2/, we get in a similar way that

PM1˝M2 Š D�2.I ˝ �
�
1Oı1[ı2/

�1
˝D�2.I ˝ �

�
1O
1[
2/(5.9)

˝D�2.�
�
1Oı1[ı2/˝D�2.�

�
1O
1[
2/

�1:

Since ı1 and ı2 (reps. 
1 and 
2) are zero-dimensional subschemes of X with disjoint support,
for any coherent sheaf F on X � JX which is locally free along ��11 .ıi / and ��11 .
i /, we
have that

D�2.F ˝ �
�
1Oı1[ı2/ D D�2.F ˝ �

�
1Oı1/˝D�2.F ˝ �

�
1Oı2/;(5.10)

D�2.F ˝ �
�
1O
1[
2/ D D�2.F ˝ �

�
1O
1/˝D�2.F ˝ �

�
1O
2/:

Comparing formulas (5.8) and (5.9) and using (5.10), we get the required formula (5.4).

Remark 5.3. With an argument similar to the one in the proof of the above Propo-
sition 5.2, it is possible to get a description of the line bundle PM on JX . More precisely,
given M 2 J1�pa.X/X with M Š OX .

P
aiQi / for a divisor

P
aiQi supported on the smooth

locus of X , we get

(5.11) PM Š
O

.I
jQi�JX

/�ai :

An important property of the line bundles PM on JX is the fact that they are invariant
under pull-back for the multiplication map by an element N 2 Pic.X/:

�˝N W JX ! JX

I 7! I ˝N:

Lemma 5.4. For any N 2 Pic.X/ and M 2 J1�pa.X/X , we have

.�˝N/�PM Š PM :
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Proof. Consider the following commutative diagram:

X � JX
.id;�˝N/

//

�2
��

X � JX

�2
��

JX
�˝N

// JX .

By the definition of the multiplication map �˝N , it follows that

(5.12) .id;�˝N/�I Š�I ˝ ��1N;
for some universal sheaf �I on X � JX , possibly different from I. Using (5.2) and (5.12),
together with the fact that the determinant of cohomology commutes with pull-back, we get

(5.13) .�˝N/�PM Š D�2.
�I˝��1N ˝��1M/�1˝D�2.�

�
1M/˝D�2.

�I˝��1N/:
By comparing (5.13) and formula (5.2) which remains true if we substitute I with�I as observed
before, we deduce that the statement of the lemma is equivalent to

(5.14) D�2.
�I˝��1M/�1˝D�2.

�I/ Š D�2.
�I˝��1N ˝��1M/�1˝D�2.

�I˝��1N/:
In order to prove equation (5.14), we proceed similarly to the proof of Proposition 5.2. We write
M Š OX .�
Cı/, where 
 and ı are two effective divisors onXsm, and we apply formula (5.7)
(with Mi replaced by M ) to the sheaves I and�I ˝ ��1N in order to get

(5.15) D�2.
�I ˝ ��1M/�1 ˝D�2.

�I/ Š D�2.
�I ˝ ��1Oı/

�1
˝D�2.

�I ˝ ��1O
 /

and

D�2.
�I ˝ ��1N ˝ ��1M/�1 ˝D�2.

�I ˝ ��1N/(5.16)

Š D�2.
�I ˝ ��1N ˝ ��1Oı/

�1
˝D�2.

�I ˝ ��1N ˝ ��1O
 /:

Comparing (5.15) and (5.16) and using that

�I ˝ ��1N ˝ ��1Oı D�I ˝ ��1 .N ˝Oı/ Š�I ˝ ��1Oı

and similarly with ı replaced by 
 , we get the isomorphism in (5.14).

The Poincaré bundle behaves well with respect to the decomposition of a curve into its
separating blocks in the sense of Section 2.3.

Lemma 5.5. LetX be a connected reduced curve satisfying condition (�) and denote by
Y1; : : : ; Yr its separating blocks as in Section 2.3. LetM 2 J.X/ and setMj WDMjYj 2 J.Yj /.
Denote by PM 2 Pico.JX / and PMj 2 Pico.JYj / the corresponding fibers of the Poincaré
bundles for the curves X and Yj , respectively. Then the push-forward of PM via the isomor-
phism �� W JX

Š
�!

Q
j JYj of Theorem 2.12 (i) is equal to

PM1 � : : :�PMr WD p
�
1 .PM1/˝ : : :˝ p

�
r .PMr /;

where pj W
Q
i JYi ! JYj is the projection onto the j -th factor.
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Proof. Consider the commutative diagram

(5.17) X � JX

�2
��

�X �Qi JYi
��.��/�1
oo

��2
��

Yj �
Q
i JYi

��

? _
�j�id
oo

id�pj
//

���2j
��

Yj � JYj

�
j
2
��

JX
Q
i JYi

Š

.��/�1
oo

Q
i JYi pj

// JYj ,

where
� W �X Da

i

Yi ! X

is the normalization of X at the separating nodes of X and

�j W Yj ,! �X Da
i

Yi

is the natural inclusion. Denote by �1, ��1, ��1j , �j1 the projections onto the first factors of the
products appearing in the middle row of diagram (5.17). Choose a universal sheaf I onX � JX
as in Fact 2.2 (iii) and set�I WD .� � .��/�1/�.I/.

Since a torsion-free rank-1 sheaf on X is completely determined by its pull-back to �X by
Theorem 2.12 (i), we have that the pull-back of PM to

Q
i JYi via the isomorphism .��/�1 is

equal to

..��/�1/�.PM / D ..�
�/�1/�

�
D�2.I ˝ �

�
1M/�1 ˝D�2.�

�
1M/˝D�2.I/

�
(�)

Š D ��2.�I ˝ ��1� �M/�1 ˝D ��2.��1� �M/˝D ��2.�I/;
where �M WD ��M 2 J.�X/. Since �X is the disjoint union of the subcurves Yi and

.�j � id/�.�I/ D .id�pj /�.Ij / WD �Ij
for some universal sheaf Ij on Yj � JYj , we have

D ��2.�I ˝ ��1� �M/�1 ˝D ��2.��1� �M/˝D ��2.�I/(��)

Š

rO
jD1

�
D ��2j .�Ij ˝ .��1j /�Mj /�1 ˝D ��2j ..��1j /�Mj /˝D ��2j .�Ij /�:

Finally, since the square on the right-hand side of diagram (5.17) is cartesian, applying the base
change properties of the determinant of cohomology, we get

p�j .PMj / D p
�
j

�
D�2j

.Ij ˝ .�1
j /�Mj /

�1
˝D�2j

..�1
j /�Mj /˝D�2j

.Ij /
�

(���)

Š D ��2j .�Ij ˝ .��1j /�Mj /�1 ˝D ��2j ..��1j /�Mj /˝D ��2j .�Ij /:
By combining (�), (��) and (���), we get the equality

..��/�1/�.PM / Š

rO
jD1

p�j .PMj /;

which concludes the proof.
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Given any Abel map AL and choosing a fine compactified Jacobian JX .q/ such that
ImAL � JX .q/ (which is always possible if X is Gorenstein by Theorem 2.12 (iii)), the mor-
phism ˇq of (5.3) provides a right inverse for the morphism A�L of (2.3). This is originally due
to Esteves-Gagné-Kleiman in the case where X is integral (see [23, Proposition 2.2]).

Proposition 5.6. LetX be a connected reduced curve satisfying condition (�), as in Sec-
tion 1.8. Then, for everyL 2 Pic.X/ and any general polarization q such that ImAL � JX .q/,
we have

A�L ı ˇq D idJ.X/:

In other words, for every M 2 J.X/ we have A�L..PM /jJX .q// ŠM .

Proof. We will first prove the proposition in the case where X does not have separating
points and then in the general case.

Case I: X does not have separating points. The proof in this case is an easy adaptation
of [23, Proposition 2.2] and it is therefore left to the reader. The crucial property that holds in
this case (while failing in general) and that makes the proof of loc. cit. work is the fact that
the Abel map AL W X ! JX .q/ � JX is defined by the sheaf I� ˝ p

�
1L on X �X , where

� � X �X is the diagonal, as it follows from Theorem 2.12 (ii).

Case II: X satisfies condition (�). Let Yi for 1 � i � r be the separating blocks of X
as in Section 2.3 and set Li WD LjYi 2 Pic.Yi /. According to Theorem 2.12 (i), we can choose
general polarizations qi on Yi , for 1 � i � r , such that �� induces an isomorphism between
JX .q/ and

Qr
iD1 J Yi .q

i /. Since ImAL � JX .q/ by assumption, we have

ImALi � J Yi .q
i / � JYi

for every 1 � i � r , by [53, Proposition 6.7 (ii)]. We get the diagram

(5.18)
Q
i Pico.J Yi .q

i //Q
i A
�
Li

{{

˝ip
�
i
.�/

((Q
i J.Yi /

Q
i ˇqi

::

Pico.
Q
i J Yi .q

i //

b��Š

��

J.X/

�� Š

OO

ˇq

00 Pico.JX .q//,
A�L

qq

where b�� is the isomorphism induced on Pico by �� W JX .q/
Š
�!

Qr
iD1 J Yi .q

i / and ˇq
i

is the
map (5.3) with respect to the general polarization qi on the curve Yi . From the definition of the
Abel map AL (see Theorem 2.12 (ii)), it follows that the two maps from

Q
i Pico.J Yi .q

i // toQ
i J.Yi / that arise from diagram (5.18) are equal. Lemma 5.5 can be re-interpreted as saying

that the two maps from J.X/ to Pico.JX .q// that arise from diagram (5.18) are equal.
Since each Yi does not have separating points, then we have A�Li ı ˇqi D idJ.Yi / by

Case I. This implies that A�L ı ˇq D idJ.X/ by an easy diagram chase in (5.18).

An immediate consequence of the above result is the following corollary.
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Corollary 5.7. Let X be a connected reduced curve satisfying condition (�) and let q
be a general polarization on X . If JX .q/ admits an Abel map (in the sense of Section 2.3),
then the homomorphism ˇq W J.X/! Pico.JX .q// is injective.

6. Cohomology of restricted Poincaré bundles

The aim of this section is to prove some results about the cohomology of restricted
Poincaré bundles PM WD P

jJX�¹M º
, for M 2 J.X/, to the fine compactified Jacobians of

a connected reduced curve X (not necessarily with locally planar singularities).
The first result is a generalization [6, Proposition 1], which deals with X integral.

Proposition 6.1. LetM 2 J.X/ and let q be a general polarization onX . If there exists
i 2 N such that H i .JX .q/;PM / ¤ 0, then PM jJX Š OJX .

Proof. The proof is an adaptation of the proof of [6, Proposition 1]. However, for the
benefit of the reader, we chose to give some more details than in loc. cit.

Note that the generalized Jacobian J.X/ acts on JX .q/. Denote by T ! J.X/ the
Gm-torsor corresponding to the line bundle .PM /jJ.X/. Let us first prove two claims.

Claim 1. The group T has the structure of a commutative algebraic group that is an
extension of J.X/ by Gm, i.e. there is a sequence of commutative algebraic groups

(6.1) 0! Gm ! T ! J.X/! 0:

Let p 2 X and let I0 be a universal sheaf onX�J.X/ such that its restriction at p�J.X/
is trivial. Let

m W J.X/ � J.X/! J.X/ and �i;j W X � J.X/ � J.X/! X � J.X/

be the multiplication map and the projection maps, respectively. By the see-saw principle, the
line bundles ��1;2I

0 ˝ ��1;3I
0 and .idX �m/�I0 on X � J.X/ � J.X/ are isomorphic. Let

� be a nowhere vanishing section of .I0/jp�J.X/. The section � induces nowhere vanishing
sections � of .��1;2I

0 ˝ ��1;3I
0/jp�J.X/�J.X/ and O� of ..idX �m/�I0/jp�J.X/�J.X/. Let

� W ��1;2I
0
˝ ��1;3I

0
! .idX �m/�I0

on X � J.X/ � J.X/ be an isomorphism sending � to O� . A straightforward computation
shows that � makes the complement of the zero section in I0 into a group scheme over X .
As a consequence, for any s 2 X the isomorphism � induces a group structure on the comple-
ment Ts of the zero section in I

0

js�J.X/
.

Let pi be smooth points of X such that M D O.
P
aipi /. By equation (5.11), we get an

isomorphism
PM jJ.X/ Š

O
i

.I
0

jpi�J.X/
/�ai :

Hence T is the complement of the zero section in
N
i .I

0

jpi�J.X/
/�ai and it carries a group

structure which is induced by the group structures on the Tpi . This group structure makes T an
abelian group and its natural group morphism onto J.X/ produces the exact sequence (6.1),
which proves the claim.
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Claim 2. The action of J.X/ on JX .q/ lifts to an action of T on .PM /jJX .q/. Moreover,
Gm � T acts on .PM /jJX .q/ fiberwise in the standard way by multiplication.

