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Abstract. — In this paper, which is a sequel of [BKLV17], we study the convex-geometric prop-

erties of the cone of pseudoe¤ective n-cycles in the symmetric product Cd of a smooth curve C. We
introduce and study the Abel–Jacobi faces, related to the contractibility properties of the Abel–

Jacobi morphism and to classical Brill–Noether varieties. We investigate when Abel–Jacobi faces
are non-trivial, and we prove that for d su‰ciently large (with respect to the genus of C ) they form

a maximal chain of perfect faces of the tautological pseudoe¤ective cone (which coincides with the
pseudoe¤ective cone if C is a very general curve).
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1. Introduction

The study of the cone of ample or nef divisors, up to numerical equivalence, on
a projective variety X is a basic and classical tool in algebraic geometry, giving
a lot of geometrical information about X . The dual cones in the space of 1-cycles
have also been deeply studied, giving rise, for example, to very important results
in birational geometry and the minimal model program.

On the other hand, it is only in recent years that the study of higher dimen-
sional (or codimensional) cycles has highlighted its role (see for example [Pet09,
Voi10, DELV11, CC15, DJV13, Ful11, FL16, FL17a, FL17b, Ott12, Ott16] to
mention a few).

One of the most striking features of higher codimensional cycles is that they
behave in an unpredictable way, as there are examples of nef cycles with nega-
tive intersection [DELV11, Cor. 4.6] or of nef cycles that are not pseudoe¤ective
[DELV11, Cor. 2.2, Prop. 4.4], [Ott15, Thm. 0.1]. While one expects these phe-
nomena not to be so special, there are so far only three examples of such varieties
(namely the n-fold self product of an elliptic curve with complex multiplication,
the self product of a principally polarized abelian surface and the variety of lines
of a very general cubic fourfold) and it becomes therefore more interesting to in-
vestigate nef and pseudoe¤ective cycles for classical families of varieties, such as
symmetric products of curves, as suggested in [DELV11, §6].

Let now C be a smooth projective irreducible curve of genus g and consider,
for every db 2, its d-fold symmetric product Cd , which is the smooth projec-



tive variety parameterizing unordered d-tuples of points of C. This is a very inter-
esting smooth d-dimensional variety whose geometry has been deeply involved
in the classical study of Brill–Noether theory [ACGH] but also, in more recent
years, in the investigation of cones of e¤ective and nef divisors on it (an almost
thorough recap of these results can be found in the introduction of [BKLV17]).

In this paper, which is a natural sequel of [BKLV17], we study cones of
pseudoe¤ective and nef cycles on Cd . To state our results we need to set up some
notation and recall some well-known facts.

For 0a na d, let NnðCdÞ be the vector space of real n-cycles up to numeri-
cal equivalence. Inside this finite dimensional real vector space one can define sev-
eral interesting cones, namely E¤nðCdÞ, the cone of e¤ective n-cycles, its closure
Pse¤nðCdÞ, the cone of pseudoe¤ective n-cycles and NefnðCdÞ, the cone of nef
n-cycles, that is cycles a a NnðCdÞ such that a � bb 0 for every b a E¤d�nðCdÞ.

One crucial feature of Cd , that will play a very important role in this paper, is
that it comes naturally with a well-known map, the Abel–Jacobi morphism

ad : Cd ! PicdðCÞ

given by sending an e¤ective divisor D a Cd to its associated line bundle OCðDÞ a
PicdðCÞ.

On Cd , there are two important divisor classes, up to numerical equivalence:

x ¼ ½fD a Cd : D ¼ p0 þD 0;D 0 a Cd�1g� and y ¼ a�
d ð½Y�Þ;

where p0 is a fixed point of C and Y is any theta divisor on PicdðCÞ. It is well-
known that x is ample while y is clearly nef being the pull-back of an ample class.

These two classes generate a graded subring R�ðCdÞ ¼ 0
m
RmðCdÞ of

N �ðCdÞ, which is called the tautological ring of cycles, whose structure is well-
understood (and independent of the given curve C ), and which coincides with the
full ring N �ðCdÞ if C is a very general curve, see [BKLV17, Fact 2.6]. We will
also consider the natural cones tE¤nðCdÞ generated by tautological e¤ective cycles
of dimension n, its closure tPse¤nðCdÞ, called the cone of tautological pseudoe¤ec-
tive cycles of dimension n, and tNefnðCdÞ, the cone of tautological nef cycles of
dimension n.

The main result of [BKLV17], generalizing the case of divisors and curves,
was to prove that the cone generated by n-dimensional diagonals is a rational
polyhedral perfect face of Pse¤nðCdÞ and that Pse¤nðCdÞ is locally finitely gener-
ated at every non-zero element of that cone [BKLV17, Thm. B]. On one side this
gives a very nice face of Pse¤nðCdÞ, but, on the other side, it opens the way to
look for other faces.

In the case of divisors and curves, the situation is well-understood if d is large:

• the other extremal ray of tPse¤
1ðCdÞ is generated by y if and only if db gþ 1.

Indeed, y is always pseudoe¤ective (being nef) and it is not in the interior of the
pseudoe¤ective cone, i.e. it is not big, if and only if ad is not birational into its
image, which happens exactly when db gþ 1.
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• The other extremal ray of tPse¤1ðCdÞ is generated by the ray dual to Rb0 � y
(or equivalently, y generates an extremal ray of tNef

1ðCdÞ) if and only if
db gonðCÞ where gonðCÞ is the gonality of C. Indeed, y is always nef and it
is not in the interior of the nef cone, i.e. it is not ample, if and only if ad is not
a finite morphism, which happens exactly when db gonðCÞ.

The aim of this paper is to generalize the extremality properties of y for
tPse¤

1ðCdÞ and tNef
1ðCdÞ to the case of cycles of intermediate codimension

when d is large.
As a matter of fact the other faces that we will find will all come from the con-

tractibility properties of the Abel–Jacobi morphism, as we now explain.
Given any morphism p : X ! Y between irreducible projective varieties, in

[FL16, §4.2] was introduced the contractibility index contrpðaÞ of a class a a
Pse¤kðXÞ, for 0a ka dimX , as the largest integer 0a ca k þ 1 such that
a � p�ðhkþ1�cÞ ¼ 0, where h is an ample class on Y . We point out that the con-
tractibility index does not depend on h and maxf0; k � dim pðX Þga contrpðaÞ
a k for any non-zero a. Moreover, if a ¼ ½Z� for some irreducible subvariety
Z � X of dimension k, then contrpðaÞ ¼ dimZ � dim pðZÞ (cf. §3.1). This notion
gives immediately rise, for every rb 0, to the contractibility faces of Pse¤kðXÞ:

Fbr
k ðpÞ ¼ coneðfa a Pse¤kðX Þ : contrpðaÞb rgÞ;

which are indeed faces of the cone Pse¤kðX Þ (see Proposition 3.3).
The main question about contractibility faces is to identify for which r such

that 1þmaxf0; k � dim pðX Þga ra k we have that Fbr
k ðpÞ is non-trivial and,

in that case, to compute its dimension and convex-geometrical properties.
With this in mind, for any 1þmaxf0; n� gga ra n, we define the Abel–

Jacobi faces

AJrnðCdÞ ¼ Fbr
n ðadÞ � Pse¤nðCdÞ:

From the general properties of the contractibility faces and the classical prop-
erties of the Brill–Noether varieties (which are reviewed in §3.2) Cr

d :¼ fD a Cd :
dimjDjb rg, we prove in Proposition 3.12 that:

• AJrnðCdÞ is non-trivial if na dimCr
d ;

• AJrdimC r
d
ðCdÞ is the conic hull of the irreducible components of Cr

d of maxi-

mal dimension.

Intersecting with the tautological ring, we can also define the tautological Abel–
Jacobi faces

tAJ
r

nðCdÞ :¼ AJrnðCdÞBRnðCdÞ � tPse¤nðCdÞ:

The following theorem (which combines Corollary 3.15, Theorem 3.17 and
Proposition 3.23) specifies some numerical ranges where we can find non-trivial
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Abel–Jacobi faces, Abel–Jacobi facets and Abel–Jacobi extremal rays com-
ing from well-known facts of Brill–Noether theory (on Brill–Noether general
curves).

Theorem A. Let C be a curve of genus g.

(1) If 1a na d � 1 and db
nþ gþ 1

2
then there exist non-trivial Abel–Jacobi

faces of Pse¤nðCdÞ. The same is true for tPse¤nðCdÞ if either db gþ 1 or

db
nþ gþ 1

2
and C is a Brill–Noether general curve, i.e. it satisfies the con-

dition in Fact 3.8(v).
(2) We have tautological Abel–Jacobi facets in the following ranges:

(i) If ga n then tAJ
nþ1�g
n ðCdÞ is a facet of tPse¤nðCdÞ.

(ii) If na g then tAJ
1
nðCdÞ is a facet of tPse¤nðCdÞ under one of the fol-

lowing assumptions:
(a) C admits a gn

d , i.e. a linear series of dimension n and degree d (which
is always satisfied if ga d � n);

(b) n ¼ g� 1;
(c) ga d and C is very general over an uncountable base field k.

(3) Assume that C is Brill–Noether general. Let 1a da 2g� 2 and let r be an
integer such that maxf1; d � gþ 1ga r and r :¼ rðg; r; dÞ ¼ g� ðrþ 1Þðg�
d þ rÞb 0. Then

AJrrþrðCdÞ ¼ tAJ
r

rþrðCdÞ ¼ coneð½Cr
d �Þ:

In particular, ½Cr
d � generates an extremal ray (called the AJ(¼Abel–Jacobi)

ray) of Pse¤ rþrðCdÞ and of tPse¤ rþrðCdÞ.

See the comments just after Corollary 3.15 and Theorem 3.17 for the numeri-
cal ranges in the theorem.

Note that, for a Brill–Noether general curve C, if r ¼ 1 and gþ2
2 a da g then

½C1
d � generates an extremal ray of tPse¤2d�g�1ðCdÞ, and this achieves the lower

bound on d in Theorem A(1). On the other hand, we expect that the lower bound
db

nþgþ1
2 is sharp for Brill–Noether general curves (see the discussion after

Corollary 3.15), while for special curves the lower bound is far from being sharp
(see Theorem C for hyperelliptic curves).

The tautological Abel–Jacobi faces are related to an exhaustive decreasing
multiplicative filtration of the tautological ring R�ðCdÞ, which we call the
y-filtration of R�ðCdÞ (see §3.5) and which is defined by setting ybi;m to be
the smallest linear subspace of RmðCdÞ ¼ Rd�mðCdÞ containing the monomials
fy ixm�i; y iþ1xm�i�1; . . . ; ymg, for any 0ama d and any 0a ia gþ 1 (with the
obvious convention that ybi;m ¼ f0g if i > m). In Proposition 3.20, we compute

the dimension of ybi;m and we investigate its orthogonal subspace ðybi;mÞ? :¼
fa a RmðCdÞ : a � b ¼ 0 for any b a ybi;mg � RmðCdÞ. The link between tautolog-
ical Abel–Jacobi faces and the y-filtration is explained in Proposition 3.21, where
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we prove that

tAJ
r

nðCdÞ ¼ ðybnþ1�r;nÞ?B tPse¤nðCdÞ � ðybnþ1�r;nÞ?;

and that if tAJ
r
nðCdÞ is a full-dimensional cone in the linear subspace ðybnþ1�r;nÞ?

then tAJ
r
nðCdÞ is a perfect face of tPse¤nðCdÞ whose (perfect) dual face is

ybnþ1�r;nB tNef
nðCdÞ (faces of this kind are called nef y-faces).

