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We compute the Kodaira dimension of the universal Picard variety Pd,g parameterizing

line bundles of degree d on curves of genus g under the assumption that (d− g + 1,2g −
2)= 1. We also give partial results for arbitrary degrees d and we investigate for which

degrees the universal Picard varieties are birational.

1 Introduction

The study of the birational geometry of the moduli spaces has become a very active

research area after the unexpected result of Harris–Mumford–Eisenbud [12, 22] that the

moduli space Mg of curves of genus g is a variety of general type for g ≥ 24, contradict-

ing a long-standing conjecture of Severi on the unirationality of moduli of curves. More

recently, also the birational geometry of other moduli spaces has been widely investi-

gated: the moduli space of pointed curves [7, 26], the moduli space of Prym varieties [14],

the moduli space of spin curves [13, 16, 28], to mention at least some contributions in

this area.
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On the Birational Geometry of P̄d,g 741

The aim of this paper is to investigate the birational geometry of the universal

Picard variety

Pd,g → Mg,

parameterizing smooth curves of genus g together with a line bundle of degree d. The

following result is due to Verra (see [40, Theorem 1.2]).

Theorem 1.1 ([40]). The variety Pd,g is unirational for g ≤ 9 and any d. �

Our main result is the computation of the Kodaira dimension of Pd,g with g ≥ 10

under a technical assumption on the degree d. Recall that, since Pd,g is singular and not

projective, the Kodaira dimension of Pd,g, which we denote by κ(Pd,g), is defined as the

Kodaira dimension of any smooth projective model of it (see [25, Example 2.1.5]). The

previous result of Verra implies that κ(Pd,g)= −∞ for g ≤ 9 and any d.

Theorem 1.2. Assume that (d− g + 1,2g − 2)= 1 and g ≥ 10. The Kodaira dimension of

Pd,g is equal to

κ(Pd,g)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if g = 10,

19 if g = 11,

3g − 3 if g ≥ 12.
�

In Propositions 6.5 and 6.3, we also determine the Iitaka fibration (see [25,

Definition 1.3.6]) of Pd,g in the nontrivial cases, namely for g ≥ 11. Without any assump-

tion on the degree d, we obtain the following partial result:

Theorem 1.3. The Kodaira dimension of Pd,g (for g ≥ 10) satisfies the following inequal-

ities:

κ(Pd,g)≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if g = 10,

19 if g = 11,

3g − 3 if g ≥ 12.

Moreover, κ(Pd,g)= 3g − 3 if κ(Mg)≥ 0 (and in particular for g ≥ 22). �
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742 G. Bini et al.

Let us now explain the strategy that we use to prove the above results. The main

tool we use is the GIT compactification constructed by Caporaso [3]

φd : P̄d,g → M̄g

of Pd,g over the Deligne–Mumford moduli space M̄g of stable curves of genus g. The

projective normal variety P̄d,g is a good moduli space for the stack Picd,g (see [4, 30]),

whose section over a scheme S is the groupoid Picd,g(S) of families of quasistable curves

of genus g

f : (C,L)→ S

endowed with a balanced line bundle L of degree d (see Section 2.1 for details). Further-

more, P̄d,g is a coarse moduli scheme for Picd,g if and only if (d− g + 1,2g − 2)= 1, which

is precisely the numerical hypothesis on the degree d in Theorem 1.2.

Albeit P̄d,g is singular, we can prove (under the same assumption on the degree)

that P̄d,g has canonical singularities and therefore pluricanonical forms on the smooth

locus lift to any desingularization:

Theorem 1.4. Assume that (d− g + 1,2g − 2)= 1 and that g ≥ 4. Then P̄d,g has canoni-

cal singularities. In particular, if ˜̄Pd,g is a resolution of singularities of P̄d,g, then every

pluricanonical form defined on the smooth locus P̄ reg
d,g of P̄d,g extends holomorphically to˜̄Pd,g, that is, for all integers m we have

h0( P̄ reg
d,g ,mKP̄ reg

d,g
)= h0(˜̄Pd,g,mKP̃d,g

). �

The proof of this theorem is given in Section 4. The restriction on the degree

d comes from the fact that P̄d,g has finite quotient singularities if and only if (d− g +
1,2g − 2)= 1; hence only for such degrees d we can apply the Reid–Tai criterion for the

canonicity of finite quotient singularities (see, e.g. [22, p. 27] or [27, Theorem 4.1.11]).

Indeed, we establish in Theorem 4.8 a similar statement without any restriction on d

for the open subset P̄ st
d,g ⊂ P̄d,g of GIT-stable points of P̄d,g, which coincides with P̄d,g

if and only if (d− g + 1,2g − 2)= 1. In proving Theorem 4.8 (from which Theorem 1.4

follows), we determine the nonsmooth locus of P̄ st
d,g in Proposition 4.7. Note that a proof

of Theorem 1.4 for all degrees d would imply the validity of Theorem 1.2 without any

assumptions on the degree d.
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On the Birational Geometry of P̄d,g 743

The above Theorem 1.4 is crucial for our purposes because it allows us to com-

pute the Kodaira dimension of P̄d,g as the Iitaka dimension (see [25, Definition 2.1.3])

of the canonical divisor KP̄d,g
on the modular variety P̄d,g, instead of working on some

(a priori non modular) desingularization of P̄d,g. The class of KP̄d,g
is given by the

following:

Theorem 1.5. For any g ≥ 4, we have

KP̄d,g
= φ∗

d(14λ− 2δ),

where λ and δ denote the Hodge and the boundary class on M̄g, respectively. �

The proof of this theorem is given in Section 5. We first compute in Theorem 5.1

the canonical class of Picd,g through a careful application of the Grothendieck–

Riemann–Roch theorem to the universal family over Picd,g. Then we show that the

pull-back of KP̄d,g
via the canonical map p : Picd,g → P̄d,g is equal to KPicd,g

. Note that

this is in contrast with what happens for M̄g (or for the moduli space of Prym or

spin curves), where the pull-back of the canonical class of the coarse moduli space is

equal to the canonical class of the moduli stack plus some (small) corrections at the

boundary.

Theorem 1.5 allows us to compute the Iitaka dimension of KP̄d,g
as the Iitaka

dimension of the divisor 14λ− 2δ on M̄g (because φd is a regular fibration). By exploit-

ing the rich available knowledge on the birational geometry of M̄g, we prove the

following:

Theorem 1.6. The Iitaka dimension of KP̄d,g
on P̄d,g is equal to

κ(KP̄d,g
)= κ(14λ− 2δ)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∞ if g ≤ 9,

0 if g = 10,

19 if g = 11,

3g − 3 if g ≥ 12.
�

The proof of the above theorem is given in Section 6 by combining Proposi-

tions 6.1, 6.3–6.5.
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744 G. Bini et al.

With the above results it is now easy to prove Theorems 1.2 and 1.3. Indeed, note

that we always have the inequality

κ(Pd,g)≤ κ(KP̄d,g
), (1)

with equality if (d− g + 1,2g − 2)= 1 by Theorem 1.4. From (1) and Theorem 1.6, we

deduce Theorem 1.2 and the first part of Theorem 1.3. The second part of Theorem 1.3

follows from Proposition 3.2, which is proved in Section 3 via a careful analysis of the

regular fibration φd : P̄d,g → M̄g.

In the final Section 7, inspired by Caporaso [3, Lemma 8.1], we investigate

for which values of d and d′ the varieties Pd,g and Pd′,g are birational. We prove the

following:

Theorem 1.7. Assume that g ≥ 22 or g ≥ 12 and (d− g + 1,2g − 2)= 1. Then Pd,g is

birational to Pd′,g if and only if d′ ≡ ±d mod (2g − 2). In this case, Pd,g is isomorphic

to Pd′,g. �

This follows from Theorem 7.3, where we also determine the possible birational

maps between the varieties Pd,g for g big enough. From the same result, we obtain a

description of the group of birational self-maps of Pd,g (see Corollary 7.5) and we deduce

that the boundary of P̄d,g is preserved by any automorphism of P̄d,g (see Corollary 7.6).

While this work was being written down, Farkas and Verra posted on the arXiv

the preprint [17], where they determine, among other things, the Kodaira dimension of

Pg,g (note that the degree g satisfies the assumptions of our Theorem 1.2, so that their

result is a particular case of our main theorem). However, their strategy is different

from ours and it seems to apply only in the special case d= g. Indeed, the authors of [17]

consider the global Abel–Jacobi map

Ag,d : Mg,d/Sd → Pd,g

obtained by sending a curve C together with a collection of unordered points {p1, . . . , pd}
into the pair (C ,OC (p1 + · · · + pd)). It is well known that the map Ag,d is a birational

isomorphism in degree d= g (and only in this case). Using this fact, Farkas and Verra

determine the Kodaira dimension of Pg,g by studying the pluricanonical forms on the

Deligne–Mumford–Knudsen compactification M̄g,g/Sg (instead of the Caporaso compact-

ification P̄g,g, as we do in this paper).
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On the Birational Geometry of P̄d,g 745

Throughout this paper, we work over the complex field C. Moreover, we fix two

integers g ≥ 2 and d.

2 Preliminaries

2.1 The stack Picd,g and the scheme P̄d,g

In this subsection, we recall the definition of the stack Picd,g and its good moduli space

P̄d,g, and collect some of their properties to be used later on.

