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Abstract We compare two rational polyhedral admissible decompositions of the
cone of positive definite quadratic forms: the perfect cone decomposition and the
2nd Voronoi decomposition. We determine which cones belong to both the decom-
positions, thus providing a positive answer to a conjecture of Alexeev and Brunyate
(Invent. Math. doi:10.1007/s00222-011-0347-2, 2011). As an application, we com-
pare the two associated toroidal compactifications of the moduli space of principal
polarized abelian varieties: the perfect cone compactification and the 2nd Voronoi
compactification.

Mathematics Subject Classification (2000) 14H10 · 52B40 · 11H55

1 Introduction

The theory of reduction of positive definite quadratic forms consists in finding a fun-
damental domain for the natural action of GLg(Z) on the cone Ωg of positive definite
quadratic forms of rank g or, more generally, on its rational closure Ω rt

g , i.e. the cone of
positive semi-definite quadratic forms whose null space is defined over the rationals.
One way to achieve this is to find a decomposition of the cone Ω rt

g into an infinite
GLg(Z)-periodic face-to-face collection of rational polyhedral subcones (or, in short,
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an admissible decomposition, see Definition 2.0.3 for details) in such a way that there
are only finitely many GLg(Z)-equivalence classes of subcones. This theory is very
classical, dating back to work of Minkowsky [30], Voronoi [40] and Koecher [25].

A renewed interest in this theory came when Ash–Mumford–Rapoport–Tai (see
[5]) showed how to associate to every admissible decomposition of Ω rt

g a compactifi-
cation of the moduli space Ag of principally polarized abelian varieties of dimension
g, a so-called toroidal compactification of Ag . See also the book of Namikawa [33]
for a nice account of the theory.

The aim of this paper is to compare two well-known admissible decompositions of
Ω rt

g (both introduced by Voronoi in [40]), namely:

(i) The perfect cone decomposition ΣP (also known as the first Voronoi decompo-
sition);

(ii) The 2nd Voronoi decomposition ΣV (also known as the L-type decomposition).

We refer to Sects. 2.1 and 2.2 for the definitions of the above admissible decomposi-
tions.

Consider the toroidal compactifications of Ag associated to the perfect and the 2nd
Voronoi decompositions: the perfect toroidal compactification and the 2nd Voronoi

toroidal compactification, respectively. Denote them by Ag
P

and by Ag
V

, respec-
tively. Each of these compactifications plays an important role in the theory of the
compactifications of Ag:

(i) Ag
P

is the canonical model of Ag for g ≥ 12 (Shepherd-Barron [38]).

(ii) Ag
V

is (up to possibly normalizing) the main irreducible component of Alex-
eev’s moduli space APg of stable semiabelic pairs, which provides a modular
compactification of Ag (Alexeev [1]). See also the work of Olsson [34] for a

different modular interpretation of Ag
V

via logarithmic geometry.

Moreover, each of them is well-suited to compactify the Torelli map. Indeed, the
Torelli map

tg : Mg → Ag,

sending a curve X ∈ Mg into its polarized Jacobian (Jac(X),�X ) ∈ Ag , extends to
regular maps

tg
V : Mg → Ag

V
and tg

P : Mg → Ag
P
,

where Mg is the Deligne–Mumford (see [12]) compactification of Mg via stable

curves. The existence of tg
V is classically due to Mumford–Namikawa [32] (see also

Alexeev [2] for a modular interpretation). For a long period, this was the only known
compactification of the Torelli map until the recent breakthrough work of Alexeev–
Brunyate [3] who proved the existence of the regular map tg

P . Moreover, Alexeev–

Brunyate also showed in loc. cit. that Ag
P

and Ag
V

are isomorphic on an open subset

containing the image of Mg via the compactified Torelli maps tg
P and tg

V , namely
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Comparing perfect and 2nd Voronoi decompositions 1523

the cographic locus (see Fact 5.1.1 for more details). Further, they indicate in [3, 6.3] a

bigger open subset where Ag
P

and Ag
V

should be isomorphic, namely the matroidal
locus (see Definition 5.2.1). The aim of this paper, which was very much inspired by
the reading of [3], is to give a positive answer to their conjecture and, moreover, to

show that the matroidal locus is indeed the biggest open subset where Ag
P

and Ag
V

are isomorphic.
Let us introduce some notations in order to describe our results in more detail.

A real g × n matrix A ∈ Mg,n(R) is called totally unimodular if every square subm-
atrix of A has determinant equal to −1, 0 or 1. A matrix A ∈ Mg,n(R) is called
unimodular if there exists h ∈ GLg(Z) such that h · A is totally unimodular. Given a
g × n unimodular matrix A ∈ Mg,n(R) with column vectors {v1, . . . , vn}, we define
a rational polyhedral subcone σ(A) of Ω rt

g as the convex hull of the rank 1 qua-
dratic forms {vi · vt

i }i=1,...,n . The union of the cones σ(A), as A varies among all the
unimodular matrices A ∈ Mg,n(R) of rank at most g, forms a subcone of Ω rt

g , denoted
by Ωmat

g and called the matroidal subcone. The collection of the cones {σ(A)} is called
the matroidal decomposition of Ωmat

g and is denoted by Σmat. The name matroidal
comes from the fact that unimodular matrices A ∈ Mg,n(R) of rank at most g up to the
natural action of GLg(Z) by left multiplication are in bijection with regular matroids
of rank at most g (see Fact 3.1.7). In particular, the GLg(Z)-equivalence classes of
cones in Σmat correspond bijectively to (simple) regular matroids of rank at most g
(see Lemma 4.0.5). Our first main result is the following (see Corollary 4.3.2).

Theorem A A cone σ belongs to both ΣV and ΣP if and only if σ belongs to Σmat,
i.e.

ΣV ∩ ΣP = Σmat.

The proof of the above Theorem A is divided into three parts: we begin by proving
that Σmat is contained in ΣV, then we show that Σmat is contained in ΣP and finally
we prove that ΣP ∩ ΣV is contained in Σmat.

The fact that Σmat ⊆ ΣV is a result of Erdhal–Ryshkov [18]: they prove that Σmat
is the subset of ΣV corresponding to cones whose associated Delone subdivision is a
lattice dicing (see Sect. 4.1 for details).

In order to prove that ΣP ∩ ΣV ⊆ Σmat, we use the fact that ΣP is made of cones
whose extremal rays are generated by rank 1 quadratic forms together with a result of
Erdhal–Ryshov [18] that characterizes Σmat as the collection of cones of ΣV satisfying
the above property.

The proof of Σmat ⊆ ΣP is the hardest part. To achieve that, we use Seymour’s
decomposition theorem which says that any regular matroid can be obtained, via a
sequence of 1-sums, 2-sums and 3-sums, from three kinds of basic matroids: graphic,
cographic and a special matroid called R10 (see Sect. 3 for details). A crucial role
is played by a result of Alexeev–Brunyate (see [3, Thm. 5.6]) which, in our lan-
guage, says that if A is a unimodular matrix representing a cographic matroid, then
σ(A) ∈ ΣP. The authors of loc. cit. asked in [3, 6.3] if their result could be extended
from cographic matroids to regular matroids and, indeed, Theorem A answers posi-
tively to their question.
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In the last part of the paper we explore the consequences of Theorem A in terms
of the relationship between the toroidal compactifications of Ag that we mentioned

before: Ag
P

and Ag
V

. Indeed, the matroidal decomposition Σmat of Ωmat
g ⊆ Ω rt

g

yields a partial compactification Ag
mat

of Ag , i.e. an irreducible variety containing
Ag as an open dense subset (see Definition 5.2.1). Since Σmat ⊆ ΣP and Σmat ⊆
ΣV, Ag

mat
is an open subset of both Ag

P
and Ag

V
. Our second main result is the

following (see Theorem 5.2.2 for a more precise version).

Theorem B (i) Ag
mat

is the biggest open subset of Ag
V

where the rational map

Ag
V τ��� Ag

P
is defined and is an isomorphism.

(ii) Ag
mat

is the biggest open subset of Ag
P

where the rational map Ag
P τ−1

��� Ag
V

is defined.
(iii) The compactified Torelli maps tg

P and tg
V fit into the following commutative

diagram

Ag
mat � � �� Ag

V

τ

���
�
�
�
�
�
�

Mg

tg
V ����������

tg
P ����

��
��

��

Ag
mat � � �� Ag

P

Finally we want to mention that there exists a third well-known admissible decom-
position of Ω rt

g , namely the central cone decomposition �C (see [25] and [33, Sec.

(8.9)]). The toroidal compactification Ag
C

associated to �C is known to be the nor-
malization of the blow-up of the Satake compactification of Ag along the boundary
(see [27]). However, the comparison of �C with ΣP and with ΣV seems to be less

obvious. For example, it follows from [3, Cor. 4.6], that Ag
C

does not contain an open

subset isomorphic to Ag
mat

at least if g ≥ 9. For the same reason, the Torelli map

does not extend to a regular map from Mg to Ag
C

for g ≥ 9 (while it does for g ≤ 8
by [4]).

The structure of the paper is as follows. In Sect. 2, we first recall the definition
of an admissible decomposition of Ω rt

g , and then we review the definition and the
basic properties of the perfect cone decomposition (Sect. 2.1) and of the 2nd Voronoi
decomposition (Sect. 2.2). In Sect. 3, we briefly review the basic concepts of matroid
theory that we will need throughout the paper, with particular emphasis on Seymour’s
decomposition theorem of regular matroids (Sect. 3.4). Section 4 is devoted to the
proof of Theorem A (see Corollary 4.3.2). Section 5 starts with a brief review of the
theory of toroidal compactifications of Ag and ends with a proof of Theorem B (see
Theorem 5.2.2).
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Comparing perfect and 2nd Voronoi decompositions 1525

This paper is meant to be completely self-contained, so we have tried to recall all
the preliminary notions necessary to its understanding by readers with a background
either on combinatorics or on algebraic geometry.

2 Positive definite quadratic forms and admissible decompositions

We denote by R(g+1
2 ) the vector space of quadratic forms in R

g (identified with g × g

symmetric matrices with coefficients in R) and by Ωg the cone in R(g+1
2 ) of positive

definite quadratic forms. The closure Ωg of Ωg inside R(g+1
2 ) is the cone of positive

semi-definite quadratic forms. We will be working with a partial closure of the cone
Ωg inside Ωg , the so called rational closure of Ωg (see [33, Sec. 8]).

Definition 2.0.1 A positive definite quadratic form Q is said to be rational if the null
space Null(Q) of Q (i.e. the biggest subvector space V of R

g such that Q restricted
to V is identically zero) admits a basis with elements in Q

g .
We will denote by Ω rt

g the cone of rational positive semi-definite quadratic forms.