Using the relation with the y-filtration, we are able to show that in many
ranges of d and n the non-trivial tautological Abel–Jacobi faces of tPse¤nðCdÞ
form a maximal chain of perfect non-trivial faces, i.e. a chain of perfect non-trivial
faces of tPse¤nðCdÞ whose dimensions start from one and increase by one at each
step until getting to the dimension of tPse¤nðCdÞ minus one. In the following
theorem (which combines Theorems 4.2, 5.6, 6.2), we summarize the cases where
this happens for an arbitrary curve.

Theorem B. Let db 1 and n be integers such that 0a na d.

(1) Assume that gamaxfn; d � ng (which is always satisfied if d > 2g� 2). Then
the Abel–Jacobi face tAJ

r
nðCdÞ is equal to ybg�nþr;d�nB tPse¤nðCdÞ (and we

call it pse¤ y-face) and it is non-trivial if and only if 1þmaxf0; n� gga ra
minfn; d � gg, in which case it is a perfect face of dimension minfn; d � gg �
rþ 1.

Hence, we get the following dual maximal chains of perfect non-trivial faces
of tPse¤nðCdÞ and of tNef

nðCdÞ:

ybminfg;d�ng;d�nB tPse¤nðCdÞ ¼ coneðyminfg;d�ngxmaxfd�n�g;0gÞ
� � � � � ybgþ1�minfg;ng;d�nB tPse¤nðCdÞ
� tPse¤nðCdÞ;

ybminfg;ng;nB tNef
nðCdÞ ¼ coneðyminfg;ngxmaxfn�g;0gÞ

� � � � � ybgþ1�minfg;d�ng;nB tNef
nðCdÞ

� tNef
nðCdÞ:

8>>>>>>>>><
>>>>>>>>>:

(2) Assume that Cn
d A j (which is always satisfied if db

ng

nþ 1
þ n). Then

tAJ
r
nðCdÞ is a non-trivial face if and only if 1þmaxf0; n� gga ra n, in

which case tAJ
r
nðCdÞ is a perfect face of dimension nþ 1� r (which we call

subordinate face).
Hence, we get the following dual maximal chains of perfect non-trivial faces

of tPse¤nðCdÞ and of tNef
nðCdÞ:

tAJ
n
n ðCdÞ ¼ coneð½GdðlÞ�Þ � � � � � tAJ

nþ1�minfn;gg
n ðCdÞ � tPse¤nðCdÞ;

ybminfn;gg;nB tNef
nðCdÞ ¼ coneðyminfg;ngxmaxfn�g;0gÞ

� � � � � yb1;nB tNef
nðCdÞ � tNef

nðCdÞ;

8><
>:

where l is any gn
d on C and GdðlÞ is the subordinate variety

GdðlÞ :¼ fD a Cd : DaE for some E a lg � Cd :
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(3) Assume that ga da 2g� 2. Then tAJ
r
g�1ðCdÞ is a non-trivial face if and only

if 1a ra d � gþ 1, in which case tAJ
r
g�1ðCdÞ is a perfect face of dimension

d � gþ 2� r (which we call BN(¼Brill–Noether) face in dimension g� 1).
Hence, we get the following dual maximal chains of perfect non-trivial faces

of tPse¤g�1ðCdÞ and of tNef
g�1ðCdÞ:

tAJ
d�gþ1
g�1 ðCdÞ ¼ coneð½Cd�gþ1

d �Þ � � � � � AJ1g�1ðCdÞ � tPse¤g�1ðCdÞ;
ybg�1;g�1B tNef

g�1ðCdÞ ¼ coneðyg�1Þ � � � � � yb2g�1�d;g�1B tNef
g�1ðCdÞ

� tNef
g�1ðCdÞ:

8><
>:
See Remark 4.3 for the hypothesis gamaxfn; d � ng in the theorem.
There are some overlaps between the di¤erent cases of the above Theorem B,

see Remarks 5.7 and 6.3. In Figure 1 we present the existence range of the various

Figure 1. The picture describes the existence of tautological Abel–Jacobi faces when C is
a Brill–Noether general curve. We set m ¼ d � n. The colored area is defined by the in-
equality db nþgþ1

2 in Theorem A(1), so it describes the locus where we can assure the
existence of non-trivial Abel–Jacobi faces. In particular, the dark gray area is given by
Theorem B(2) and represents the locus where subordinate faces do exist. On the other
hand, AJ rays exist on the integral points of the thick lines – each having equation
ðrþ 1Þmþ rn ¼ r2 þ rg for some 1a ra g – by Theorem A(3), and the dots on the line
n ¼ g� 1 indicate where BN faces in dimension g� 1 exist, according to Theorem B(3).
The area covered by the grid is described by the condition gamaxfn;mg in Theorem
B(1) which governs the existence of y-faces. Finally, Theorem A(2) guarantees the exis-
tence of Abel–Jacobi facets in the union of the area covered by the grid with the dark
gray area and the line n ¼ g� 1. If in addiction C is assumed to be very general, then
Abel–Jacobi facets do exist also in the area on the right and above the dashed line, which
is the locus satisfying the condition nþmb g.
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tautological Abel–Jacobi faces in Theorems A and B for Brill–Noether general
curves.

Note that we recover from Theorem B the previously mentioned results of the
extremality of y in tPse¤

1ðCdÞ and tNef
1ðCdÞ: part (1) gives that y is extremal

in tPse¤
1ðCdÞ if db gþ 1 and part (2) gives that y is extremal in tNef

1ðCdÞ if
C1

d A j, i.e. if db gonðCÞ. Moreover, both results are sharp. Furthermore, part
(3) of Theorem B gives that ½C1

g � ¼ y� x a N 1ðCgÞ generates an extremal ray of
Pse¤ 1ðCgÞ. This extends the result of the second author (see [Kou93, Rmk. 1
after Thm. 5]) from very general complex curves to arbitrary curves over an alge-
braically closed field.

According to the discussion at the end of §3.5, there is one more case (apart
from the three cases of Theorem B) where the non-trivial tautological Abel–
Jacobi faces form a maximal chain of non-trivial perfect faces, namely the case
of a hyperelliptic curve where we found such maximal chains in every pseudo-
e¤ective cone! This is made precise in the following theorem (which summarizes
the more precise Theorem 7.3) where we restrict to the case n; d � n < g since in
the remaining case gamaxfn; d � ng everything follows from part (1) of Theo-
rem B.

Theorem C. Let C be a hyperelliptic curve of genus gb 2 and fix integers db 1
and n such that 0a n; d � n < g (which implies that da 2g� 2).

(i) Assume that db 2n.
Then, for any 1a ra n, tAJ

r
nðCdÞ is a non-trivial face, in which case

tAJ
r
nðCdÞ is a perfect face of dimension nþ 1� r. Hence, we get the follow-

ing dual maximal chains of perfect non-trivial faces of tPse¤nðCdÞ and of
tNef

nðCdÞ:

tAJ
n
n ðCdÞ ¼ coneð½GdðlÞ�Þ � � � � � tAJ

1
nðCdÞ � tPse¤nðCdÞ;

ybn;nB tNef
nðCdÞ ¼ coneðynÞ � � � � � yb1;nB tNef

nðCdÞ � tNef
nðCdÞ;

(

where GdðlÞ is the subordinate variety with respect to any linear system l of
degree d and dimension n.

(ii) Assume that da 2n.
Then tAJ

r
nðCdÞ is a non-trivial face if and only if 1a ra d � n, in which

case tAJ
r
nðCdÞ is a perfect face of dimension d � nþ 1� r (which we call

hyperelliptic BN(¼Brill–Noether) face). Hence, we get the following dual
maximal chains of perfect non-trivial faces of tPse¤nðCdÞ and of tNef

nðCdÞ:

tAJ
d�n
n ðCdÞ ¼ coneð½Cd�n

d �Þ � � � � � tAJ
1
nðCdÞ � tPse¤nðCdÞ;

ybn;nB tNef
nðCdÞ ¼ coneðynÞ � � � � � yb2n�dþ1;nB tNef

nðCdÞ � tNef
nðCdÞ:

(

Note that the tautological Abel–Jacobi faces of part (i) are exactly the sub-
ordinate faces of part (2) of Theorem B, using that for a hyperelliptic curve C
we have that Cn

d A j precisely when db 2n.
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From Theorem C we recover the previously known results for tPse¤
1ðCdÞ

and tNef
1ðCdÞ for C hyperelliptic: part (i) gives that y is extremal in tNef

1ðCdÞ
for any db 2 ¼ gonðCÞ, part (ii) gives that Cd�1

d , whose class is a positive mul-
tiple of y� ðd � gþ 1Þx by Proposition 7.1, is extremal in tPse¤

1ðCdÞ, which was
proved in [Mus11a, Prop. H].

On the other hand we should point out that there are some explicit extremal
rays of Pse¤1ðCg=2Þ in [Pac03, Thm. 4.1] and of Pse¤ 1ðCdÞ; d ¼ g� 1; g� 2 in
[Mus11a, Thm. A(ii)] and in [Mus11b, Thm. I] which are not Abel–Jacobi faces.

The present work leaves open some natural questions.

Question. Assume that we are in one of the cases of Theorem B.

(1) What is the structure of the Abel–Jacobi faces of dimension greater than one?
Are they rational polyhedral cones and, if yes, what are their extremal rays?

(2) Is tPse¤nðCdÞ the smallest cone containing the diagonal cone and the Abel–
Jacobi faces?

2. Preliminaries

2.1. Notations and conventions

Throughout, we work over an algebraically closed field of arbitrary charac-
teristic.

For any natural number n a N and any real number r a R, we set

r

n

� �
¼

rðr�1Þ...ðr�nþ1Þ
n! if n > 0;

1 if n ¼ 0:

�

We recall from the Appendix of [BKLV17] a definition and a remark, that will
be crucial in this paper.

Definition 2.1. Let V be a finite dimensional real vector space. A (convex)
cone K inside V is a non-empty subset K of V such that if x; y a K and
a; b a R>0 then axþ by a K . A face of K is a subcone F � K such that when-
ever x; y a K are such that xþ y a F then x; y a F . A face of codimension one
is called a facet. A face F of K is perfect if either F ¼ K or it has codimension
cb 1 in V and there exist linear hyperplanes Hi ¼ fli ¼ 0g1aiac, such that

K � Hþ
i ¼ fli b 0g for any 1a ia c;

3F4 ¼
Tc

i¼1 Hi:

�
ð2:1Þ

A cone K � V is salient if it does not contain lines through the origin, and it is
full if 3K4 ¼ V .

Notice that there are faces which are not perfect, as e.g. any ray on the bound-
ary of a circular cone in the 3-dimensional real space (cf. also [BKLV17, Fig. 2]).
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Remark 2.2. Let K � V be a salient full closed cone and let K4 :¼ fl a V4j
lðxÞb 0 Ex a Kg be its dual cone. If L � V is a subspace such that KBL is a
full cone in L and K4BL? is a full cone in L?, then F :¼ KBL is a perfect
face of K with dual face being perfect and equal to K4BL?.