Let Picd,g be the universal Picard stack over the moduli stack Mg of smooth

curves of genus g. The fiber Picd,g(S) of Picd,g over a scheme S is the groupoid whose

objects are families of smooth curves C → S endowed with a line bundle L over C of rela-

tive degree d over S and whose arrows are the obvious isomorphisms. Picd,g is a smooth

irreducible (Artin) algebraic stack of dimension 4g − 4 endowed with a natural forgetful

map Φd :Picd,g →Mg. The stack Picd,g admits a good moduli scheme Pd,g of dimension

4g − 3 which has a natural forgetful map φd : Pd,g → Mg onto the coarse moduli scheme

of smooth curves of genus g. We have the following commutative diagram:

Picd,g ��

Φd ��
��

Pd,g

φd��
��

Mg �� Mg

(2)

Warning 2.1. The fact that Picd,g has dimension 4g − 4 (and not 4g − 3 as Pd,g) is due to

the fact that on each object (C → S,L) of Picd,g(S) there is an action of the multiplicative

group Gm via scalar multiplication on L. Therefore, the map Φd factors as

Φd :Picd,g →PicGm
d,g → Pd,g,

where PicGm
d,g (which is denoted by Picd,g � Gm by some authors) is the Gm-rigidification

of Picd,g along the subgroup Gm. Note that PicGm
d,g is a Deligne–Mumford stack of dimen-

sion 4g − 3 while Picd,g is an Artin stack of dimension 4g − 4 which is not Deligne–

Mumford. However, we will never need the rigidified stack PicGm
d,g in this work so that we

refer to [30, Section 4] for more details (note that in [30] our stack Picd,g is denoted by

Gd,g while its rigidification PicGm
d,g is denoted by Pd,g). �
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746 G. Bini et al.

The stack Picd,g and the scheme Pd,g have been compactified in a modular way in

[3, 4, 30]. To describe these compactifications, we need to recall some definitions.

Definition 2.2. A connected, projective nodal curve C is said to be quasistable if it is

(Deligne-Mumford) semistable and the exceptional components of C do not meet. �

Given a quasi-stable curve C , we will denote by Cexc the subcurve of C (called

exceptional subcurve) given by the union of all the exceptional components of C ; by

C̄ := C \ Cexc its complementary subcurve (called nonexceptional subcurve) and by C st

the stabilization of C . Moreover, we will denote by γ (C̄ ) the number of connected com-

ponents of C̄ .

Definition 2.3. Let C be a quasistable curve of genus g ≥ 2 and L a degree d line bundle

on C .

(i) We say that L is balanced if

• for every subcurve Z of C the following (“basic inequality”) holds

ddegZ (ωC |Z )
2g − 2

− kZ

2
≤ degZ L ≤ ddegZ (ωC |Z )

2g − 2
+ kZ

2
, (3)

where kZ is the number of intersection points of Z with the com-

plementary subcurve Zc := C \ Z .

• degE L = 1 for every exceptional component E of C .

(ii) We say that L is strictly balanced if it is balanced and if for each proper

subcurve Z of C for which one of the two inequalities in (3) is not strict,

then the intersection Z ∩ Zc is contained Cexc.

(iii) We say that L is stably balanced if it is balanced and if for each proper

subcurve Z of C for which one of the two inequalities in (3) is not strict,

then either Z or Zc is entirely contained in Cexc. �

The above Definitions 2.3(i) and 2.3(iii) are taken from [6, Definition 5.1.1] (see

also [4, Definition 4.6]) and they are equivalent, respectively, to the definitions of

semistable in [3, Section 5.5] and G-stable in [3, Section 6.2]. The Definition 2.3(ii) is taken

from [5, Section 4.1] and it is equivalent to the definition of extremal in [3, Section 5.2].
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On the Birational Geometry of P̄d,g 747

There is an equivalence relation of the set of balanced line bundles on a

quasi-stable curve C .

Definition 2.4. Given two balanced line bundles L and L ′ on a quasi-stable curve C , we

say that L and L ′ are equivalent, and we write (C , L)≡ (C , L ′), if L |C̄ ∼= L ′
|C̄ . The equiva-

lence class of a pair (C , L) is denoted by [(C , L)]. �

Note that the above equivalence relation ≡ clearly preserves the multidegree of

the line bundles, hence it preserves the condition of being strictly balanced or stably

balanced.

Remark 2.5. In the GIT construction of P̄d,g given in [3], the equivalence classes [(C , L)]

such that C is quasi-stable and L is balanced (resp. strictly balanced, resp. stably bal-

anced) correspond to the GIT-semistable (resp. GIT-polystable, resp. GIT-stable) orbits

(see [3, Proposition 6.1, Lemma 6.1] and also [6, Theorem 5.1.6]). �

The relationship between stably balanced and strictly balanced line bundles is

given by the following lemma:

Lemma 2.6. A line bundle L on a quasi-stable curve C is stably balanced if and only if

it is strictly balanced and C̄ is connected. �

Proof. Assume first that L is strictly balanced and that C̄ is connected. Let Z be a

proper subcurve of C such that one of the two inequalities in (3) is not strict. Then

Z ∩ Zc ⊂ Cexc because L is strictly balanced by hypothesis. Therefore, the nonexceptional

subcurve C̄ can be written as a disjoint union of the two subcurves Z ∩ C̄ and Zc ∩ C̄ .

Since C̄ is connected by hypothesis, we must have that either Z ∩ C̄ = ∅ or Zc ∩ C̄ = ∅,

which implies that either Z ⊆ Cexc or Zc ⊆ Cexc, respectively. This shows that L is stably

balanced.

Conversely, assume that L is stably balanced. Clearly this implies that L is

strictly balanced. Assume, by contradiction, that C̄ is not connected. Then we can find

two proper disjoint subcurves D1 and D2 of C that are not contained in Cexc and such

that E := (D1 ∪ D2)
c is the union of r ≥ 1 exceptional components of C . It is easily checked
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748 G. Bini et al.

that

degD1∪E (ωC )= degD1
(ωC ),

kD1∪E = kD1 = r,

degD1∪E L = degD1
L + r.

(*)

Applying the inequality (3) to the subcurves D1 and D1 ∪ E , we get

− r

2
= −kD1

2
≤ degD1

L − d
degD1

(ωC )

2g − 1

= degD1∪E L − r − d
degD1∪E (ωC )

2g − 2
≤ kD1∪E

2
− r = − r

2
.

Therefore one of the inequalities (3) is strict for the subcurve D1 and this contradicts the

fact that L is strictly balanced since ∅ ��= D1 �⊆ Cexc by construction. �

Let Picd,g be the category whose objects are families of quasistable curves C → S

endowed with a line bundle L of relative degree d whose restriction to each geometric

fiber is balanced and whose arrows are Cartesian diagrams of such families. Cleary

Picd,g is a category fibered in groupoids over the category of schemes. The following

theorem summarizes some of the properties of Picd,g and of its good moduli space P̄d,g

known thanks to Caporaso and Melo (note that our stacks Picd,g and Picd,g are called

Gd,g and Ḡd,g in [30]).

Theorem 2.7 ([3, 4, 30]).

(1) Picd,g is an irreducible, smooth and universally closed Artin stack of finite

type over C and of dimension 4g − 4. It contains the stack Picd,g as a dense

open substack.

(2) Picd,g admits a good moduli space P̄d,g, that is a normal irreducible projec-

tive variety of dimension 4g − 3. The geometric points of P̄d,g correspond

bijectively to the equivalence classes of pairs (C , L) where C is a quasi-

stable curve of genus g and L is a strictly balanced line bundle of degree d.

(3) P̄d,g is a coarse moduli scheme for Picd,g if and only if (d+ 1 − g,2g − 2)= 1.

In this case P̄d,g has only finite quotient singularities. �
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On the Birational Geometry of P̄d,g 749

The construction of the scheme P̄d,g as a GIT-quotient is due to Caporaso [3]; the

construction of the stack Picd,g is due to Caporaso [4] in the case (d+ 1 − g,2g − 2)= 1

and to Melo [30] in the general case. Note that we have a natural commutative diagram

compactifying the diagram (2):

Picd,g
��

Φd ��
��

P̄d,g

φd��
��

M̄g
�� M̄g

(4)

Notation 2.8. From now on, for the ease of notation, whenever we write (C , L) ∈ P̄d,g we

mean that L is a strictly balanced line bundle on the quasi-stable curve C , considered

up to the equivalence relation of Definition 2.4. �

Next we introduce an open subset of P̄d,g that will play a special role in the

sequel.

Definition 2.9. We denote by P̄ st
d,g the open subset of P̄d,g consisting of pairs (C , L) ∈ P̄d,g,

where L is stably balanced. �

By Remark 2.5, P̄ st
d,g is the open subset of P̄d,g where the GIT quotient is geometric.

In [3, Lemma 2.2], it is proved that the semistable locus (called Hd in [3]) inside the

Hilbert scheme whose GIT quotient gives P̄d,g is smooth. From this, it follows that P̄ st
d,g

has finite quotient singularities (see (12) for an explicit local description). Moreover,

P̄ st
d,g = P̄d,g if and only if (d+ 1 − g,2g − 2)= 1 by [3, Proposition 6.2].

Albeit P̄d,g has not necessarily finite quotient singularities, we have the following

useful result (see the proof of [18, Corollary 1]):

Theorem 2.10 ([18]). P̄d,g is a Q-factorial variety. �

In view of the above result, we will identify throughout this paper Q-Weil divi-

sors and Q-Cartier divisors on P̄d,g.

2.2 The automorphism group Aut(C , L)

For later use, we describe the automorphism group of a pair (C , L) consisting of a

quasi-stable curve C and a balanced line bundle L on C . An automorphism of (C , L)
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750 G. Bini et al.

is given by a pair (σ, ψ) such that σ ∈ Aut(C ) and ψ is an isomorphism between the line

bundles L and σ ∗(L). The group of automorphisms of (C , L) is denoted by Aut(C , L). We

get a natural forgetful homomorphism

F : Aut(C , L)→ Aut(C ),

(σ, ψ) �→ σ,

(5)

whose kernel is the multiplicative group Gm, acting as fiberwise multiplication on

L, and whose image is the subgroup of σ ∈ Aut(C ) such that σ ∗(L)∼= L. The quo-

tient Aut(C , L)/Gm is denoted by Aut(C , L) and is called the reduced automorphism

group of (C , L). Note that Aut(C , L) depends only on the equivalence class [(L ,C )] (see

Definition 2.4).

By composing the above homomorphism F of (5) with the natural homomor-

phism Aut(C )→ Aut(C st) induced by the stabilization map C → C st, we get a homomor-

phism

G : Aut(C , L)→ Aut(C st),

whose kernel is described in the next lemma.