The group GLg(Z) acts on the vector space R(g+1
2 ) of quadratic forms via the usual

law h · Q := hQht , where h ∈ GLg(Z) and ht is the transpose matrix. Clearly the
cones Ωg and Ω rt

g are preserved by the action of GLg(Z).

Remark 2.0.2 It is well-known (see [33, Sec. 8]) that a positive semi-definite quadratic
form Q in R

g belongs to Ω rt
g if and only if there exists h ∈ GLg(Z) such that

hQht =
(

Q′ 0
0 0

)

for some positive definite quadratic form Q′ in R
g′

, with 0 ≤ g′ ≤ g.

The cones Ωg and its rational closure Ω rt
g are not polyhedral. However they can

be subdivided into rational polyhedral subcones in a nice way, as in the following
definition (see [33, Lemma 8.3] or [21, Chap. IV.2]).

Definition 2.0.3 An admissible decomposition of Ω rt
g is a collection � = {σμ} of

rational polyhedral cones of Ω rt
g such that:

(i) If σ is a face of σμ ∈ � then σ ∈ �;
(ii) The intersection of two cones σμ and σν of � is a face of both cones;

(iii) If σμ ∈ � and h ∈ GLg(Z) then h · σμ · ht ∈ �.
(iv) #{σμ ∈ � mod GLg(Z)} is finite;
(v) ∪σμ∈�σμ = Ω rt

g .

We say that two cones σμ, σν ∈ � are equivalent if they are conjugated by an element
of GLg(Z). We denote by �/ GLg(Z) the finite set of equivalence classes of cones in
�. Given a cone σμ ∈ �, we denote by [σμ] the equivalence class containing σμ.
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Fig. 1 A section of 	rt
2 and its

admissible decomposition
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A priori, there could exist infinitely many admissible decompositions of Ω rt
g . How-

ever, as far as we know, only three admissible decompositions are known for every
integer g (see [33, Chap. 8] and the references there), namely:

(i) The perfect cone decomposition (also known as the first Voronoi decomposi-
tion), which was first introduced in [40];

(ii) The 2nd Voronoi decomposition (also known as the L-type decomposition),
which was first introduced in [40];

(iii) The central cone decomposition, which was introduced in [25].

Each of them plays a significant (and different) role in the theory of the toroidal
compactifications of the moduli space of principally polarized abelian varieties (see
[1,27,38]). We will come back to this later on.

Example 2.0.4 If g = 2 then all the above three admissible decompositions coincide.
In Fig. 1 we illustrate a section of the 3-dimensional cone 	rt

2 , where we represent
just some of the infinite cones of the known admissible decompositions. Note that, for
g = 2, there is only one GLg(Z)-equivalence class of maximal dimensional cones,
namely the principal cone σ 0

prin (see Example 4.1.6).

In this paper, we will be interested in comparing the perfect cone decomposition
with the 2nd Voronoi decomposition; so we start by recalling briefly their definitions.

2.1 The perfect cone decomposition ΣP

In this subsection, we review the definition and the main properties of the perfect
cone decomposition (see [40] for more details and proofs, or [33, Sec. (8.8)] for a
summary).

Consider the function μ : Ωg → R>0 defined by

μ(Q) := min
ξ∈Zg\{0}

Q(ξ).
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Comparing perfect and 2nd Voronoi decompositions 1527

It can be checked that, for any Q ∈ Ωg , the set

M(Q) := {ξ ∈ Z
g : Q(ξ) = μ(Q)}

is finite and non-empty. For any ξ ∈ M(Q), consider the rank one quadratic form
ξ · ξ t ∈ Ω rt

g . We denote by σ [Q] the rational polyhedral subcone of Ω rt
g given by the

convex hull of the rank one forms obtained from elements of M(Q), i.e.

σ [Q] := R≥0〈ξ · ξ t 〉ξ∈M(Q). (2.1)

One of the main results of [40] is the following

Fact 2.1.1 (Voronoi) The set of cones

ΣP := {σ [Q] : Q ∈ Ωg}

yields an admissible decomposition of Ω rt
g , known as the perfect cone decomposition.

The quadratic forms Q such that σ [Q] has maximal dimension
(g+1

2

)
are called

perfect, hence the name of this admissible decomposition. The interested reader is
referred to [28] for more details on perfect forms.

Remark 2.1.2 (i) The cones σ [Q] ∈ ΣP need not be simplicial for g ≥ 4 (see [33,
p. 93]).

(ii) It follows easily from the definition that the extremal rays of the cones τ ∈ ΣP
are generated by quadratic forms of rank one. Moreover, it is easily checked
that the cone 〈Q〉 generated by any rank-1 quadratic forms Q ∈ Ω rt

g belongs
to �P . In particular, from the properties of an admissible decomposition (see
Definition 2.0.3), it follows that if Q ∈ Ω rt

g is a rank-1 quadratic form belonging
to a cone τ ∈ �P , then 〈Q〉 is an extremal ray of τ .

Example 2.1.3 Let us compute ΣP in the case g = 2 (compare with Fig. 1). Let

R12 = (
1 −1 f rm[o]−− 1

)
, R13 =

(
1 0
0 0

)
, R23 =

(
0 0
0 1

)
. Then, up to GLg(Z)-

equivalence, an easy computation shows that the unique cones in ΣP are

σ

[(
1 1/2

1/2 1

)]
= R≥0〈R12, R13, R23〉 =

{(
a + c −c
−c b + c

)
: a, b, c ≥ 0

}
,

σ

[(
1 λ

λ 1

)]
= R≥0〈R13, R23〉 =

{(
a 0
0 b

)
: a, b ≥ 0

}
for any − 1

2
< λ <

1

2
,

σ

[(
1 λ

λ μ

)]
= R≥0〈R13〉 =

{(
a 0
0 0

)
: a ≥ 0

}
for anyμ > max{1, λ2,±2λ},

σ

[(
ν λ

λ μ

)]
= {0} for any μ, ν > 1, μν > λ2, μ + ν > 1 ± 2λ.
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2.2 The 2nd Voronoi decomposition ΣV

In this subsection, we review the definition and main properties of the 2nd Voronoi
admissible decomposition (see [40], [33, Chap. 9(A)] or [39, Chap. 2] for more details
and proofs).

The 2nd Voronoi decomposition is based on the Delone subdivision Del(Q) asso-
ciated to a quadratic form Q ∈ Ω rt

g .

Definition 2.2.1 Given Q ∈ Ω rt
g , consider the map lQ : Z

g → Z
g × R sending

x ∈ Z
g to (x, Q(x)). View the image of lQ as an infinite set of points in R

g+1, one
above each point in Z

g , and consider the convex hull of these points. The lower faces
of the convex hull can now be projected to R

g by the map π : R
g+1 → R

g that forgets
the last coordinate. This produces an infinite Z

g-periodic polyhedral subdivision of
R

g , called the Delone subdivision of Q and denoted Del(Q).

It can be checked that if Q has rank g′ with 0 ≤ g′ ≤ g then Del(Q) is a subdivision
consisting of polyhedra such that the maximal linear subspace contained in them has
dimension g − g′. In particular, Q is positive definite if and only if Del(Q) is made
of polytopes, i.e. bounded polyhedra.

Now, we group together quadratic forms in Ω rt
g according to the Delone subdivi-

sions that they yield.

Definition 2.2.2 Given a Delone subdivision D (induced by some Q0 ∈ Ω rt
g ), let

σ 0
D = {Q ∈ Ω rt

g : Del(Q) = D}.

It can be checked that the set σ 0
D is a relatively open (i.e. open in its linear span)

rational polyhedral cone in Ω rt
g . Let σD denote the Euclidean closure of σ 0

D in R(g+1
2 ),

so σD is a closed rational polyhedral cone and σ 0
D is its relative interior. We call σD the

secondary cone of D. The reason for this terminology is due to the fact that Alexeev
has shown in [1] that the 2nd Voronoi decomposition is an infinite periodic analogue
of the secondary fan of Gelfand–Kapranov–Zelevinsky (see [22]).

Now, the action of the group GLg(Z) on R
g induces an action of GLg(Z) on the set

of Delone subdivisions: given a Delone subdivision D and an element h ∈ GLg(Z),
denote by h·D the Delone subdivision given by the action of h on D. Moreover, GLg(Z)

acts naturally on the set of secondary cones {σD : D is a Delone subdivision of R
g}

in such a way that

h · σD := {hQht : Q ∈ σD} = σh·D.

Another of the main results of [40] is the following

Fact 2.2.3 (Voronoi) The set of secondary cones

ΣV := {σD : D is a Delone subdivision of R
g}

yields an admissible decomposition of Ω rt
g , known as the 2nd Voronoi decomposition.
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Comparing perfect and 2nd Voronoi decompositions 1529

The cones of ΣV having maximal dimension
(g+1

2

)
are those of the form σD for D a

Delone subdivision which is a triangulation, i.e. such that D consists only of simplices
(see [39, Sec. 2.4]).

The following remark should be compared with Remark 2.1.2.

Remark 2.2.4 (i) The cones σD ∈ ΣV need not be simplicial for g ≥ 5 (see [7]
and [17]).

(ii) If Q ∈ Ω rt
g belongs to a one dimensional cone σD ∈ ΣV (or in other words, if

Q generates an extremal ray of some cone of ΣV) then Q is said rigid. Rank-1
quadratic forms Q ∈ Ω rt

g are easily seen to be rigid. In particular if Q ∈ Ω rt
g

is a rank-1 quadratic form belonging to a cone τ ∈ �V , then the cone 〈Q〉
generated by Q is an extremal ray of τ .
However, rigid forms need not to be of rank one for g ≥ 4 (see [6,13] and [16]).

There is another way of describing the 2nd Voronoi decomposition via the
Dirichlet–Voronoi polytope Vor(Q) associated to a quadratic form Q ∈ Ω rt

g (see
[33, Chap. 9(A)] or [39, Chap. 3] for more details). Given a positive definite quadratic
form Q ∈ Ωg , we define Vor(Q) as

Vor(Q) := {x ∈ R
g : Q(x) ≤ Q(v − x) for all v ∈ Z

g}. (2.2)

More generally, if Q = h

(
Q′ 0
0 0

)
ht for some h ∈ GLg(Z) and some positive

definite quadratic form Q′ in R
g′

, 0 ≤ g′ ≤ g (see Remark 2.0.2), then Vor(Q) :=
h−1Vor(Q′)(h−1)t ⊂ h−1

R
g′

(h−1)t . In particular, the smallest linear subspace
〈Vor(Q)〉 containing Vor(Q) has dimension equal to the rank of Q. The integral
translates of Vor(Q)

{Vor(Q) + v}v∈〈Vor(Q)〉∩Zg

form a face to face tiling (in the sense of [37] and [29]) of the vector space 〈Vor(Q)〉
which is dual to the Delone subdivision Del(Q) (see [33, Chap. 9(A)] or [39, Sec. 3.3]
for details). From this fact, it follows easily that, for a Delone subdivision D =
Del(Q0) induced by Q0 ∈ Ω rt

g , the cone σ 0
D of Definition 2.2.2 is also equal to the set

of Q ∈ Ω rt
g such that Vor(Q) is normally equivalent to Vor(Q0), i.e. such that Vor(Q)

and Vor(Q0) have the same normal fan.