As for the previous claim, let p 2 X and let Iq be a universal sheaf on X � JX .q/ such
that its restriction at p � JX .q/ is trivial. Denote by

p1;2 W X � J.X/ � JX .q/! X � J.X/ and p1;3 W X � J.X/ � JX .q/! X � JX .q/

the projection maps and let a W J.X/ � JX .q/! JX .q/ be the action of J.X/ on JX .q/. In
this case the see-saw principle gives an isomorphism  W p�1;2I

0 ˝ p�1;3I
q
! .idX � a/�Iq .

Moreover, a suitable choice of  (analogous to the choice of � in the previous claim) gives an
action over X of the complement of the zero section in I0 on Iq . Hence, for every s 2 X , the
isomorphism  induces an action of Ts on I

q

js�JX .q/
. Since equation (5.11) gives the equality

PM jJX .q/ Š
O
i

.I
q

jpi�JX .q/
/�ai ;

we finally get that T acts on .PM /jJX .q/ lifting the action of J.X/ on JX .q/. The second part
of the claim follows from our description of the action, which proves the claim.

We can now finish the proof of the proposition. According to Claim 2, the algebraic
group T acts on any cohomology group H i .JX .q/; .PM /jJX .q//. Suppose that, for some
index i ,

H i .JX .q/; .PM /jJX .q// ¤ 0:

Consider a T -irreducible non-trivial submodule 0 ¤ V � H i .JX .q/; .PM /jJX .q//. Since T
is commutative, V is a one-dimensional representation of T . Therefore the action of T on V
is given by a character � W T ! Gm and, since Gm � T acts on .PM /jJX .q/ fiberwise in the
standard way by multiplication, it follows that �jGm D id. As a consequence, the character �
gives a splitting of the exact sequence (6.1), from which we deduce that T Š J.X/ �Gm. This
is indeed equivalent to the fact that

(6.2) .PM /jJ.X/ Š OJ.X/:

We conclude now by using the Lemma 5.4. Indeed, if ¹X1; : : : ; X
º are the irreducible
components of X , then we have the decomposition

(6.3) JX D Pic.X/ D
a
d2Z


Picd .X/

into connected components, where Picd .X/ is the connected component of Pic.X/ parametriz-
ing those line bundles L on X having multidegree deg.L/ equal to d D .d1; : : : ; d
 /, i.e.
deg.LjXi / D d i for any 1 � i � 
 . From the above decomposition (6.3), it is enough to show
that

.PM /jPicd .X/ Š OPicd .X/

for each multidegree d . Fix such multidegree d and take a line bundleN of multidegree d . The
multiplication by N�1 induces an isomorphism �˝N�1 W Picd .X/ Š�! Pic0.X/ D J.X/:
Using Lemma 5.4 and (6.2), we now get

.PM /jPicd .X/ Š .�˝N
�1/�.PM /jPicd .X/ Š .�˝N

�1/�..PM /jJ.X//

Š .�˝N�1/�.OJ.X// Š OPicd .X/:
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The previous proposition implies the following two corollaries, that generalize [6, Corol-
lary 2] and [6, Corollary 3] to the case where X is not integral.

Corollary 6.2. Assume that X is Gorenstein. Let M 2 J.X/ and let q be a general
polarization on X . If H i .JX .q/;PM / ¤ 0 for some i , then MjXsm Š OXsm .

Proof. Consider the Abel map AL W X ! JX for some L 2 Pic.X/ and choose a fine
compactified Jacobian JX .q0/ such that ImAL � JX .q

0/ (which is always possible if X is
Gorenstein by Theorem 2.12 (iii)). Clearly we have AL.Xsm/ � JX .q

0/ � JX . Using Proposi-
tion 6.1 and Proposition 5.6 (applied to the fine compactified Jacobian JX .q0/), we get

MjXsm Š A
�
L..PM /jJX .q0//jXsm Š .ALjXsm/

�..PM /jJX .q0//

Š .ALjXsm/
�.OJX .q0// Š OXsm ;

and hence the corollary.

For any general polarization q on X , consider the locus

N .q/ WD ¹M 2 J.X/ W H i .JX .q/;PM / ¤ 0 for some iº � J.X/:

Notice that, by semicontinuity, N .q/ is a closed subset of J.X/ and that

N .q/ D supp.Rp2�.PjJ.X/�JX .q///;

where p2 W JX .q/ � J.X/! J.X/ is the second projection.

Corollary 6.3. Assume thatX satisfies condition (�) and let q be a general polarization
on X . Then

dim N .q/ � pa.X/ � g
�.X/:

Proof. Observe that it is enough to prove the corollary after a base change to an uncount-
able algebraically closed field; therefore, with a slight abuse of notation, we can assume that
our algebraically closed base field k is uncountable.

The normalization morphism � W X� ! X induces by pull-back a smooth and surjective
morphism �� W J.X/! J.X�/ with fibers of dimension equal to pa.X/ � g�.X/. Denote by�N � J.X�/ the locus of line bundles on X� that are trivial on ��1.Xsm/ � X

� .

Claim. The set �N is countable.

Indeed, set F WD X� n ��1.Xsm/. We have an exact sequence

ZF
˛
! Pic.X�/! Pic.��1.Xsm//;

where the last map is the restriction map and ˛ sends ¹mP ºP2F 2 ZF into OX .
P
P2F mP �P /.

The claim follows since �N is equal to Im.˛/ \ J.X�/, which proves the claim.
Now, Corollary 6.2 implies that the subset ��.N .q// � J.X�/ (which is constructible

by Chevalley’s theorem, see [32, (1.8.4)]) is contained in the countable subset �N � J.X�/.
Since k is uncountable by assumption, this can only happen if ��.N .q// is a finite union of
points. Therefore, the dimension of N .q/ can be at most equal to the dimension of the fibers
of ��, i.e. to pa.X/ � g�.X/.
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Proposition 6.1 can be strengthened for the case i D 0 if the curve X has locally planar
singularities.

Proposition 6.4. Assume that X has locally planar singularities and let q be a general
polarization onX . IfM 2 J.X/ is such thatH 0.JX .q/;PM / ¤ 0, then PM jJX .q/ Š OJX .q/.

Proof. By Fact 2.10 and Theorem 2.11, we know that JX .q/ is a connected reduced
projective scheme over k. As already observed in (5.3), we have

PM jJX .q/ 2 Pico.JX .q//:

We can apply the (quite standard) Lemma 6.5 below in order to conclude that

PM jJX .q/ Š OJX .q/:

Lemma 6.5. Let V be a connected reduced projective scheme over an algebraically
closed field k. Let L be a line bundle belonging to Pico.V /, i.e. the connected component of
Pic.V / containing the identity. If H 0.V;L/ ¤ 0, then L Š OV .

Proof. Assume first that V is irreducible. Then any non-zero section s of L induces
a generically injective map�s W OV ! L which is therefore injective since OV does not contain
torsion sheaves. Moreover, since L and OV have the same Hilbert polynomial with respect to
any ample line bundle on V (being algebraically equivalent),�s has trivial cokernel, hence it is
an isomorphism.

In the general case, let V1; : : : ; Vr be the irreducible components of V . Take a non-
zero section s 2 H 0.V; L/ and consider its zero locus Z.s/ ¨ V . For each irreducible com-
ponent Vi , there are two possibilities: either si WD sjVi � 0 in which case Vi � Z.s/, or si 6� 0
in which case LjVi Š OVi by what was proved above. In the second case,

si 2 H
0.Vi ; LjVi / D H

0.Vi ;OVi /

is given by a constant non-zero section (because Vi is projective and integral), which implies
that Vi \Z.s/ D ;. Since V is connected and Z.s/ ¤ V , we deduce that Z.s/ D ;. In other
words, s is a nowhere vanishing section of L, hence it defines an isomorphism L Š OV .

7. Proof of Theorem C for nodal curves

The aim of this section is to prove Theorem C from the introduction for nodal curves.
The key fact about fine compactified Jacobians of nodal curves that we are going to use is the
following result.

Proposition 7.1. LetX be a nodal curve and let q be a general polarization onX . Then
we have

(7.1) hi .JX .q/;OJX .q// D

 
pa.X/

i

!
for any 0 � i � pa.X/:

In particular, it holds

(7.2) h1.JX .q/;OJX .q// D pa.X/:
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Proof. We will adapt the proof of [2, Theorem 4.3], where the analogous result is
proved for stable quasiabelian varieties, i.e. special fibers of certain one parameter degen-
erations of abelian varieties constructed from Delaunay decompositions. However, only the
canonical polarized compactified Jacobian of degree g � 1 (see [1, Section 3], [15]) is a stable
quasiabelian variety and this special compactified Jacobian is far away from being a fine com-
pactified Jacobian (indeed, in some sense, it is the most degenerate compactified Jacobian).
Therefore, we will indicate why the proof of [2, Theorem 4.3] can be extended to the case of
fine compactified Jacobians of nodal curves.6)

With this aim, we have to recall some results of Oda–Seshadri [64] on the structure
of compactified Jacobians of nodal curves (see also [1, Section 2] and [53, Section 3.1]).
First of all, any fine compactified Jacobian of X is equivalent by translation in the sense of
[53, Definition 3.1] (hence isomorphic) to a fine compactified Jacobian JX .q/with total degree
equal to jqj D 1 � pa.X/; therefore, from now on we will restrict to general polarizations q
such that jqj D 1 � pa.X/. For any such polarization q, we can consider the new polarization
�.q/ defined by

�.q/Ci WD qCi
C

degCi .!X /
2

for any irreducible component Ci of X . Observe that j�.q/j D jqj C pa.X/ � 1 D 0. From
Remark 2.8 (iii) and [1, Formula (2) and Section 2.1] (see also the discussion in [55, Sec-
tions 2.5–2.6] and [16, Section 2.2]), it follows that JX .q/ is isomorphic to the Oda–Seshadri
compactified Jacobian Jac�.q/.X/.

Consider now the dual graph � D �X of the nodal curve X and let H1.�; A/ be the first
homology group of the graph � with coefficients in the commutative ring A (in the sequel, we
will consider A D Z or R). It is well known that H1.�; A/ Š Ar for some integer r which is
called the rank of � . The generalized Jacobian J.X/ of X is a semiabelian variety and it fits
into the extension (see [64, Proposition 10.2])

0! T ! J.X/! J.X�/! 0;

where T Š Gr
m is an r-dimensional torus whose character group is canonically isomorphic to

H1.�;Z/ Š Zr and J.X�/ is the Jacobian of the normalization X� of X .
To any polarization q onX as above, there is associated a locally finite arrangement Vq of

affine rational hyperplanes of the real vector space H1.�;R/ Š Rr , which cuts H1.�;R/ into
infinitely many rational polytopes giving rise to a (face-to-face) complex Cq of polytopes. An
explicit definition of the arrangement Vq (which we do not include here since it is not needed
for what follows) can be found in [53, Section 3.1]. From the definition of [53, Section 3.1], it
is clear that the complex Cq coincides with the Voronoi complex of polytopes Vor�.q/ defined
in [1, Section 2.6], which is dual to the Namikawa complex of polytopes Del�.q/ defined in
[64, Sections I.5–I.6]. The lattice Zr ŠH1.�;Z/�H1.�;R/ acts by translations onH1.�;R/
and preserves both the arrangement of hyperplanes Vq and the complex of polytopes Cq .

For any rational polytope � 2 Cq , let T� be the corresponding projective T -toric variety
and consider the variety

Z� WD T� �
T J.X/ D .T� � J.X//=T

which maps to the g�.X/-dimensional abelian variety J.X�/ with fibers isomorphic to T� .
6) Indeed, the same result is true, with the same proof, for any (non-necessarily fine) compactified Jacobians

in the sense of Oda–Seshadri [64].
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In [64, Theorem 13.2] (see also [1, Theorem 2.9]), it is shown that JX .q/ Š Jac�.q/.X/ is
obtained by choosing representatives ¹�1; : : : ; �nº for the maximal polytopes in Cq (which
correspond to the vertices of Del�.q/) modulo H1.�;Z/ and gluing the disjoint union

`
i Z�i

according to the identification of the faces of the �i ’s in the quotient complex Cq=H1.�;Z/.
An equivalent way to rephrase the above result of Oda–Seshadri is the following (see

[5, Section 6] for more details). The varieties ¹Z�º�2Cq glue together, according to the way
the polytopes fit together in the face-to-face complex Cq , and give rise to a locally finite
k-scheme �Pq . The action of the lattice H1.�;Z/ on Cq gives rise to an action of H1.�;Z/
on the scheme �Pq for which there exists a quotient �Pq=H1.�;Z/, which is indeed isomorphic
to the fine compactified Jacobian JX .q/ Š Jac�.q/.X/.