Lemma 2.11. We have a commutative diagram with exact rows

0 ��
G
γ (C̄ )
m

��

��
��

Aut(C , L)
G

��

��
��

Aut(C st)

0 ��
G
γ (C̄ )
m /Gm

�� Aut(C , L)
Ḡ

�� Aut(C st)

where Gm ⊆ G
γ (C̄ )
m is the diagonal embedding. �

Proof. The exactness of the first row is proved using an argument similar to that used

in the proof of [6, Lemma 2.3.2]. We sketch the argument for the sake of completeness.

Let E1, . . . , Em be the exceptional components of C and let X1, . . . , Xγ (C̄ ) be the connected

components of C̄ . We identify each Ei to a copy of P1 attached to the rest of the curve

at the points 0 and ∞. An element (σ, ψ) ∈ Aut(C , L) belongs to the kernel of the map

Aut(C , L)→ Aut(C st) if and only if σ|C̄ = idC̄ and σ acts as multiplication by mi ∈ Gm(k)=
k∗ on the exceptional component Ei. If we restrict the isomorphism ψ : L

∼=→ σ ∗(L) to C̄ ,
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On the Birational Geometry of P̄d,g 751

we get that ψ is the fiberwise multiplication by l j ∈ Gm(k)= k∗ on each line bundle L |X j .

The scalars mi are uniquely determined by the scalars l j: if 0 ∈ Ei lies on the component

X j and ∞ ∈ Ei lies on the component Xh (possibly with j = h), then by the compatibility

between σ and ψ we get that mi = l j/ lh (see the proof of [6, Lemma 2.3.2]). Therefore, the

element (σ, ψ) is uniquely determined by the scalars l1, . . . , lγ (C̄ ) and we are done.

From the above proof, it is clear that the homomorphisms corresponding to the

diagonal embedding Gm ↪→ G
γ (C̄ )
m are exactly the fiberwise automorphisms on L, hence

the exactness of the second row follows. �

Corollary 2.12. If (C , L) is stably balanced then Aut(C , L) is a subgroup of Aut(C st). In

particular, Aut(C , L) is a finite group. �

Proof. The first assertion follows from the last row of the diagram in Lemma 2.11

together with the fact that if L is stably balanced on C then C̄ must be connected by

Lemma 2.6. The last assertion follows from the first one together with the well-known

fact that the automorphism group of a stable curve is finite. �

2.3 The local structure of P̄d,g

The complete local ring Ô P̄d,g,(C ,L) of P̄d,g at a point (C , L) can be described using the

deformation theory of pairs (C , L), which can be found in [37, Section 3.3.3] for C smooth

and has been extended to the singular case in [41].

Let us recall the results of [41]. We denote by P1
C (L) the sheaf of one jets (or sheaf

of principle parts) of L on C [41, Section 2]. The sheaf P1
C (L) fits into an exact sequence

(see [41, Equation (2.1)])

0 →Ω1
C →P1

C (L)⊗ L−1 →OC → 0. (6)

Explicitly, the above extension (6) can be described as follows (see [37, p. 145]). Let O∗
C →

Ω1
C be the homomorphism of sheaves given by sending u∈ Γ (U,O∗

C ) into du
u ∈ Γ (U,Ω1

C ) for

any open subset U ⊆ C . By passing to cohomology, we get a group homomorphism θC :

Pic(C )= H1(C ,O∗
C )→ H1(C ,Ω1

C ). By using the identification H1(C ,Ω1
C )

∼= Ext1(OC ,Ω
1
C ),

the map θC sends the line bundle L to the class of the extension (6).

Wang [41] proves that the sheaf P1
C (L) controls the tangent and obstruction the-

ory of the pair (C , L). Let us denote by Def(C ,L) the functor of infinitesimal deformations

of the pair (C , L) (see [37, p. 146]) and by TDef(C ,L) the tangent space to Def(C ,L) (in the sense

of [37, Lemma 2.2.1]).

 at U
niversitÃ

  degli Studi di M
ilano on N

ovem
ber 6, 2012

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


752 G. Bini et al.

Theorem 2.13 ([41]).

(i) We have that TDefC ,L) = Ext1(P1
C (L), L).

(ii) An obstruction space for Def(C ,L) is given by Ext2(P1
C (L), L). �

Proof. Part (i) is [41, Theorem 3.1(1)]; Part (ii) is [41, Theorem 4.6(a)]. �

Moreover, the infinitesimal automorphisms of the pair (C , L) are governed by

Ext0(P1
C (L), L), as shown by the following lemma.

Lemma 2.14. The tangent space of Aut(C , L) at the identity is equal to Ext0

(P1
C (L), L). �

Proof. The lemma is certainly well known to the experts, at least in the case where C

is smooth. However, we include a proof for the lack of a suitable reference.

According to the discussion in Section 2.2, we have an exact sequence of groups

0 → Gm → Aut(C , L)→ StabL(Aut(C ))→ 0,

where StabL(Aut(C )) is the stabilizer of L in Aut(C ), that is, the subgroup of Aut(C )

consisting of all the automorphisms σ of C such that σ ∗(L)∼= L. In other words,

StabL(Aut(C )) is the image of Aut(C , L) via the map F of (5). By passing to the tangent

spaces at the origin, we get

0 → T0Gm = k→ T0Aut(C , L)→ T0StabL(Aut(C ))→ 0, (7)

where we have denoted by 0 the identity element in each of the above groups.

On the other hand, by dualizing (6), we get the short exact sequence

0 →OC →P1(L)∨ ⊗ L → TC → 0. (8)

Passing to cohomology, we get the exact sequence

0 → H0(C ,OC )= k→ H0(C ,P1(L)∨ ⊗ L)
p→ H0(C , TC ). (9)

Compare now the exact sequences (7) and (9). Since T0Aut(C )= H0(C , TC ) by [37,

Proposition 2.6.2] and clearly Ext0(P1(L), L)= H0(C ,P1(L)∨ ⊗ L), it is enough to
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show that

T0StabL(Aut(C ))= Im(p). (10)

Let U = {Uα} be an affine open covering of C trivializing L and let fαβ ∈ Γ (Uαβ,O∗
C ) the

transition functions of L with respect to U , where as usual Uαβ := Uα ∩ Uβ . Then θC (L) ∈
H1(C ,Ω1

C ) is represented by the Čech 1-cocycle (dfαβ
fαβ
) ∈ Z1(U ,Ω1

C ) (see [37, p. 145]). From

the exact sequence (8), it follows that the sheaf (P1(L)∨ ⊗ L)|Uα
is isomorphic to (OC )Uα

⊕
(TC )|Uα

and an element of Ext0(P1(L), L)= H0(C ,P1(L)∨ ⊗ L) is represented by a Čech

0-cochain

(kα,dα) ∈ C 0(U ,P1(L)∨ ⊗ L)= C 0(U ,OC )⊕ C 0(U , TC ),

which satisfies the cocycle conditions: dα = dβ and kβ − kα = dα( fαβ )
fαβ

on Uαβ = Uα ∩ Uβ (see

[37, p. 145]). Since the fαβ ’s are the transition functions of L, we conclude that the image

of p consists of all the Čech 0-cocycles (dα) ∈ Z0(U , TC ) corresponding to the infinitesimal

automorphisms of C which preserve the line bundle L. In other words, (10) is satisfied

and we are done. �

We can now compute the dimension of the vector spaces Exti(P1
C (L), L).

Lemma 2.15. We have that

dim Exti(P1
C (L), L)= 0 for i ≥ 2,

dim Ext1(P1
C (L), L)= 4g − 4 + γ (C̄ ),

dim Ext0(P1
C (L), L)= γ (C̄ ). �

Proof. By applying the functor Hom(−,OC ) to the exact sequence (6) and using that

Ext≥2(OC ,OC )= H≥2(C ,OC )= 0 since C is a curve and that Ext≥2(Ω1
C ,OC )= 0 by [9,

Lemma 1.3], we get the vanishing Ext≥2(P1
C (L), L)= 0. The fact that Ext0(P1

C (L), L)= γ (C̄ )

follows from Lemmas2.11 and 2.14. Finally, from the exact sequence (6), we get

dim Ext0(P1
C (L), L)− dim Ext1(P1

C (L), L)

= dim Ext0(OC ,OC )− dim Ext1(OC ,OC )+ dim Ext0(Ω1
C ,OC )− dim Ext1(Ω1

C ,OC )

= −(g − 1)− (3g − 3)= −(4g − 4),

from which we conclude. �
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We can now prove that the functor Def(C ,L) has a semiuniversal formal element

(in the sense of [37, Definition 2.2.6]).

Proposition 2.16.

(i) The functor Def(C ,L) has a semiuniversal formal element Def(C ,L).

(ii) Def(C ,L) is equal to the formal spectrum of k[[x1, . . . , x4g−4+γ (C̄ )]]. �

Proof. Part (i) is proved in [37, Theorem 3.3.11(i)] in the case where C is smooth. The

proof of [37] consists in showing that Schlessinger’s conditions are satisfied and this

extends to the case where C is nodal: the crucial point of the proof is showing that

TDef(C ,L) is finite dimensional, and this follows in our case from Theorem 2.13(i).

From Theorem 2.13 and Lemma 2.15, it follows that Def(C ,L) is formally smooth

and that the dimension of the tangent space at its unique closed point is 4g − 4 + γ (C̄ ),

from which part (ii) follows. �

Now we can describe the complete local ring Ô P̄d,g,(C ,L) of P̄d,g at a point

(C , L). Note that the automorphism group Aut(C , L) acts on Def(C ,L) (hence on

C[[x1, . . . , x4g−4+γ (C̄ )]]) by the semiuniversality of Def(C ,L). By a standard argument based

on Luna’s étale slice theorem (see [29, p. 97] and also [24, Section II; 10, Section 7.4]), the

formal spectrum (which we denote by Spf) of the complete local ring Ô P̄d,g,(C ,L) of P̄d,g at

the point (C , L) ∈ P̄d,g is given by

SpfÔ P̄d,g,(C ,L) = Def(C ,L)/Aut(C , L), (11)

where Def(C ,L)/Aut(C , L) is the quotient of Def(C ,L) with respect to the natural action of

Aut(C , L). In other words, Def(C ,L)/Aut(C , L) is equal to the formal spectrum of the ring

of invariants C[[x1, . . . , x4g−4+γ (C̄ )]]Aut(C ,L) (see Proposition 2.16).