Example 2.2.5 Let us compute ΣV in the case g = 2 (compare with Fig. 1 and with
Example 2.1.3). Combining the taxonomies in [39, Sec. 4.1, Sec. 4.2], we may choose
four representatives D1, D2, D3, D4 for GLg(Z)-orbits of Delone subdivisions as in
Fig. 2, where we have depicted the part of the Delone subdivision that fits inside the
unit cube in R

2.
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1530 M. Melo, F. Viviani

Fig. 2 Delone subdivisions for
g = 2 (up to
GLg(Z)-equivalence)

D 1 D 2 D 3 D 4

We can describe the corresponding secondary cones as follows. Let R12 =(
1 −1 f rm[o]−− 1

)
, R13 =

(
1 0
0 0

)
, R23 =

(
0 0
0 1

)
as in Example 2.1.3. Then

σD1 = R≥0〈R12, R13, R23〉 =
{(

a + c −c
−c b + c

)
: a, b, c ≥ 0

}
,

σD2 = R≥0〈R13, R23〉 =
{(

a 0
0 b

)
: a, b ≥ 0

}
,

σD3 = R≥0〈R13〉 =
{(

a 0
0 0

)
: a ≥ 0

}
,

σD4 = {0}.

3 Matroids

The aim of this section is to recall the basic notions and results of (unoriented) matroid
theory that we will need in the sequel. We follow mostly the terminology and notations
of [35].

3.1 Basic definitions

There are several ways of defining a matroid (see [35, Chap. 1]). We will use the
definition in terms of bases (see [35, Sect. 1.2]).

Definition 3.1.1 A matroid M is a pair (E(M),B(M)) where E(M) is a finite set,
called the ground set, and B(M) is a collection of subsets of E(M), called bases of
M , satisfying the following two conditions:

(i) B(M) 
= ∅;
(ii) If B1, B2 ∈ B(M) and x ∈ B1 \ B2, then there exists an element y ∈ B2 \ B1

such that (B1 \ {x}) ∪ {y} ∈ B(M).

Given a matroid M = (E(M),B(M)), we define:

(a) The set of independent elements

I(M) := {I ⊂ E(M) : I ⊂ B for some B ∈ B(M)};

(b) The set of dependent elements

D(M) := {D ⊂ E(M) : D 
∈ I(M)};
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Comparing perfect and 2nd Voronoi decompositions 1531

(c) The set of circuits

C(M) := {C ∈ D(M) : C is minimal among the elements of D(M)}.

It can be derived from the above axioms, that all the bases of M have the same
cardinality, which is called the rank of M and is denoted by r(M).

Observe that each of the above sets B(M), I(M), D(M), C(M) determines all the
others. Indeed, it is possible to define a matroid M in terms of the ground set E(M)

and each of the above sets, subject to suitable axioms (see [35, Sec. 1.1, 1.2]).
The above terminology comes from the following basic example of matroids.

Example 3.1.2 Let F be a field and A an r × n matrix of rank r over F . Consider
the columns of A as elements of the vector space Fr , and call them {v1, . . . , vn}.
The vector matroid of A, denoted by M[A], is the matroid whose ground set is
E(M[A]) := {v1, . . . , vn} and whose bases are the subsets of E(M[A]) consisting of
vectors that form a base of Fr . It follows easily that I(M[A]) is formed by the subsets
of independent vectors of E(M[A]); D(M[A]) is formed by the subsets of dependent
vectors and C(M[A]) is formed by the minimal subsets of dependent vectors.

The matroids we will deal with in this paper are simple and regular. Let us begin
by recalling the definition of a simple matroid (see [35, Pag. 13, Pag. 52]).

Definition 3.1.3 Let M be a matroid. An element e ∈ E(M) is called a loop if {e} ∈
C(M). Two distinct elements f1, f2 ∈ E(M) are called parallel if { f1, f2} ∈ C(M);
a parallel class of M is a maximal subset X ⊂ E(M) with the property that all the
elements of X are not loops and they are pairwise parallel.

M is called simple if it has no loops and all the parallel classes have cardinality
one.

Example 3.1.4 A vector matroid M[A] is simple if and only if A has no zero columns
nor pairs of proportional columns. In this case, we say that the matrix A is simple.

We now recall the definition of regular matroids.

Definition 3.1.5 A matroid M is said to be representable over a field F if it is iso-
morphic to the vector matroid of a matrix A with coefficients in F . A matroid M is
said to be regular if it is representable over any field F .

Regular matroids are closely related to totally unimodular matrices or, more gen-
erally, to unimodular matrices.

Definition 3.1.6 1. A real matrix A ∈ Mg,n(R) is said to be totally unimodular if
every square submatrix has determinant equal to −1, 0 or 1. A matrix A ∈ Mg,n(Z)

is said to be unimodular if there exists a matrix h ∈ GLg(Z) such that h A is totally
unimodular.

2. We say that two unimodular matrices A, B ∈ Mg,n(R) are equivalent if A = h BY
where h ∈ GLg(Z) and Y ∈ GLn(Z) is a signed permutation matrix.
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Fact 3.1.7 (i) A matroid M of rank r is regular if and only if M = M[A] for a
unimodular (equivalently, totally unimodular) matrix A ∈ Mg,n(R) of rank r ,
where n = #E(M) and g is a natural number such that g ≥ r .

(ii) Given two unimodular matrices A, B ∈ Mg,n(R), we have that M[A] = M[B]
if and only if A and B are equivalent.

Proof Part (i) is proved in [35, Thm. 6.3.3]. Part (ii) follows easily from [35, Prop.
6.3.13, Cor. 10.1.4], taking into account that R does not have non-trivial automor-
phisms.

3.2 Graphic and cographic matroids

There are two matroids that can be naturally associated to a graph: a graphic matroid
and a cographic matroid. We will briefly review these constructions since they will
play a key role in the sequel.

Recall first the following basic concepts of graph theory (we follow mostly the
terminology of [15]). Given a graph Γ (which we assume always to be finite, con-
nected and possibly with loops or multiple edges), denote by V (Γ ) the set of vertices
of Γ and by E(Γ ) the set of edges of Γ . Given a set S ⊆ E(Γ ), the subgraph of
Γ induced by S is the subgraph whose edges are the edges in S and whose vertices
are the vertices of Γ which are endpoints of edges in S. Given a set W ⊆ E(Γ ), the
subgraph of Γ induced by W is the graph whose vertices are the vertices in W and
whose edges are the edges of Γ whose both endpoints are vertices in W . The valence
of a vertex v, denoted by val(v), is defined as the number of edges incident to v, with
the usual convention that a loop around a vertex v is counted twice in the valence of
v. A graph Γ is k-regular if val(v) = k for every v ∈ V (Γ ). A graph Γ is simple if
Γ has no loops nor multiple edges. A graph Γ is k-edge connected (for some k ≥ 2)
if and only if Γ cannot be disconnected by deleting 1 ≤ s ≤ k − 1 edges.

Definition 3.2.1 A circuit of Γ is a subset S ⊆ E(Γ ) such that the subgraph of Γ

induced by S is 2-regular. A cycle is a disjoint union of circuits.
If {V1, V2} is a partition of V (Γ ), the set E(V1, V2) of all the edges of Γ with

one end in V1 and the other end in V2 is called a cut; a bond is a minimal cut, or
equivalently, a cut E(Γ1, Γ2) such that the graphs Γ1 and Γ2 induced by V1 and V2,
respectively, are connected.

Definition 3.2.2 The graphic matroid (or cycle matroid) of Γ is the matroid M(Γ )

whose ground set is E(Γ ) and whose circuits are the circuits of Γ . The cographic
matroid (or bond matroid) of Γ is the matroid M∗(Γ ) whose ground set is E(Γ ) and
whose circuits are the bonds of Γ .

We summarize the well-known properties of the graphic and cographic matroids
that we will need later on in the following

Fact 3.2.3 Let Γ be a (finite connected) graph. Then:

(i) M(Γ ) and M∗(Γ ) are regular.

123



Comparing perfect and 2nd Voronoi decompositions 1533

(ii) M(Γ ) is simple if and only if Γ is simple. M∗(Γ ) is simple if and only if Γ is
3-edge connected, i.e. Γ cannot be disconnected by deleting one or two edges.

(iii) The rank of M(Γ ) is the cogenus g∗(Γ ) := |V (Γ )| − 1 of Γ . The rank of
M∗(Γ ) is the genus g(Γ ) := |E(Γ )| − |V (Γ )| + 1 of Γ .

Proof Part (i) follows from [35, Prop. 5.1.3, Prop. 2.2.22].
Part (ii) for M(Γ ) follows from [35, Pag. 52] and for M∗(Γ ) follows from [8, Prop.

2.3.14(ii)].
Part (iii) follows from [35, Pag. 26] and [35, Formula 2.1.8].

Example 3.2.4 Let Kg+1 be the complete simple graph on g + 1 ≥ 2 vertices, i.e. the
graph with vertex set {v1, . . . , vg+1} and edge set {ei j : 1 ≤ i < j ≤ g+1}, where ei j

is an edge joining vi and v j . It is easy to check (see [35, Prop. 5.1.2, Prop. 5.1.3]) that
M(Kg+1) is a simple regular matroid of rank g which can be obtained as the vector
matroid associated to the simple totally unimodular matrix A(Kg+1) ∈ Mg,(g+1

2 )(Z)

whose column vectors are the vectors {ei : 1 ≤ i ≤ g} and {ei −e j : 1 ≤ i < j ≤ g}
of R

g , where {e1, . . . , eg} denotes the canonical bases of R
g .

3.3 The matroid R10

Another matroid that will play a key role in the sequel is the matroid R10 introduced
in [36, p. 328].

Definition 3.3.1 We denote by R10 the vector matroid associated to the totally uni-
modular simple matrix

A10 :=

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0 −1 1 0 0 1
0 1 0 0 0 1 −1 1 0 0
0 0 1 0 0 0 1 −1 1 0
0 0 0 1 0 0 0 1 −1 1
0 0 0 0 1 1 0 0 1 −1

⎞
⎟⎟⎟⎟⎠ .