To see this notice that, by hypothesis, we can choose a basis fl1; . . . ; lsg of L?

such that li a K4 for 1a ia s. Then L � fv a V : liðvÞ ¼ 0; for all 1a ia sg,
hence they are equal as they have the same dimension. Now if x; y a K are such
that xþ y a F , then, for every 1a ia s we have that 0 ¼ liðxþ yÞ ¼ liðxÞ þ
liðyÞ. But li a K4, hence liðxÞ ¼ liðyÞ ¼ 0, and then x; y a L. Therefore x; y a F
and F is a face. Moreover clearly K4BL? is contained in the dual face F̂F ¼
fl a V4 : ljF ¼ 0g, hence dim F̂F b dimðK4BL?Þ ¼ dimðL?Þ ¼ s. Now dimF ¼
dimL and since for any face one has that

dimF þ dim F̂F a dimK ¼ dimVð2:2Þ

we get that

dimV ¼ dimLþ sa dimF þ dim F̂F a dimV

whence we have equality in (2.2) and F̂F ¼ K4BL?. Therefore both F and F̂F are
perfect.

2.2. Symmetric product

Let C be a smooth projective irreducible curve of genus gb 1. For any integer
db 1, we denote by Cd the d-fold ordinary product of C and by Cd the d-fold
symmetric product of C.

The symmetric product Cd is related to the Jacobian of C by the Abel–Jacobi
morphism

ad : Cd ! PicdðCÞ
D 7! OCðDÞ:

The fiber of ad over L a PicdðCÞ is the complete linear system jLj.
Fixing a base point p0 a C, there is an inclusion i ¼ ip0 : Cd�1 ,! Cd , obtained

by sending D into Dþ p0. We will denote by Xp0 the image of ip0 . The inclusion
ip0 is compatible with the Abel–Jacobi morphisms in the sense that ad � ip0 ¼
tp0 � ad�1, where tp0 : Pic

d�1ðCÞ ! PicdðCÞ is the translation by p0 which sends
L into Lðp0Þ.

2.3. Tautological ring

For any 0a n;ma d, we will denote by NnðCdÞ (resp. NmðCdÞ) the R-vector
space of n-dimensional (resp. m-codimensional) cycles on Cd modulo numer-
ical equivalence. The intersection product induces a perfect duality NmðCdÞ �
Nd�mðCdÞ !� R. The vector space N �ðCdÞ ¼ 0d

m¼0
NmðCdÞ is a graded R-

algebra with respect to the intersection product.
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The tautological ring R�ðCdÞ is the graded R-subalgebra of N �ðCdÞ generated
by the codimension one classes y ¼ a�

d ð½Y�Þ (where Y is any theta divisor on
JðCÞ) and x ¼ ½Xp0 � for some (equivalently any) base point p0. Observe that y is
a semiample class (because it is the pull-back of an ample line bundle via a regu-
lar morphism) and it is ample if and only if ad is a finite morphism, that is if and
only if d < gonðCÞ. On the other hand, since we can move the base point p0
arbitrarily, the class x is ample by the Nakai-Moisezhon criterion (see [ACGH,
Prop. VII.2.2]).

We recall from [BKLV17] the following properties of the tautological ring
R�ðCdÞ and vector spaces RmðCdÞ.

Proposition 2.3.

(i) We have that ygþ1 ¼ 0 and, if s a N : sa d,

ys � xd�s ¼ s!
g

s

� �
¼

g!
ðg�sÞ! if 0a sa g;

0 if s > g:

(

(ii) For any 0ama d, set rðmÞ :¼ minfm; d �m; gg. Then RmðCdÞ has dimen-
sion rðmÞ þ 1 and it is freely generated by any subset of rðmÞ þ 1 monomials

belonging to fxm; xm�1y; . . . ; xm�minfm;ggyminfm;ggg.
In particular, the monomials fxm; . . . ; xm�rðmÞyrðmÞg form a basis of

RmðCdÞ, which is called the standard basis.
(iii) The intersection product RmðCdÞ � Rd�mðCdÞ ! R is non-degenerate.

Proof. See [BKLV17, Lemma 2.2 and Prop. 2.4]. r

2.4. Cones of cycles

Let us introduce the cones of cycles we will be working with. Inside the real vec-
tor space NmðCdÞ, 0ama d, consider the (convex) cone E¤ mðCdÞ generated
by e¤ective codimension m cycles (called the cone of e¤ective cycles) and its
closure Pse¤ mðCdÞ (called the cone of pseudoe¤ective cycles). These cones are sa-
lient by [BFJ09, Prop. 1.3], [FL17a, Thm. 1.4(i)]. The intersection tE¤

mðCdÞ :¼
E¤ mðCdÞBRmðCdÞ is called the tautological e¤ective cone and its closure
tPse¤

mðCdÞ :¼ tE¤ mðCdÞ is called the tautological pseudoe¤ective cone. Note
that there is an inclusion tPse¤

mðCdÞ � Pse¤ mðCdÞBRmðCdÞ, which a priori
could be strict.

The dual of Pse¤ d�mðCdÞ (respectively of tPse¤
d�mðCdÞ) is the nef cone

Nef mðCdÞ � NmðCdÞ (resp. the tautological nef cone tNef
mðCdÞ � RmðCdÞ).

Note that there is an inclusion Nef mðCdÞBRmðCdÞ � tNef
mðCdÞ, which a priori

could be strict.
For 0a na d we set E¤nðCdÞ :¼ E¤ d�nðCdÞ and similarly for the other

cones.
Note that, if C is a very general curve, then R�ðCdÞ ¼ N �ðCdÞ for every db 1

by [BKLV17, Fact 2.6], [ACGH, VIII.5], and hence tE¤
mðCdÞ ¼ E¤ mðCdÞ,

tPse¤
mðCdÞ ¼ Pse¤ mðCdÞ and Nef mðCdÞ ¼ tNef

mðCdÞ.
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A case where we know a complete description of the (tautological) e¤ective,
pseudoe¤ective and nef cone of cycles is the case of curves of genus one1.

Example 2.4 (Genus 1 – [BKLV17, Example 2.9]). If the curve C has genus 1,
then for any 1ama d � 1 we have that NmðCdÞ ¼ RmðCdÞ and

Pse¤ mðCdÞ ¼ Nef mðCdÞ ¼ cone
�
xm�1y; xm �m

d
xm�1y

�
� NmðCdÞGR2:

This follows either by [Ful11] or by [BKLV17, Theorem B] and Theorem B(1).

3. Abel–Jacobi faces

The aim of this section is to introduce some faces of the (tautological or not)
pseudoe¤ective cones of Cd obtained as contractibility faces of the Abel–Jacobi
morphism ad : Cd ! PicdðCÞ.

3.1. Contractibility faces

In this subsection, we will introduce the contractibility faces associated to any
morphism p : X ! Y between irreducible projective varieties. The definition
of the contractibility faces is based on the contractibility index introduced in
[FL16, §4.2].

Definition 3.1. Let p : X ! Y be a morphism between irreducible projective
varieties and fix the class h a N 1ðY Þ of an ample Cartier divisor on Y . Given
an element a a Pse¤kðX Þ for some 0a ka dimX , the contractibility index of a,
denoted by contrpðaÞ, is equal to the largest non-negative integer ca k þ 1 such
that a � p�ðhkþ1�cÞ ¼ 0.

Since a � p�ðhkþ1Þ ¼ 0 for dimension reasons, the contractibility index is well-
defined and it is easy to see that it does not depend on h. The following properties
are immediate:

• maxf0; k � dim pðXÞga contrpðaÞa k þ 1 and equality holds in the last in-
equality if and only if a ¼ 0;

• contrpðaÞ > 0 , p�ðaÞ ¼ 0;

• If a ¼ ½Z� for an irreducible subvariety Z � X of dimension k, then
contrpðZÞ :¼ contrpðaÞ ¼ dimZ � dim pðZÞ.

Definition 3.2. Let p : X ! Y be a morphism between irreducible projective
varieties and let k, r be integers such that 0a ka dimX ; rb 0. Set

Fbr
k ðpÞ ¼ coneðfa a Pse¤kðX Þ : contrpðaÞb rgÞ:

1Note that if g ¼ 0, i.e. C ¼ P1, then Cd GPd and all the cones in question become one-
dimensional, hence trivial.
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We set cpðrÞ ¼ �1 if there is no irreducible subvariety Z � X with contrpðZÞb r;
otherwise we define

cpðrÞ ¼ max 0a ka dimX

���� there exists an irreducible subvariety Z � X

with dimZ ¼ k and contrpðZÞb r

� �
:

Note that Fbr
k ðpÞ ¼ j if r > k þ 1, Fbkþ1

k ðpÞ ¼ f0g, Fbr
dimX ðpÞ ¼ f0g if and

only if rb 1þ dimX � dim pðXÞ and Fbr
k ðpÞ ¼ Pse¤kðXÞ if and only if ra

maxf0; k � dim pðX Þg. Moreover, if cpðrÞb 0, then ra cpðrÞa dimX .
The following criterion of extremality follows from [FL16, Thm. 4.15] and it

is an improvement of [CC15, Prop. 2.1, 2.2 and Rmk. 2.7].

Proposition 3.3. Let p : X ! Y be a morphism between projective irreducible
varieties and fix k, r integers such that 1þmaxf0; k � dim pðX Þga ra ka
dimX. Then

(i) The cone Fbr
k ðpÞ is a face of Pse¤kðX Þ. In particular, the cone Fbr

k ðpÞB
E¤kðXÞ is a face of E¤kðXÞ. Moreover Fbr

k ðpÞ is non-trivial for ra ka cpðrÞ.
(ii) Suppose that ra ka cpðrÞ. The number of irreducible subvarieties of X of

dimension k and contractibility index at least r is finite if and only if k ¼ cpðrÞ.
In this case, if we denote by Z1; . . . ;Zs the irreducible subvarieties of X of

dimension cpðrÞ and contractibility index at least r, we have that

Fbr
cpðrÞðpÞ ¼ coneð½Z1�; . . . ; ½Zs�Þ ¼ Fbr

cpðrÞðpÞBE¤kðXÞ:

Because of (i), we will call Fbr
k ðpÞ the r-th contractibility face of Pse¤kðXÞ.