Clearly, the scalar automorphisms Gm ⊆ Aut(C , L) act trivially on Def(C ,L) and

thus we get the alternative description:

SpfÔ P̄d,g,(C ,L) = Def(C ,L)/Aut(C , L). (12)

Note that, from the above description and Lemma 2.11, it follows that P̄ st
d,g is the

open subset of P̄d,g consisting of pairs (C , L) ∈ P̄d,g such that C̄ is connected.
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We can similarly describe the morphism φd : P̄d,g → M̄g locally at (C , L) ∈
P̄d,g. Denote by DefC (resp. DefC st ) the semiuniversal formal element associated to

the infinitesimal deformation functor DefC (resp. DefC st ) of C (resp. C st), see [37,

Corollary 2.4.2].

Locally at (C , L) ∈ P̄d,g, the morphism φd : P̄d,g → M̄g is given by

SpfÔ P̄d,g,(C ,L) = Def(C ,L)/Aut(C , L)→ SpfÔM̄g,C st = DefC st/Aut(C st), (13)

where the homomorphism of groups Aut(C , L)→ Aut(C st) is the one given by Lemma 2.11

and the morphism Def(C ,L) → DefC st is the composition of the forgetful morphism

Def(C ,L) → DefC with the stabilization morphism DefC → DefC st . The induced morphism

at the level of tangent spaces

TDef(C ,L) = Ext1(P1
C (L), L)→ TDefC st = Ext1(Ω1

C st ,OC st) (14)

is given by composing the morphism Ext1(P1
C (L), L)→ Ext1(Ω1

C ⊗ L , L)= Ext1(Ω1
C ,OC )

induced by the exact sequence (6) with the morphism Ext1(Ω1
C ,OC )→ Ext1(ΩC st ,OC st)

induced by the stabilization map C → C st. More precisely, let f : C → C st be the stabi-

lization morphism and denote by L f∗ (resp. Rf∗) the left-derived functor of f∗ (resp. the

right-derived functor of f∗). We have a natural map

Ext1(Ω1
C ,OC )→ Ext1(L f∗Ω1

C st ,OC )= Ext1(Ω1
C st ,OC st). (15)

The first map in (15) is induced by the composite map L f∗Ω1
C st → L0 f∗Ω1

C st = f∗Ω1
C st →

Ω1
C in the derived category of coherent sheaves on C . The equality in (15) follows from

the adjointness of the functors L f∗ and Rf∗ between the derived category of coherent

sheaves on C and on C st, together with the fact that Rf∗OC
∼=OC st because f is a sequence

of blow-ups with projective spaces as fibers.

3 The Fibration φd : P̄d,g → M̄g

The aim of this section is to prove Proposition 3.2, which gives the second part of

Theorem 1.3.

To this aim, we analyze the natural morphism φd : P̄d,g → M̄g. Note that φd is a

regular fibration (i.e., a proper, surjective morphism with connected fibers), whose gen-

eral fiber is the degree-d Jacobian Picd
(C ) of a general [C ] ∈ M̄g. Following Kawamata
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(see [23, Section 1 and Corollary 7.3]), we define the variation Var(φd) of φd to be

Var(φd)= dim M̄g − dim Ker(δC ), (16)

where

δC : TM̄g,C = H1(C , TC )→ H1(Picd
(C ), TPicd(C )) (17)

is the Kodaira–Spencer map associated to φd at a general point C ∈ M̄g.

Lemma 3.1. The algebraic fiber space φd : P̄d,g → M̄g has a maximal variation, that is,

Var(φd)= 3g − 3. �

Proof. By (16), we have to prove the injectivity of the Kodaira–Spencer map δC for a

general curve C ∈ M̄g.

We will reinterpret the above Kodaira–Spencer map as a composition of certain

maps that were studied in [35, Section 2], in their analysis of the local Torelli problems

for curves. We need to recall their setting, with the simplification that, since we are

only interested in the general curve, we can work directly with the coarse moduli spaces

Mg and Ag (where, as usual, Ag denotes the coarse moduli space of principally polarized

abelian varieties of dimension g), without having to pass to their n-level covers. Consider

the following commutative diagram (see [35, p. 169]):

TMg,C

kC

∼=
��

dtg

��

H1(C , TC )

du��

H1(C ,u∗TPicd(C ))

TAg,Picd(C ) kPicd(C )

��������

H1(Picd
(C ), TPicd(C ))

∼= u∗

��

where u: C → Picd
(C ) is an Abel–Jacobi map (well defined only up to translation), tg :

Mg → Ag is the classical Torelli map, kC is the Kodaira–Spencer map in C associated to

the universal family over an open subset of Mg containing C and kPicd(C ) is the Kodaira–

Spencer map in Picd
(C ) associated to the universal family over an open subset of Ag
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containing Picd
(C ). The map kC is an isomorphism (see, e. g. [35, Theorem 2.2]) and the

map u∗ is an isomorphism since TPicd(C ) is the trivial bundle of rank g and

u∗ : H1(Picd
(C ),OPicd(C ))

∼=−→ H1(C ,OC ).

It is easy to see that

δC = kPicd(C ) ◦ dtg = (u∗)−1 ◦ du◦ kC .

Therefore, the injectivity of δC is equivalent to the injectivity of du. According to [35,

Theorem 2.6], the map du is the dual of the multiplication map

μ : H0(C , ωC )⊗ H0(C , ωC )→ H0(C , ω⊗2
C ),

which is well known (Noether’s theorem) to be surjective if g = 2 or if g ≥ 3 and C is not

hyperelliptic. Since we assumed C to be generic, we deduce the injectivity of δC and we

are done. �

Proposition 3.2.

(1) We have that κ( P̄d,g)≤ 3g − 3.

(2) If κ(M̄g)≥ 0, then κ( P̄d,g)= 3g − 3 and the map φd : P̄d,g → M̄g is the Iitaka

fibration of P̄d,g. �

Proof. The subaddivity of the Kodaira dimension (see [39, Theorem 6.12]) applied to the

regular fibration φd gives that

κ( P̄d,g)≤ dim M̄g + κ(φ−1
d (C )),

for a general C ∈ M̄g. Since, for a general C ∈ M̄g, the fiber φ−1
d (C )= Picd

(C ) is an abelian
variety, we have that κ(φ−1

d (C ))= 0, which proves part (1).

Assume now that κ(M̄g)≥ 0. Observe that Picd
(C ) is a good minimal model, since

it is smooth and the canonical KPicd(C ) is trivial and thus clearly semi-ample. Therefore,

the Iitaka conjecture (in the stronger form of [23, p. 1]) does hold true by [23, Corollary

1.2] and gives that

κ( P̄d,g)≥ κ(φ−1
d (C ))+ max{κ(M̄g),Var(φd)} = 3g − 3,

using the above Lemma 3.1. This, combined with part (1), proves that κ( P̄d,g)= 3g − 3.
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The last part follows from the birational characterization of the Iitaka fibra-

tion (see, e. g. [39, Theorem 6.11]) since φd : P̄d,g → M̄g is an algebraic fiber space such

that dim M̄g = κ( P̄d,g) and the generic fiber φ−1
d (C )= Picd

(C ) is smooth and irreducible of

Kodaira dimension zero. �

4 The Singularities of P̄ st
d,g

The purpose of this section is to study the singularities of P̄d,g with the aim of prov-

ing Theorem 1.4. More generally, we will prove a similar statement (see Theorem 4.8)

for the open subvariety P̄ st
d,g ⊆ P̄d,g of (2.1) and for any degree d. Since P̄ st

d,g = P̄d,g if (and

only if) (d+ 1 − g,2g − 2)= 1 (by [3, Proposition 6.2]), Theorem 1.4 is a special case of

Theorem 4.8. The need of restricting ourselves to the open subset P̄ st
d,g is due to the fact

that P̄ st
d,g has finite quotient singularities and therefore we can apply the Reid–Tai cri-

terion for the canonicity of finite quotient singularities (see, e.g. [22, pp. 27–28] or [27,

Theorem 4.1.11]). For simplicity, we assume throughout this section that g ≥ 4 in order

to avoid problems with the hyperelliptic locus in M̄g.

In the analysis of the singularities of P̄ st
d,g, the pairs (C , L) ∈ P̄ st

d,g such that C

contains an elliptic tail will play a special role. Let us give some definitions.

Definition 4.1. A connected subcurve E of a quasi-stable curve C is called an elliptic

tail if it has arithmetic genus 1 and meets the rest of the curve in exactly one node P

which is called an elliptic tail node. �

The following remark is straightforward.

Remark 4.2. If a quasi-stable curve C has an elliptic tail E ⊆ C then the image Est :=
st(E)⊆ C st of E via the stabilization morphism st : C → C st is an elliptic tail of C st. Con-

versely, if C st has an elliptic tail E ′ ⊆ C st, then E := st−1(E ′) is an elliptic tail of C such

that E ′ = Est. �

In the next lemma, we describe the pairs (C , L) ∈ P̄ st
d,g such that C has an elliptic

tail E ⊆ C .

Lemma 4.3. Let (C , L) ∈ P̄ st
d,g such that C has an elliptic tail E ⊆ C . Then we have:
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Fig. 1. The possible elliptic tails of a quasi-stable curve C such that (C , L) ∈ P̄ st
d,g for some line

bundle L.

(i) d �≡ g − 1 mod (2g − 2) and the degree degE (L) of L on E is the unique

integer dE such that

− 1

2
<dE − d

2g − 2
<

1

2
; (18)

(ii) the elliptic tail node P does not belong to Cexc;

(iii) E is either smooth or it is a rational (irreducible) curve with one node Q or

it is formed by two smooth rational curves R1 and R2 meeting in two points

Q1 and Q2, as depicted in Figure 1. �

Proof. The equation (18) follows from the basic inequality (3) applied to the subcurve

E ⊆ C together with the fact that the inequalities must be strict since clearly E �⊆ Cex

and L is stably balanced by the hypothesis that (C , L) ∈ P̄ st
d,g. The fact that d �≡ g − 1

mod (2g − 2) follows from the fact that there exists an integer dE satisfying the strict

inequalities in (18). This proves part (i).