This realization of JX .q/ as a quotient �Pq=H1.�;Z/ has the same properties of
the realization of a stable quasiabelian variety P0 as a quotient �P0=Y , which is described
in [2, Theorem 3.17]. Therefore, by a direct inspection, the same proof of [2, Theorem 4.3] for
the computation of hi .P0;OP0/ applies to the computation of hi .JX .q/;OJX .q//: the crucial
property of Cq , which makes the proof of loc. cit. work also in our case, is that the geometric
realization jCq=H1.�;Z/j of the quotient complex Cq=H1.�;Z/ is homeomorphic to a real
torus of dimension r D dimT . This is clearly true also in our case, since

jCq=H1.�;Z/j Š jCqj=H1.�;Z/ Š H1.�;R/=H1.�;Z/ Š Rr=Zr ;

which concludes the proof.

We will now prove Theorem C from the introduction for fine compactified Jacobians
JX .q/ that satisfy condition (7.2), and in particular for all fine compactified Jacobians of nodal
curves by the above Proposition 7.1. Note that, a posteriori, it will follow from Corollary B
that every fine compactified Jacobian JX .q/ of any curve X with locally planar singularities
satisfies condition (7.2) (and even the stronger condition (7.1)). However, we do not know
a direct proof of this fact avoiding the use of the Fourier–Mukai transform.

The special case of Theorem C that we are going to prove will follow from a more gen-
eral result involving the semiuniversal deformation family of X . Let us fix the set-up. Consider
the semiuniversal deformation family � W X ! SpecRX for X as in Section 3.1. The gen-
eralized Jacobian J.X/ and the fine compactified Jacobian JX .q/ deform over SpecRX to,
respectively, the universal generalized Jacobian v W J.X/! SpecRX (see Fact 3.12) and the
universal fine compactified Jacobian u W JX.q/! SpecRX with respect to the polarization q
(see Theorem 3.10).

We are now going to define a universal Poincaré line bundle P un on the fiber product
JX.q/ �SpecRX J.X/, similarly to the definition (5.1). With that in mind, consider the triple
product X�SpecRX JX.q/�SpecRX J.X/ and, for any 1 � i < j � 3, denote by pij the projec-
tion onto the product of the i -th and j -th factors. Choose a universal sheafbI on X �SpecRX JX

(see Fact 3.5 (i)); denote bybI0 its restriction to X �SpecRX J.X/ and, by an abuse of notation,
bybI its restriction to X �SpecRX JX.q/. Then the universal Poincaré line bundle P un on the
fiber product JX.q/ �SpecRX J.X/ is defined by

(7.3) P un
WD Dp23.p

�
12
bI ˝ p�13bI0/�1 ˝Dp23.p

�
13
bI0/˝Dp23.p

�
12
bI/;

where Dp23 denotes the determinant of cohomology with respect to the morphism p23. Since
the determinant of cohomology commutes with base change, it follows that P un restricts to P

on the central fiber of JX.q/ �SpecRX J.X/! SpecRX .
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Assume now that X has locally planar singularities and that JX .q/ satisfies (7.2). In
analogy with the definition (5.3) of the map ˇq , the existence of a universal Poincaré line
bundle P un on the fiber product JX.q/ �SpecRX J.X/ defines a morphism

(7.4) ˇun
q W J.X/! Pico.JX.q//;

between two group schemes which are of finite type, smooth and separated over SpecRX (see
Fact 3.12 and Theorem 4.1 (iii)). Moreover, by construction, the fibers of J.X/! SpecRX
and of Pico.JX.q//! SpecRX are non-empty and geometrically connected. Therefore, using
that SpecRX is regular by Lemma 3.1 (ii), we get that the schemes J.X/ and Pico.JX.q//

are regular and connected, hence irreducible. Since P un restricts to P on the central fiber of
JX.q/ �SpecRX J.X/! SpecRX , it follows that the morphism ˇun

q restricts to the morphism
ˇq W J.X/! Pico.JX .q// on the central fiber. Using Proposition 5.2, we can easily show
that ˇun

q is a homomorphism of group schemes.

Proposition 7.2. The morphism ˇun
q is a homomorphism of group schemes.

Proof. Observe that, since the determinant of cohomology commutes with base change,
the pull-back of P un to the geometric fiber over any point s 2 SpecRX is equal to the Poincaré
line bundle Ps over JXs

.qs/ �
k.s/

J.Xs/. This implies that the pull-back .ˇun
q /s of the mor-

phism ˇun
q to the geometric fiber over s coincides with the morphism

ˇqs W J.Xs/! Pico.JXs
.qs//

of (5.3) for the curve Xs . Therefore, Proposition 5.2 gives that .ˇun
q /s is a homomorphism

of group schemes. We conclude that ˇun
q is a homomorphism of group schemes using the

lemma below.

Lemma 7.3. Let S be an integral scheme and let f W G1 ! G2 be an S -morphism
between two S -group schemes. Assume that G1 ! S is smooth and G2 ! S is separated.
If the base change fs W .G1/s ! .G2/s of f to the geometric fiber over the generic point
s 2 SpecS is a homomorphism of k.s/-group schemes, then f is a homomorphism of S -group
schemes.

Proof. The fact that f W G1 ! G2 is a homomorphism of S -group schemes amounts to
checking the following three equalities of S -morphisms:

(i) f ı 01 D 02 W S ! G2,

(ii) f ım1 D m2 ı .f � f / W G1 �S G1 ! G2,

(iii) i2 ı f D f ı i1 W G1 ! G2,

where 0j W S !Gj is the identity,mj WGj �SGj !Gj is the multiplication and ij W Gj ! Gj
is the inverse of the S -group scheme Gj (for j D 1; 2).

Using the diagonal � � G2 �S G2, we can reformulate the above equalities of mor-
phisms in terms of equalities of S -schemes as follows:

(a) .f ı 01; 02/�1.�/ D S ,

(b) .f ım1; m2 ı .f � f //�1.�/ D G1 �S G1,

(c) .i2 ı f; f ı i1/�1.�/ D G1,
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where in each case we take the scheme-theoretic inverse image. Observe that � � G2 �S G2
is closed since G2 ! S is separated, hence its scheme-theoretic inverse image in (a), (b) and
(c) is also a closed subscheme. Moreover, using that G1 ! S is smooth and S is integral by
assumption, the three schemes S , G1 �S G1 and G1, appearing in (a), (b) and (c), are integral
and smooth over S . Therefore, in order to check that we have equality of S -schemes in (a),
(b) and (c), it is enough to prove that we have equalities when we restrict to the fibers over
the generic point of S . Furthermore, since the fact that a morphism is an isomorphism can
be checked after a faithfully flat base change (by [33, (2.7.1)]), it is enough to prove that we
have equalities when we restrict to the geometric generic fiber over S . But this is equivalent to
saying that f induces a group scheme homomorphism on the geometric generic fibers, which
holds true by assumption.

The main result of this section is the following:

Theorem 7.4. LetX be a reduced curve with locally planar singularities and let JX .q/
be a fine compactified Jacobian of X having the property that h1.JX .q/;OJX .q// D pa.X/.
Then the group homomorphism

ˇun
q W J.X/! Pico.JX.q//

is an isomorphism.

Proof. Consider the open subset U � SpecRX consisting of all the points s such that
the geometric fiber Xs of the universal family � W X ! SpecRX over s is smooth or has
a unique singular point which is a node. By Lemma 3.1 (iii) (b), the complement of U inside
SpecRX has codimension at least two.

Claim 1. The restriction of ˇun
q to U

.ˇun
q /jU W J.X/jU ! Pico.JX.q//jU

is an isomorphism. In particular, ˇun
q is an isomorphism in codimension one.

Indeed, as the map Pico.JX.q//jU ! U is flat, using [35, (17.9.5)] it is enough to prove
that the restrictions of ˇun

q to the fibers over U are isomorphisms. Moreover, since the property
of being an isomorphism is invariant under faithfully flat base change (see [33, (2.7.1)]), it is
enough to prove that the restriction of ˇun

q to the geometric fibers

(7.5) .ˇun
q /s W J.X/s D J.Xs/! Pico.JX.q//s D Pico.JXs

.qs//

is an isomorphism for every s 2 U . By the definition of U , the geometric fibers Xs can be of
three types:

(i) Xs is smooth,

(ii) Xs is an irreducible curve having a unique singular point that is a node,

(iii) Xs has two smooth irreducible components X1
s and X2

s which meet in a separating node.

In cases (i) and (ii), the fact that the morphism .ˇun
q /s is an isomorphism is a particular case

of the main result of Esteves–Gagné–Kleiman in [23, (2.1)] (the case of a smooth curve is
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classical), who proved that the same conclusion is true for any integral curve with double
points singularities (in which case all the fine compactified Jacobian are isomorphic to J

0

X ). In
case (iii), using Theorem 2.12 (i), we get

JXs
.qs/ Š JX1

s
.q1/ � JX2

s
.q2/

for some general polarizations qi on Xi
s (for i D 1; 2). Diagram (5.18) in Section 5 translates

into the following commutative diagram:

Pico.JX1
s
.q1// � Pico.JX2

s
.q2//

p�1 .�/˝p
�
2 .�/

**

J.X1
s / � J.X

2
s /

ˇ
q1
�ˇ
q2

55

Pico.JX1
s
.q1/ � JX2

s
.q2//

Š

��

J.Xs/

Š

OO

ˇqs
// Pico.JXs

.qs//.

The maps ˇq1 and ˇq2 are isomorphism since X1
s and X2

s are smooth curves (as in case (i));
hence the fact that ˇqs is an isomorphism follows from the previous diagram together with
the fact that p�1 .�/˝ p

�
2 .�/ is an isomorphism by [48, Corollary 4.7] (using the fact that

Pico.JXi
s
.qi // is smooth for i D 1; 2).

Claim 2. The map ˇun
q is an open embedding.

Indeed, since ˇun
q is a birational map between two integral schemes which is an iso-

morphism in codimension one (by Claim 1) and the codomain is normal and locally factorial
(being regular), we deduce that ˇun

q is a local isomorphism by Van der Waerden’s theorem
on the purity of the ramification locus (see [35, (21.12.12)]). In particular, ˇun

q is quasi-finite.
Moreover, since ˇun

q is birational (by Claim 1) and separated (which follows from the fact
that J.X/! SpecRX is separated, see [37, Chapter II, Corollary 4.6 (e)]) and the codomain
is normal (being regular), we deduce that ˇun

q is an open embedding by Zariski’s main theorem
(see [31, (4.4.9)]), which proves the claim.

We can now easily conclude the proof of the theorem. Indeed, for any s 2 SpecRX , the
restriction .ˇun

q /s of (7.5) is a group homomorphism between two connected and smooth alge-
braic groups over k.s/ of the same dimension, pa.X/, which is moreover an open embedding
by Claim 2. This forces .ˇun

q /s to be surjective (see e.g. [12, Section 7.3, Lemma 1]), hence
an isomorphism. Since the map Pico.JX.q//! SpecRX is flat, using again [35, (17.9.5)], it
follows that ˇun

q is an isomorphism.

Corollary 7.5. LetX be a reduced curve with locally planar singularities and let JX .q/
be a fine compactified Jacobian of X having the property that h1.JX .q/;OJX .q// D pa.X/.
Then the group homomorphism

ˇq W J.X/! Pico.JX .q//

is an isomorphism.

Proof. This follows directly from Theorem 7.4 by restricting to the central fiber.
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8. Proof of Theorem A, Corollary B and Theorem C

The aim of this section is to prove the first three results that were stated in the introduc-
tion, namely Theorem A, Corollary B and Theorem C.

A key role will be played by the semiuniversal deformation family � W X ! SpecRX
for X as in Section 3.1. More precisely, we will be looking at the Cartesian diagram

(8.1) JX.q/ �SpecRX J.X/

�u
ww

�v
''

J.X/

v

''

� JX.q/

u

vv

��gg

SpecRX ,�

OO

where the map v W J.X/! SpecRX is the universal generalized Jacobian (see Fact 3.12),
the map u W JX.q/! SpecRX is the universal fine compactified Jacobian with respect to the
polarization q (see Theorem 3.10), � is the zero section of v and�� WD id � �. Let P un be the
universal Poincaré line bundle on JX.q/ �SpecRX J.X/ as defined in (7.3), which restricts
to P on the central fiber JX .q/ � J.X/.

Assuming thatX has locally planar singularities and setting g WD pa.X/, the morphisms
appearing in the above diagram satisfy the following properties: the morphism v (hence also�v)
is smooth of relative dimension g (see Fact 3.5 (i)); the morphism u (and hence also �u) is
projective, flat of relative dimension g with trivial relative dualizing sheaf and geometrically
connected fibers (see Theorems 2.11 and 3.11). Moreover, all the schemes appearing in diagram
(8.1) are regular: SpecRX is regular by Lemma 3.1 (ii); JX.q/ is regular by Theorem 3.11;
J.X/ (resp. JX.q/ �SpecRX J.X/) is regular because the morphism v (resp.�v) is smooth over
a regular codomain (see [35, (17.5.8)]).