Proof. Note that for any a a Pse¤kðX Þ, we have a a Fbr
k ðpÞ if and only if

a � p�ðhkþ1�rÞ ¼ 0. Let b1; b2 a Pse¤kðX Þ be such that b1 þ b2 a Fbr
k ðpÞ. Then

b1 � p�ðhkþ1�rÞ þ b2 � p�ðhkþ1�rÞ ¼ 0 and bi � p�ðhkþ1�rÞ a Pse¤ r�1ðXÞ (because
p�ðhÞ is nef, hence limit of ample classes) for i ¼ 1; 2, so that b1 � p�ðhkþ1�rÞ ¼
b2 � p�ðhkþ1�rÞ ¼ 0 since Pse¤ r�1ðX Þ is salient by [BFJ09, Prop. 1.3], [FL17a,
Thm. 1.4(i)]. Then b1; b2 a Fbr

k ðpÞ. This proves the first assertion in (i).
Assume now that r < ka cpðrÞ and let Z � X be an irreducible subvariety

such that dimZ ¼ k, contrpðZÞb r. We claim that there are infinitely many irre-
ducible subvarieties W � X with dimW ¼ k � 1 and contrpðW Þb r. It follows
by this claim that Fbr

k ðpÞ is non-trivial for ra ka cpðrÞ. To see the claim we
consider two cases. If pðZÞ is not a point, then pick a generic codimension one
subvariety V � pðZÞ such that V intersects the open subset of pðZÞ where fibers
of pjZ have dimension contrpðZÞ. The inverse image ðpjZÞ�1ðVÞ will have an irre-
ducible component W that dominates V and therefore with dimW ¼ k � 1 and
contrpðWÞ ¼ contrpðZÞb r. If pðZÞ is a point, then pick any codimension one
subvariety W � Z. Then dimW ¼ k � 1 and contrpðWÞ ¼ dimW ¼ k � 1b r.
In either case, there are infinitely many such subvarieties W and the claim is
proved.

Consider now the first assertion of part (ii). The only if part follows imme-
diately by the claim starting with an irreducible subvariety Z � X of dimension
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cpðrÞ and contractibility index at least r (such a Z exists by the definition of cpðrÞ).
The if part is proved in [FL16, Thm. 4.15(1)].

For the second assertion of (ii): the first equality follows from [FL16, Thm.
4.15(2)] and the second equality follows directly from the first one. r

Remark 3.4. Let 1a ra ka dimX . It is natural to wonder if the following
statements hold true:

(1) (StrongrðpÞ) Fbr
k ðpÞ ¼ Fbr

k ðpÞBE¤kðXÞ.
(2) (WeakrðpÞ) 3Fbr

k ðpÞ4 ¼ 3Fbr
k ðpÞBE¤kðX Þ4.

For r ¼ 1, the above statements reduce to, respectively, the strong and weak
conjecture in [FL16, Conj. 1.1]. If WeakrðpÞ holds true then Fbr

k ðpÞ ¼ f0g for
any k > cpðrÞ. If we also assume that kb rb dimX � dim pðX Þ þ 1 it is easy to
see, using [FL16, Thm. 4.13], that the last expectation holds. Moreover, since
Fbr
k ðpÞ � Fbr�1

k ðpÞ we expect that Fbr
k ðpÞ ¼ f0g when k > cpð1Þ.

3.2. Brill–Noether varieties

In order to apply the previous criterion to the Abel–Jacobi map ad : Cd !
PicdðCÞ, we need to know the subvarieties of Cd that have contractibility index
at least r with respect to ad . As we will see in Claim 3.13, these subvarieties turn
out to be contained in the Brill–Noether variety Cr

d � Cd which is defined (set
theoretically) as:

Cr
d :¼ fD a Cd : dimjDjb rg:

Note that Cr
d ¼ a�1

d ðWr
d ðCÞÞ where Wr

d ðCÞ is the Brill–Noether variety in
PicdðCÞ which is defined (set theoretically) as

Wr
d ðCÞ ¼ fL a PicdðCÞ : h0ðC;LÞb rþ 1g:

The Brill–Noether varieties Cr
d and Wr

d ðCÞ are in a natural way determinantal
varieties (see [ACGH, Chap. IV]). From the Riemann–Roch theorem, we have
the following trivial cases for Wr

d ðCÞ and Cr
d :

• If ramaxf�1; d � gg then Wr
d ðCÞ ¼ PicdðCÞ, and hence Cr

d ¼ Cd .

• If r ¼ 0 and da g� 1 then ad : C0
d ¼ Cd ! W 0

d ðCÞ is a resolution of singu-
larities.

• If db 2g� 1 then

Wr
d ðCÞ ¼ PicdðCÞ if ra d � g;

j if r > d � g;

�
and Cr

d ¼ Cd if ra d � g;

j if r > d � g:

�

The non-emptiness of Cr
d is equivalent to the existence of a linear system of

degree d and dimension r on C, and we define an invariant of C controlling the
existence of such linear systems.
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Definition 3.5. For any integer rb 1, the r-th gonality index of C, denoted by
gonrðCÞ, is the smallest integer d such that C admits a gr

d .

Clearly, db gonrðCÞ if and only if the curve C admits a gr
d . Observe that if

r ¼ 1 then gon1ðCÞ is the (usual) gonality gonðCÞ of C. The possible values that
the r-th gonality index can achieve are described in the following

Lemma 3.6. The r-th gonality index of C satisfies the following

gonrðCÞ ¼ gþ r if rb g;

2g� 2 if r ¼ g� 1;

�
ð3:1Þ

2ra gonrðCÞa gðrÞ :¼ rg

rþ 1

� 	
þ r if 1a ra g� 2;ð3:2Þ

where the first inequality is achieved if and only if C is hyperelliptic and the second
inequality is achieved for the general curve C.

Proof. From Cli¤ord’s inequality and the Riemann–Roch theorem, it follows
easily that:

• any g
g�1
d on C is such that db 2g� 2 with equality if and only if the g

g�1
2g�2 is

the complete canonical system jKC j;
• if rb g then any gr

d is such that db rþ gb 2g.

These two facts imply the first part of the statement.
For the second part of the statement: the lower bound is provided by

Cli¤ord’s theorem and we have equality if and only if the curve is hyperelliptic;
the upper bound is provided by Brill–Noether theory and equality holds for the
general curve by [ACGH, Chap. V, Thm. 1.5] (the proof of Gri‰ths and Harris
works over any algebraically closed field, see [Oss14]). r

Remark 3.7. It follows easily from the previous lemma that if db gonnðCÞ
then d � nbminfn; gg, or equivalently that rðnÞ :¼ minfn; d � n; gg ¼ minfn; gg:

The properties of the Brill–Noether varieties (in the non-trivial cases) are col-
lected in the following fact that summarizes the main results of the classical Brill–
Noether theory (see [ACGH, Chap. IV and VII]).

Fact 3.8. Fix integers r and d such that maxf1; d � gþ 1ga r and 1a da
2g� 2.

(i) The open subset C r
dnCrþ1

d � Cr
d is dense. Therefore, the morphism ðadÞjC r

d
:

Cr
d !! Wr

d is generically a Pr-fibration and each irreducible component of Cr
d

has contractibility index exactly r.
(ii) Cr

d is non-empty if and only if db gonrðCÞ. In particular, we have the fol-
lowing

db gðrÞ :¼ rg

rþ 1

� 	
þ r ) Cr

d A j ) db 2r:ð3:3Þ

852 f. bastianelli et al.



(iii) If C r
d is non-empty, every irreducible component of Cr

d has dimension at least
rþ rðg; r; dÞ ¼ rþ g� ðrþ 1Þðg� d þ rÞ ¼ d � rðg� d þ rÞ and at most
rþ ðd � 2rÞ ¼ d � r.

(iv) Assume that either Cr
d is empty or has pure dimension rþ rðg; r; dÞ. Then the

class of Cr
d is equal to

½Cr
d � ¼ crd :¼

Yr
i¼0

i!

ðg� d þ rþ i � 1Þ!
Xr

a¼0

ð�1Þa ðg� d þ rþ a� 1Þ!
a!ðr� aÞ! xayrðg�dþrÞ�a:

(v) Assume that C is a general curve of genus g.

• If rðg; r; dÞ < 0 then Cr
d is empty;

• If rðg; r; dÞ ¼ 0 then Cr
d is a disjoint union of g!

Qr
i¼1

i!

ðg� d þ rþ iÞ! pro-jective spaces of dimension r;

• If rðg; r; dÞ > 0 then Cr
d is irreducible of dimension rþ rðg; r; dÞ.

A curve satisfying the conditions of (v) is called a Brill–Noether general curve.

Proof. (i): the first assertion follows from the fact that there are no irreducible
components of Cr

d contained in Crþ1
d by [ACGH, Chap. IV, Lemma 1.7] (the

proof works over any algebraically closed field). Using that the restriction of ad
to Cr

dnCrþ1
d is a Pr-fibration, the remaining assertions follow.

(ii): Cr
d is non-empty if and only if there exists a gr

d on C which is equivalent
to the condition db gonrðCÞ. The chain of implications (3.3) follows then from
Lemma 3.6.

Using (i), part (iii) follows from the fact that every irreducible component of
Wr

d ðCÞ has dimension greater or equal to rðg; r; dÞ by [ACGH, Chap. IV, Lemma
3.3], [KL72, KL74] and dimension at most d � 2r by Martens’ theorem (see
[ACGH, Chap. IV, Thm. 5.1], [Mar67, Thm. 1])

For part (iv), see [ACGH, Chap. VII, §5] (the proof works over any algebrai-
cally closed field).

Part (v): we will distinguish three cases according to the sign of rðg; r; dÞ. If
rðg; r; dÞ < 0 then Wr

d ðCÞ is empty by [ACGH, Chap. V, Thm. 1.5] (the proof
of Gri‰ths and Harris works over any algebraically closed field, see [Oss14])
and hence also Cr

d is empty. If rðg; r; dÞ ¼ 0 then Wr
d ðCÞ consists of finitely

many gr
d (see [ACGH, Chap. V, Thm. 1.3 and 1.6] – again holding over any

algebraically closed field), whose number is equal to g!
Qr

i¼1

i!

ðg� d þ rþ iÞ! by

Castelnuovo’s formula [ACGH, Chap. V, Formula (1.2)], [KL74]; hence the
result for Cr

d follows. If rðg; r; dÞ > 0 then Wr
d ðCÞ is irreducible of dimension

rðg; r; dÞ by [ACGH, Chap. V, Thm. 1.4, Cor. of Thm. 1.6] and by [Gie82],
[FL81, Thm. 1.1 and Rmk. 1.7], from which we deduce that Cr

d is irreducible of
dimension rþ dimWr

d ðCÞ ¼ rþ rðg; r; dÞ using (i). r

There are some Brill–Noether varieties that are pure of the expected dimen-
sion for any curve (and not only for the general curve), as described in the follow-
ing example.
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Example 3.9. For any ga da 2g� 2, the Brill–Noether variety C
d�gþ1
d is

irreducible of the expected dimension g� 12. Indeed, the variety W
d�gþ1
d ðCÞ is

irreducible of dimension 2g� 2� d since it is isomorphic, via the residuation
map L 7! KC nL�1, to the variety W 0

2g�2�dðCÞ ¼ Imða2g�2�dÞ. We conclude

that Cd�gþ1
d is irreducible of dimension d � gþ 1þ dimW

d�gþ1
d ðCÞ ¼ g� 1 by

Fact 3.8(i).
Therefore, Fact 3.8(iv) implies that the class of Cd�gþ1

d is equal to

½Cd�gþ1
d � ¼

Xd�gþ1

a¼0

ð�1Þa xayd�gþ1�a

ðd � gþ 1� aÞ! :ð3:4Þ

3.3. Abel–Jacobi faces

We can now study the contractibility faces Fbr
n ðadÞ associated to the Abel–Jacobi

morphism ad : Cd ! PicdðCÞ and, since maxf0; n� dim adðCdÞga contrad ðbÞa
n for any non-zero cycle b a Pse¤nðCdÞ, we focus on the range 1þmaxf0;
n� dim adðCdÞga ra n.