Next we turn to Part (ii). By contradiction, if P ∈ R where R is an exceptional

component of C , then Rc is a disjoint union of two subcurves of C each of which contains

some components of C̄ . Therefore C̄ is disconnected and this contradicts the hypothesis

that (C , L) ∈ P̄ st
d,g by Lemma 2.6.

Part (iii) follows from the fact that C is quasi-stable together with Part (ii) and

the fact that Est is either a smooth elliptic curve (which occurs for Type I) or a rational

irreducible curve with one node Q (which occurs for Types II and III). �
The elements (C , L) ∈ P̄d,g such that C has an elliptic tail E have special

automorphisms that will play a key role in the sequel.
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Definition 4.4. Given an element (C , L) ∈ P̄d,g such that C has an elliptic tail E , an auto-

morphism φ = (σ, ψ) ∈ Aut(C , L) (or its image in Aut(C , L)) is called an elliptic tail auto-

morphism of (C , L) of order n≥ 1 (with respect to the elliptic tail E ⊆ C ) if σ is the iden-

tity on C \ E and σ|E has order n. �

The assumption that (C , L) belongs to P̄ st
d,g puts some constraints on the possible

elliptic tail automorphisms that can occur. Indeed, under this assumption, using that

the map Ḡ : Aut(C , L)→ Aut(C st) is injective (see Corollary 2.12), we deduce immediately

the following:

Remark 4.5. Given (C , L) ∈ P̄ st
d,g, an element φ ∈ Aut(C , L) is an elliptic tail automor-

phism of order n≥ 1 with respect to the elliptic tail E ⊆ C if and only if G(φ) ∈ Aut(C st)

(see the notation of Lemma 2.11) is an elliptic tail automorphism of order n of C st with

respect to the elliptic tail Est ⊆ C st, that is, G(φ) is the identity on C st \ Est and G(φ)|Est

has order n. �

Using this remark, we can give a complete description of the possible elliptic tail

automorphisms of elements (C , L) ∈ P̄ st
d,g.

Lemma 4.6. Assume that (C , L) ∈ P̄ st
d,g and that C has an elliptic tail E ⊆ C . For an ellip-

tic tail automorphism φ = (σ, ψ) ∈ Aut(C , L) of (C , L) of order n> 1 with respect to the

elliptic tail E ⊆ C , the restriction σ|E of σ to E must satisfy the following conditions

(according to whether the elliptic tail E is of Type I, II or III as in Lemma 4.3(iii)):

(i) Type I: σ|E is an automorphism of E fixing P and n= 2 or n= 4 (which can

occur if and only if E has j-invariant equal to 1728) or n= 3,6 (which can

occur if and only if E has j-invariant equal to 0).

(ii) Type II: σ|E is an automorphism of order n= 2 fixing P and Q. If we call

ν : Eν → E the normalization map and identify Eν with P1 in such a way that

ν−1(P )= ∞ and ν−1(Q)= {1,−1}, then the automorphism σ|E is induced by

the automorphism x �→ −x on P1.

(iii) Type III: σ|E is an automorphism of order n= 2 such that, if we identify Ri

(for i = 1,2) with P1 in such a way that Q1 and Q2 get identified with 1 and

−1 (on both copies of P1) and P ∈ R1 gets identified with ∞, then σ|Ri (for

i = 1,2) is equal to the automorphism x �→ −x on P1. In particular, σ|E fixes

P and exchanges Q1 with Q2. �
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Proof. Parts (i) and (ii) follow easily from Remark 4.5 together with the fact that Est ∼= E

for Types I and II and the well-known description of the elliptic tail automorphisms of

stable curves (see, e.g. [27, Remark 4.2.2]).

In order to prove Part (iii), observe that in this case Est ⊆ C st is a rational curve

with one node. Therefore, there exists a unique elliptic tail automorphism of C st with

respect to Est, namely the automorphism σ whose restriction σ|E is described in Part (ii).

We conclude by Remark 4.5 together with the fact that the elliptic tail automorphism

of (C , L) described in Part (iii) is the unique (by Corollary 2.12) lift to Aut(C , L) of the

elliptic tail automorphism of C st with respect to Est described in Part (ii). �

We can now determine the singular locus of P̄ st
d,g.

Proposition 4.7. The singular locus of P̄ st
d,g (for g ≥ 4) is exactly the locus of pairs (C , L)

such that Aut(C , L) is not trivial. �

Proof. Near a point (C , L) ∈ P̄ st
d,g, using the local description (12) and Corollary 2.12, the

scheme P̄ st
d,g is isomorphic to the finite quotient

TDef(C ,L) /Aut(C , L),

where TDef(C ,L) is a C-vector space of dimension 4g − 3 (by Proposition 2.16(ii)) and

Aut(C , L) can be naturally identified with a finite subgroup of GL(TDef(C ,L) ).

By a well-known result of Prill (see [36]), it is enough to prove that Aut(C , L)⊆
GL(TDef(C ,L) ) does not contain quasi-reflections, that is, elements φ such that 1 is an eigen-

value of φ with multiplicity equal to 4g − 4 or, equivalently, such that the fixed locus

Fix(φ) of φ is a divisor inside TDef(C ,L) .

Consider the morphism φd : P̄d,g → M̄g which, according to (14), locally looks like

TDef(C ,L) /Aut(C , L)→ TDefC st /Aut(C st),

where TDef(C ,L) � TDefC st is surjective with kernel V of dimension g and Aut(C st) can be

naturally identified with a finite subgroup of GL(TDefC st ).

Assume, by contradiction, that φ ∈ Aut(C , L)⊆ GL(TDef(C ,L) ) is a quasi-reflection.

By the above local description of the morphism φd, there are two possibilities for the

image Ḡ(φ) of φ in Aut(C st)⊆ GL(TDefC st ) via the homomorphism Ḡ of Lemma 2.11:

(i) 1 is an eigenvalue of multiplicity 3g − 3 for Ḡ(φ), that is, Ḡ(φ)= id ∈
Aut(C st);
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(ii) 1 is an eigenvalue of multiplicity 3g − 4 for Ḡ(φ), that is, Ḡ(φ) is a quasi-

reflection for Aut(C st)⊆ GL(TDefC st ).

In case (i), we conclude that φ = id ∈ Aut(C , L) since Ḡ is injective for an element

(C , L) ∈ P̄ st
d,g by Corollary 2.12. This contradicts the fact that φ is a quasi-reflection.

In case (ii), it is well known (see, e.g. [27, Corollary 4.2.6]) that C st must have an

elliptic tail E and Ḡ(φ) must be equal to the elliptic tail automorphism i of C st of order

2 with respect to E (see Lemma 4.6). Since i = Ḡ(φ) admits a lifting to Aut(C , L), namely

φ, the line bundle L on C must be such that the restriction L |E of L to E is a suitable

translate of a 2-torsion point of Pic0
(E) (using some identification PicdE (E)∼= Pic0

(E) and

the fact that i acts on Pic0
(E) sending η into η−1). Therefore, the fixed locus Fix(φ) of φ

inside TDef(C ,L) has codimension at least 2, hence φ is not a quasi-reflection. �

By applying the Reid–Tai criterion for canonical singularities, we can prove the

following result.

Theorem 4.8. Assume g ≥ 4. Then the stable locus P̄ st
d,g has canonical singularities. In

particular, if ˜̄P st
d,g is a resolution of singularities of P̄ st

d,g, then every pluricanonical form

defined on the smooth locus ( P̄ st
d,g)

reg of P̄ st
d,g extends holomorphically to ˜̄P st

d,g, that is, for

all integers m we have

h0(( P̄ st
d,g)

reg,mK( P̄ st
d,g)

reg)= h0(˜̄P st
d,g,mK˜̄P st

d,g
). �

Proof. We use the notation introduced in the proof of Proposition 4.7.

Given an element φ ∈ Aut(C , L)⊆ GL(TDef(C ,L) ) of order n, we can choose suitable

coordinates of TDef(C ,L) and a primitive nth root of unity ζ , such that the action of φ on

TDef(C ,L) is given by the sum M(φ)⊕ N(φ) of two matrices (with 0 ≤ ai <nfor 1 ≤ i ≤ 4g − 3):

M(φ)=

⎛⎜⎜⎝
ζa1 0

. . .

0 ζ a3g−3

⎞⎟⎟⎠ and N(φ)=

⎛⎜⎜⎝
ζ a3g−2 0

. . .

0 ζ a4g−3

⎞⎟⎟⎠
in such a way that the action of φ on V is given by N(φ) and the action of Ḡ(φ) on TDefC st

is given by M(φ).

Recall that, according to the Reid–Tai criterion for the canonicity of finite

quotient singularities (see, e.g. [22, pp. 27–28] or [27, Theorem 4.1.11]), a point (C , L)
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On the Birational Geometry of P̄d,g 763

is a canonical singularity if and only if for every φ ∈ Aut(C , L) of some order n and every

nth root of unity ζ we have
4g−3∑
i=1

ai

n
≥ 1. (19)

Note that this is true because Aut(C , L) does not contain quasi-reflections (see the proof

of Proposition 4.7).