The following result is a generalization of a well-known result of Mumford for abelian
varieties (see [60, Section III.13]) and it is the key for the proof of our main theorems.

Theorem 8.1. Let X be a reduced curve with locally planar singularities of arithmetic
genus g WD pa.X/ and let q be a general polarization. There is a natural quasi-isomorphism
of complexes of coherent sheaves on J.X/:

(8.2) ˆ W R�u�.P un/
Š
�! ��.OSpecRX /Œ�g�:

In particular, we get

(8.3) Rp2�P D k.0/Œ�g�;

where k.0/ denotes the skyscraper sheaf supported at the origin 0 D ŒOX � 2 J.X/, and

p2 W JX .q/ � J.X/! J.X/

is the projection onto the second factor.

Proof. Clearly, the last assertion follows from the first one by base change to the central
fiber of v W J.X/! SpecRX ; hence it is enough to prove (8.2).
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We will first explain how the morphism ˆ is defined. By applying base change (see e.g.
[9, Proposition A.85]) to the diagram (8.1) and using that u is flat, we get a natural isomorphism

(8.4) L��.R�u�.P un//
Š
�! Ru�.L���.P un//:

Consider now the right-hand side of (8.4). Since P un is a line bundle, we have

L���.P un/ D���.P un/:

From the definition (7.3), using the functoriality of the determinant of cohomology and the fact
that .id ���/�.p�13bI0/ D OX�JX.q/ by the definition of��, we deduce that

���.P un/ D OJX.q/:

Using this, we get an identification

(8.5) Ru�.L���.P un// D Ru�.���.P un// D Ru�.OJX.q/
/:

Since the complex of sheaves Ru�.OJX.q// is concentrated in cohomological degrees from 0

to g, we get a morphism of complexes of sheaves

(8.6) Ru�.OJX.q//! Rgu�.OJX.q//Œ�g�:

Moreover, since the morphism u is projective of relative dimension g, with trivial relative
dualizing sheaf and geometrically connected fibers, then the relative duality applied to u gives
that (see [36, Chapter III, Corollary 11.2 (g)]) :

(8.7) Rgu�.OJX.q// Š OSpecRX :

Putting together (8.4), (8.5), (8.6) and (8.7), we get a morphism

(8.8) ‰ W L��.R�u�.P un//! OSpecRX Œ�g�:

Since L�� is left adjoint to R�� (see [41, p. 83]) and R��OSpecRX Š ��OSpecRX because � is
a closed embedding (hence �� is an exact functor), the morphism ‰ gives rise to the morphism
ˆ by adjunction.

The remaining part of the proof will be devoted to showing that the morphism ˆ is
a quasi-isomorphism of complexes of sheaves. We need some preliminary results that we col-
lect under the name of claims. The first result says that ˆ is generically a quasi-isomorphism.
More precisely, let .SpecRX /sm be the open subset of SpecRX consisting of the points s in
SpecRX such that Xs is smooth. Then we have:

Claim 1. The morphismˆ is a quasi-isomorphism over the open set v�1..SpecRX /sm/.

Indeed, A WD v�1..SpecRX /sm/ is an abelian group scheme over B WD .SpecRX /sm via
the map v. Therefore, it follows from [59, Proof of Theorem 1.1] (which generalizes the clas-
sical result of Mumford [60, Section III.13] for abelian varieties over a field), that we have
quasi-isomorphisms

(8.9) R�u�.P un/jA Š R
g�u�.P un/Œ�g�jA Š ��.�

�!A=B/Œ�g�:
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However, since RX is a power series ring, it follows that the line bundle ��.!A=B/ is trivial on
B D .SpecRX /sm. By comparing the construction of the quasi-isomorphism (8.9) in [59, Proof
of Theorem 1.1] and our definition of the morphism ˆ, one can easily check that the quasi-iso-
morphism defined in equation (8.9) coincides with the restriction ˆjA of ˆ to the open subset
A D v�1..SpecRX /sm/, up to possibly multiplying by the pull-back of an invertible function
on B (depending on the choice of a trivialization of ��.!A=B/ on B). Therefore, we conclude
that ˆjA is a quasi-isomorphism.

Claim 2. We have codim.supp.R�u�P un// D g.

First of all, Claim 1 gives that codim.supp.R�u�P un// � g. In order to prove the reverse
inequality, we stratify the scheme SpecRX into locally closed subsets (see Lemma 3.2) accord-
ing to the geometric genus of the fibers of the universal family X ! SpecRX :

.SpecRX /g
�Dl
WD ¹s 2 SpecRX W g�.Xs/ D lº

for any g�.X/ � l � pa.X/ D g. Corollary 3.4 gives that codim.SpecRX /g
�Dl � g � l . On

the other hand, on the fibers of v over .SpecRX /g
�Dl , the sheaf R�u�P un has support of codi-

mension at least l by Corollary 6.3. Therefore, we get

(8.10) codim.supp.R�u�P un/ \ v�1..SpecRX /g
�Dl// � g for any g�.X/ � l � g:

Since the locally closed subsets .SpecRX /g
�Dl form a stratification of SpecRX , we deduce

that g � codim.supp.R�u�P un//, which concludes the proof of Claim 2.

Claim 3. The complex R�u�.P un/ is supported in cohomological degree g, i.e.

R�u�.P un/Œg� Š Rg�u�.P un/:

We apply the relative duality (see e.g. [36, Section VII.3]) to the projective morphism�u.
Since�u is flat of relative dimension g and it has trivial relative dualizing sheaf, we get a quasi-
isomorphism

(8.11) RHom.R�u�.P un/�1;OJ.X// Š R�u�P unŒg�;

where .P un/�1 is the inverse of P un, i.e. .P un/�1 WD Hom.P un;OJX.q/�SpecRX J.X/
/. The

left-hand side of (8.11) can be computed using the following spectral sequence (see [41, Chap-
ter 3, formula (3.8)]):

(8.12) E
p;q
2 D Extp.R�q�u�.P un/�1;OJ.X//) ExtpCq.R�u�.P un/�1;OJ.X//;

where clearly Ep;q2 D 0 unless 0 � �q � g and p � 0. If we denote by i the involution of the
group scheme v W J.X/! SpecRX that sends M 2 J.X/ into M�1 2 J.X/, then Proposi-
tion 7.2 gives that .P un/�1 D .id � i/�.P un/; hence

(8.13) R�u�.P un/�1 D i�.R�u�P un/:

In particular, the complex R�u�.P un/�1 has codimension g by Claim 2. This implies that for
any 0 � �q � g, the sheaf R�q�u�.P un/�1 has codimension at least g; hence, since the dual-
izing sheaf of J.X/ is trivial, we get that (see [42, Proposition 1.1.6]):

(8.14) E
p;q
2 D Extp.R�q�u�.P un/�1;OJ.X// D 0 for every p < g and every q:
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Using the spectral sequence (8.12) and the vanishing (8.14), it is easily seen that the complex on
the left-hand side of (8.11) can have non-vanishing cohomology only in non-negative degrees.
On the other hand, since �u has fibers of dimension g, the complex on the right-hand side of
(8.11) can have non-vanishing cohomology only in degrees belonging to the interval Œ�g; 0�.
Putting together these two results, we deduce that the two complexes in (8.11) must be sup-
ported in cohomological degree 0, which concludes the proof of Claim 3.

Claim 4. The sheaf Rg�u�.P un/ is a Cohen–Macaulay sheaf of codimension g.

Indeed, consider the complex R�u�.P un/�1, which is also supported in cohomological
degree g by (8.13) and Claim 3, i.e. R�u�.P un/�1 Š Rg�u�.P un/�1Œ�g�. Substituting into
(8.11) and using again Claim 3, we get

Extp.Rg�u�.P un/�1;OJ.X// D

´
Rg�u�.P un/ if p D g;

0 if p ¤ g:

Therefore Rg�u�.P un/�1 is Cohen–Macaulay of codimension g by [14, Corollary 3.5.11].
Using (8.13), we get that also Rg�u�.P un/ is Cohen–Macaulay of codimension g.

Claim 5. We have a set-theoretic equality supp.Rg�u�.P un// D Im.�/.

Observe that the pull-back supp.Rg�u�.P un//jJ.Xs/ of supp.Rg�u�.P un// to the geomet-
ric fiber J.Xs/ of v over s 2 SpecRX is equal to the locus of all elements M 2 J.Xs/ such
that Hg.JXs

.qs/;P s
M / ¤ 0, where we have set

P s
M WD .P

un/
jJXs

.qs/�¹M º:

Since JXs
.qs/ has trivial dualizing sheaf by Theorem 2.11 (iv), Serre’s duality gives that

Hg.JXs
.qs/;P s

M / Š H
0.JXs

.qs/; .P s
M /
�1/_ D H 0.JXs

.qs/;P s
M�1

/_:

Applying now Proposition 6.4, whose hypothesis are satisfied by Lemma 3.1 (iii) (a), we get
the set-theoretic equality

(8.15) supp.Rg�u�.P un//jJ.Xs/ D ¹M 2 J.Xs/ W P
s
M�1

Š OJXs
.qs/º

for every s 2 SpecRX . Moreover, combining (8.15) with Corollary 7.5 and Proposition 7.1,
we get

(8.16) supp.Rg�u�.P un//jJ.Xs/ D ¹OXs
º

for every s 2 SpecRX such that Xs is nodal. The above formula (8.16) allows us to improve
estimate (8.10) on the codimension of the intersection of supp.Rg�u�.P un// with the locally
closed subset v�1..SpecRX /g

�Dl//. Indeed, by looking at the proof of (8.10), we see that we
can have an equality in (8.10) for some l such that g�.X/ � l � g only if:

� the image of supp.Rg�u�.P un// via the morphism v contains a generic point � of
.SpecRX /g

�Dl of codimension g � l in SpecRX ,

� the codimension of supp.Rg�u�.P un// \ v�1.�/ in J.X�/ is equal to l .
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However, since a generic point � of the stratum .SpecRX /g
�Dl of SpecRX is such that X�

is nodal by Theorem 3.3 (ii), formula (8.16) tells us that equality in (8.10) is only possible for
l D g; in other words we have

(8.17) codim.supp.R�u�P un/ \ v�1..SpecRX /g
�Dl// � g C 1

for any g�.X/ � l < g. After these preliminaries, we can now finish the proof of Claim 5.
Since Rg�u�.P un/ is a Cohen–Macaulay sheaf of codimension g by Claim 4, then all the irre-
ducible components of supp.Rg�u�.P un// have codimension g by [51, Theorem 6.5 (iii), The-
orem 17.3 (i)]. Let Z be an irreducible component of supp.Rg�u�.P un//. Using (8.17) and the
fact that Z has codimension g, we get that v.Z/ must contain the generic point � of SpecRX .
Then Claim 1 implies that necessarily we must have Z D Im.�/.

Claim 6. We have a scheme-theoretic equality supp.Rg�u�.P un// D Im.�/.

Since the subscheme Im.�/ is reduced, we get from Claim 5 the inclusion of subschemes
Im.�/ � supp.Rg�u�.P un//. Moreover, Claim 1 says that this inclusion is generically an equal-
ity; in particular, supp.Rg�u�.P un// is generically reduced. Furthermore, since Rg�u�.P un/ is
a Cohen–Macaulay sheaf by Claim 2, Lemma 8.2 below implies that supp.Rg�u�.P un// is
reduced. Therefore, we must have the equality of subschemes supp.Rg�u�.P un// D Im.�/.

We can now finish the proof of the fact that ˆ is a quasi-isomorphism. Observe that by
Claim 1, the shifted morphism ˆŒg� can be regarded as a morphism of sheaves

ˆŒg� W Rg�u�.P un/! ��.OSpecRX /:

Moreover, using Claim 6, we get that ˆ is a quasi-isomorphism if and only if ��ˆŒg� is an
isomorphism. By the definition of ˆ and using Claim 3, the shifted pull-back

(8.18) ��ˆŒg� W ��Rg�u�.P un/! ����.OSpecRX / D OSpecRX

coincides, up to the shift, with the morphism Hg.‰/ induced by the morphism ‰ of (8.8). By
tracing back the definition of the morphism‰, we get that ��ˆŒg� is the composition of the top
degree base change morphism

(8.19) ��Rg�u�.P un/! Rgu�.���.P un// D Rgu�.OJX.q/
/

with the isomorphism (8.7). However, since u has fibers of dimension g, the top degree base
change (8.19) is a quasi-isomorphism, hence we are done.

Lemma 8.2. Let Y be a Noetherian scheme and F a coherent sheaf on Y . Assume
that F is Cohen–Macaulay and that the scheme-theoretic support supp.F / of F is generically
reduced. Then supp.F / is reduced.