It is easy to see that R10 is a simple regular matroid of rank 5.
We mention that, quite recently, the matroid R10 has made a striking appearance in

algebraic geometry: Gwena has shown in [24] that R10 is related to the degenerations
of the intermediate Jacobians associated to a family of cubic threefolds degenerating
to the Segre’s cubic in P

4.

3.4 Seymour’s decomposition theorem

Here we review Seymour’s decomposition theorem (see [36]) which says that regular
matroids can be obtained starting from graphic matroids, cographic matroids and the
matroid R10 via simple operations called 1-sum, 2-sum and 3-sum. However, since we
want a Seymour’s decomposition theorem inside the category of simple regular mat-
roids (while Seymour’s original formulation works only in the category of all regular
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matroids, possibly non simple), we prefer to adopt the slightly modified constructions
of Danilov and Grishukhin (see [11]).1

Following [11, p. 413], we will give the definitions of 1-sum, 2-sum and 3-sum
of simple regular matroids in terms of representations as vector matroids of simple
totally unimodular matrices.

Definition 3.4.1 Let M1, M2 and M be three simple regular matroids.

(i) We say that M is the 1-sum of M1 and M2, and we write M = M1 ⊕1 M2, if
we can write M1 = M[A1], M2 = M[A2] and M = M[A] for some simple
totally unimodular matrices A, A1 and A2 such that

A =
(

A1 0
0 A2

)
.

(ii) We say that M is the 2-sum of M1 and M2, and we write M = M1 ⊕2 M2, if
we can write M1 = M[A1], M2 = M[A2] and M = M[A] for some simple
totally unimodular matrices A, A1 and A2 such that

A1 =
(

B 0
bt 1

)
, A2 =

(
ct 1
C 0

)
, A =

⎛
⎝B 0 0

bt ct 1
0 C 0

⎞
⎠ ,

where B, C are matrices and b, c are vectors.
(iii) We say that M is the 3-sum of M1 and M2, and we write M = M1 ⊕3 M2, if

we can write M1 = M[A1], M2 = M[A2] and M = M[A] for some simple
totally unimodular matrices A, A1 and A2 such that

A1 =
⎛
⎝B 0 0 0

bt
1 1 0 1

bt
2 0 1 1

⎞
⎠ , A2 =

⎛
⎝ct

1 1 0 1
ct

2 0 1 1
C 0 0 0

⎞
⎠ ,

A =

⎛
⎜⎜⎝

B 0 0 0 0
bt

1 ct
1 1 0 1

bt
2 ct

2 0 1 1
0 C 0 0 0

⎞
⎟⎟⎠ ,

where B, C are matrices and b1, b2, c1, c2 are vectors.

Some remarks are in order.

Remark 3.4.2 (i) The difference between the above definition (taken from [11])
and the original definition of Seymour ([36, Sec. 2]) is the following: in (ii)
Seymour drops the last column of A; in (iii) he drops the last three columns of
A.

1 Note however that in [11] the above modified operations are called, respectively, 0-sum, 1-sum and
2-sum (with a shift in the enumeration!); however we will keep the original terminology of Seymour to
avoid possible confusions.
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(ii) In each of the above operations (i), (ii) or (iii), A1 and A2 are totally unimodular
if and only if A is totally unimodular. The if direction is clear since A1 and A2
are submatrix of A. The only if direction is proved in [9].

(iii) It is immediate to check that, in each of the above operations (i), (ii) and (iii), if
A is simple then A1 and A2 must be simple as well. Conversely, if we assume
that A1 and A2 are simple and totally unimodular then we get that A is simple as
well. This is clear in the operation (i). In the operations (ii) and (iii), it follows
from the fact that if A1 (resp. A2) is simple and totally unimodular then B (resp.
C) cannot have zero column vectors since (1) cannot be a proper submatrix of

a simple totally unimodular matrix of rank 1 and, similarly,

(
1 0 1
0 1 1

)
cannot be

a proper submatrix of a simple totally unimodular matrix of rank 2.

We can now state the main Theorem of [36] (see also [11]) as follows:

Fact 3.4.3 (Seymour’s decomposition theorem) Every simple regular matroid can be
obtained by means of 1-sum, 2-sum and 3-sum starting from simple graphic matroids,
simple cographic matroids and R10.

4 The matroidal subcone Ωmat
g and its matroidal decomposition Σmat

The aim of this section is to introduce and study a GLg(Z)-invariant closed subcone
of the cone Ω rt

g of rational positive semi-definite quadratic forms on R
g , called the

matroidal subcone and denoted by Ωmat
g , and a natural admissible decomposition of

it, which we call the matroidal decomposition and we denote by Σmat.

Definition 4.0.4 Let A ∈ Mg,n(Z) be a simple unimodular matrix (for some g and n).
Denote its column vectors by {v1, . . . , vn} ⊂ R

g . Define the closed rational polyhedral
cone σ(A) ⊂ Ω rt

g as

σ(A) := R≥0〈v1v
t
1, . . . , vnvt

n〉,

and denote by σ(A)0 its relative interior. The matroidal subcone Ωmat
g of Ω rt

g is
defined as

Ωmat
g :=

⋃
A

σ(A) ⊆ Ω rt
g ,

where the union runs over all the matrices A ∈ Mg,n(Z) as above (for some n).
The matroidal decomposition of Ωmat

g is the collection Σmat = {σ(A)}, where
A ∈ Mg,n(Z) varies among all the matrices as above (for some n).

Note that the cone σ(A) does not depend on the order of the columns of A, i.e. if
A = BY where Y ∈ GLn(Z) is a signed permutation matrix then σ(A) = σ(B).

In the following lemma, we collect the main properties of the cones σ(A).

Lemma 4.0.5 Let A, B ∈ Mg,n(Z) be two simple unimodular matrices. Denote by
{v1, . . . , vn} the column vectors of A and by {w1 . . . , wn} the column vectors of B.
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(i) The cone σ(A) is simplicial and every face is of the form σ(A \ I ) for I ⊂
{1, . . . , n}, where A \ I is the matrix obtained from A by deleting the columns
corresponding to I .

(ii) σ(A) is GLg(Z)-equivalent to σ(B) if and only if A and B are equivalent.
More precisely, if A = h BY where h ∈ GLg(Z) and Y ∈ GLn(Z) is a signed
permutation matrix, then σ(A) = hσ(B)ht .
In particular, the GLg(Z)-equivalence classes of cones in Σmat correspond bi-
jectively to simple regular matroids of rank at most g. We will denote by σ(M)

the equivalence class corresponding to such a matroid M.

Proof The cone σ(A) is the same as the cone constructed in [8, Construction 4.4.2].
Therefore, (i) follows from [8, Thm 4.4.4(iii)], while (ii) follows from [8, Thm 4.4.4(ii)]
and Fact 3.1.7.

From the above lemma, we get that Σmat forms an admissible decomposition of
Ωmat

g (compare with Definition 2.0.3).

Corollary 4.0.6 The collection Σmat = {σ(A)} is an admissible decomposition of
Ωmat

g , i.e.

(i) If σ is a face of σ(A) ∈ Σmat then σ ∈ Σmat;
(ii) The intersection of two cones σ(A) and σ(B) of Σmat is a face of both cones;

(iii) If σ(A) ∈ Σmat and h ∈ GLg(Z) then h · σ(A) · ht ∈ Σmat;
(iv) #{σ(A) ∈ Σmat mod GLg(Z)} is finite;
(v)

⋃
σ(A)∈Σmat

σ(A) = Ωmat
g .

4.1 Σmat is contained in ΣV

In this subsection, we are going to recall the well-known result of Erdhal–Ryshkov
[18] according to which every cone of Σmat is a cone of ΣV. A key role is played by
the concept of lattice dicing as introduced in [18, Sec. 2]. However, we will need a
slight generalization of the definition of loc. cit. in order to be able to deal with the
cones σ(A) ∈ Σmat such that A has rank smaller than g.

Definition 4.1.1 A generalized lattice dicing D of R
g (with respect to the standard

lattice Z
g) is a Z

g-periodic polyhedral subdivision of R
g whose polyhedra are cut out

by the affine hyperplanes Hi + v := {x ∈ R
g : x − v ∈ Hi }, where v ∈ Z

g and
{H1, . . . , Hn} is a (possibly empty) collection of distinct central hyperplanes on R

g

such that

(i) If we denote by wi a non-zero vector normal to the hyperplane Hi (for 1 ≤ i ≤
n), then the vector space VD := 〈w1, . . . , wn〉 ⊆ R

g is defined over Q, i.e. VD
admits a basis of elements of Q

g .
(ii) If there exists a subset I ⊆ {1, . . . , n} and a collection of vectors {vi }i∈I ⊂ Z

g

such that the intersection

VD
⋂

i

{Hi + vi }
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consists of one point x (in this case, we say that x is a vertex of D), then
x ∈ VD ∩ Z

g .
(iii) For any x ∈ VD ∩ Z

g and any Hi , there exists a unique v ∈ VD ∩ Z
g such that

x ∈ Hi + v.

The dimension of VD is said to be the rank of D and is denoted by rk(D). We say
that D is non-degenerate (or simply that D is a lattice dicing) if D has rank g, i.e. if
VD = R

g .

Remark 4.1.2 (i) The above definition of lattice dicing is equivalent to the defini-
tion in [18, Sec. 2].

(ii) If D is a generalized lattice dicing of rank 0 ≤ g′ ≤ g as above, then VD ∩Z
g ∼=

Z
g′

is a full dimensional lattice in VD by (i), or equivalently VD ∼= (VD ∩Z
g)⊗Z

R ∼= R
g′

, and the hyperplanes {H1 ∩ VD, . . . , Hn ∩ VD} induce a lattice dicing
of VD ∼= R

g′
(with respect to the lattice VD ∩ Z

g ∼= Z
g′

), which we denote by
D|VD .

To every simple unimodular matrix, it is possible to associate a generalized lattice
dicing as follows.

Lemma-Defenition 4.1.3 Let A ∈ Mg,n(Z) be a simple unimodular matrix of rank
0 ≤ g′ ≤ g. Denote its column vectors by {v1 . . . , vn} and, for each 1 ≤ i ≤ n,
consider the central hyperplane Hvi of R

g defined by Hvi := {x ∈ R
g : vt

i · x = 0}.
Then the collection {Hv1, . . . , Hvn } of central hyperplanes determines a generalized
lattice dicing DA of R

g of rank g′.

Proof In the case where A has maximum rank g, the result is proved in [18, p. 462].
In the general case, up to possibly replacing A with a GLg(Z)-equivalent matrix,

we may assume that A =
(

A′
0

)
where A′ ∈ Mg′,n(Z) is a simple unimodular matrix

of maximal rank g′. In this case, VDA = 〈e1, . . . , eg′ 〉 where {ei } is the standard basis
of R

g; in particular, VDA is defined over Q. Moreover, it is clear that the collection of
hyperplanes {Hv1 ∩ VDA , . . . , Hvn ∩ VDA } defines the lattice dicing DA′ . We deduce
that the collection {Hv1, . . . , Hvn } satisfies properties (ii) and (iii) of Definition 4.1.1
and we are done.