Denote, as usual, by Δ1 the divisor of M̄g consisting of curves having an elliptic

tail. If C st �∈Δ1 or C st ∈Δ1 but Ḡ(φ) is not an elliptic tail automorphism (or equivalently,

by Remark 4.5, φ is not an elliptic tail automorphism) then by [22, Theorem 2] we get

4g−3∑
i=1

ai

n
≥

3g−3∑
i=1

ai

n
≥ 1,

and we are done in this case.
If C st ∈Δ1 and Ḡ(φ) is an elliptic tail automorphism with respect to the elliptic

tail Est ⊂ C st (where Est is equal to the image via st : C → C st of the elliptic tail E ⊂ C

as in Remark 4.2) then we choose, as in [27, Proposition 4.2.5], the first two coordinates

t1 and t2 of TDefC st in such a way that (in the notation of Lemma 4.3): t1 corresponds to

the elliptic tail node P and t2 correspond to Q if Est is singular and is a coordinate for

T(E,P )(M1,1) if E is smooth. In [27, Proposition 4.2.5], it is proved that the matrix M(φ) is

given by (depending on the choice of the primitive nth root of unity ζ ):

M(φ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎝
ζ 1

ζ 0

I

⎞⎟⎟⎟⎠ if n= 2,

⎛⎜⎜⎜⎝
ζ 1

ζ 2

I

⎞⎟⎟⎟⎠ or

⎛⎜⎜⎜⎝
ζ 3

ζ 2

I

⎞⎟⎟⎟⎠ if n= 4,

⎛⎜⎜⎜⎝
ζ 1

ζ 2

I

⎞⎟⎟⎟⎠ or

⎛⎜⎜⎜⎝
ζ 2

ζ 1

I

⎞⎟⎟⎟⎠ if n= 3,

⎛⎜⎜⎜⎝
ζ 5

ζ 4

I

⎞⎟⎟⎟⎠ or

⎛⎜⎜⎜⎝
ζ 1

ζ 2

I

⎞⎟⎟⎟⎠ if n= 6,

(20)

where I is the suitable unit matrix.
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Let us now turn to the matrix N(φ). We choose the first coordinate s1 on V so

that it is a coordinate for TL |E (PicdE (E)), where dE is defined in Lemma 4.3(i). In order

to compute the action of φ on s1, we distinguish three cases according to whether the

elliptic tail E ⊂ C is of Type I, II or III (see Lemma 4.3(iii) and Figure 1).

If E is of Type I, that is, E is smooth, then we can identify E with PicdE (E)

sending q ∈ E into OE (q + (dE − 1)P ) ∈ PicdE (E). Since φ acts on PicdE (E) via pull-back,

if the action of Ḡ(φ) on TP (E) is given by the multiplication by a root of unity ζ , then the

action of φ on TL |E (PicdE (E)) is given by the multiplication by ζ−1. Therefore, the matrix

N(φ) is equal to (with respect to the same choice of the primitive nth root of unity ζ as

in the above matrix M(φ)):

N(φ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝ζ 1

I

⎞⎠ if n= 2,⎛⎝ζ 3

I

⎞⎠ or

⎛⎝ζ 1

I

⎞⎠ if n= 4,⎛⎝ζ 2

I

⎞⎠ or

⎛⎝ζ 1

I

⎞⎠ if n= 3,⎛⎝ζ 1

I

⎞⎠ or

⎛⎝ζ 5

I

⎞⎠ if n= 6.

(21)

If E is of type II, that is, E is an irreducible rational curve with one node Q

(as in Figure 1), then PicdE (E)∼= Gm. Explicitly, if we consider the normalization mor-

phism ν : Eν ∼= P1 → E and let ν−1(Q)= {u, v}, then any λ ∈ Gm(k) determines a unique

line bundle Lλ ∈ PicdE (E) whose local sections are the local sections s of OP1(dE ) such

that s(u)= λs(v). Since φ|E is induced by an involution of Eν that exchanges u and v (by

Lemma 4.6(ii)), then clearly φ will send Lλ into Lλ−1 . This implies that the action of φ on

TL |E (PicdE (E)) is given by multiplication by −1, hence the matrix N(φ) is also in this case

given by (21) with n= 2.

If E is of type III, that is, E is made of two irreducible rational components

R1 and R2 meeting in two points Q1 and Q2 (as in Figure 1), then again PicdE (E)∼= Gm.

Explicitly, if we consider the normalization morphism ν : Eν = R1
∐

R2 → E and let

ν−1(Qi)= {ui, vi} with ui ∈ R1 and vi ∈ R2 (for i = 1,2), then any λ ∈ Gm(k) determines a

unique line bundle Lλ ∈ PicdE (E) whose local sections are pairs of local sections (s1, s2)

of (OR1(dE − 1),OR2(1)) such that

s1(u1)

s1(u2)
= λ

s2(v1)

s2(v2)
.
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Since φ|E is induced by an involution of Eν that exchanges u1 with u2 and v1 with v2 (by

Lemma 4.6(iii)), then clearly φ will send Lλ into Lλ−1 . This implies that the action of φ on

TL |E (PicdE (E)) is given by multiplication by −1, hence the matrix N(φ) is also in this case

given by (21) with n= 2.

An easy inspection of the matrices M(φ) in (20) and N(φ) in (21) reveals that the

condition (19) is always satisfied, which shows that P̄ st
d,g has canonical singularities.

The last assertion of the theorem follows from the well-known fact that canoni-

cal singularities do not impose adjoint conditions on the pluricanonical forms. �

5 The canonical class of Picd,g and of P̄d,g

The aim of this section is to prove Theorem 1.5. To achieve that, we first determine the

canonical class of the stack Picd,g.

Theorem 5.1. The canonical class of Picd,g is equal to

KPicd,g
=Φ∗

d(14λ− 2δ),

where λ and δ are the Hodge and total boundary class on M̄g. �

Proof. Let π :Picd,g,1 →Picd,g the universal family over Picd,g and Ld the universal line

bundle over Picd,g,1 (see [31] for a modular desc-ription of Picd,g,1). Denote by Ωπ and ωπ

the sheaf of relative Kähler differentials and the relative dualizing sheaf, respectively.

Let d :O∗
Picd,g,1

→Ωπ be the universal derivation and consider the map induced in coho-

mology θ : Pic(Picd,g,1)→ H1(Picd,g,1,Ωπ). Since H1(Picd,g,1,Ωπ)∼= Ext1(OPicd,g,1
,Ωπ), the

map θ sends the line bundle Ld on Picd,g,1 into the class of an extension

0 →Ωπ → E →OPicd,g,1
→ 0. (22)

The restriction of the above extension (22) to a geometric fiber (C , L) of π is the extension

(6) as it follows from the discussion in Section 2.3.

From this and the analysis of the deformation theory of the pair (C , L) carried

out in Section 2.3, it follows that the tangent space of Picd,g at a geometric point (C , L)

is equal to Ext1(E|C ,OC )− Ext0(E|C ,OC ) Therefore, using relative duality for π , it follows

that the canonical class KPicd,g
of Picd,g is equal to

KPicd,g
= c1(π!(E ⊗ ωπ)).
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To compute this class, we apply the Grothendieck–Riemann–Roch Theorem for quotient

stacks [11] relative to the morphism π :

ch(π!(ωπ ⊗ E))= π∗(ch(ωπ ⊗ E) · Td(Ωπ)
−1). (23)

Let us compute the degree one part of the right-hand side of (23). We set K̃ :=
c1(ωπ) and η̃ := c2(Ωπ). Note that, as remarked in [21, p. 158], we have K̃ = c1(Ωπ).

The first three terms of inverse of the Todd class of Ωπ are equal to

Td(Ωπ)
−1 = 1 − c1(Ωπ)

2
+ c2

1(Ωπ)+ c2(Ωπ)

12
+ · · · = 1 − K̃

2
+ K̃2 + η̃

12
+ · · · . (24)

Using (22), we get

ch(E ⊗ ωπ)= ch(E) · ch(ωπ)= (ch(Ωπ)+ ch(OPicd,g,1
)) · ch(ωπ)= (ch(Ωπ)+ 1) · ch(ωπ). (25)

Moreover, we have

ch(ωπ)= 1 + c1(ωπ)+ c1(ωπ)

2
+ · · · = 1 + K̃ + K̃2

2
+ · · · ,

ch(Ωπ)= 1 + c1(Ωπ)+ c1(Ωπ)

2
− c2(Ωπ)+ · · · = 1 + K̃ + K̃2

2
− η̃ + · · · .

Substituting into (25), we arrive at

ch(E ⊗ ωπ)= 2 + 3K̃ + 5
2 K̃2 − η̃ + · · · . (26)

Combining (24) and (26), we get

[ch(ωπ ⊗ E) · Td(Ωπ)
−1]2 = K̃2 + η̃

6
− 3

2
K̃2 + 5

2
K̃2 − η̃= 7

6
K̃2 − 5

6
η̃,

hence, from (23), we deduce

KPicd,g
= 7

6π∗(K̃2)− 5
6π∗(η̃). (27)
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Let us now apply the Grothendieck–Riemann–Roch theorem to the sheaf ωπ . Since

R1π∗ωπ =OPicd,g
by relative duality, we get

c1(π∗ωπ)= π∗

(
K̃2 + η̃

12
− 1

2
K̃2 + 1

2
K̃2

)
= 1

12
π∗(K̃2)+ 1

12
π∗(η̃).

If we set λ̃ := c1(π∗ωπ) and δ̃ := π∗(η̃), then the previous relation becomes 12λ̃= π∗(K̃2)+ δ̃.

Substituting into (27), we obtain

KPicd,g
= 14λ̃− 2δ̃.

The lemma below completes the proof. �

Lemma 5.2. With the notation of Theorem 5.1, we have

λ̃=Φ∗
d(λ) and δ̃ =Φ∗

d(δ). �

Proof. Consider the diagram

Picd,g,1

Φd,1

��

π

��

M̄g,1

π̄

��

Picd,g

Φd

�� M̄g

(28)

Recall that the classes λ and δ on M̄g are defined as

λ := c1(π̄∗(ωπ̄ )) and δ := π̄∗(c2(Ωπ̄ )),

where Ωπ̄ and ωπ̄ are the sheaf of relative Kähler differentials and the relative dualizing

sheaf of π̄ , respectively.

The map Φd sends an element (C → S,L) ∈Picd,g(S) into the stabilization Cst →
S ∈ M̄g(S). Recall that for every quasi-stable (or more generally semistable) curve C with

a stabilization morphism ψ : C → C st, the pull-back via ψ induces a natural isomorphism

ψ∗ : H0(C st, ωC st)
∼=→ H0(C , ωC ). Therefore, we have Φ∗

d(π̄∗(ωπ̄ ))= π∗(ωπ) and, by taking the

first Chern classes, we get λ̃=Φ∗
d(λ).
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On the other hand, since the class δ̃ is the total boundary class of Picd,g and δ is

the total boundary class of M̄g (see [22, pp. 49–50]), it is clear that δ̃ =Φ∗
d(δ). �

Proof of Theorem 1.5. Let p :Picd,g → P̄d,g the natural map from the stack Picd,g to its

good moduli space. In view of Theorem 5.1, it is enough to show that p∗(KP̄d,g
)= KPicd,g

.