Proof. The statement is clearly local; hence we may assume that Y D SpecR with R
a Noetherian ring and that F is equal to the sheafification of a finitely generated module M
over R. Therefore, supp.F / is the closed subscheme V.ann.M// of SpecR defined by the
annihilator ideal ann.M/ ofM . Consider the set Ass.M/ WD ¹P1; : : : ; Prº of associated primes
of M . Since M is a Cohen–Macaulay module, it follows that all its associated primes are
minimal by [51, Theorem 17.3 (i)]; therefore ¹P1; : : : ; Prº are exactly the associated minimal
primes of R=ann.M/ by [51, Theorem 6.5 (iii)].
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Consider now a finite set of generators ¹m1; : : : ; msº of the R-module M . Clearly, we
have

(8.20) ann.M/ D

s\
iD1

ann.mi /;

where ann.mi / is the annihilator ideal of the element mi 2M .
Since we have an inclusion R=ann.mi / ,!M of R-modules obtained by sending the

class of 1 to mi , the set of associated primes of R=ann.mi / is a subset of Ass.M/; say
Ass.R=ann.mi // D ¹Pj W j 2 Aiº for some Ai � ¹1; : : : ; rº. In particular, R=ann.mi / does
not have embedded primes. Moreover, since V.ann.mi // � V.ann.M// and V.ann.M// is
generically reduced along the subvarieties V.Pi / by hypothesis, it follows that V.ann.mi // is
also generically reduced. This implies that V.ann.mi // is reduced, or in other words that

(8.21) ann.mi / D
\
j2Ai

Pj :

Combining (8.20) and (8.21), together with the fact that ¹P1; : : : ; Prº � Ass.R=ann.M//, we
get

ann.M/ D

r\
iD1

Pi ;

which shows that V.ann.M// is a reduced subscheme of SpecR.

Formula (8.3) established in Theorem 8.1 allows us to prove Theorem A from the intro-
duction, following the original approach of Mukai [58, Theorem 2.2].

Proof of Theorem A. We have to show that the integral transform, with kernel the
Poincaré line bundle P on JX .q/ � J.X/,

ˆP

J.X/!JX .q/
D ˆP

W Db.J.X//! Db.JX .q//;

E� 7! Rp1�.p
�
2 .E

�/˝P /;

is fully faithful.
Since JX .q/ is a projective variety of dimension g WD pa.X/with trivial dualizing sheaf,

the functor ˆP admits as a left adjoint the following integral transform (see [39, Proposi-
tion 1.17])

ˆ
P�1Œg�

JX .q/!J.X/
D ˆP�1Œg�

W Db.JX .q//! Db.J.X//;

E� 7! Rp2�.p
�
1 .E

�/˝P�1Œg�/:

In order to show thatˆP is fully faithful, it is sufficient (and necessary, see e.g. [74, Tag07RB])
to show that the composition ˆP�1Œg� ıˆP is an isomorphism.

By the standard convolution formula (see e.g. [58, Proposition 1.3]), the composition
ˆP�1Œg� ıˆP is the integral functor ˆM

J.X/!J.X/
WD ˆM with kernel given by

M WD Rp13�.p
�
12.P /˝ p

�
23.P

�1Œg�//;
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where pij are the obvious projections from J.X/�JX .q/�J.X/. Consider now the Cartesian
diagram

(8.22) J.X/ � JX .q/ � J.X/

p13

��

�n //

�

JX .q/ � J.X/

p2

��

J.X/ � J.X/
n // J.X/;

where n is the morphism sending .M;N / 2 J.X/ � J.X/ intoM ˝N�1 2 J.X/ and�n sends
.M; I;N / 2 J.X/�JX .q/�J.X/ into .I;M ˝N�1/ 2 JX .q/�J.X/. By Proposition 5.2,
it follows that�

p�12.P /˝ p
�
23.P

�1/
�
¹M º�JX .q/�¹N º

D PM ˝ .PN /
�1
D PM˝N�1

for any M;N 2 J.X/. Therefore, by the see-saw principle, we get

p�12.P /˝ p
�
23.P

�1/ D�n�.P /˝ p�13.L/
for some line bundle L on J.X/ � J.X/. Now, applying the base change formula to dia-
gram (8.22) (using that n is flat morphism), formula (8.3) and the projection formula, we obtain
that

M D Rp13�.p
�
12.P /˝ p

�
23.P

�1Œg�// Š n�.Rp2�.P Œg�//˝ L

Š n�.k.0//˝ L D O� ˝ L D Lj�;

where � is the diagonal of J.X/ � J.X/. This show that the integral functor ˆM is equal to
the tensor product with the line bundle Lj� on � Š J.X/, hence an isomorphism.

Corollary B follows now quite easily from Theorem 8.1 and Theorem A.

Proof of Corollary B. LetM 2 J.X/. IfM ¤ ŒOX �, the vanishing ofH i .JX .q/;PM /

for any i follows from (8.3).
If M D ŒOX � D 0 is the identity element of J.X/, we obviously have PM D OJX .q/.

Observe that, from the definition of ˆP , it follows that

ˆP .k.0// D Rp1�.p�2 .k.0//˝P / D Rp1�.PjJX .q/�¹0º/ D POX D OJX .q/;

where k.0/ denotes the structure sheaf of the point 0 2 J.X/. Using the fully faithfulness of
the integral transform ˆP (see Theorem A), we get

H i .JX .q/;OJX .q// D Exti
JX .q/

.OJX .q/;OJX .q//

D Exti
JX .q/

.ˆP .k.0//; ˆP .k.0///

D ExtiJ.X/.k.0/;k.0//:

Now we conclude the proof using the well-known facts that Exti
J.X/

.k.0/;k.0// is equal to
ƒiExt1

J.X/
.k.0/;k.0// (using the Koszul resolution, see e.g. the proof of [60, Corollary 2,

p. 129]) and that Ext1
J.X/

.k.0/;k.0// is canonically isomorphic to the tangent space of J.X/
at 0, which is isomorphic to H 1.X;OX / (see e.g. [12, Section 8.4]).
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We can now prove that autoduality holds for fine compactified Jacobians.

Proof of Theorem C. Theorem C follows from Corollary 7.5, whose hypothesis is satis-
fied by Corollary B.

9. Proof of Theorem D

The aim of this section is to prove Theorem D from the introduction. We will first prove
the result for fine compactified Jacobians of curves that admit an Abel map, in the sense of
Section 2.3, and under the assumption that the underlying curve does not have separating nodes.

Theorem 9.1. Let X be a reduced curve with locally planar singularities and without
separating nodes. Let q be a general polarization on X such that the associated fine com-
pactified Jacobian JX .q/ admits an Abel map, i.e. there exists L 2 PicjqjCpa.X/.X/ such that
ImAL � JX .q/. Then the universal fine compactified Jacobian JX.q/ with respect to the
polarization q (as in Section 3.2) satisfies

Pico.JX.q// D Pic� .JX.q//:

In particular, by restricting to the central fiber, we get Pico.JX .q// D Pic� .JX .q//.

Proof. Since X does not have separating nodes by assumption, it follows that the Abel
map AL W X ! JX sends a point p into mp ˝ L, where mp is the ideal sheaf of p 2 X (see
Theorem 2.12 (ii)). In other words, if I� denotes the ideal sheaf of the diagonal � � X �X
and pi is the projection of X �X onto the i -th factor, then the map AL is induced by the sheaf
I� ˝ p

�
1 .L/ on X �X , seen as a flat family of simple torsion-free rank-1 sheaves on X via

the projection p2 (see e.g. [4, Lemma (8.7)]).
We will now extend the Abel map AL to a relative Abel map over SpecRX . First of all,

the line bundle L on X can be extended to a line bundle L on the family X. Indeed, since
an obstruction space for the functor of deformations of L is H 2.X;L˝ L_/ D H 2.X;OX /

(see e.g. [26, Theorem 8.5.3 (b)]) and since this latter group is zero because X is a curve,
we get that L can be extended to a line bundle L on the formal semiuniversal deformation
X ! SpfRX of X . However, by Grothendieck’s algebraization theorem for coherent sheaves
(see [26, Theorem 8.4.2]), the line bundle L is the completion of a line bundle L on the effec-
tive semiuniversal deformation family � W X ! SpecRX ofX . By construction, the restriction
of L to the central fiber of � is isomorphic to the line bundle L on X .

Consider now the sheaf I�un ˝ p�1 .L/ on X �SpecRX X, where I�un denotes the ideal
sheaf of the diagonal �un � X �SpecRX X and pi is the projection of X �SpecRX X onto the
i -th factor. Via the projection p2, we can regard I�un ˝ p�1 .L/ as a flat family of torsion-free
rank-1 sheaves (see e.g. [4, Lemma (8.7)]). Moreover, since the geometric fibers of p2 do not
have separating nodes by Corollary 3.8 above, the pull-back of I�un ˝ p�1 .L/ to the geometric
fibers of p2 is simple (see e.g. [22, Example 38]). It follows that I�un ˝ p�1 .L/ is a flat family
of simple torsion-free rank-1 sheaves via the projection p2; hence it defines a relative Abel map
over SpecRX

AL W X ! JX ;
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which, by construction, restricts on each geometric fiber over s 2 SpecRX to the Abel map
ALs W Xs ! JXs

associated to Ls WD LjXs
. In particular, the restriction of AL to the closed

point ŒmX � 2 SpecRX is equal to the Abel map AL. Since AL takes values in JX .q/ by hypo-
thesis and JX.q/ is open in JX , the map AL takes values in JX.q/, or in other words we get
a relative Abel map

AL W X ! JX.q/:

The pull-back morphism A�
L
W Pic.JX.q//! Pic.X/ D JX between the two relative

Picard schemes (whose existence is guaranteed by Fact 3.5 (i) and Theorem 4.1 (i)) clearly
sends Pico.JX.q//, which exists by Theorem 4.1 (iii) and Corollary B, into the universal gen-
eralized Jacobian J.X/ D Pico.X/ of X, which exists by Fact 3.12. We denote by

A
�;o
L
W Pico.JX.q//! J.X/

the induced homomorphism of group schemes. Consider now the composition

A
�;o
L
ı ˇun

q W J.X/! J.X/;

where ˇun
q W J.X/! Pico.JX.q// is defined in (7.4). Proposition 5.6 implies that A�;o

L
ı ˇun

q

is an isomorphism on each geometric fiber of J.X/! SpecRX ; hence, the same is true on
each fiber since the property of being an isomorphism is invariant under faithfully flat base
change (see [33, (2.7.1)]). Since the morphism J.X/! SpecRX is flat (see Fact 3.12), we
deduce that A�;o

L
ı ˇun

q is an isomorphism by [35, (17.9.5)], or in other words that A�;o
L

is a left
inverse of ˇun

q . Since ˇun
q is an isomorphism by Theorem 7.4 and Corollary B, we get that

A
�;o
L
W Pico.JX.q//! J.X/

is an isomorphism of group schemes.
The pull-back morphism A�

L
also sends Pic� .JX.q//, which exists by Theorem 4.1 (ii),

into the generalized Jacobian J.X/ of X since it is well known that for the family of curves
� W X ! SpecRX we have that Pic� .X/ D Pico.X/ D J.X/ (see e.g. [26, Example 9.6.21]).
Therefore, we get that the induced homomorphismA

�;�
L
W Pic� .JX.q//! J.X/ is a surjective

homomorphism of SpecRX -group schemes.
Summing up this discussion, we get the following diagram of homomorphisms of group

schemes over SpecRX :

(9.1) Pic� .JX.q//

A
�;�
L

)) ))

J.X/ D Pic� .X/ D Pico.X/

Pico.JX.q//,
A
�;o
L

Š

55

?�

i

OO

where i is an open embedding between two smooth group schemes over SpecRX (as it follows
from Theorem 4.1 and Corollary B).

Consider now the open subset U � SpecRX (introduced in Lemma 3.1 (iii) (b)) consist-
ing of all the points s such that the geometric fiber Xs of the universal family � WX! SpecRX
over s is smooth or has a unique singular point that is a node. By Lemma 3.1 (iii) (b), the com-
plement of U inside SpecRX has codimension at least two.
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Claim 1. The restriction of A�;�
L

to U

.A
�;�
L
/jU W Pic� .JX.q//jU ! J.X/jU

is an isomorphism. In particular, A�;�
L

is an isomorphism in codimension one.

Indeed, using the above diagram (9.1), it is enough to prove that the open embedding i is
an isomorphism over U or, in other words, that

(9.2) Pico.JXs
.qs// D Pic� .JXs

.qs// for any s 2 U:

By the definition of U and Corollary 3.8, the fiber Xs over a point s 2 U can be of two types:

(i) Xs is smooth,

(ii) Xs is an irreducible curve having a unique singular point that is a node.

In case (i), JXs
.qs/ is an abelian variety and equality (9.2) is proved for abelian varieties by

Mumford in [60, Corollary 2, p. 178]. In case (ii), equality (9.2) is due to Esteves–Gagné–
Kleiman [23, Theorem 2.1], where the same result is proved for integral curves with at worst
double points.