Definition 3.10 (Abel–Jacobi faces). Let 0a na d. For any r such that 1þ
maxf0; n� gg ¼ 1þmaxf0; n� dim adðCdÞga ra n, let AJrnðCdÞ :¼ Fbr

n ðadÞ �
Pse¤nðCdÞ and call it the r-th Abel–Jacobi face in dimension n. Moreover, we
set tAJ

r
nðCdÞ :¼ Fbr

n ðadÞB tPse¤nðCdÞ � tPse¤nðCdÞ and call it the r-th tautolog-
ical Abel–Jacobi face in dimension n.

Remark 3.11. Let 0a na d; 1þmaxf0; n� gga ra n. If d < gonðCÞ then
y is ample, whence AJrnðCdÞ ¼ tAJ

r
nðCdÞ ¼ f0g by [FL17a, Cor. 3.15], [FL16,

Prop. 3.7].

Applying Proposition 3.3 to our case, we get the following result that guaran-
tees that the Abel–Jacobi faces are non-trivial, under suitable assumptions.

Proposition 3.12. Let 1a na d � 1 and let 1þmaxf0; n� gga ra n. Then

cad ðrÞ ¼
�1 if d < gonrðCÞ ðor equivalently C r

d ¼ jÞ
dimCr

d if db gonrðCÞ ðor equivalently Cr
d A jÞ:

�
ð3:5Þ

Moreover AJrnðCdÞ ¼ f0g whenever 1þmaxf0; d � gga ra n and either d <
gonrðCÞ or db gonrðCÞ and n > dimCr

d.
Assume now that db gonrðCÞ (which then forces dimCr

d b r). Then the fol-
lowing hold:

(i) AJrnðCdÞ is non-trivial if na dimCr
d.

(ii) AJrdimC r
d
ðCdÞ is equal to AJrdimC r

d
ðCdÞBE¤nðCdÞ and it is the conic hull of

the irreducible components of C r
d of maximal dimension.

2 Indeed, these are the unique Brill–Noether varieties that are also subordinate varieties; more
specifically, Cd�gþ1

d ¼ GdðjKC jÞ, with the notation of (5.1).
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Furthermore, (i) holds for tAJ
r
nðCdÞ if C r

d has some tautological irreducible compo-
nent of maximal dimension and (ii) holds for tAJ

r
nðCdÞ if all irreducible components

of C r
d of maximal dimension are tautological.

Proof. We will apply Proposition 3.3 to the Abel–Jacobi map ad : Cd !
PicdðCÞ.

Claim 3.13. Let Z � Cd be an irreducible subvariety of contractibility index at
least r. Then Cr

d A j and Z � Cr
d.

Proof of Claim 3.13. Being Z an irreducible subvariety, we have contrad ðZÞ ¼
dimZ � dim adðZÞ. Then dimZb dim adðZÞ þ r and hence dim a�1

d ðpÞb
dimða�1

d ðpÞBZÞb r for any p a adðZÞ. For any D a Z, Abel’s theorem ensures
that a�1

d ðadðDÞÞ ¼ jDj, so that dimjDjb r, i.e. D a Cr
d as claimed. r

Moreover we claim that each irreducible component of Cr
d has contracti-

bility index at least r. In fact, if r > maxf0; d � gg the claim follows by Fact
3.8(i) while if ramaxf0; d � gg then Cr

d ¼ Cd that has contractibility index
maxf0; d � ggb r.

This proves (3.5) and, if Cr
d A j, that the subvarieties of dimension cad ðrÞ and

contractibility index at least r are exactly the irreducible components of Cr
d of

maximal dimension. Using these facts, the first part of the proposition follows
from Remark 3.4 and Proposition 3.3.

In order to prove the same properties for tAJ
r
nðCdÞ, observe that the non-

triviality of tAJ
r
dimC r

d
ðCdÞ and the analogue of (ii) for tAJ

r
dimC r

d
ðCdÞ, follow di-

rectly by our assumption. On the other hand, the non-triviality of tAJ
r
nðCdÞ for

n < dimCr
d follows from the proof of Proposition 3.3 using that there is one

tautological component of Cr
d of dimension equal to dimCr

d . r

Remark 3.14. According to Remark 3.4, we expect that, for any 1þmaxf0;
n� gga ra n, AJrnðCdÞ ¼ f0g if either d < gonrðCÞ (which is equivalent to
Cr

d ¼ j) or db gonrðCÞ and n > dimCr
d . In case r ¼ 1, this would follow from

the validity of the weak conjecture 1.1 in [FL16] for the Abel–Jacobi morphism.
Indeed, we know that ad satisfies the above mentioned conjecture if d < gon1ðCÞ
(in which case it holds trivially) and if db g and the (algebraically closed) base
field is uncountable, by [FL17b, Thm. 1.2].

As a corollary of the above proposition, we can determine some ranges of
d and n for which we can find non-trivial Abel–Jacobi faces in Pse¤nðCdÞ or
tPse¤nðCdÞ.

Corollary 3.15. Let 1a na d � 1 and let C be a curve of genus gb 1.

(i) There exist non-trivial Abel–Jacobi faces of Pse¤nðCdÞ if db nþgþ1
2 .

(ii) There exist non-trivial Abel–Jacobi faces of tPse¤nðCdÞ if either db gþ 1 or
db

nþgþ1
2 and C1

d has some tautological irreducible component of maximal di-
mension (which holds true if C is a Brill–Noether general curve).
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We note that the lower bound db
nþgþ1

2 is used to ensure that C1
d is non-

empty and na dimC1
d , so it turns out to be sharp for Brill–Noether general

curves provided that the expectation of Remark 3.14 holds true. On the other
hand, for special curves, the lower bound is far from being sharp, see Theorem
7.3 for the case of hyperelliptic curves. Moreover, the assumption db

nþgþ1
2

automatically holds if either nb g� 1 or d � nb
g
2 .

Proof. We will distinguish three cases.

• If ga n (which implies that gþ 1a d ) then C
n�gþ1
d ¼ Cd by Riemann–Roch,

and hence Proposition 3.12(i) implies that AJn�gþ1
n ðCdÞ and tAJ

n�gþ1
n ðCdÞ are

non-trivial.

• If na ga d � 1 then C1
d ¼ Cd by Riemann–Roch, and hence Proposition

3.12(i) implies that AJ1nðCdÞ and tAJ
1
nðCdÞ are non-trivial.

• If da g (which implies that na g� 1) then Fact 3.8(iii) gives that dimC1
d b

2d � g� 1 if C1
d A j. Hence, if na 2d � g� 1 then Proposition 3.12(i) and

Fact 3.8(ii) imply that AJ1nðCdÞ is non-trivial and, furthermore, that tAJ
1
nðCdÞ

is non-trivial provided that C1
d has some tautological irreducible component of

maximal dimension. r

Remark 3.16. One may wonder if one could get more faces of the pseudoe¤ec-
tive cone of Cd by looking at contractibility faces of some other regular mor-
phism f : Cd ! Z to some projective variety. There is no loss of generality (using
the Stein factorization) in assuming that f is a regular fibration, i.e. f�ðOCd

Þ ¼
OZ. Any such regular fibration is uniquely determined (up to isomorphism) by
f �ðAmpðZÞÞ which is a face of the semiample cone of Cd .

The intersection of the semiample cone with R1ðCdÞ is a subcone of the
two dimensional cone tNef

1ðCdÞ which has two extremal rays: one is spanned
by h1;d ¼ dgx� y which is the dual of the class of the small diagonal DðdÞ (see
[BKLV17, Cor. 3.15]) and the other one is generated by y provided that db
gonðCÞ (see Theorem 5.6). The Abel–Jacobi morphism ad : Cd !! adðCdÞ �
PicdðCÞ corresponds to the face coneðyÞ while the other face coneðh1;dÞ corre-
sponds to another fibration that we are going to describe.

Consider the regular morphism (as in [Pac03, §2.2])

fd : Cd ! JðCÞ
d
2ð Þ

ðp1; . . . ; pdÞ 7! ðOCðpi � pjÞÞ1ai<jad :

By quotienting Cd by the symmetric group Sd and JðCÞ
d
2ð Þ by the semi-direct

product Z=2Z
d
2ð ÞzS d

2ð Þ (where S d
2ð Þ acts by permutation and each copy of Z=2Z

acts on the corresponding factor JðCÞ as the inverse), we get a regular fibration

jd : Cd !! jdðCÞ � Sym
d
2ð ÞðKumðCÞÞ:ð3:6Þ

It is easily checked that the only subvariety contracted by jd is DðdÞ. We then
have cjd ðrÞ ¼ �1 if rb 2 and cjd ð1Þ ¼ 1. By Proposition 3.3(ii) we get that
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coneðDðdÞÞ is an extremal ray of Pse¤1ðCdÞ (which improves [Pac03, Lemma 2.2]
where the author uses the above maps to show that the class of the small diagonal
DðdÞ lies in the boundary of Pse¤1ðCdÞ). In fact we know more, namely that
coneðDðdÞÞ is an edge of Pse¤1ðCdÞ by [BKLV17, Cor. 3.15(d)]. According to
Remark 3.4, we also expect that Fbr

k ðjdÞ ¼ f0g for kb 2 or k ¼ 1 and rb 2.
Hence, we do not expect to find new interesting faces by looking at the contract-
ibility faces of fd , apart from a new (and simpler) proof of the fact that DðdÞ spans
an extremal ray of tPse¤1ðCdÞ.

3.4. Abel–Jacobi rays

In this subsection, we use Proposition 3.12 to exhibit some extremal rays of
Pse¤nðCdÞ (and of tPse¤nðCdÞ) for a Brill–Noether general curve.

Theorem 3.17. Let maxf1; d � gþ 1ga r and
rg

rþ 1
þ ra da 2g� 2. Assume

that C is a Brill–Noether general curve.
Then AJrrþrðCdÞ ¼ tAJ

r
rþrðCdÞ ¼ coneð½Cr

d �Þ, where r :¼ rðg; r; dÞ ¼ g�
ðrþ 1Þðg� d þ rÞ. In particular, ½Cr

d � generates an extremal ray (called the
AJ(¼Abel–Jacobi) ray) of Pse¤ rþrðCdÞ and of tPse¤ rþrðCdÞ.

Note that the assumption maxf1; d � gþ 1ga r is just 1þmaxf0; n� gga r

with n ¼ rþ r, whereas the inequality db
rg

rþ 1
þ r is the sharp bound ensuring

that Cr
d is non-empty of dimension rþ r. Moreover, if r ¼ 1 and gþ2

2 a da g, the
theorem asserts that ½C1

d � generates an extremal ray of tPse¤2d�g�1ðCdÞ, and this
achieves the lower bound on d in Corollary 3.15.

Proof. This will follow from Proposition 3.12(ii) and its analogue for the tau-
tological Abel–Jacobi faces, provided that we show that either Cr

d is tautological
and irreducible of dimension rþ r or all the irreducible components of Cr

d are
tautological, of dimension rþ r and numerically equivalent (in which case the
class of Cr

d is a positive multiple of the class of each of its irreducible compo-
nents).