We can now summarize the results of [18] in the following

Fact 4.1.4 (Erdahl–Ryshkov)

(i) Every generalized lattice dicing of R
g is of the form DA for some simple

unimodular matrix A ∈ Mg,n(R).
(ii) For every simple unimodular matrix A ∈ Mg,n(Z), the generalized lattice

dicing DA is a Delone subdivision and moreover we have that

σ(A) = σDA .

In particular, every cone of Σmat is a cone of ΣV.
(iii) For a cone σD ∈ ΣV, the following conditions are equivalent:
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(a) σD ∈ Σmat;
(b) D is a generalized lattice dicing;
(c) The extremal rays of σD are generated by rank one positive semi-definite

quadratic forms.

Proof Part (i) is proved in [18, p. 462] for lattice dicings (i.e. in the case of maximal
rank g) and it is easily extended to generalized lattice dicings by looking at the lattice
dicing D|VD induced by D on VD (see Remark 4.1.2).

Under the assumption that A has full rank g, part (ii) follows from [18, Thm. 3.2
and Thm. 4.1] since our cone σ(A) (see Definition 4.0.4) coincides with the closure
of the domain �(DA) of the lattice dicing DA defined in [18, Def. 3.1]. The extension
to the general case follows easily as in Lemma-Definition 4.1.3: up to replacing A

with a GLg(Z)-equivalent matrix, we can write A =
(

A′
0

)
where A′ ∈ Mg′,n(Z) is a

simple unimodular matrix of maximal rank g′ and then we deduce the assertion for A
from the analogous assertion for A′.

Part (iii): the equivalence of (a) and (b) follows from part (i).
The equivalence of (a) and (c) is the content of [18, Thm. 4.3].

There is another well-known characterization of the subcone Ωmat
g ⊆ Ω rt

g in terms
of Dirichlet–Voronoi polytopes.

Remark 4.1.5 A quadratic form Q ∈ Ω rt
g belongs to the matroidal subcone Ωmat

g if
and only if its Dirichlet–Voronoi polytope Vor(Q) is a zonotope, i.e. a Minkowski sum
of segments, or equivalently, an affine projection of an hypercube. See e.g. [8, Sec.
4.4] and the references therein.

Example 4.1.6 It is well-known that Σmat is not pure-dimensional, i.e. the maximal
cones of Σmat are not of the same dimension (see e.g. [39, Chap. 4] and the references
therein). It is a classical result of Korkine–Zolotarev ([26] or [18, Thm. 5.2]) that, up
to GLg(Z)-equivalence, there is only one cone of Σmat of maximum dimension

(g+1
2

)
,

namely the so-called principal cone (or first perfect domain), which can be defined
as (see [33, Chap. 8.10] and [39, Chap. 2.3]):

σprin :=
⎧⎨
⎩Q = (qi j ) ∈ Ω rt

g : qi j ≤ 0 for i 
= j,
∑

j

qi j ≥ 0 for all i

⎫⎬
⎭ . (4.1)

Indeed, the principal cone admits two well-known alternative descriptions:

(i) The GLg(Z)-equivalence class [σprin] of the principal cone σprin is equal to
σ(M(Kg+1)), where Kg+1 is the complete simple graph on (g + 1)-vertices
(see e.g. [8, Lemma 6.1.3] for a proof).

(ii) The interior of σprin consists of all the quadratic forms Q ∈ Ωg whose Dirich-
let–Voronoi polytope is normally equivalent to the permutahedron of dimension
g (see [41, Ex. 0.10]). See e.g. [39, Sec. 3.3.2] and the references therein.

If g = 2, 3 then the principal cone σprin is the unique maximal cone in Σmat = ΣV,
up to GLg(Z)-equivalence (see [18, Thm. 5.3]).
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However, for g ≥ 4, the matroidal decomposition Σmat becomes quickly much
smaller than ΣV as g grows (and therefore the matroidal subcone Ωmat

g becomes
smaller than Ω rt

g ). For small values of g, the number of equivalence classes of maxi-
mal cells of Σmat and ΣV are as follows (see [11, Sec. 9] and [39, Chap. 4]):

(i) For g = 4, ΣV has 3 maximal cells while Σmat has two maximal cells of
dimensions 10 and 9;

(ii) For g = 5, ΣV has 222 maximal cells while Σmat has 4 maximal cells of
dimensions 15, 12, 12 and 10;

(iii) For g = 6, ΣV has more than 250,000 maximal cells (although the exact num-
ber is still not known!) while Σmat only 11 maximal cells, 8 of which have
dimension 15 and the others have dimensions 21, 16 and 12.

4.2 Σmat is contained in ΣP

The aim of this subsection is to prove the following

Theorem 4.2.1 We have that Σmat ⊆ ΣP, i.e. every cone of Σmat is a cone of ΣP.

Proof We have to show that for any simple regular matroid M of rank at most g,
the equivalence class σ(M) belongs to ΣP/ GLg(Z). The strategy is to prove this
for graphic matroids, for cographic matroids and for the matroid R10 and then apply
Seymour’s decomposition theorem (see Fact 3.4.3). Let us first check the statement
for M belonging to each of the above classes.

Graphic matroids Let M = M(Γ ) (see Definition 3.2.2), for Γ a simple connected
graph of cogenus g∗(Γ ) = |V (Γ )|−1 ≤ g. Clearly, Γ can be obtained from the com-
plete simple graph Kg+1 on g + 1 vertices by deleting some of its edges. This means
that, if we denote by A(Kg+1) ∈ Mg,(g+1

2 )(Z) a simple unimodular matrix represent-

ing the matroid M(Kg+1), then we can chose a simple unimodular matrix representing
Γ and having the form A(Γ ) = A(Kg+1) \ I , for a certain I ⊂ {1, . . . ,

(g+1
2

)} which
corresponds to the edges that we have deleted from Kg+1 in order to obtain Γ . By
Lemma 4.0.5, σ(A(Γ )) is a face of σ(A(Kg+1)). Therefore, in order to prove that
σ(M(Γ )) ∈ ΣP/ GLg(Z), it is enough to prove that σ(Kg+1) ∈ ΣP/ GLg(Z). As
observed in Example 4.1.6, σ(Kg+1) is the equivalence class of the principal cone
σprin (see (4.1)), which is well known to belong to ΣP: indeed, it can be proven (see
[33, Sec. 8.10] or [28, Sec. 4.2]) that

σprin = σ [Q0] for Q0 =

⎛
⎜⎜⎜⎜⎝

1 1/2 · · · 1/2

1/2
. . .

. . .
...

...
. . .

. . . 1/2
1/2 · · · 1/2 1

⎞
⎟⎟⎟⎟⎠ .

Cographic matroids The fact that σ(M∗(Γ )) ∈ ΣP/ GLg(Z) for any 3-edge con-
nected graph Γ of genus g(Γ ) ≤ g was proved by Alexeev–Brunyate (see [3, Thm.
5.6]).
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R10: Consider the simple totally unimodular matrix A10 of rank 5 from Defini-
tion 3.3.1 and its associated cone σ(A10) ∈ Σmat ⊆ ΣV. We have to prove that
σ(A10) ∈ ΣP. Indeed, we will prove that σ(A10) is a face of a top dimensional cone
of ΣP.

To this aim, consider the lattice D5 which, following the notations of [28, Sec. 4.3],
is defined to be the subgroup of Z

5 consisting of all vectors v = (v1, . . . , v5) ∈ Z
5

such that
∑

i vi is even together with the restriction of the standard Euclidan quadratic
form on R

5. If we denote by {ε1, . . . , ε5} the standard basis of Z
5, then a basis for D5

is given by the vectors

ei := εi + εi+1 for i = 1, . . . , 5

where we have used the cyclic notation εi+5 := εi for any i ∈ Z. With respect to the
above basis, the positive definite quadratic form defining D5 is given by the matrix

Q5 =

⎛
⎜⎜⎜⎜⎝

2 1 0 0 1
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
1 0 0 1 2

⎞
⎟⎟⎟⎟⎠ .

The quadratic form Q5 is perfect (see [28, Cor. 6.4.3]) and the set M(Q5) of minimal
integral non-zero vectors for Q5 is given by the 20 vectors (see [28, Sec. 4.3])

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ei ,

fi := ei − ei+1,

gi := ei − ei+1 + ei+2,

hi := ei − ei+1 + ei+2 − ei+3,

(4.2)

where i = 1, . . . , 5 and we have used the cyclic notation ei+5 := ei for any i ∈ Z

(and similarly for fi , gi and hi ). Therefore, the cone σ [Q5] ∈ ΣP has maximal
dimension 15 and it has 20 extremal rays given by the rank one quadratic forms
{ei · et

i , fi · f t
i , gi · gt

i , hi · ht
i }i=1,...,5 associated to the above elements of M(Q5). We

claim that

σ(A10) is a face of σ [Q5], (*)

which clearly would imply that σ(A10) ∈ ΣP, as required.
Note that the columns of the matrix A10 are exactly the 10 vectors {ei , gi }i=1,...,5;

hence the extremal rays of σ(A10) are generated by the 10 rank one quadratic forms
{ei · et

i , gi · gt
i }i=1,··· ,5. Therefore, in order to prove (*), we have to find a linear
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Comparing perfect and 2nd Voronoi decompositions 1541

functional H on the vector space R
15 of quadratic forms on R

5 that is a supporting
hyperplane for σ(A10), or in other words which satisfies (for any i = 1, . . . , 5)

⎧⎪⎨
⎪⎩

H(ei · et
i ) = H(gi · gt

i ) = 0,

H( fi · f t
i ) < 0,

H(hi · ht
i ) < 0.

(**)

Consider the linear functional H on R
15 defined by

H

⎛
⎝ ∑

1≤i, j≤5

αi, j ei · et
j

⎞
⎠ =

5∑
i=1

αi,i+1 + 2
5∑

i=1

αi,i+2,

where αi, j = α j,i ∈ R with the usual cyclic convention αi+5, j = αi, j+5 := αi, j .
From the definition (4.2), it follows easily that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H(ei · et
i ) = 0,

H( fi · f t
i ) = −2,

H(gi · gt
i ) = 0,

H(hi · ht
i ) = −2.