Claim 2. The map A�;�
L

is an isomorphism.

Indeed, observe that J.X/ is integral and regular by Fact 3.12 while Pic� .JX.q// is
integral and separated over SpecRX by Theorem 4.1. Therefore, the same argument used in
Claim 2 of the proof of Theorem 7.4 gives that A�;�

L
is an open embedding. Since we know that

A
�;�
L

is surjective, we deduce that A�;�
L

is an isomorphism, which proves the claim.
From diagram (9.1) and Claim 2, we deduce that the open embedding i must be an

equality.

In order to prove the general case of Theorem D, we will use the following result, which
allows us to compare two different universal fine compactified Jacobians of X over the open
subset U � SpecRX considered in Lemma 3.1 (iii) (b). We state and prove it only under the
additional assumption that X does not have separating nodes, because this is enough for our
purposes and this assumption simplifies the proof. However, the result still holds for curves
with separating nodes.

Lemma 9.2. Let q and q0 be two general polarizations on a curveX with locally planar
singularities and without separating nodes. Let U be the open subset of SpecRX consist-
ing of those points s 2 SpecRX such that Xs has at most a unique singular point that is a
node (as in Lemma 3.1 (iii) (b)). Consider the induced universal fine compactified Jacobians
u W JX.q/! SpecRX and u0 W JX.q

0/! SpecRX (as in Theorem 3.10), and set

JX.q/jU WD u
�1.U / and JX.q

0/jU WD .u
0/�1.U /:

Then there exists a line bundle L on X such that the multiplication by L induces an isomor-
phism of schemes over U :

�˝L W JX.q/jU
Š
�! JX.q

0/jU :

Proof. Choose a line bundle L on X of degree degL D jq0j � jqj. As in the proof of
Theorem 9.1, we can find a line bundle L on the total space X of the effective semiuniversal
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deformation � W X ! SpecRX such that the restriction of L to the central fiber X of � is
isomorphic to L. Clearly, the multiplication by L induces an isomorphism

�˝L W JX
Š
�! JX ;

the inverse being given by the multiplication by L�1. Since any universal fine compactified
Jacobian is an open subscheme of JX , in order to conclude the proof it is enough to prove that
for any s 2 U ,

(9.3) .�˝Ls/.JXs
.qs// D JXs

.q0s/;

where Ls denotes the restriction of L to the geometric fiber Xs and JXs
.qs/ (resp. JXs

.q0s/)
is the geometric fiber of JX.q/ (resp. JX.q

0/) over s (see Theorem 3.10).
By the definition of U and Corollary 3.8, if s 2 U , then Xs is irreducible (either smooth

or with a unique node). Therefore, JXs
.q/ (resp. JXs

.q0/) parametrizes all torsion-free, rank-1
sheaves on X of Euler characteristic jqj (resp. jq0j). Hence (9.3) follows from the fact that
deg Ls D degL D jq0j � jqj.

We now prove the general case of Theorem D.

Proof of Theorem D. First of all, we make the following

Reduction. It is enough to prove Theorem D for a curve X without separating nodes.

Indeed, let X be an arbitrary curve with locally planar singularities and let Y1; : : : ; Yr
be the separating blocks of X as in Section 2.3. By Theorem 2.12 (i), every fine compactified
Jacobian of X is isomorphic to

JX .q/ Š

rY
iD1

J Yi .q
i /;

for some fine compactified Jacobians J Yi .q
i / of Yi . Note that Pic� .JX .q// and Pic� .J Yi .q

i //

are smooth by Theorem 4.1 (iii) and Corollary B; and similarly for Pico. Therefore, we can
apply a result of Langer ([48, Corollary 4.7]) which says that8̂̂̂̂

<̂̂
ˆ̂̂̂:

Pic� .JX .q// Š
rY
iD1

Pic� .J Yi .q
i //;

Pico.JX .q// Š
rY
iD1

Pico.J Yi .q
i //:

Moreover, since the above isomorphisms are obtained in [48, Corollary 4.7] via the natural
box product maps, the inclusion Pico.JX .q// ,! Pic� .JX .q// is given by the product of the
inclusions Pico.J Yi .q

i // ,! Pic� .J Yi .q
i // on each single factor. Therefore, if we prove The-

orem D for the curves Yi (that do not have separating nodes), Theorem D will follow also
for X .

From now on, we assume that X does not have separating nodes. Consider an arbitrary
fine compactified Jacobian JX .q/ ofX . As Pico.JX .q// is an open subscheme of Pic� .JX .q//
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and they are both of finite type over an algebraically closed field k, in order to prove that they
are equal, it is sufficient (and necessary) to prove that they have the same k-points, i.e. that

(9.4) Pico.JX .q//.k/ D Pic� .JX .q//.k/:

Consider now the schemes Pico.JX.q// and Pic� .JX.q//, which are smooth over SpecRX
by Theorem 4.1 and Corollary B. Since S WD SpecRX is henselian (because RX is a com-
plete ring), it follows that the canonical reduction maps Pico.JX.q//.S/! Pico.JX .q//.k/
and Pic� .JX.q//.S/! Pic� .JX .q//.k/ from the set of S -valued points to the set of k-valued
points are surjective by [12, Section 2.3, Proposition 5]. Therefore, in order to show equal-
ity (9.4), it is enough to show that

(9.5) Pico.JX.q//.S/ D Pic� .JX.q//.S/:

Observe that we have the following natural inclusions:

(9.6) Pico.JX.q//.S/ � Pic� .JX.q//.S/ � Pic.JX.q//.S/:

Note that Pic.S/ D Pic.SpecRX / D 0 because RX is a power series ring. Also the mor-
phism u W JX.q/! S admits a section passing through its smooth locus (see Theorem 3.11)
JX.q/! S by [12, Section 2.3, Proposition 5]. Thus, by [12, Section 8.1, Proposition 4], we
have a natural identification

(9.7) Pic.JX.q//
Š
�! Pic.JX.q//.S/;

where, as usual (see Section 1.9), Pic.JX.q// denotes the group of line bundles on JX.q/.
Consider now the open subscheme JX.q/jU WD u

�1.U / � JX.q/, where U is the open
subset of SpecRX consisting of those points s 2 SpecRX such that Xs has at most a unique
singular point that is a node (as in Lemma 3.1 (iii) (b)). The complement of JX.q/jU inside
JX.q/ has codimension at least two by Lemma 3.1 (iii) (b). Since JX.q/ is a regular, irredu-
cible and separated scheme by Theorem 3.11, we can apply [37, Chapter II, Proposition 6.5,
Corollary 6.16] in order to conclude that the natural restriction map induces an isomorphism

(9.8) Pic.JX.q//
Š
�! Pic.JX.q/jU /:

Moreover, the same argument used to prove (9.7) (noticing that Pic.U / D Pic.S/ D 0) gives
that

(9.9) Pic.JX.q/jU /
Š
�! Pic.JX.q/jU /.U /:

By combining (9.7), (9.8) and (9.9), we get that the following natural restriction map of sections
is an isomorphism:

(9.10) res W Pic.JX.q//.S/
Š
�! Pic.JX.q//.U / D Pic.JX.q/jU /.U /:

It is clear that
res.Pico.JX.q//.S// � Pico.JX.q/jU /.U /

and similarly that
res.Pic� .JX.q//.S// � Pic� .JX.q/jU /.U /:
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Consider any general polarization q0 on X such that the associated fine compactified
Jacobian JX .q0/ admits an Abel map in the sense of Section 2.3. Note that there are plenty
of such general polarizations due to Theorem 2.12 (iii). Then the inclusions in (9.6) and the
isomorphism in (9.10) hold true also for the polarization q0. Moreover, Theorem 9.1 (which we
can apply since X does not have separating nodes by assumption) implies that

(9.11) Pico.JX.q
0// D Pic� .JX.q

0//:

Lemma 9.2 below implies that there exists a line bundle L on X inducing an isomorphism

(9.12) �˝L W JX.q/jU
Š
�! JX.q

0/jU :

Combining (9.6) and (9.10) (and their analogues for q0) together with (9.11) and (9.12),
we get the following commutative diagram of (abstract) abelian groups:

(9.13) Pico.JX.q//.S/
� � //

��

Pic� .JX.q//.S/
� � //

��

Pic.JX.q//.S/

resŠ

��

Pico.JX.q/jU /.U /
� � // Pic� .JX.q/jU /.U /

� � // Pic.JX.q/jU /.U /

Pico.JX.q
0/jU /.U /

Š

OO

Pic� .JX.q
0/jU /.U /

� � //

Š

OO

Pic.JX.q
0/jU /.U /

.�˝L/�Š

OO

Pico.JX.q
0//.S/

OO

Pic� .JX.q
0//.S/

� � //

OO

Pic.JX.q
0//.S/.

res0Š

OO

Now we need the following crucial lemma.

Lemma 9.3. Notation as above. For any section � 2 Pic.JX.q//.S/, set

� 0 WD ...�˝L/� ı res0/�1 ı res/.�/ 2 Pic.JX.q
0//.S/:

Then it holds that

(9.14) � 2 Pico.JX.q//.S/ ” � 0 2 Pico.JX.q
0//.S/:

Using the above lemma (which will be proved below), we can conclude the proof of
Theorem D. From [46, Theorem 5.1], it follows that there exists a number N such that any
section � 2 Pic� .JX.q//.S/ is such that �N 2 Pico.JX.q//.S/ and similarly for the sections
in Pic� .JX.q

0//.S/. Therefore, from the commutative diagram (9.13) and (9.14), we deduce
that for a section � 2 Pic.JX.q//.S/, if we set

� 0 WD ...�˝L/� ı res0/�1 ı res/.�/ 2 Pic.JX.q
0//.S/

as before, then we have

(9.15) � 2 Pic� .JX.q//.S/ ” � 0 2 Pic� .JX.q
0//.S/:

An easy chasing in diagram (9.13) together with (9.14) and (9.15) shows that the required
equality (9.5) does hold true and this concludes the proof of Theorem D.
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Proof of Lemma 9.3. Let us prove the implication ()) (the other being analogous).
Let f o W Pico.JX.q//! S be the morphism representing the functor Picou. This morphism
is smooth by Theorem 4.1 (iii) and it has geometrically connected fibers by construction. We
are going to apply the following Lemma 9.4 (whose proof will be given below) to the morphism
f o denoting by �1 its section � and by �2 the zero section of the S -group scheme Pico.JX.q//.

Lemma 9.4. Let f o W Y ! S D Spec kŒŒx1; : : : ; xr �� be a surjective smooth morphism
with geometrically connected smooth fibers and let �1 and �2 be two sections of f o. For any
affine k-variety V D Spec.B/, set SV WD SpecBŒŒx1; : : : ; xr �� and let 'V W SV ! V be the
map induced by the natural inclusion B � BŒŒx1; : : : ; xr ��. Further, let f oV W SV �S Y ! SV
be the base change map of f o via the natural map �V W SV ! S induced by the inclusion
kŒŒx1; : : : ; xr �� � BŒŒx1; : : : ; xr ��. Then �1 and �2 are homotopic in the following sense: there
are a sequence of connected smooth affine k-varieties V1; : : : ; Vm, sections �i of f oVi and closed
points qi ; q0i 2 Vi such that

(i) �1 D .�1/j'�1V1 .q1/
,

(ii) .�i /j'�1Vi .q
0
i
/ D .�iC1/j'�1ViC1 .qiC1/

for any i D 1; : : : ; m � 1,

(iii) .�m/j'�1Vm .q
0
m/
D �2.

Since (as observed before) the morphism u W JX.q/! S admits a section passing
through its smooth locus, the same holds for the induced map uV W SV �S JX.q/! SV for
an affine k-variety V , hence by [12, Section 8.1, Proposition 4] every section of the map
f oV W Pico.SV �S JX.q// Š SV �S Pico.JX.q//! SV is represented by a line bundle on
SV �S JX.q/ which is unique, up to tensor product with a line bundle from SV . Therefore,
using that the Picard group of S is trivial, Lemma 9.4 implies the existence of connected smooth
affine k-varieties Vi , points qi ; q0i 2 Vi and line bundles Li on SVi �S JX.q/ such that

(1) L Š .L1/j'�1V1 .q1/�SJX.q/
,

(2) .Li /j'�1Vi .q
0
i
/�SJX.q/

Š .LiC1/j'�1ViC1 .qiC1/�SJX.q/
for any i D 1; : : : ; m � 1,

(3) .Lm/j'�1Vm .q
0
m/�SJX.q/

Š OJX.q/
.