Clearly, the two classes agree on the interior Picd,g, since for C varying in an open

subset of Mg whose complement has codimension at least 2 (since g ≥ 4), by Lemma 2.11

we have that Aut(C , L)⊆ Aut(C )= {id}.
Let us now look at the boundary of P̄d,g. By [18, Proposition 4], the boundary of

P̄d,g is the union of the irreducible divisors Di := φ−1
d (Δi), for i = 0, . . . , [g/2]. Let kd,g :=

(2g − 2,d− g + 1). A general element of (C , L) ∈ Di looks as follows (see e.g [3, Ex. 7.1,

7.2; 30, Proposition 2]):

(1) If i = 0, then C is a general irreducible nodal curve with one node and L is a

general line bundle of degree d on C .

(2) If i > 0 and 2g − 2 does not divide (2i − 1) · kd,g, then C is a stable curve

consisting of two general smooth curves C1 and C2 of genera, respectively,

i and g − i meeting in one point and L is a general line bundle of multi-

degree (degC1
(L),degC2

(L))= (d1,d2 = d− d1) where d1 is the unique integer

such that ∣∣∣∣d1 − d(2i − 1)

2g − 2

∣∣∣∣< 1

2
.

(3) If i > 0 and 2g − 2 divides (2i − 1) · kd,g, then C is a quasi-stable curve con-

sisting of two general smooth curves C1 and C2 of genera, respectively, i and

g − i joined by a rational curve R∼= P1 and L is a general line bundle whose

multidegree is such that degR L = 1 and

d1 := degC1
L = d(2i − 1)

(2g − 2)
− 1

2
,

d2 := degC2
L = d(2g − 2i − 1)

(2g − 2)
− 1

2
.

We claim that the automorphism group of a general point (C , L) ∈ Di is equal to

Aut(C , L)=
⎧⎨⎩Gm in cases 1 and 2,

G2
m in case 3.

(29)
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Indeed, by the explicit description above, γ (C̄ )= 1 in cases (1) and (2), and γ (C̄ )= 2 in

case (3). Therefore, the claim will follow from Lemma 2.11 if we show that the image

of Aut(C , L)→ Aut(C st) is trivial. This is trivially true if i �= 1 since in this case C st is a

general curve in Δi, hence Aut(C st)= {id}. If i = 1, then Aut(C st)= Z/2Z generated by the

elliptic tail involution σ with respect to the elliptic tail C1 (see Remark 4.5 and the nota-

tion there). However, in this case, σ comes from an automorphism of the pair (C , L) if and

only if L |C1(−d1 · P ) is a 2-torsion point of Pic0
(C1), where P = C1 ∩ R is the elliptic tail

node of C1. Clearly, this is not the case for a general strictly balanced line bundle L on C .

In cases (1) and (2), Def(C ,L) has dimension 4g − 3 and Aut(C , L)= Gm

acts trivially on it (see Section 2.3). Therefore, the morphism p looks locally at

(C , L) as p̃ : [Def(C ,L)/Gm] = Def(C ,L) × BGm → Def(C ,L). It is clear that in this case

p̃∗(KDef(C ,L) )= KDef(C ,L)×BGm .

In case (3), Def(C ,L) has dimension 4g − 2 (see 2.3). If we choose the first two coor-

dinates x and y of Def(C ,L) in such a way that they correspond to the local deformations

of the two nodes P1 := C1 ∩ R and P2 := C2 ∩ R, then the action of (μ, ν) ∈ Aut(C , L)= G2
m

on the first two coordinates of Def(C ,L) is given by

(μ, ν) · (x, y)= (μν−1x, μ−1νy), (30)

while it is trivial on the other coordinates. Therefore, neglecting the trivial coordinates,

at (C , L) the morphism p looks locally as

X := [SpfC[[x, y]]/G2
m]

p̃−→ SpfC[[x, y]]/G2
m := X.

Since the ring of invariants for the action (30) of G2
m on C[[x, y]] is generated by xy,

the quotient X is isomorphic to SpfC[[xy]]. The quotient map Y := SpfC[[x, y]]
q→ X =

SpfC[[xy]] induces a pull-back map

q∗ : 〈d(xy)〉 =Ω1
X →Ω1

Y = 〈dx,dy〉,

d(xy) �→ x dy + ydx.

On the other hand, the cotangent complex of X is equal to the G2
m-equivariant cotangent

complex of Y := SpfC[[x, y]] (see, e.g. [32, p. 37]), which in our case looks like:

L : 〈dx,dy〉 =Ω1
Y

f→OY ⊗ Lie(G2
m)

∗ =OY ⊗
〈
dλ

λ
,

dμ

μ

〉
.
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The map f is the dual of the infinitesimal action of Lie(G2
m) on Y, hence, by the explicit

action (30), we compute

f(dx)= x
dλ

λ
− x

dμ

μ
,

f(dy)= y
dμ

μ
− y

dλ

λ
.

Since the image of q∗ is equal to the kernel of f , we deduce that p̃∗(KX)= KX , which

concludes the proof. �

6 The Iitaka Dimension of KP̄d,g

The aim of this section is to prove Theorem 1.6. Since KP̄d,g
= φ∗

d(14λ− 2δ) (by

Theorem 1.5) and φd has connected fibers, we have

κ(KP̄d,g
)= κ(14λ− 2δ). (31)

Therefore, we are reduced to study the Iitaka dimension of the divisor 14λ− 2δ on M̄g.

Note that the slope of 14λ− 2δ is equal to 7. Hence, if the slope s(M̄g) of M̄g (in the sense

of Harris–Morrison [20]) is strictly less than 7 then we conclude that 14λ− 2δ is big, that

is, that κ(14λ− 2δ)= 3g − 3; while if s(M̄g) > 7 then 14λ− 2δ is not pseudo-effective and

κ(14λ− 2δ)= −∞ (see the discussion at the beginning of [20]).

Proposition 6.1. If g ≤ 9, then κ(KP̄d,g
)= −∞. �

Proof. This follows by the fact that s(M̄g) > 7 for g ≤ 9 (see [38]). �

Remark 6.2. By combining the above Proposition 6.1 with the inequality (1), we obtain

another proof of the fact that κ(Pd,g)= −∞ for g ≤ 9 and any d (which of course follows

from the stronger Theorem 1.1). �

For g ≥ 12 we can prove the following:

Proposition 6.3. If g ≥ 12, then κ(KP̄d,g
)= 3g − 3 and the fibration φd : P̄d,g → M̄g is the

Iitaka fibration of KP̄d,g
. �
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Proof. We have already observed, in the proof of Proposition 3.2, that if κ(KP̄d,g
)= 3g − 3

then φd : P̄d,g → M̄g is the Iitaka fibration (see [25, Definition 2.1.34]) of KP̄d,g
. Therefore, it

is enough to prove the first assertion. As pointed out before, this will follow if we show

that s(M̄g) < 7 for g ≥ 12.

By computing the class of the Brill–Noether divisor D1
g+1

2

, Harris and Mumford

proved in [22] that

s(M̄g)≤ 6 + 12

g + 1
if g is odd.

Since 6 + 12
g+1 < 7 if and only if g> 11, we get that

s(M̄g) < 7 if g is odd and g ≥ 13. (32)

By computing the class of the Petri divisor E1
g
2 +1, Eisenbud and Harris in [12,

Theorem 2] proved that

s(M̄g)≤ 6 + 14g + 4

g(g + 2)
if g is even.

Since 6 + 14g+4
g(g+2) < 7 if and only if g> 13, we get that

s(M̄g) < 7 if g is even and g ≥ 14. (33)

By computing the slope of some effective divisors on M̄g associated to curves

equipped with secant-exceptional linear series, Cotterill in [8, Section 6.2] showed in

particular that

s(M̄12)≤ 6979 · · ·< 7. (34)

Equations (32)–(34) together imply the result. �

The cases g = 10 and 11 requires a special care since it is known that in this case

s(M̄g)= 7 (see [15, Corollary 1.3; 38]). We start with the case g = 10.

Proposition 6.4. If g = 10, then κ(KP̄d,g
)= 0. �

Proof. Farkas and Popa proved in [15, Theorem 1.6] that the effective irreducible divisor

F (which is denoted by K̄ in [15]) given by the closure of the locus of smooth curves of
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genus 10 lying on a K3 surface has a class equal to

F = 7λ− δ0 − 5δ1 − 9δ2 − 12δ3 − 14δ4 − B5δ5, (35)

with B5 ≥ 6. Since it is easily checked that 14λ− 2δ is the sum of 2F and an effective

boundary divisor, we get, using (31), that κ(KP̄d,g
)= κ(14λ− 2δ)≥ κ(2F )= κ(F )≥ 0.

It remains to prove that h0(M̄10,m(14λ− 2δ))= 1 for any m sufficiently divisible.

Claim 1. If m is sufficiently divisible, then 2mF is contained in the base locus of

|m(14λ− 2δ)|. �

Take D ∈ |m(14λ− 2δ)| and let r be the multiplicity of F inside D. Consider a

Lefschetz pencil of curves of genus 10 lying on a general K3 surface of degree 18 in P10.

This gives rise to an irreducible curve B in the moduli space M̄10. Such pencils B fill

the divisor F , by results of Mukai [33]. Therefore B is not contained in the support of

D − rF , hence (D − rF ) · B ≥ 0. Using the well-known formulas λ · B = g + 1 = 11, δ0 · B =
6(g + 3)= 78, δi · B = 0 for i ≥ 1 (see, e. g. [15, Lemma 2.1]), together with the expression

(35), we get that

0 ≤ (D − rF ) · B = (2m − r)[(7λ− δ0) · B] = r − 2m,

which concludes the proof of the claim.

From the previous claim, it follows that

h0(M̄10,m(14λ− 2δ))= h0(M̄10,m(14λ− 2δ)− 2mF ).