This implies that H satisfies (**) and we are done.
In order to conclude the proof, it is enough, in view of Seymour’s decomposition

theorem (see Fact 3.4.3), to prove that if M1 and M2 are two simple regular matroids
such that σ(M1), σ (M2) ∈ ΣP/ GLg(Z), then σ(M1 ⊕k M2) ∈ ΣP/ GLg(Z) for
k = 1, 2, 3 (see Definition 3.4.1). From the definition of ΣP (see Sect. 2.1), it follows
that σ(M) ∈ ΣP/ GLg(Z) if and only if there exists a simple totally unimodular matrix
A ∈ Mg,n(Z) with column vectors {v1, . . . , vn} and a positive definite quadratic form
Q such that M = M[A] and for any ξ ∈ Z

g \ 0 it holds that Q(ξ) ≥ 1 with equality
if and only if ±ξ = vi for some 1 ≤ i ≤ n, or in the terminology of Definition 4.2.2
below, that Q is well-suited for A. Therefore, we conclude using the Lemmas 4.2.3,
4.2.4 and 4.2.5 below.

In order to simplify the statements of the Lemmas below, we introduce the following

Definition 4.2.2 Let A ∈ Mg,n(Z) be a simple totally unimodular matrix. We say that
a symmetric matrix Q ∈ Mg,g(R) is well-suited for A if Q is positive definite and
for any ξ ∈ Z

g \ 0 it holds that Q(ξ) ≥ 1 with equality if and only if ±ξ is equal to
one of the column vectors of A.

Lemma 4.2.3 For i = 1, 2, let Ai ∈ Mgi ,ni (Z) be a simple totally unimodular matrix
and let Qi be a positive definite quadratic form of rank gi which is well-suited for Ai .
Then

Q =
(

Q1 0
0 Q2

)
is well-suited for A =

(
A1 0
0 A2

)
.
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1542 M. Melo, F. Viviani

Proof It is clear that Q is positive definite. Take now an element η ∈ Z
g1+g2 \ 0 and

write it as η = (ξ1, ξ2) with ξi ∈ Z
gi . Clearly Q(η) = Q1(ξ1)+ Q2(ξ2). Since at least

one among ξ1 and ξ2 is non-zero because η 
= 0, we have that Q(η) ≥ 1 with equality
if and only if ξ1 = 0 and ±ξ2 is a column vector of the matrix A2 or viceversa, which
is equivalent to say that ±η is a column vector of A.

Lemma 4.2.4 Consider two simple totally unimodular matrices of the form

A1 =
(

B 0
bt 1

)
, A2 =

(
ct 1
C 0

)
,

where B ∈ Mg1,n1(Z), C ∈ Mg2,n2(Z) and b, c are vectors. Assume that Qi is well-
suited for Ai for i = 1, 2. We can write

Q1 =
(

Q1 r1
r t

1 1

)
and Q2 =

(
1 r t

2
r2 Q2

)

where Qi ∈ Mgi ,gi (R) and ri is a vector of length gi (for i = 1, 2). Then

Q :=
⎛
⎝ Q1 r1 r1 · r t

2
r t

1 1 r t
2

r2 · r t
1 r2 Q2

⎞
⎠ is well-suited for A =

⎛
⎝B 0 0

bt ct 1
0 C 0

⎞
⎠ .

Proof The fact that Qi (for i = 1, 2) can be written in the required form follows from
the fact that Qi takes the value 1 on the last column of Ai since Qi is well-suited for
Ai .

Consider now a vector (ξ1, x, ξ2) where ξi = (ξ1
i , . . . , ξ

gi
i ) ∈ R

gi (for i = 1, 2)
and x ∈ R. Then, using block matrix multiplication, we have that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ξ1, x)t Q1(ξ1, x) = ξ t
1 Q1ξ1 + 2ξ t

1r1x + x2,

(x, ξ2)
t Q2(x, ξ2) = x2 + 2xr t

2.ξ2 + ξ t
2 Q2ξ2,

(ξ1, x, ξ2)
t Q(ξ1, x, ξ2) = ξ t

1 Q1ξ1 + 2ξ t
1r1x + 2ξ t

1r1r t
2ξ2 + x2

+2xr t
2ξ2 + ξ t

2 Q2ξ2,

which we rewrite as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q1(ξ1, x) = Q1(ξ1) + 2x〈r1, ξ1〉 + x2,

Q2(x, ξ2) = Q2(ξ2) + 2x〈r2, ξ2〉 + x2,

Q(ξ1, x, ξ2) = Q1(ξ1) + Q2(ξ2) + 2〈r1, ξ1〉〈r2, ξ2〉
+2x [〈r1, ξ1〉 + 〈r2, ξ2〉] + x2,

(4.3)

where 〈 , 〉 denotes the usual scalar product of vectors.
For a fixed value ξi ∈ R

gi , the minimum of Qi considered as a function on x is
attained at −〈ξi , ri 〉 and it is equal to Qi (ξi ) − 〈ξi , ri 〉2. Indeed, for any quadratic real
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function f of the form f (x) = x2 + 2bx + c, for real numbers a and b, the minimum
of f is attained when x = −b and it is equal to c −b2. Therefore, since Qi is assumed
to be positive definite, we get that (for i = 1, 2)

Qi (ξi ) − 〈ξi , ri 〉2 ≥ 0 with equality if and only if ξi = 0. (4.4)

Similarly, for fixed values (ξ1, ξ2) ∈ R
g1+g2 , the minimum of Q considered as a

function on x is attained at x0 = −〈ξ1, r1〉 − 〈ξ2, r2〉 and it is equal to

min
x∈R

Q(ξ1, x, ξ2) = Q(ξ1, x0, ξ2) = Q1(ξ1) − 〈ξ1, r1〉2 + Q2(ξ2) − 〈ξ2, r2〉2. (4.5)

Using (4.4), we get that minx∈R Q(ξ1, x, ξ2) ≥ 0 with equality if and only if (ξ1, ξ2) =
(0, 0), which proves that Q is positive definite. It remains to show that Q is well-suited
for A, i.e., that for any (ξ1, x, ξ2) ∈ Z

g1+g2+1, Q(ξ1, x, ξ2) ≥ 1 with equality if and
only if ±(ξ1, x, ξ2) is equal to a column vector of A.

Fix (ξ1, x, ξ2) ∈ Z
g1+g2+1. Start by noticing that, since no column vectors of B

and of C can be equal to 0 (see Remark 3.4.2), the vector ±(ξ1, x, ξ2) is a column
vector of A if and only if ξ1 = 0 and ±(x, ξ2) is a column vector of A2 or if ξ2 = 0
and ±(ξ1, x) is a column vector of A1. If ξ1 = 0 then Q(0, x, ξ2) = Q2(x, ξ2) by
(4.3). Now, since Q2 is well-suited for A2, we get that Q(0, x, ξ2) = Q2(x, ξ2) ≥ 1
for any (x, ξ2) ∈ Z

g2+1 \ 0 with equality if and only if ±(x, ξ2) is a column vector
of A2, or equivalently, if and only if ±(0, x, ξ2) is a column vector of A. We get the
same conclusions if ξ2 = 0.

Therefore, it remains to show that if ξi ∈ Z
gi \ 0 for i = 1, 2 and x ∈ Z then

Q(ξ1, x, ξ2) > 1. Using (4.5), this is a consequence of the following

Claim If ξi ∈ Z
gi \ 0 then Qi (ξi ) − 〈ξi , ri 〉2 ≥ 3/4 for i = 1, 2.

Let us prove the Claim for i = 1 (the case i = 2 being analogous). As observed
before, we have that

Q1(ξ1) − 〈ξ1, r1〉2 = min
x∈R

Q1(ξ1, x) = Q1(ξ1,−〈ξ1, r1〉). (4.6)

Let xmin = −〈ξ1, r1〉 and denote by M = [xmin] ∈ Z its integer part. Then we have
that

Q1(ξ1, M), Q1(ξ1, M + 1) ≥ 1, (4.7)

by our original assumptions on Q1 and the fact that ξ1 ∈ Z
g1 \ 0. Using (4.3) we

compute

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q1(ξ1, M) − Q1(ξ1, xmin) = 2(M − xmin)(−xmin) + M2 − x2
min

= (M − xmin)
2,

Q1(ξ1, M + 1) − Q1(ξ1, xmin) = 2(M + 1 − xmin)(−xmin)

+ (M + 1)2 − x2
min = (M + 1 − xmin)

2.

(4.8)
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Equation (4.7) together with (4.8) gives that

{
Q1(ξ1, xmin) ≥ 1 − (M − xmin)

2,

Q1(ξ1, xmin) ≥ 1 − (M + 1 − xmin)
2.

(4.9)

Putting together (4.6) and (4.9), we deduce that

Q1(ξ1)−〈ξ1, r1〉2 = Q1(ξ1, xmin) ≥ max{1−(M − xmin)
2, 1 − (M + 1 − xmin)

2}
= 1 − min{M − xmin, M + 1 − xmin}2 ≥ 1 −

(
1

2

)2

= 3

4
.

Lemma 4.2.5 Consider two simple totally unimodular matrices of the form

A1 = A1 =
⎛
⎜⎝

B 0 0 0

bt
1 1 0 1

bt
2 0 1 1

⎞
⎟⎠ , A2 =

⎛
⎜⎝

ct
1 1 0 1

ct
2 0 1 1

C 0 0 0

⎞
⎟⎠ ,

where B ∈ Mg1,n1(Z), C ∈ Mg2,n2(Z) and b1, b2, c1, c2 are vectors. Assume that Qi

is well-suited for Ai for i = 1, 2. We can write

Q1 =
⎛
⎜⎝

Q1 r1 s1

r t
1 1 −1/2

st
1 −1/2 1

⎞
⎟⎠ and Q2 =

⎛
⎜⎝

1 −1/2 r t
2

−1/2 1 st
2

r2 s2 Q2

⎞
⎟⎠

where Qi ∈ Mgi ,gi (R) and ri , si are vectors of length gi (for i = 1, 2). Then

Q :=

⎛
⎜⎜⎜⎜⎝

Q1 r1 s1 M

rt
1 1 −1/2 r t

2

st
1 −1/2 1 st

2

Mt r2 s2 Q2

⎞
⎟⎟⎟⎟⎠ is well-suited for A =

⎛
⎜⎜⎜⎜⎝

B 0 0 0 0

bt
1 ct

1 1 0 1

bt
2 ct

2 0 1 1

0 C 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

where M := 4r1r t
2 + 4s1st

2 + 2r1st
2 + 2s1r t

2

3
∈ Mg1,g2(R).

Proof The fact that Qi (for i = 1, 2) can be written in the required form follows from
the fact that Qi takes value 1 on the last three columns of Ai since Qi is well-suited
for Ai .