The hypothesis rg
rþ1 þ ra d is equivalent to gonrðCÞa d by Lemma 3.6 (which

is in turn equivalent to Cr
d A j) and it implies that Cr

d has pure dimension rþ r by
Fact 3.8(v) and it has tautological class by Fact 3.8(iv). We now distinguish two
cases, according to the sign of r. If r > 0 then Cr

d is irreducible by Fact 3.8(v) and
we are done. If instead r ¼ 0, then Cr

d is a disjoint union of r-dimensional fibers
of the map ad by Fact 3.8(v). We conclude by observing that all the r-dimensional
fibers of ad are numerically equivalent and they have tautological class (indeed,
their class is equal to Gdðgr

dÞ, see Fact 5.1). r

Example 3.18. Two special cases of AJ rays of fixed codimension m (which are
also the unique ones in codimension m if m is a prime) are the ones generated by
the following Brill–Noether varieties:
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(i) If 1ama g=2 and C is a Brill–Noether general curve, then C1
g�mþ1 is a pure

codimension m (and irreducible if and only if m < g=2 or g ¼ 2) subvariety
of Cg�mþ1 of class

½C1
g�mþ1� ¼

ym

m!
� xym�1

ðm� 1Þ! :

(ii) If 1ama g� 1 (and C is any curve) then Cm
gþm�1 is a codimension m irre-

ducible subvariety of Cgþm�1 of class (see Example 3.9)

½Cm
gþm�1� ¼

Xm
a¼0

ð�1Þa xaym�a

ðm� aÞ! :

If m ¼ 1 in each of the above special cases, we get that ½C1
g � ¼ y� x a N 1ðCgÞ

generates an extremal ray of Pse¤ 1ðCgÞ, thus extending [Kou93, Rmk. 1 after
Thm. 5] from very general curves to arbitrary curves.

It is natural to ask if AJ rays are perfect, i.e. if they are edges, in the entire
or tautological pseudoe¤ective cone. As we will see, a way to prove this for the
tautological pseudoe¤ective cone would be to apply Proposition 3.21(ii). On the
other hand we will show in Remark 3.24 that the unique AJ rays coneð½Cr

d �Þ to
which we can apply Proposition 3.21(ii), and hence deduce that they are perfect
rays, are those with r ¼ rðg; r; dÞ ¼ 0 (when we will actually see in Remark 6.3
that they coincide with the subordinate edge) and those with d ¼ gþ r� 1 (when
we will actually see in Theorem 6.2 that they coincide with the BN edge in dimen-
sion g� 1).

3.5. The y-filtration

The tautological Abel–Jacobi faces can be described in terms of a multiplicative
filtration of the tautological ring R�ðCdÞ, determined by the class y.

Definition 3.19 (The y-filtration). For any 0ama d and any 0a ia gþ 1,
let ybi;m (or simply ybi if m is clear from the context) be the smallest linear sub-
space of RmðCdÞ ¼ Rd�mðCdÞ containing the monomials fy ixm�i; y iþ1xm�i�1; . . . ;
ymg, with the obvious convention that ybi;m ¼ f0g if i > m.

The subspaces fybi;mg form an exhaustive decreasing multiplicative filtration
of the tautological ring R�ðCdÞ, in the sense that

f0g ¼ ybgþ1;m � � � � � ybiþ1;m � ybi;m � � � � � yb0;m ¼ RmðCdÞ and

ybi;m � ybj; l � ybiþj;mþl :

The properties of the y-filtration are collected in the following result.

Proposition 3.20. Let 0ama d and 0a ia gþ 1. Set as usual rðmÞ :¼
minfm; d �m; gg. Then the following properties hold true.
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(i) If iamþ 1 then the codimension of ybi;m inside RmðCdÞ is equal to

codim ybi;m ¼
i if rðmÞ ¼ m or g;

maxfi � gþ d �m; 0g if rðmÞ ¼ d �ma gam;

maxfi � 2mþ d; 0g if rðmÞ ¼ d �mama g:

8<
:

Moreover, a basis of ybi;m is given by

fy ixm�i; . . . ; ymx0g if rðmÞ ¼ m and 0a iamþ 1;

fy ixm�i; . . . ; ygxm�gg if rðmÞ ¼ g and 0a ia gþ 1;

fy ixm�i; . . . ; ygxm�gg if rðmÞ ¼ d �ma gam and g� ðd �mÞa ia gþ 1;

fy ixm�i; . . . ; ymx0g if rðmÞ ¼ d �mama g and 2m� da iamþ 1:

8>>><
>>>:
(ii) Under the perfect pairing between RmðCdÞ and Rd�mðCdÞ given by the intersec-

tion product (see Proposition 2.3(iii)), we have that

ðybi;mÞ? 	 ybgþ1�i;d�m;

with equality if and only if one the following assumptions hold:

• gamaxfm; d �mg,
• i ¼ gþ 1 or ma d �ma g and g� ðd �mÞ þmþ 1a ia gþ 1, in which
case the left and right hand side are both equal to Rd�mðCdÞ,

• i ¼ 0 or d �mama g and 0a ia 2m� d, in which case the left and right
hand side are both equal to zero.

Proof. Part (i) is obvious if either rðmÞ ¼ m or rðmÞ ¼ g, since in the former
case the elements fy0xm; . . . ; ymx0g form a basis of RmðCdÞ while in the latter
case the elements fy0xm; . . . ; ygxm�gg form a basis of RmðCdÞ by Proposition
2.3(ii). On the other hand, if rðmÞ ¼ d �m then any subset of ðd �mþ 1Þ ele-
ments of fy0xm; . . . ; yminfg;mgxm�minfg;mgg form a basis of RmðCdÞ by Proposition
2.3(ii). This easily imply (i) for rðmÞ ¼ d �m.

Part (ii): the inclusion

ðybi;mÞ? 	 ybgþ1�i;d�m

follows from the relation ygþ1 ¼ 0. We conclude with a straightforward com-
parison (left to the reader) of the codimensions of ðybi;mÞ? and of ybgþ1�i;d�m,
using (i). r

The link between tautological Abel–Jacobi faces and the y-filtration is clari-
fied in the following

Proposition 3.21. Let 0a na d and 1þmaxf0; n� gga ra n.

(i) We have an equality of subcones of tPse¤nðCdÞ
tAJ

r

nðCdÞ ¼ ðybnþ1�r;nÞ?B tPse¤nðCdÞ:ð3:7Þ

In particular, dim tAJ
r
nðCdÞa dimðybnþ1�r;nÞ? ¼ codimðybnþ1�r;nÞ.
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(ii) If dim tAJ
r
nðCdÞ ¼ dimðybnþ1�r;nÞ? then tAJ

r
nðCdÞ is a perfect face of

tPse¤nðCdÞ whose ( perfect) dual face is ybnþ1�r;nB tNef
nðCdÞ.

When the assumption of (ii) holds true, the perfect face ybnþ1�r;nB tNef
nðCdÞ

of tNef
nðCdÞ will be called nef y-face. A nef y-face of dimension one will be

called nef y-edge, and using Proposition 3.20(i) it is easy to see that a nef y-edge
is equal to

ybminfn;gg;nB tNef
nðCdÞ ¼ coneðyminfn;ggxn�minfn;ggÞ:

Proof. (i): note that, since y is the pull-back via ad : Cd ! PicdðCÞ of an ample
line bundle on PicdðCÞ, from Definition 3.1 it follows that for any b a Pse¤nðCdÞ
we have

contrad ðbÞb r , b � ynþ1�r ¼ 0:ð3:8Þ

Therefore, since tAJ
r
nðCdÞ is the conic hull of all elements b a tPse¤nðCdÞ having

contractibility index at least r, formula (3.8) implies that tAJ
r
nðCdÞ � ðybnþ1�r;nÞ?

B tPse¤nðCdÞ. In order to prove the reverse inclusion, by contradiction assume
that there exists an element b a tPse¤nðCdÞ such that b a ðybnþ1�r;nÞ? and
b � ynþ1�rA 0. The element b � ynþ1�r lies in Rdþ1�rðCdÞ and, since it is non-zero
(which implies that rb 1), applying Proposition 2.3(iii) we find an element g a
Rr�1ðCdÞ such that b � ynþ1�r � gA 0. But then, since ynþ1�r � g a ybnþ1�r;n, we
find that b B ðybnþ1�r;nÞ?, which is the desired contradiction.

Part (ii): if dim tAJ
r
nðCdÞ ¼ dimðybnþ1�r;nÞ? then 3 tAJ

r
nðCdÞ4 ¼ ðybnþ1�r;nÞ?,

which implies that the dual face of tAJ
r
nðCdÞ is equal to

ððybnþ1�r;nÞ?Þ?B tNef
nðCdÞ ¼ ybnþ1�r;nB tNef

nðCdÞ:

Observe that tAJ
r
nðCdÞ is a full cone in ðybnþ1�r;nÞ? by assumption, while

ybnþ1�r;nB tNef
nðCdÞ is a full cone in ybnþ1�r;n since y is nef (hence limit of

ample classes) and x is ample. Therefore, we can apply Remark 2.2 in order to
conclude that tAJ

r
nðCdÞ and ybnþ1�r;nB tNef

nðCdÞ are perfect dual faces. r

Remark 3.22. The equality (3.7) is true also for the (non-tautological) Abel–
Jacobi faces with the same proof (taking orthogonals in NnðCdÞ).

Note that Proposition 3.21(ii) gives a criterion to find perfect faces of
tPse¤nðCdÞ. Let us see how we could apply this criterion to find facets (which
are always perfect) and edges, i.e. one-dimensional perfect faces.

The dimension of ðybnþ1�r;nÞ? � RnðCdÞ, which is equal to the codimension
of ybnþ1�r;n � RnðCdÞ, can be computed (in the non trivial range nþ 1� ra g)
using Proposition 3.20(i) and it is equal to:

dimðybnþ1�r;nÞ? ¼ codim ybnþ1�r;nð3:9Þ

¼

nþ 1� r if either rðnÞ ¼ n or

rðnÞ ¼ g;

maxfd � gþ 1� r; 0g if d � na ga n;

maxfd � nþ 1� r; 0g if d � na na g:

8>><
>>:

860 f. bastianelli et al.



Therefore, we find that

codimðybnþ1�r;nÞ? ¼ 1 , dimðybnþ1�r;nÞ? ¼ rðnÞ , r ¼ 1 if na g;

r ¼ nþ 1� g if ga n:

�

Let us now examine when, in each of the above two cases, we get indeed a tauto-
logical Abel–Jacobi facet.

Proposition 3.23.

(i) If ga n then tAJ
nþ1�g
n ðCdÞ is a facet of tPse¤nðCdÞ.

(ii) If na g then tAJ
1
nðCdÞ is a facet of tPse¤nðCdÞ under one of the following

assumptions:
(a) gonnðCÞa d (which is always satisfied if ga d � n);
(b) n ¼ g� 1;
(c) ga d and C is very general over an uncountable base field k.

Note that: (i) (and (iia) for ga d � n) is a special case of Theorem 4.2, (iia) is
a special case of Theorem 5.6, and (iib) for d � na g� 1 (otherwise it belongs to
case (iia)) is a special case of Theorem 6.2.

Proof. As observed above, parts (i), (iia) and (iib) are special case of theorems
that will be proved later.