Note that m(14λ− 2δ)− 2mF = m(
∑

i≥1 aiδi) for some ai ≥ 0. Therefore, the proof of the

theorem is concluded by the following:

Claim 2. Let Δ be an effective divisor in M̄g (for g ≥ 3) whose class in Pic(M̄g)Q is equal

to
∑

i≥0 aiδi, with ai ≥ 0. Then h0(M̄g,mΔ)= 1 for any m sufficiently divisible. �

Take E ∈ |mΔ|. We have to show that E = mΔ.

If E meets the interior Mg of M̄g, then, from the well-known result that Pic(Mg)Q

is generated by λ and λ is ample on Mg, we get that the class of E in Pic(M̄g)Q is equal to

aλ+∑
i≥0 biδi with a> 0 and bi ∈ Z. However, the class of E in Pic(M̄g)Q is also equal to
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the class of mΔ, which is
∑

i≥0 maiδi. This produces a nontrivial relation between λ and

the boundary classes δi, which contradicts the well-known result that Pic(M̄g)Q is freely

generated by λ and the boundary classes δi for g ≥ 3 (see [1]).

Therefore, E must be entirely contained in the boundary M̄g \ Mg =⋃
i≥0Δi of M̄g.

This implies that E =∑
i≥0 biΔi for some bi ≥ 0. Looking at the classes of

∑
i≥0 biΔi and

mΔ in Pic(M̄g)Q and using the independence of the boundary classes δi in Pic(M̄g)Q, we

deduce that E = mΔ, as required. �

We finally examine the case g = 11. As usual, denote by Fg (g ≥ 3) the moduli

space of K3 surfaces endowed with a polarization of degree 2g − 2. By work of Mukai

[34], there exists a fibration

ψ : M̄11 ���F11,

sending a general curve C of genus g into (S,OS(C )), where S is the unique K3 surface

containing C .

Proposition 6.5. If g = 11, then κ(KP̄d,g
)= 19 and the Iitaka fibration of KP̄d,g

is the com-

position

P̄d,11
φd−→ M̄11

ψ���F11. �

Proof. Farkas and Popa proved in [15, Proposition 6.2] that the Iitaka dimension of the

divisor

E := 7λ− δ0 − 5δ1 − 9δ2 − 8δ3 − 7δ4 − 7δ5

is 19. Since it is easily checked that 14λ− 2δ is the sum of 2E and an effective boundary

divisor, we get, using (31), that κ(KP̄d,g
)= κ(14λ− 2δ)≥ κ(2E)= κ(E)= 19.

Consider now a general point (S, L) ∈F11. The fiber of ψ over (S, L) is the open

subset of the complete linear series |L| ∼= P11 consisting of smooth connected curves.

Pick a Lefschetz pencil on S and consider the associated curve B inside M̄11. It is well

known (see e. g. [15, Lemma 2.1]) that λ · B = 12, δ0 · B = 84 and δi · B = 0 for every i > 1.

This easily implies that

(14λ− 2δ) · B = 0. (36)

Consider now the Iitaka fibration of the divisor KP̄d,11
, which we denote by

iKP̄d,11
: P̄d,11 ��� I (KP̄d,11

).
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Since KP̄d,11
= φ∗

d(14λ− 2δ), the Iitaka fibration i14λ−2δ of KP̄d,11
is the composition of

the Iitaka fibration of 14λ− 2δ with φd, that is, we have a natural diagram (up to

birationality)

P̄d,11

φd

��
iKP̄d,11

���������
M̄11

i14λ−2δ

��� � � � � � �

I (KP̄d,11
)= I (14λ− 2δ)

Now, equation (36) implies that the Iitaka fibration i14λ−2δ contracts the general fiber

ψ−1(S, L)⊂ |L| ∼= P11. Therefore, the Iitaka fibration i14λ−2δ factors through the fibration

ψ :

M̄11

i14λ−2δ

���
�

�
�

�
ψ

		�
�

�
�

F11

ρ

����������� I (14λ− 2δ)

Recall that dimF11 = 19. On other hand, by the usual properties of the Iitaka fibration

and what proved before, we have that dim I (14λ− 2δ)= κ(14λ− 2δ)≥ 19. Since ρ is dom-

inant and has connected general fiber, this implies that ρ is a birational isomorphism,

hence we are done. �

7 Birationalities among Different Pd,g’s

In this section, inspired by [3, Lemma 8.1], we investigate the following:

Question 7.1. For what values of d and d′ is Pd,g birational to Pd′,g? How do the bira-

tional maps among them look like? �

Note that if d′ = d+ n(2g − 2) for some n∈ Z, then we have the isomorphism

ψ1
n : Pd,g

∼=−→ Pd′,g,

(C , L) �→ (C , L ⊗ ωn
C ),

(37)
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while if d′ = −d+ n(2g − 2) for some n∈ Z we have the isomorphism

ψ2
n : Pd,g

∼=−→ Pd′,g,

(C , L) �→ (C , L−1 ⊗ ωn
C ).

(38)

Clearly the maps ψ1
n and ψ2

n commute with the projections φd and φd′ onto Mg. Indeed,

the converse is also true, as it follows from an argument of Caporaso (see [3, Lemma 8.1]

and also, for further details, [5, Proposition 3.2.2]).

Theorem 7.2 ([3]). If η : Pd,g ��� Pd′,g is a birational map over Mg, that is, a map η induc-

ing a commutative diagram

Pd,g

η

�����

φd

��

Pd′,g

φd′
��

Mg

id
�� Mg

then there exists n∈ Z such that either d′ = d+ n(2g − 2) and η=ψ1
n or d′ = −d+ n(2g − 2)

and η=ψ2
n. �

By using our results on the Kodaira dimension of Pd,g, we can improve

Theorem 7.2 at least for genus big enough.

Theorem 7.3. Assume that g ≥ 22 or g ≥ 12 and (d− g + 1,2g − 2)= 1. Let η : Pd,g ���
Pd′,g be a birational map. Then there exists n∈ Z such that either d′ = d+ n(2g − 2) and

η=ψ1
n or d′ = −d+ n(2g − 2) and η=ψ2

n. In particular, η is an isomorphism. �

Proof. By Theorems 1.2 and 1.3, the assumptions of the statement imply that κ(Pd,g)=
3g − 3, hence that κ(Pd′,g)= 3g − 3. From the proof of Proposition 3.2, it follows that φd :

Pd,g → Mg is the Iitaka fibration of Pd,g and similarly for Pd′,g. Since the Iitaka fibration

is a birational invariant, the map η induces a birational map ξ : Mg ��� Mg such that the
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following diagram commutes:

Pd,g

η

�����

φd

��

Pd′,g

φd′
��

Mg

ξ

����� Mg

The map ξ sends a very general curve C ∈ Mg to a very general curve C ′ ∈ Mg so that

the restriction of η induces a birational map J(C )∼= Picd
(C ) ��� Picd′

(C ′)∼= J(C ′). By

Lemma 7.4, we get that C ∼= C ′, hence ξ = id. Finally, we conclude by Theorem 7.2. �

Lemma 7.4. If C and C ′ are very general curves in Mg such that J(C ) is birational to

J(C ′), then C ∼= C ′. �

Proof. Let ε : J(C ) ��� J(C ′) be a birational map. Since J(C ) and J(C ′) are abelian vari-

eties, then it is well known that ε extends to an isomorphism ε : J(C )
∼=→ J(C ′). Since C

(resp. C ′) are very general curves in Mg, we may assume (by [2, Corollary 17.5.2]) that

NS(J(C ))= Z (resp. NS(J(C ′))= Z) generated by the class of the theta divisor [ΘC ] (resp.

[ΘC ′ ]). Therefore, we must have ε∗([ΘC ′ ])= ±[ΘC ]. Moreover, since [ΘC ] is ample and the

pull-back morphism ε∗ preserves ampleness, we get that actually ε∗([ΘC ′ ])= [ΘC ]. We

conclude that C ∼= C ′ by the classical Torelli theorem. �

From the previous result, we can deduce two corollaries. The first one concerns

the group of birational self maps Bir(Pd,g) and the group of automorphisms Aut(Pd,g) of

Pd,g.

Corollary 7.5. With the same assumptions as in Theorem 7.3, we have

Bir(Pd,g)= Aut(Pd,g)=
⎧⎨⎩Z/2Z if d= n(g − 1) for some n∈ Z,

{id} otherwise,

where in the first case the generator of the cyclic group Z/2Z is ψ2
n. �
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Proof. The claim follows from Theorem 7.3, since the only maps ψ1
n and ψ2

n having

domain Pd,g and codomain Pd,g are ψ1
0 = id and ψ2

n if d= n(g − 1), and in this case (ψ2
n) ◦

(ψ2
n)= id. �

The second corollary is analogous to [19, Corollary (0.12)], which states that the

boundary ∂ M̄g of the moduli space M̄g of stable curves of genus g ≥ 2 is preserved by any

automorphism of M̄g.

Corollary 7.6. Same assumptions as in Theorem 7.3. Then any automorphism φ : P̄d,g →
P̄d,g preserves the boundary ∂ P̄d,g := P̄d,g \ Pd,g. �

Proof. The restriction η := φ|Pd,g of φ to Pd,g defines a birational self map of Pd,g. By

Corollary 7.5, η is an automorphism of Pd,g. Therefore, φ maps Pd,g isomorphically onto

Pd,g, hence it preserves the boundary ∂ P̄d,g. �

Remark 7.7. Under the same assumptions as in Theorem 7.3, Corollary 7.6 implies that

we have a restriction map

res : Aut( P̄d,g)→ Aut(Pd,g).

The map res is injective since P̄d,g is separated. In [3, Lemma 8.1], it is claimed that

the map ψ2
n of (38) extends to a map P̄d,g → P̄d′,g (the analogous statement for ψ1

n is

easy to prove). This fact, together with Corollary 7.5, would imply that res is an

isomorphism. �

Finally, note that if one could remove our technical assumption on the degree

in Theorem 1.2, then Theorem 7.3 and Corollaries 7.5 and 7.6 would follow for g ≥ 12

without any hypothesis on the degree.
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