Here L is the line bundle on JX.q/ corresponding to the section � under the bijection (9.7).
By Lemma 9.2, JX.q/ and JX.q

0/ are isomorphic in codimension one and the same
holds for SV �S JX.q/ and SV �S JX.q

0/ for any affine k-variety V , since the natural mor-
phism SV ! S is flat (by [51, Theorem 22.3 (v)]). Moreover, if V is a smooth affine k-variety,
the schemes SV �S JX.q/ and SV �S JX.q

0/ are regular. To see this for SV �S JX.q/ (the
case of SV �S JX.q

0/ is analogous), notice that, since JX.q/ is proper over S , the closure of
any point of SV �S JX.q/ contains a closed point p whose residue field is k and such that its
projection �1.p/ onto SV belongs to V Š .�V /�1.0/ � SV . Since regularity is stable under
generalization, we only have to check that any such p is a regular point of SV �S JX.q/.
Since SV is flat over S , the projection �2 W SV �S JX.q/! JX.q/ is flat too. Hence the
regularity of SV �S JX.q/ at p follows from the regularity of JX.q/ and the regularity of
the fiber ��12 .�2.p// ' V containing the point p (see [51, Theorem 23.7]). It follows that,
if V is a smooth affine k-variety, the schemes SV �S JX.q/ and SV �S JX.q

0/ are locally
factorial and isomorphic in codimension one, hence their Picard groups are isomorphic functo-
rially with respect to V (i.e. via isomorphisms which are compatible with the natural morphism
SV ! SV 0 induced by a morphism V ! V 0).
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In particular, we have that the line bundles Li on SVi �S JX.q/ induce line bundles L0i
on SVi �S JX.q

0/ such that

(1’) L0 Š .L01/j'�1V1 .q1/�SJX.q0/
,

(2’) .L0i /j'�1Vi .q
0
i
/�SJX.q0/

Š .L0iC1/j'�1ViC1 .qiC1/�SJX.q0/
for any i D 1; : : : ; m � 1,

(3’) .L0m/j'�1Vm .q
0
m/�SJX.q0/

Š OJX.q0/
.

Here L0 is the line bundle on JX.q
0/ corresponding to the section � 0 under the analogue of the

bijection (9.7) for JX.q
0/.

Restricting the line bundles L0i to Vi � JX .q0/ � SVi �S JX .q
0/ and considering the

isomorphisms (1’)–(3’) on the central fiber JX .q0/, we get that the restriction L0jJX .q0/ of
L0 to JX .q0/ is algebraically equivalent to the trivial line bundle OJX .q0/ (because the vari-
eties Vi are connected). This means that � 0 sends the unique closed point of S D SpecRX to
Pico.JX.q//. Since Pico.JX.q// is open in Pic.JX.q// and the only open subset of S con-
taining the closed point is the whole S , we conclude that � 0.s/ 2 Pico.JXs

.q0s// for every
s 2 S , or in other words that � 0 2 Pico.JX.q

0//.S/, which concludes the proof.

Proof of Lemma 9.4. We can simplify the proof by performing two progressive reduc-
tions.

Reduction 1. We can assume that the images of �1 and �2 are contained in an open
affine subset U � Y.

Indeed, for i D 1; 2, let Ui be an affine open subset of Y containing pi WD �i .0/, where 0
is the unique closed point of S . From the hypothesis it follows that Y is regular and connected,
hence irreducible. Therefore U1 and U2 must intersect. Pick any point p3 2 U1 \U2 and
choose a section �3 of f o such that �3.0/ D p3 (which exists since f o is a smooth morphism
andRX is strictly Henselian, see [12, Section 2.3, Proposition 5]). Clearly, it is enough to prove
that �1 and �3 are homotopic and that �3 and �2 are homotopic (because being homotopic is
an equivalence relation). The reduction is proved once we observe that the images of �1 and
�3 (resp. of �3 and �2) are contained in U1 (resp. in U2), because 0 is the unique closed point
of S .

Reduction 2. We can assume that Y is equal to SU for a connected smooth k-variety
U D SpecR and that f o W SU D SpecRŒŒx1; : : : ; xr ��! S D Spec kŒŒx1; : : : ; xr �� is the map
induced by the natural embedding kŒŒx1; : : : ; xr �� � RŒŒx1; : : : ; xr ��.7)

Indeed, using the hypothesis of Reduction 1, consider the open affine subsetU WD U \ Y

of the central fiber Y WD Y0 D .f
o/�1.0/ of f o. Notice that U is smooth and irreducible

since Y is so. Consider the coordinate rings A WD �.U;OU/ and R WD �.U;OU / and let I be
the ideal of A such that R D A=I . As S D Spec kŒŒx1; : : : ; xr ��, any section � of f o factors
through Spec OA, where OA is the I -adic completion ofA. Moreover, as SpecR is a smooth affine

7) Note that the morphism f o in the set-up of Reduction 2 is not smooth, being not locally of finite type.
However, the statement of the lemma still makes sense.
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scheme over k, it is rigid and its infinitesimal deformations are trivial (see [70, Theorem 1.2.4]).
As a consequence,

A=In Š
A=I Œx1; : : : ; xr �

.x1; : : : ; xr/n
for any n 2 N

and
OA Š A=I ŒŒx1; : : : ; xr �� Š RŒŒx1; : : : ; xr ��

and the second reduction is proved.

Under the assumptions of Reduction 2, set

V1 D V3 WD A1 D Spec kŒt � and V2 WD U D SpecR

and consider the points q1 WD 1; q01 WD 0 2 A1, q2 WD p1 D �1.0/; q02 WD p2 D �2.0/ 2 U , and
q3 WD 0; q

0
3 D 1 2 A1. In order to conclude the proof of the lemma with the above choices, it

remains to construct sections �i;A1 and �U of, respectively f o
A1

and f oU , such that

(i) �1 D �1;A1j'�1
A1
.1/,

(ii) �1;A1j'�1
A1
.0/ D �U j'�1U .p1/

D constant section p1,

(iii) �U j'�1U .p2/
D �2;A1j'�1

A1
.0/ D constant section p2,

(iv) �2;A1j'�1
A1
.1/ D �2.

We define �U W SU ! SU �S SU as the diagonal embedding. For every closed point
q 2 U , the fiber '�1U .q/ is naturally identified with S . Using this identification, the definition of
�U implies that the section �U j'�1U .q/ W '

�1
U .q/! '�1U .q/ �S SU is the constant section whose

value is q. In other words �U j'�1U .q/ is the map induced on spectra by the k-algebra morphism
gq W RŒŒx1; : : : ; xr ��! kŒŒx1; : : : ; xr �� defined by reduction of coefficients of the power series
modulo the ideal of q in Spec.R/.

To define �i;A1 W SA1 ! SA1 �S SU (for i D 1; 2), notice that �i W S ! SU is induced
by a kŒŒx1; : : : ; xr ��-morphism gi W RŒŒx1; : : : ; xr ��! kŒŒx1; : : : ; xr �� sending the ideal Ji of
pi in SpecRŒŒx1; : : : ; xr �� to the maximal ideal of kŒŒx1; : : : ; xr ��. Therefore gi factors through
the Ji -adic completion 7RŒŒx1; : : : ; xr �� of RŒŒx1; : : : ; xr ��. Since U is smooth over k, there
exists a kŒŒx1; : : : ; xr ��-algebra isomorphism

7RŒŒx1; : : : ; xr �� ' kŒŒx1; : : : ; xs��
for some s � r . More precisely, for any regular sequence m1; : : : ; ms�r generating the max-
imal ideal Ji \R defining pi 2 Spec.R/, the set ¹x1; : : : ; xr ; m1; : : : ; ms�rº generates both
the ideals Ji � RŒŒx1; : : : ; xr �� and Ji \RŒx1; : : : ; xr � � RŒx1; : : : ; xr �. As a consequence we
have functorial isomorphisms

RŒŒx1; : : : ; xr ��=J
n
i ' RŒx1; : : : ; xr �=.Ji \RŒx1; : : : ; xr �/

n;

which induce a kŒŒx1; : : : ; xr ��-algebra isomorphism as well as homeomorphism between
7RŒŒx1; : : : ; xr �� and the completion 6RŒx1; : : : ; xr �Ji\RŒx1;:::;xr � of RŒx1; : : : ; xr � at the max-
imal ideal Ji \RŒx1; : : : ; xr �. As U D Spec.R/ is smooth of dimension s � r over k, we also
have a kŒŒx1; : : : ; xr ��-algebra isomorphism and homeomorphism

6RŒx1; : : : ; xr �Ji\RŒx1;:::;xr � ' kŒŒx1; : : : ; xs��:
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Summing up, there exist kŒŒx1; : : : ; xr ��-algebra morphisms

�i W RŒŒx1; : : : ; xr ��! kŒŒx1; : : : ; xs��

and
gi W kŒŒx1; : : : ; xs��! kŒŒx1; : : : ; xr ��

such that gi D gi ı �i .
Moreover, by construction, gi is continuous with respect to the topologies induced by

the maximal ideals and gi .xt / D xt for t � r , hence it is completely determined by the values
gi .xt / for t > r ; explicitly, for any b.x1; : : : ; xr ; xrC1; : : : ; xs/ 2 kŒŒx1; : : : ; xs�� we have

gi .b.x1; : : : ; xr ; xrC1; : : : ; xs// D b.x1; : : : ; xr ; gi .xrC1/; : : : ; gi .xs//:

Using these morphisms, we define

�i;A1 W kŒt �ŒŒx1; : : : ; xr ��˝kŒŒx1;:::;xr �� RŒŒx1; : : : ; xr ��

! kŒt �ŒŒx1; : : : ; xr ��˝kŒŒx1;:::;xr �� kŒŒx1; : : : ; xs��

as the unique kŒt �ŒŒx1; : : : ; xr ��-morphism induced by �i . Next, we define

gi;A1 W kŒt �ŒŒx1; : : : ; xr ��˝kŒŒx1;:::;xr �� kŒŒx1; : : : ; xs��! kŒt �ŒŒx1; : : : ; xr ��

by

a.t; x1; : : : ; xr/˝ b.x1; : : : ; xr ; xrC1; : : : ; xs/

7! a.t; x1; : : : ; xr/ b.x1; : : : ; xr ; tgi .xrC1/; : : : ; tgi .xs//:

Finally, the evaluation of the composition gi;A1 ı �i;A1 modulo .t � ˛/ gets gi for ˛ D 1 and
the reduction of the coefficients of the power series modulo the ideal of pi in Spec.R/ for
˛ D 0. Hence we may choose �i;A1 as the map induced on spectra by gi;A1 ı �i;A1 .

A. Hitchin fibration vs. compactified Jacobians of spectral curves

Let C be a fixed connected smooth and projective curve of genus g over an algebraically
closed field k and let L be a line bundle on C (often it is convenient to assume that L has high
degree, e.g. degL � 2g � 2). Fix a natural number r � 1 and an integral number d 2 Z.

An L-twisted Higgs pair (or simply a Higgs pair when L is clear from the context) on C
is a pair .E; �/ consisting of a vector bundle E on C and a homomorphism � W E ! E ˝ L

(called the Higgs field). The degree (resp. the rank) of a Higgs pair .E; �/ is the degree degE
(resp. the rank rkE) of the underlying vector bundle E. In the important special case when
L D !C , an !C -twisted Higgs pair is simply called a Higgs bundle.

The algebraic stack M DM.r; d; L/ of all L-twisted Higgs pairs .E; �/ on C of rank r
and degree d is endowed with a morphism (called the Hitchin morphism)

H WM.r; d; L/ DM! A D A.r; L/ WD

rM
iD1

H 0.C;Li /;(A.1)

.E; �/ 7! H .E; �/ WD .a1.E; �/; : : : ; ar.E; �//;

whereLi D L˝i is the i -th tensor product ofL and ai .E; �/ WD .�1/i Tr.ƒi�/ 2 H 0.C;Li /.
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The algebraic (Artin) stack M is not of finite type. In order to obtain a space of finite type
(and indeed a variety), one introduces a semistability condition as follows. A Higgs pair .E; �/
is called semistable (resp. stable) if for all non-trivial proper subsheaves F ¨ E that are stable
with respect to � (i.e. such that �.F / � F ˝ L) we have

degF
rkF

�
degE
rkE

(resp. </:

Observe that, given a Higgs pair .E; �/, if E is a semistable (resp. stable) vector bundle, then
.E; �/ is semistable (resp. stable) but the converse is in general false.

The coarse moduli space M DM.r; d; L/ of S-equivalence classes of semistable
L-twisted Higgs pairs .E; �/ of rank r and degree d has been constructed by Hitchin [40]
for L D !C using analytic methods (namely gauge theory) and later by Simpson [71, 72] for
L D !C and by Nitsure [61] for an arbitraryL, using algebro-geometric methods (namely geo-
metric invariant theory). As proved in [71] and [61], the Hitchin fibration (A.1) induces a flat
projective morphism (called the Hitchin fibration):

H WM.r; d; L/ DM ! A D A.r; L/ WD

rM
iD1

H 0.C;Li /

.E; �/ 7! .a1.E; �/; : : : ; ar.E; �//:

Remark A.1. In the special case where L D !C , r and d are coprime (so that there are
no strictly semistable Higgs pairs) and k D C, Hitchin [40] proved that:

� M DM.r; d; !C / is a hyperkähler (non-compact) manifold containing, as an open sub-
set, the cotangent bundle of the moduli space of stable (D semistable) vector bundles
on C of degree d and rank r ,

� H is an algebraically completely integrable system.