Let us prove part (iic). The assumption that ga d implies that the Abel–
Jacobi morphism ad is surjective. Hence, using that k is uncountable (and alge-
braically closed) and that the fibers of ad are projective spaces, we can apply
[FL17b, Thm. 1.2] in order to conclude that 3AJ1nðCdÞ4 ¼ kerððadÞ� : NnðCdÞ !
NnðPicdðCÞÞÞ. Since C is very general, we have that NnðCdÞ ¼ RnðCdÞ (which also

implies that AJ1nðCdÞ ¼ tAJ
1
nðCdÞ) and NnðPicdðCÞÞ ¼ 3½Y�g�n4 (see [BKLV17,

Fact 2.6] and Ben Moonen’s appendix to [BKLV17]). Therefore, the kernel of
ðadÞ� : NnðCdÞ ! NnðPicdðCÞÞ is isomorphic to the linear space of all elements
z a RnðCdÞ such that 0 ¼ ðadÞ�ðzÞ � ½Y�n ¼ z � yn ¼ 0, that is to ðybn;nÞ?. Put-
ting everything together, we deduce that 3 tAJ

1
nðCdÞ4 ¼ ðybn;nÞ?, which implies

that tAJ
1
nðCdÞ is a facet of tPse¤nðCdÞ (since ðybn;nÞ? has codimension one in

RnðCdÞ as observed above). r

Let us now discuss when Proposition 3.21(ii) can be used to find edges of
tPse¤nðCdÞ. Using (3.9), we find that

dimðybnþ1�r;nÞ? ¼ 1 ,
r ¼ n if either rðnÞ ¼ n or rðnÞ ¼ g;

r ¼ d � g if d � na ga n;

r ¼ d � n if d � na na g:

8<
:

Let us now check, in each of the above cases, when we can apply the criterion
of Proposition 3.12 to conclude that tAJ

r
nðCdÞ is non-zero, and hence that it is an

edge of tPse¤nðCdÞ.
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We will distinguish the following cases (assuming that 1a na d � 1 to avoid
trivial faces):

(A) If ga d � n then clearly Cn
d ¼ Cd and we deduce that tAJ

n
n ðCdÞ is non-zero;

(B) If d � na ga n then clearly C
d�g
d ¼ Cd and we deduce that tAJ

d�g
n ðCdÞ is

non-zero;
(C) If na d � n < g (which implies that da 2g� 2) then tAJ

n
n ðCdÞ is non-zero if

Cn
d has some tautological irreducible component of maximal dimension and

if na dimCn
d ¼ nþ dimWn

d ðCÞ, which is equivalent to the non-emptiness of
Wn

d ðCÞ, or in other words to db gonnðCÞ.
(D) If d � na n < g (which implies that da 2g� 2) then tAJ

d�n
n ðCdÞ is non-

zero if Cn
d has some tautological irreducible component of maximal dimen-

sion and if

na dimCd�n
d ¼ d � nþ dimWd�n

d ðCÞ
, dimWd�n

d ðCÞb 2n� d ¼ d � 2ðd � nÞ:

By Martens’ theorem (see [ACGH, Chap. IV, Thm. 5.1]), this can happen if
either d � n ¼ d � gþ 1, i.e. n ¼ g� 1, or C is hyperelliptic.

We will see in the next sections that indeed in all the above cases we get edges of
tPse¤nðCdÞ: cases (A) and (B) will be analyzed in Section 4 (and indeed Case (A)
also follows from Section 5), case (C) in Section 5, case (D) with n ¼ g� 1 in
Section 6 and case (D) for C hyperelliptic in Section 7.

Quite remarkably, we will see that in all the above cases the non-trivial tau-
tological Abel–Jacobi faces of tPse¤nðCdÞ form a maximal chain of perfect
non-trivial faces, i.e. a chain of perfect non-trivial faces of tPse¤nðCdÞ whose
dimensions start from one and increase by one at each step until getting to the
dimension of tPse¤nðCdÞ minus one.

Remark 3.24. The unique AJ rays coneð½Cr
d �Þ to which we can apply Proposi-

tion 3.21(ii) are those with r ¼ rðg; r; dÞ ¼ 0 or with d ¼ gþ r� 1.
Indeed, since tAJ

r
rþrðCdÞ ¼ coneð½Cr

d �Þ has dimension one, the hypothesis of
Proposition 3.21(ii) does hold true if and only if

1 ¼ dimðybrþ1; rþrÞ? ¼ codim ybrþ1; rþr:

Now observe that d ¼ rþ rg

rþ 1
þ r and the hypothesis on d in Theorem 3.17 trans-

lates into 0a ra g� r� 1. The dimension n ¼ rþ r and the codimension m ¼
d � n of Cr

d satisfy the following easily checked inequalities

n < g;

m < g;

nbm , r

2rþ 1
ðg� r� 1Þa r:

8>><
>>:
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Using this, we can compute the codimension of ybrþ1; rþr using Proposition
3.20(i):

codim ybrþ1; rþr

¼
rþ 1 if ra r

2rþ1 ðg� r� 1Þ;
d � 2r� rþ 1 ¼ rðg� d þ r� 1Þ þ 1 if r

2rþ1 ðg� r� 1Þa r:

�

Hence we see that codim ybrþ1; rþr ¼ 1 if either r ¼ 0 or d ¼ gþ r� 1.

4. The y-faces

In this section, we are going to describe the tautological Abel–Jacobi faces of
tPse¤nðCdÞ under the assumption that gamaxfn; d � ng, which comes from
Proposition 3.20(ii). Note that this assumption is always satisfied if d > 2g� 2
and it is never satisfied if d < g.

Let us start with the following result that gives a lower bound on the dimen-
sion of the tautological Abel–Jacobi faces.

Lemma 4.1. Let 0a na d and 1þmaxf0; n� gga ra n. The cone

ybg�nþr;d�nB tPse¤nðCdÞ � ybg�nþr;d�n � RnðCdÞ

is contained in tAJ
r
nðCdÞ and it is a full-dimensional cone in ybg�nþr;d�n. In partic-

ular, we have that

dim tAJ
r

nðCdÞb dim ybg�nþr;d�n:

Proof. Since ybg�nþr;d�n � ðynþ1�r;nÞ? by Proposition 3.20(ii), we get that the
cone ybg�nþr;d�nB tPse¤nðCdÞ is contained in tAJ

r
nðCdÞ by (3.7).

By Definition 3.19, the linear subspace ybg�nþr;d�n � RnðCdÞ is generated
by monomials in x and y. Since y is nef (hence limit of ample classes) and x is
ample we have that each monomial in x and y is a pseudoe¤ective class. This
implies that ybg�nþr;d�nB tPse¤nðCdÞ is a full-dimensional cone in ybg�nþr;d�n.

r

Using the above Lemma, we can now prove the main result of this section.

Theorem 4.2. Let 0a na d and assume that gamaxfn; d � ng. Then the
Abel–Jacobi face tAJ

r
nðCdÞ is equal to ybg�nþr;d�nB tPse¤nðCdÞ, and it is non-

trivial if and only if 1þmaxf0; n� gga raminfn; d � gg, in which case it is a
perfect face of dimension minfn; d � gg � rþ 1 and codimension r�maxfn� g;
0g. Hence, the following chain

ybminfg;d�ngB tPse¤nðCdÞ � � � � � ybgþ1�minfg;ngB tPse¤nðCdÞð4:1Þ
� tPse¤nðCdÞ
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is a maximal chain of perfect non-trivial faces of tPse¤nðCdÞ. The dual chain of
(4.1) is equal to

ybminfg;ngB tNef
nðCdÞ � � � � � ybgþ1�minfg;d�ngB tNef

nðCdÞð4:2Þ
� tNef

nðCdÞ:

The faces in (4.1) will be called pse¤ y-faces, while the faces in (4.2) are the nef
y-faces introduced after Proposition 3.21. Note that

coneðyminfg;d�ngxd�n�minfg;d�ngÞ ¼ ybminfg;d�ngB tPse¤nðCdÞ

¼ ybminfg;d�ngB tNef
d�nðCdÞ

is an edge (i.e. perfect extremal ray) of tPse¤nðCdÞ, which we will call the pse¤
y-edge, and it coincides with the nef y-edge. On the other hand, since the class
x is ample, the other monomials in x and y cannot generate an extremal ray of
either tPse¤nðCdÞ or of tNef

d�nðCdÞ.

Proof. Fix an integer r such that 1þmaxf0; n� gga ra n. Using the assump-
tion gamaxfn; d � ng, Proposition 3.20(ii) implies that

ðybnþ1�r;nÞ? ¼ ybg�nþr;d�n � RnðCdÞ:

This, together with Proposition 3.21(i) and Lemma 4.1, gives the equality of
cones

tAJ
r

nðCdÞ ¼ ybg�nþr;d�nB tPse¤nðCdÞ

and the fact that

dim tAJ
r

nðCdÞ ¼ dimðybnþ1�r;nÞ?:

Hence we can apply Proposition 3.21(ii) in order to conclude that tAJ
r
nðCdÞ is a

perfect face of tPse¤nðCdÞ whose dual face is equal to ybnþ1�r;nB tNef
nðCdÞ.

Finally, Proposition 3.20(i) gives that the linear subspace ðybnþ1�r;nÞ? �
RnðCdÞ is non-trivial if and only if 1þmaxf0; n� gga raminfn; d � gg, in
which case it has dimension minfn; d � gg � rþ 1. r

Remark 4.3. Notice that, outside of the range gamaxfn; d � ng, the cones
ybi B tPse¤nðCdÞ may not be faces of tPse¤nðCdÞ. To see this let m be odd and
such that 1ama g� 1 and let d ¼ gþm� 1. Now, by (3.4), the coe‰cient of
xm in ½Cm

gþm�1� is ð�1Þm < 0 while, for any m-codimensional diagonal, the same
coe‰cient is positive by [BKLV17, Prop. 3.1]. Hence, in tPse¤g�1ðCgþm�1Þ, the
class ½Cm

gþm�1� and the m-codimensional diagonals lie in di¤erent half-spaces
with respect to the hyperplane yb1, which then implies that yb1B tPse¤g�1ðCdÞ
is not a face of tPse¤g�1ðCgþm�1Þ.
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Let us finish this section by giving upper and lower bounds for the dimension
of the tautological Abel–Jacobi faces in the numerical ranges not included in the
above Theorem 4.2.

Proposition 4.4. Assume that gbmaxfn; d � ng. Then

(i) tAJ
r
nðCdÞ is trivial unless 1a raminfn; d � ng.

(ii) If 1a raminfn; d � ng then

maxfd þ 1� g� r; 0ga dim tAJ
r

nðCdÞa rðnÞ � rþ 1:ð4:3Þ

In particular, if 1a ra d � g (which forces gþ 1a d ) then tAJ
r
nðCdÞ is non-

trivial.