123



Comparing perfect and 2nd Voronoi decompositions 1545

Consider a vector (ξ1, x, y, ξ2) where ξi ∈ R
gi (for i = 1, 2) and x, y ∈ R. Then,

using block matrix multiplication, we have that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ξ1, x, y)t Q1(ξ1, x, y) = ξ t
1 Q1ξ1 + 2ξ t

1r1x + 2ξ t
1s1 y + x2

+ 2x

(
−1

2

)
y + y2,

(x, y, ξ2)
t Q2(x, y, ξ2) = x2 + 2x

(
−1

2

)
y + 2xr t

2ξ2 + y2

+ 2yst
2ξ2 + ξ t

2 Q2ξ2,

(ξ1, x, y, ξ2)
t Q(ξ1, x, y, ξ2) = ξ t

1 Q1ξ1 + 2ξ t
1r1x + 2ξ t

1s1 y + 2ξ t
1 Mξ2 + x2

+ 2x

(
−1

2

)
y + 2xr t

2ξ2 + y2 + 2yst
2ξ2 + ξ t

2 Q2ξ2,

which we rewrite as
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q1(ξ1, x, y) = Q1(ξ1) + 2x〈r1, ξ1〉 + 2y〈s1, ξ1〉 + x2 − xy + y2,

Q2(x, y, ξ2) = Q2(ξ2) + 2x〈r2, ξ2〉 + 2y〈s2, ξ2〉 + x2 − xy + y2,

Q(ξ1, x, y, ξ2) = Q1(ξ1) + Q2(ξ2) + 2ξ t
1 Mξ2 + 2x [〈r1, ξ1〉 + 〈r2, ξ2〉]

+ 2y [〈s1, ξ1〉 + 〈s2, ξ2〉] + x2 − xy + y2,

(4.10)

where 〈, 〉 denotes the usual scalar product of vectors. Let f : R
2 → R be a quadratic

function of the form f (x, y) = x2 − xy + y2 + 2ax + aby + c, where a, b and c are
real numbers. Then an easy calculation shows that the minimum value of f is attained
when

⎧⎪⎨
⎪⎩

x = −4

3
a − 2

3
b

y = −2

3
a − 4

3
b

(4.11)

and it is equal to − 4
3 (a2 + b2 + ab) + c. So, by (4.11), for a fixed value ξi ∈ R

gi , the
minimum of Qi considered as a function on x and y is attained at

⎧⎪⎨
⎪⎩

xi
min = −4

3
〈ri , ξi 〉 − 2

3
〈si , ξi 〉,

yi
min = −2

3
〈ri , ξi 〉 − 4

3
〈si , ξi 〉,

(4.12)

and it is equal to Qi (ξi ) − 4

3

[
〈ξi , ri 〉2 + 〈ξi , si 〉2 + 〈ξi , ri 〉〈ξi , si 〉

]
. Therefore, since

Qi is assumed to be positive definite, we get that (for i = 1, 2)

Qi (ξi ) − 4

3

[
〈ξi , ri 〉2 + 〈ξi , si 〉2 + 〈ξi , ri 〉〈ξi , si 〉

]
≥ 0 with equality

if and only if ξi = 0.

(4.13)
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Similarly, for fixed values (ξ1, ξ2) ∈ R
g1+g2 , the minimum of Q considered as a

function on x and y is attained at

⎧⎪⎨
⎪⎩

x0 = −4

3
[〈r1, ξ1〉 + 〈r2, ξ2〉] − 2

3
[〈s1, ξ1〉 + 〈s2, ξ2〉] ,

y0 = −2

3
[〈r1, ξ1〉 + 〈r2, ξ2〉] − 4

3
[〈s1, ξ1〉 + 〈s2, ξ2〉] ,

and it is equal to

Q(ξ1, x0, y0, ξ2)

= −4

3

[
(〈r1, ξ1〉 + 〈r2, ξ2〉)2 + (〈s1, ξ1〉 + 〈s2, ξ2〉)2

+ (〈r1, ξ1〉 + 〈r2, ξ2〉)(〈s1, ξ1〉 + 〈s2, ξ2〉)
]

+ 2ξ t
1 Mξ2 + Qi (ξ1) + Q2(ξ2)

=
2∑

i=1

{
Qi (ξi ) − 4

3

[
〈ξi , ri 〉2 + B + 2ξ t

1 Mξ2〈ξi , si 〉2 + 〈ξi , ri 〉〈ξi , si 〉
]}

,

(4.14)

where B := 2〈r1, ξ1〉〈r2, ξ2〉 + 2〈s1, ξ1〉〈s2, ξ2〉 + 〈r1, ξ1〉〈s2, ξ2〉 + 〈r2, ξ2〉〈s1, ξ1〉.
We claim that B + 2ξ t

1 Mξ2 = 0. Given a vector v, denote by v j the j th entry of v.

Then our claim follows from the easy observation that the coefficient of ξ
j

1 ξ k
2 in the

expression B is equal to

−4

3

(
2r1rk

2 + 2s1sk
2 + r j

1 sk
2 + rk

2 s j
1

)
,

and thus is opposite to the coefficient of ξ
j

1 ξ k
2 in 2ξ t

1 Mξ2, which turns out to be

2

(
4

3
r1rk

2 + 4

3
s1sk

2 + 2

3
r j

1 sk
2 + 2

3
s j

1 rk
2

)
.

In conclusion, we have that

min
x,y∈R

Q(ξ1, x, y, ξ2) = Q(ξ1, x0, y0, ξ2)

=
2∑

i=1

{
Qi (ξi ) − 4

3

[
〈ξi , ri 〉2 + 〈ξi , si 〉2 + 〈ξi , ri 〉〈ξi , si 〉

]}

= min
x,y∈R

Q1(ξ1, x, y) + min
x,y∈R

Q2(x, y, ξ2). (4.15)

Using (4.13), we get that min
x,y∈R

Q(ξ1, x, y, ξ2) ≥ 0 with equality if and only if

(ξ1, ξ2) = (0, 0), which proves that Q is positive definite. It remains to show that Q
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is well-suited for A, i.e., that for any (ξ1, x, y, ξ2) ∈ Z
g1+g2+2, Q(ξ1, x, y, ξ2) ≥ 1

with equality if and only if ±(ξ1, x, y, ξ2) is equal to a column vector of A.
Fix (ξ1, x, y, ξ2) ∈ Z

g1+g2+2. Using the same type of argumentation as in the proof
of Lemma 4.2.4, we start by noticing that, since no column vectors of B and of C can
be equal to 0 (see Remark 3.4.2), the vector ±(ξ1, x, y, ξ2) is a column vector of A if
and only if ξ1 = 0 and ±(x, y, ξ2) is a column vector of A2 or if ξ2 = 0 and ±(ξ1, x, y)

is a column vector of A1. If ξ1 = 0 then Q(0, x, y, ξ2) = Q2(x, y, ξ2) by (4.10). Now,
since Q2 is well-suited for A2, we get that Q(0, x, y, ξ2) = Q2(x, y, ξ2) ≥ 1 for any
(x, y, ξ2) ∈ Z

g2+2 \ 0 with equality if and only if ±(x, y, ξ2) is a column vector of
A2 or, equivalently, if and only if ±(0, x, y, ξ2) is a column vector of A. We get the
same conclusions if ξ2 = 0.

Therefore, it remains to show that if ξi ∈ Z
gi \ 0 for i = 1, 2 and x, y ∈ Z then

Q(ξ1, x, y, ξ2) > 1. Using (4.15), this is a consequence of the following

Claim If ξi ∈ Z
gi \ 0 then

Qi (ξi ) − 4

3

[
〈ξi , ri 〉2 + 〈ξi , si 〉2 + 〈ξi , ri 〉〈ξi , si 〉

]
≥ 3

4
for i = 1, 2.

Let us prove the Claim for i = 1 (the case i = 2 being analogous). As observed
before, we have that

Q1(ξ1) − 4

3

[
〈ξ1, r1〉2 + 〈ξ1, s1〉2 + 〈ξ1, r1〉〈ξ1, s1〉

]
= Q1(ξ1, x1

min, y1
min), (4.16)

where x1
min and y1

min are given in (4.12). Let M1 = [x1
min] ∈ Z and M2 = [y1

min] ∈ Z

be their integer parts. Then we have that

Q1(ξ1, M1, M2), Q1(ξ1, M1 + 1, M2), Q1(ξ1, M1, M2 + 1),

Q1(ξ1, M1 + 1, M2 + 1) ≥ 1, (4.17)

by our original assumptions on Q1 and the fact that ξ1 ∈ Z
gi \ 0 and M1, M2 ∈ Z.

Now, from equation (4.10) we have that for any x, y ∈ R

Q1(ξ1, x, y) − Q1(ξ1, x1
min, y1

min) = 2(x − x1
min)〈r1, ξ1〉 + (y − y1

min)〈s1, ξ1〉
+x2−xy+y2−(x1

min)
2+x1

min y1
min−(y1

min)
2

= (x−x1
min)

2−(x−x1
min)(y−y1

min)+(y−y1
min)

2,

(4.18)

where the last equality follows from the fact that

{ 〈r1, ξ1〉 = −2x1
min + y1

min

〈s1, ξ1〉 = x1
min − 2y1

min
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which we can easily deduce from (4.12). Putting together (4.17) and (4.18), we deduce
that, if x takes the value of either M1 or M1 + 1 and if y takes the value of either M2
or M2 + 1, then

Q1(ξ1, x1
min, y1

min) ≥ 1 −
[
(x − x1

min)
2 − (x − x1

min)(y − y1
min) + (y − y1

min)
2
]

which implies that

Q1(ξ1, x1
min, y1

min) ≥ 1− min
x=M1,M1+1

y=M2,M2+1

{(x−x1
min)

2−(x−x1
min)(y−y1

min)+(y−y1
min)

2}.

The minimum appearing in the last equation will be at most equal to 1/4, which will
be the case if x1

min = M1 + 1/2 and y1
min = M2 + 1/2. Therefore we get that

Q1(ξ1, x1
min, y1

min) ≥ 1 − 1

4
= 3

4
,

which, combined with (4.16), concludes the proof of the Claim.

4.3 Σmat is the intersection of ΣV and ΣP

The aim of this subsection is to prove the following

Proposition 4.3.1 We have the following

ΣV ∩ ΣP ⊆ Σmat,

i.e. if σ is a cone of ΣV and of ΣP then σ is a cone of Σmat.

Proof Let σ ∈ ΣV ∩ ΣP. The fact that σ ∈ ΣP implies, by Remark 2.1.2, that the
extremal rays of σ are generated by positive semi-definite quadratic forms of rank one.
Fact 4.1.4(iii), together with the hypothesis that σ ∈ ΣV, now implies that σ ∈ Σmat.

By combining Fact 4.1.4(ii), Theorem 4.2.1 and Proposition 4.3.1, we deduce the
following

Corollary 4.3.2 We have that

ΣV ∩ ΣP = Σmat,

i.e. a cone σ belongs to ΣV and ΣP if and only if it belongs to Σmat.