This result has been generalized to the case where L˝ !�1C is effective by Bottacin [13]
and Markman [50]: in this case, it is shown in [13, 50] that M DM.r; d; L/ is endowed
with a Poisson structure (depending upon the choice of a section of L˝ !�1C ) with respect
to which H becomes an algebraically completely integrable system.

The fibers of the Hitchin morphism H and of the Hitchin fibration H can be described
in terms of compactified Jacobians of spectral curves, as we are now going to explain, follow-
ing Beauville–Narasimhan–Ramanan [11] and Schaub [69]. Let us consider the P1-fibration
p W P D P .OC ˚ L�1/! C and let O.1/ be the relatively ample line bundle on P . We will
denote by y the section of O.1/ whose push-forward via p corresponds to the constant section
.1; 0/ of the vector bundle p�O.1/ D OC ˚ L

�1. Similarly, we will denote by x the section of
the vector bundle O.1/˝ p�.L/ whose push-forward via p corresponds to the constant sec-
tion .0; 1/ of the vector bundle p�.O.1/˝ p�.L// D .OC ˚ L�1/˝ L D L˚OC . In other
words, ¹y D 0º is the section of p (that we call 1-section) corresponding to the surjection
OC ˚ L

�1� L�1 and ¹x D 0º is the section of p (that we call 0-section) corresponding
to the surjection OC ˚ L

�1� OC . Given a D .a1; : : : ; ar/ 2
Lr
iD1H

0.C;Li / D A, the
spectral curve Ca associated to a is the projective (but possibly singular) curve8) inside P

8) In this Appendix, we violate Section 1.2: by curve, we mean any projective scheme over algebraically
closed field k of pure dimension one, not necessarily reduced nor connected.
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given by
Ca WD ¹x

r
C p�.a1/ � x

r�1
� y C � � � C p�.ar/ � y

r
D 0º � P:

Via this construction, the affine space A is identified with the open subset of the complete
linear system jO.r/˝ p�.Lr/j D P .p�.O.r//˝ Lr/ D P .

Lr
iD0H

0.C;Li // consisting of
all curves that do not meet the1-section ¹y D 0º.

The arithmetic genus of the spectral curves can be computed as follows. First note
that the canonical sheaf of P D P .OC ˚ L�1/ is equal to !P D O.�2/˝ p�.!C ˝ L/ (see
[37, Chapter V, Lemma 2.10]). Therefore, if we set � WD c1.O.1// and we denote by f the
class of the fiber of p in the Néron–Severi group of P , the adjunction formula gives

pa.Ca/ D
Œc1.!P /C Ca� � Ca

2
C 1

D
Œ�2� C .2g � 2 � degL/f C r� C r degLf � � .r� C r degLf /

2
C 1

D r.g � 1/C

 
r

2

!
degLC 1;

where we used that � � f D 1, �2 D � degL and f 2 D 0.

The spectral curve Ca can be very singular (although it has locally planar singulari-
ties because it is embedded in the smooth surface P ), and in particular it is not necessarily
reduced nor irreducible. The base A of the Hitchin morphism admits two notable open (by
[34, (12.2.4)]) subsets Aell � Areg � A, called respectively the elliptic locus and the regular
locus, defined as follows:

Aell
WD ¹a 2 A W Ca is integralº;

Areg
WD ¹a 2 A W Ca is reduced and connectedº:

The study of the topology of the Hitchin morphism restricted to the elliptic locus Aell has
played a crucial role in Ngô’s proof of the fundamental lemma (see [62] and [63]) and, more
generally, the study of the Hitchin morphism over the regular locus Areg was a crucial ingredi-
ent in Chaudouard–Laumon’s proof of the weighted fundamental lemma (see [18] and [19]).

Remark A.2. If L is globally generated and non-trivial on C , then the complete linear
system jO.1/˝ p�.L/j on P is globally generated and it defines a morphism from P onto
the cone over the image of C via jLj (see [37, Chapter V, Example 2.11.4]). Therefore, the
complete linear system jO.r/˝ p�.Lr/j on P is globally generated and it is not composed
with a pencil (i.e. the image of the associated morphism has dimension greater than one). From
this, we deduce that (under the above assumption on L):

� all spectral curves are connected by Bertini’s second theorem (see [37, Chapter III, Exer-
cise 11.3]),

� the generic spectral curve is smooth if char.k/ is zero by Bertini’s first theorem (see
[37, Chapter III, Corollary 10.9]).

In particular, we deduce that under the above assumptions on L and in characteristic zero, the
above loci Aell and Areg are non-empty. See also [50, Proposition 2.1], where the above two
properties are stated (without a proof) under the assumption that L˝r is very ample.
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The restriction of the morphism p W P ! C to Ca is a degree-r finite morphism

�a W Ca ! C ;

called the spectral cover associated to a 2 A. Note that, since the zero sets of x and y are
disjoint in P , the restriction of the section y to Ca is everywhere non-zero, which implies that
O.1/jCa D OCa . Therefore, the restriction xjCa of the section x to Ca can be considered as
a section of Œp�.L/˝O.1/�jCa D p

�.L/jCa D �
�
a .L/.

Fact A.3 (Spectral correspondence [11, 69]). Let a 2 A D
Lr
iD1H

0.C;Li / and con-
sider the associated degree-r spectral cover �a W Ca ! C .

(i) There is a bijective correspondence

… W ¹Torsion-free rank-1 sheaves I on Caº

! ¹L-twisted Higgs pairs .E; �/ on C of rank r such that H .E; �/ D aº D H�1.a/

obtained by associating to a torsion-free rank-1 sheaf I on Ca the L-twisted Higgs pair
….I/ D .E; �/ on C consisting of the vector bundle E WD .�a/�.I / on C together with
the Higgs field � W .�a/�.I /! .�a/�.I /˝ L D .�a/�.I ˝ �

�
a .L// given by the multi-

plication with xjCa 2 H
0.Ca; �

�
a .L//. Moreover, �.I / D deg….I/C r.1 � g/.

(ii) Given a torsion-free rank-1 sheaf I on Ca, then ….I/ is a semistable (resp. stable)
L-twisted Higgs pair on C if and only if for any subscheme Z � Ca of pure dimension
one we have that

�.IZ/ � �.I /
deg.�ajZ/

r
.resp. >/;

where deg.�ajZ/ is the degree of the finite morphism �ajZ W Z ! C . In particular, if
Ca is reduced and connected, then ….I/ is a semistable (resp. stable) L-twisted Higgs
pair of degree d on C if and only if I is semistable (resp. stable) with respect to the
polarization qa on Ca given by

qa
Z
WD Œd C r.1 � g/�

deg.�ajZ/

r
:

(iii) Assume that a 2 Areg (i.e. Ca is a reduced connected curve) and that qa is a general
polarization in the sense of Definition 2.5 (i.e. every torsion-free rank-1 sheaf on Ca
which is qa-semistable is also qa-stable). Then the bijective correspondence … gives
rise to an isomorphism

JCa.q
a/

…
�!
Š
H�1.a/;

where JCa.q
a/ is the fine compactified Jacobian of the reduced curve Ca with respect to

the general polarization qa (see Section 2.2).

Proof. Part (i) is proved in [11, Proposition 3.6] under the hypothesis that the spec-
tral curve Ca is integral and in [69, Proposition 2.1] for an arbitrary spectral curve. The last
assertion follows from Riemann–Roch:

�.I / D �..�a/�.I // D deg.�a/�.I /C r.1 � g/:
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Part (ii): From the proof of [69, Theorem 3.1] it follows that ….I/ is a semistable (resp.
stable) L-twisted Higgs pair if and only if for any subscheme Z � Ca of pure dimension one
we have

(A.2)
degŒ.�ajZ/�.IZ/�

rkŒ.�ajZ/�.IZ/�
�

degŒ.�a/�.I /�
rkŒ.�a/�.I /�

D
d

r
.resp. >/;

where IZ is the biggest torsion-free quotient of the restriction IjZ of I to Z. The sheaf
.�ajZ/�.IZ/ is locally free of rank equal to the degree deg.�ajZ/ of the finite morphism
�ajZ W Z ! C and its degree can be computed using Riemann–Roch:

degŒ.�ajZ/�.IZ/� D �Œ.�ajZ/�.IZ/� � rkŒ.�ajZ/�.IZ/�.1 � g/

D �.IZ/ � deg.�ajZ/.1 � g/:

Therefore, inequality (A.2) is equivalent to

�.IZ/ �

�
d

r
C 1 � g

�
deg.�ajZ/ D �.I /

deg.�ajZ/

r
.resp. >/;

which concludes the proof of (ii).
Part (iii) follows from (ii) and the fact that the bijective correspondence … of (i) does

hold in families as well (see [69, Proposition 5.1]).

Remark A.4. Note that if d and r are coprime, then for every a 2 Areg the polariza-
tion qa on Ca is general since there are no strictly semistable Higgs pairs, hence no strictly
semistable torsion-free rank-1 sheaves on Ca by Fact A.3 (ii).

In the general case, Chaudouard and Laumon [18] have introduced, after taking a suit-
able cover of Areg, alternative semistability conditions on the stack of Higgs pairs over Areg,
for which there are no strictly semistable objects. The moduli spaces defined by these new
semistability conditions are such that the fibers of the associated Hitchin fibrations are always
isomorphic to fine compactified Jacobians.

Donagi–Pantev conjectured in [21, Conjecture 2.5] that the stack M.r; !C / of Higgs
bundles satisfies the following autoduality property, which can be viewed as a “classical limit”
of the (conjectural) geometric Langlands correspondence (see [21, Section 2] for a discussion
of the geometric Langlands correspondence and the passage to the classical limit).

Conjecture A.5 (Langlands duality for Higgs bundles [21]). Let M.r; !C / be the mod-
uli stack of Higgs bundles of rank r and letDb.M.r; !C // be the bounded derived category of
quasi-coherent sheaves on M.r; !C /. There exists a canonical equivalence of categories

ˆ W Db.M.r; !C //! Db.M.r; !C //

which intertwines the action of the classical limit tensorization functors with the action of the
classical limit Hecke functors.

See [21, Section 2] for the definition of the tensorization functors and Hecke functors,
together with their classical limits. More generally, Donagi–Pantev conjectured in [21, Sec-
tion 2] a Langlands duality between the stack of G-Higgs bundles (for G any reductive group)
and the stack of LG-Higgs bundles, where LG is the Langlands dual of G. Conjecture A.5 is
the special case in which G D GLr D LG.
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The autoequivalence ˆ of Conjecture A.5 is expected to be given by a Fourier–Mukai
transform with kernel equal to a universal Poincaré sheaf P on M.r; !C / �A.r;!C / M.r; !C /.
Moreover, ˆ is expected to preserve the Hitchin morphism H WM.r; !C /! A.r; !C /, i.e.
for any a 2 A.r; !C / the Fourier–Mukai transform with kernel Pa WD Pj.H�H/�1.a/,

(A.3) ˆPa W Db.H�1.a//! Db.H�1.a//

should be an auto-equivalence of the bounded derived categoryDb.H�1.a// of quasi-coherent
sheaves on H�1.a/.

In [21, Section 5.3, Section 5.4], Donagi and Pantev proved Conjecture A.5 (and its
generalized version for any reductive group G) over the open subset

Asm
WD ¹a 2 A W Ca is smooth and �a W Ca ! C is simply ramifiedº � A:

More precisely, if a 2 Asm, then H�1.a/ is isomorphic to the Jacobian of Ca by Fact A.3, and
Donagi–Pantev proved in [21, Section 5.3, Section 5.4] that the classical Fourier–Mukai trans-
form (introduced by Mukai in [58]) intertwines the action of the classical limit tensorization
functors with the action of the classical limit Hecke functors.

If a 2 Aell, i.e. if the associated spectral curve Ca is integral, then H�1.a/ is isomorphic
to the compactified Jacobian of Ca by Fact A.3 (no stability conditions are needed in this case
to define the compactified Jacobian) and the expected autoequivalence of (A.3) is constructed
by Arinkin [7].

If a 2 Areg, i.e. Ca is reduced, then the stack H�1.a/ of rank-1 torsion-free sheaves
on Ca (see Fact A.3 (i)) contains the fine compactified Jacobians of Ca as open and proper
subsets. Therefore Theorem E of the introduction (whose proof will appear in [54]) can be
seen as a first step towards proving the autoequivalence (A.3) for reduced spectral curves.
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