Combining Corollary 4.3.2 with Example 4.1.6, we deduce the following classical
result of Dickson [14, Thm. 2]:

Corollary 4.3.3 (Dickson) The principal cone σprin is the unique cone of (maximal)
dimension

(g+1
2

)
, up to GLg(Z)-equivalence, which is contained in ΣV and ΣP.
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5 Toroidal compactifications of Ag

5.1 Preliminaries on Ag
P

and Ag
V

From the general theory of toroidal compactifications (see [5] for the general case
of bounded symmetric domains and [33] for the special case of the Siegel upper half
space), it follows that to each admissible decomposition � of Ω rt

g (in the sense of

Definition 2.0.3) it is associated a toroidal compactification Ag
�

of the moduli space
Ag of principally polarized abelian varieties of dimension g, i.e. a complete normal

variety Ag
�

containing Ag as a dense open subset and such that the pair (Ag,Ag
�

) is
étale locally isomorphic to a torus inside a complete toric variety. By construction, the

toroidal compactification Ag
�

comes with a stratification into locally closed subsets
which are naturally in order-reversing bijection (with respect to the order relation given
by the closure) with the GLg(Z)-equivalence classes of the relative interiors of the
cones in �. For example, the origin of Ω rt

g (which is the unique zero dimensional cone
in every admissible decomposition �) corresponds to the open subset Ag (which is the

unique stratum of Ag
�

of maximal dimension
(g+1

2

)
), while the maximal dimensional

cones in � correspond to the zero dimensional strata of Ag
�

.
We will be interested in the toroidal compactifications of Ag associated to the

perfect cone decomposition and to the 2nd Voronoi decomposition, which are called,
respectively, the perfect toroidal compactification and the 2nd Voronoi compactifica-

tion of Ag and are denoted by Ag
P

and Ag
V

, respectively. It is known that Ag
P

and

Ag
V

are projective (for Ag
P

this follows easily from the construction, see [33, Chap.

8] for details; for Ag
V

this is a non-trivial result of Alexeev, see [1, Cor. 5.12.8]). Note
that since ΣP has non simplicial cones for g ≥ 4 (see Remark 2.1.2) and similarly ΣV

has non simplicial cones for g ≥ 5 (see Remark 2.2.4), the compactifications Ag
P

and Ag
V

do not have finite quotient singularities if, respectively, g ≥ 4 or g ≥ 5.
These two toroidal compactifications of Ag have a special importance due to the

following

Fact 5.1.1 (i) (Shepherd-Barron [38]) Ag
P

is the canonical model of Ag for g ≥
12.

(ii) (Alexeev [1]) Ag
V

is the normalization of the main irreducible component of
Alexeev’s moduli space APg of stable semiabelic pairs, which provides a mod-
ular compactification of Ag.

(iii) (Mumford–Namikawa [32], Alexeev [2], Alexeev–Brunyate [3]) The Torelli map

tg : Mg → Ag,

sending a curve X ∈ Mg into its polarized Jacobian (Jac(X),�X ) ∈ Ag,
extends to regular maps

tg
V : Mg → Ag

V
and tg

P : Mg → Ag
P
, (5.1)

123



1550 M. Melo, F. Viviani

where Mg is the Deligne–Mumford (see [12]) compactification of Mg via
stable curves.

(iv) (Alexeev–Brunyate [3]) Ag
V

and Ag
P

contain a common open subset Acogr
g

given by the union of the strata corresponding to the GLg(Z)-equivalence clas-
ses of (cographic) cones σ(M∗(Γ )), where Γ varies among all 3-edge con-
nected graphs of genus at most g.
Moreover, Acogr

g contains the images of the morphisms tg
V and tg

P .

We mention that the compactified Torelli map tg
V admits a very nice modular descrip-

tion due to Alexeev (see [2, Sec. 5]), which has been used by Caporaso–Viviani [10] to
describe its geometric fibers. On the other hand, the map tg

P has been used by Gibney
[23] to find some interesting semi-ample divisors on Mg .

5.2 Comparing Ag
P

and Ag
V

The aim of this subsection is to compare the perfect compactification Ag
P

with the

2nd Voronoi compactification Ag
V

. Let us first introduce a special sublocus of Ag
V

.

Definition 5.2.1 Let Ag
mat

be the open subset of Ag
V

given by the union of the

strata of Ag
V

corresponding to the GLg(Z)-equivalence classes of cones belonging

to Σmat ⊆ ΣV. We call Ag
mat

the matroidal locus of Ag
V

.

The fact that Ag
mat

is an open subset of Ag
V

follows from the fact that Σmat ⊆ ΣV

is closed under taking faces of cones. Note that Ag
mat

has abelian finite quotient
singularities since Σmat is made of simplicial cones.

We can now state the main result of this subsection, which answers positively to
a question of Alexeev–Brunyate in [3, 6.3]. In particular, part (iii) of the Theorem
below is an extension of Fact 5.1.1(iv) (due to Alexeev–Brunyate) since Ag

mat
clearly

contains Acogr
g .

Theorem 5.2.2 (i) Ag
mat

is the biggest open subset of Ag
V

where the rational

map Ag
V τ��� Ag

P
is defined and is an isomorphism.

(ii) τ(Ag
mat

) is the biggest open subset of Ag
P

where the rational map Ag
P τ−1

���
Ag

V
is defined.

(iii) The compactified Torelli maps tg
P and tg

V fit into the following commutative
diagram
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Ag
mat � � ��

τ∼=

��

Ag
V

τ

���
�
�
�
�
�
�

Mg

tg
V �����������

tg
P ����

��
��

��
�

τ(Ag
mat

)
� � �� Ag

P

Proof The proof follows from the combinatorial results of the previous sections
together with standard facts from the theory of toroidal compactifications.

Part (i) follows from Corollary 4.3.2.
Part (ii) follows from Lemma 5.2.3 below.
Part (iii). The map tg

V sends the stratum of Mg corresponding to stable curves with

dual graph Γ into the stratum of Ag
V

corresponding toσ(M∗(Γ )) ∈ Σmat/ GLg(Z) ⊆
ΣV/ GLg(Z) (see [2, Thm. 3.11 and Thm. 4.1]). The same is true for the map tg

P by
[3, Thm. 3.7 and Thm. 5.6]. By general results on toroidal compactifications (see e.g.

[3, Thm. 3.2]), it follows now that Im(tg
V
) ⊆ Ag

mat ⊆ Ag
V
, Im(tg

P
) ⊆ τ(Ag

mat
) ⊆

Ag
P

and that the above diagram is commutative.

Lemma 5.2.3 If σ ′ ∈ ΣP and σ ∈ ΣV are such that σ ′ ⊆ σ then σ ′ ∈ Σmat.

Proof By Remark 2.1.2, the extremal rays of σ ′ are generated by rank one quadratic
forms {Q1, . . . , Qm}; in particular we have that

σ ′ = conv(Q1, . . . , Qm), (5.2)

where conv denotes the positive hull. Moreover, we can assume that Qi = vi · vt
i for

some primitive vector vi ∈ Z
g , uniquely determined up to sign.

Consider now the quadratic form
∑

i Qi ∈ Ω rt
g . Since Qi ∈ σ by assumption,

from [39, Prop. 3.3.5] we get that the Dirichlet–Voronoi polytope Vor(
∑

i Qi ) of
the quadratic form

∑
i Qi is the Minkowski sum of the Dirichlet–Voronoi polytopes

Vor(Qi ) of the quadratic forms Qi . Since each Qi has rank one, Vor(Qi ) is a one
dimensional segment for every i = 1, . . . , m. Therefore Vor(

∑
i Qi ) is a zonotope

and σDel(
∑

i Qi ) ∈ Σmat by Remark 4.1.5.
Explicitly, Del(

∑
i Qi ) is the generalized lattice dicing cut out by the central

hyperplanes in R
g that define the normal fan of the zonotope Vor(

∑
i Qi ) (see [41, Thm

7.16]). Since Vor(
∑

i Qi ) is the Minkowski sum of Vor(Qi ), it follows from [41, Prop.
7.12] that the normal fan of Vor(

∑
i Qi ) is the common refinement of the normal fans of

Qi , each of which is determined by the single hyperplane Hi := {x ∈ R
g : vt

i ·x = 0}.
From Fact 4.1.4, we get that the matrix A ∈ Mg,m(Z) whose column vectors are
{v1, . . . , vm} is a simple unimodular matrix and that σDel(

∑
i Qi ) = σ(A). Lemma 4.0.5

gives now that the extremal rays of σ(A) are exactly those generated by the rank one
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quadratic forms Qi = vi · vt
i , which implies that

σDel(
∑

i Qi ) = σ(A) = conv(Q1, . . . , Qm). (5.3)

By combining (5.2) and (5.3), we get that σ ′ = σDel(
∑

i Qi ) ∈ Σmat.

Remark 5.2.4 The rational map τ : Ag
V ��� Ag

P
is defined on an open subset which,

in general, is strictly bigger than Ag
mat

. For example, if g = 4, 5 it is known (see [19]
and the references therein) that ΣV is a refinement of ΣP (i.e. every cone of ΣV is
contained in a cone of ΣP), which is indeed equivalent to the fact that the map τ is
defined everywhere; on the other hand, it follows from Example 4.1.6 that if g ≥ 4

then Ag
mat

is strictly smaller than Ag
V

.
Indeed, it was believed for a long period (the so-called Voronoi–Dickson hypothe-

sis) that the map τ was defined everywhere, i.e. that ΣV was a refinement of ΣP for
any g (see [40] and [33, p. 94]). However, this was disproved for g = 6 by Erdahl–
Rybnikov (see [19] and [20]).

Remark 5.2.5 As we mention earlier in this paper, there is another well-known admis-
sible decomposition of Ω rt

g , the central cone decomposition ΣC (see [33, Sec. (8.9)]).
The associated toroidal compactification of Ag , called the central compactification of

Ag and denoted by Ag
C

, was shown by Igusa [27] to be isomorphic to the normali-
zation of the blow-up of the Satake compactification A∗

g of Ag along the boundary.

The comparison of Ag
C

with the other two toroidal compactifications considered in

this paper, namely Ag
P

and Ag
V

, appears to be much less clear. For example, it has
been proved by Alexeev–Brunyate [3] that the Torelli map tg does not extend to a

regular map from Mg to Ag
C

if g ≥ 9 (while it does for g ≤ 8, as shown in [4]), thus
disproving a long standing conjecture of Namikawa [31]. The proof of loc. cit. shows

also that the rational map Ag
V ��� Ag

C
is not regular on Ag

mat
and, similarly, that

Ag
P ��� Ag

C
is not regular on τ(Ag

mat
).
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