Proof. Observe that tAJ
r
nðCdÞ is defined only for 1 ¼ 1þmaxf0; n� gga ra

n. Under this assumption, Proposition 3.21(i) and Lemma 4.1 give that

dim yg�nþr;d�n
a dim tAJ

r

nðCdÞa codim ybnþ1�r;n:ð4:4Þ

Using the assumption gbmaxfn; d � ng and Proposition 3.20(i), we compute

codim ybnþ1�r;n ¼ nþ 1� r if na d � na g;

maxfd � n� rþ 1; 0g if d � na na g:

�
ð4:5Þ

Therefore if d � n < r (which can only happen in the second case) then
codim ybnþ1�r;n ¼ 0, while if ra d � n then codim ybnþ1�r;n ¼ rðnÞ � rþ 1. Us-
ing the upper bound in (4.4), this implies that tAJ

r
nðCdÞ ¼ ð0Þ if d � n < r (which

proves (i)) and that dim tAJ
r
nðCdÞa rðnÞ � rþ 1 if ra d � n.

On the other hand, using again the assumption gbmaxfn; d � ng and Prop-
osition 3.20(i), we compute

dim ybg�nþr;d�n ¼ d þ 1� g� r if ra d � g;

0 otherwise:

�
ð4:6Þ

If we plug this formula into the lower bound in (4.4), we get the lower bound of
part (ii), and this finishes the proof. r

Remark 4.5. Note that the upper bound and lower bound in the above Propo-
sition 4.4 (which are always di¤erent except in the special cases n ¼ g or d � n ¼
g, which we exclude in the discussion that follows) can be strict. For example:

• If d < gonðCÞ (which implies that da gþ1
2 by Lemma 3.6) then Remark 3.11

gives that tAJ
r
nðCdÞ ¼ f0g for any 1a raminfn; d � ng, which shows that the

lower bound in (4.3) is (trivially) achieved but not the upper bound.

• The AJ rays of Theorem 3.17 do not achieve the lower bound in (4.3), which is
zero since d � gþ 1a r, while they achieve the upper bound only if rðg; r; dÞ ¼
0 or d ¼ gþ r� 1 (see Remark 3.24).
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• In each of the cases specified in Proposition 3.23(ii), tAJ
1
nðCdÞ is a facet,

hence its dimension achieves the upper bound in (4.3) but not the lower
bound.

• We will show in the sequel that the upper bound in (4.3) is achieved for any
1a raminfn; d � ng if either gonnðCÞa da nþ g (see Theorem 5.6), or if
n ¼ g� 1 and ga da 2g� 2 (see Theorem 6.2), or if g > maxfn; d � ng and
C is hyperelliptic (see Theorem 7.3); and in each of these cases, the lower bound
is not achieved.

5. Subordinate faces

In this section, we are going to describe some of the Abel–Jacobi faces using sub-
ordinate varieties.

Recall that the subordinate variety of a linear system l is defined (set theoreti-
cally) as

GdðlÞ :¼ fD a Cd : DaE for some E a lg:ð5:1Þ

There is a natural scheme structure on GdðlÞ (indeed GdðlÞ is a determinantal va-
riety) and the class of GdðlÞ is computed as follows (see [ACGH, Chap. VIII, §3],
[KL74, §1] – the proof works over any algebraically closed field).

Fact 5.1. Let l be a gs
l on C and fix an integer d such that lb db s. Then GdðlÞ

is of pure dimension s and it has class equal to

½GdðlÞ� ¼
Xd�s

k¼0

l � g� s

k

� �
xkyd�s�k

ðd � s� kÞ! a RsðCdÞ:

Remark 5.2. It is worth noticing that a subordinate variety was already used
to describe the Mori cone of Cd , when C is a very general curve of even genus
g ¼ 2db 4. In particular, it follows from [Pac03, Theorem 1.1] that if l is any
g1dþ1 on C, then the class ½GdðlÞ� spans one extremal ray of the 2-dimensional
cone Pse¤1ðCdÞ ¼ tPse¤1ðCdÞ, whereas the other ray is generated by the class of
the small diagonal d ¼ fdp j p a Cg.

Using subordinate varieties, we construct subvarieties of Cd that are suitably
contracted by the Abel–Jacobi map ad : Cd ! PicdðCÞ.

Proposition 5.3. Let 1a na d with the property that db gonnðCÞ. Fix a lin-
ear system l of degree d and dimension n on C. For any 0a iaminfn; gg, consider
the embedding ci : Cd�i ! Cd defined by ciðDÞ ¼ Dþ ip0, where p0 is a fixed
point of C. Then the subvariety

Gi :¼ ciðGd�iðlÞÞ � Cd
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has pure dimension n, its class is tautological and equal to

½Gi� ¼
Xd�i�n

k¼0

d � g� n

k

� �
xkþiyd�i�n�k

ðd � i � n� kÞ! ;ð5:2Þ

and its image adðGiÞ in PicdðCÞ is irreducible of dimension i.

Note that the subvarieties Gi depend on the choices of the linear system l
and of the base point p0, but their classes ½Gi� are independent of these choices.
We remark further that the last part of the assertion needs the assumption ia
minfn; gg, as dim adðGiÞaminfdimGd�iðlÞ; dimPicdðCÞg ¼ minfn; gg.

Proof. Note that minfn; gga d � n by Remark 3.7, whence we have that ia
d � n. Fact 5.1 implies that Gd�iðlÞ is pure n-dimensional, whence so is Gi. More-
over since the image of ci has class equal to xi and the pull-back map c�

i pre-
serves the classes x and y, the class of Gi is obtained by taking the class of
Gd�iðlÞ in RnðCd�iÞ given by Fact 5.1, interpreting it as a class in RnþiðCdÞ and
then multiplying it by xi; in this way we get the formula (5.2).

The linear system l is a sublinear system of a complete linear system jLj
for some L a PicdðCÞ. Consider the i-dimensional irreducible subvariety of
PicdðCÞ:

Vi :¼ fLð�Dþ ip0Þ : D a Cig:

We claim that adðGiÞ ¼ Vi, which will conclude the proof. In fact if L a adðGiÞ
then there is D 0 a Gd�iðlÞ such that LGOCðD 0 þ ip0Þ. But there is also E a l
such that EbD 0, whence, setting D ¼ E �D 0 we see that D a Ci and LG
Lð�Dþ ip0Þ a Vi. Vice versa if L a Vi then LGLð�Dþ ip0Þ for some D a Ci.
Since dim l ¼ nb i there is E a l such that EbD. Setting D 0 ¼ E �D we find
that D 0 a Cd�i and D 0aE, so that D 0 a Gd�iðlÞ, D 0 þ ip0 a Gi and adðD 0 þ ip0Þ
¼ OCðD 0 þ ip0ÞGL. r

The intersection of the classes ½Gi� with the monomials y jxn�j is easily com-
puted via the projection formula as follows.

Lemma 5.4. Let Z be any pure n-dimensional subvariety of Cd such that
dim adðZÞ ¼ i. Then

½Z� � y jxn�j ¼ 0 if i < j;

> 0 if ib j:

�

Proof. Observe that, since ½Z� � y jxn�j a N0ðCdÞGR, we have that ½Z� � y jxn�j

¼ ðadÞ�ð½Z� � y
jxn�jÞ a N0ðPicdðCÞÞGR. In order to compute the last quantity,

we use the projection formula for the Abel–Jacobi map ad :

ðadÞ�ð½Z� � y
jxn�jÞ ¼ ðadÞ�ð½Z� � xn�jÞ � ½Y� j:

867effective cycles on the symmetric product of a curve, ii: the abel–jacobi faces



Since x is an ample class on Cd , for each irreducible component Zk of Z, the class
½Zk� � xn�j can be represented by a j-dimensional irreducible subvariety Wk con-
tained in Z such that dim adðWkÞ ¼ minfdim adðZkÞ; jg. Passing to the pushfor-
ward, we get

ðadÞ�ð½Zk� � xn�jÞ ¼ ðadÞ�ð½Wk�Þ ¼
0 if dim adðZkÞ < j;

degððadÞjWk
Þ � ½adðWkÞ� if dim adðZkÞb j:

�

Since dim adðZÞ ¼ i we get that dim adðZkÞa i for every k and there is a k0 such
that dim adðZk0Þ ¼ i. We conclude by observing that, in the case ja i, we have
that ½adðWk0Þ� � ½Y� j > 0 because dim adðWk0Þ ¼ j and Y is ample on PicdðCÞ.

r

Corollary 5.5. Let 0a na d such that d � nbminfn; gg and let fZigminfn;gg
i¼0

be pure n-dimensional subvarieties of Cd such that dim adðZiÞ ¼ i. Then the classes
f½Z0�; . . . ; ½Zminfn;gg�g are linearly independent in NnðCdÞ and we have that

3½Z0�; . . . ; ½Zi�4?BRnðCdÞ ¼ ybiþ1;n

has codimension i þ 1 in RnðCdÞ, for every 0a iaminfn; gg.

Proof. The space RnðCdÞ is freely generated by fy0xn; . . . ; yrðnÞxn�rðnÞg by Prop-
osition 2.3(ii), where rðnÞ ¼ minfn; gg because of the assumption on d. Now
Lemma 5.4 implies that

3½Z0�; . . . ; ½Zi�4?BRnðCdÞ ¼ ybiþ1;n for any 0a ia rðnÞ:

The subspace ybiþ1;n � RnðCdÞ has codimension i þ 1 by Proposition 3.20(i). If
we apply this result to i ¼ rðnÞ we deduce that the classes f½Z0�; . . . ; ½Zminfn;gg�g
are linearly independent in NnðCdÞ and this concludes the proof. r

Using the subvarieties in Proposition 5.3, we can now describe tautological
Abel–Jacobi faces under suitable numerical assumptions.

Theorem 5.6. Let 0a na d; 1þmaxf0; n� gga ra n and assume that db
gonnðCÞ. For any 0a iaminfn; gg, consider the classes ½Gi� a RnðCdÞ given by
(5.2) and set

Siþ1 :¼ 3½G0�; . . . ; ½Gi�4 � RnðCdÞ:

Then tAJ
r
nðCdÞ is a non-trivial face, is equal to Snþ1�rB tPse¤nðCdÞ and it is a per-

fect face of dimension nþ 1� r. Hence, the following chain

S1B tPse¤nðCdÞ � S2B tPse¤nðCdÞð5:3Þ
� � � � � Sminfn;ggB

tPse¤nðCdÞ � tPse¤nðCdÞ

is a maximal chain of perfect non-trivial faces of tPse¤nðCdÞ. The dual chain of the
chain in (5.3) is equal to
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ybminfn;ggB tNef
nðCdÞ � ybminfn;gg�1B tNef

nðCdÞð5:4Þ
� � � � � yb1B tNef

nðCdÞ � tNef
nðCdÞ:

The faces in (5.3) will be called subordinate faces, while the faces in (5.4) are
the nef y-faces introduced after Proposition 3.21. Note that

coneð½G0�Þ ¼ S1B tPse¤nðCdÞ

is an edge (i.e. a perfect extremal ray) of tPse¤nðCdÞ, which we call the subordi-
nate edge. On the other hand, we do not expect that the classes ½Gi� with 0 < ia
minfn; gg generate an extremal ray of tPse¤nðCdÞ. Using the fact that x is ample,
we can prove that they are not extremal, unless, possibly, when g > d � nb n.

Proof. Consider the pure n-dimensional tautological subvarieties fG0; . . . ;Grg
of Cd constructed in Proposition 5.3 (indeed the last subvariety Gr will be of no
use in what follows). Since d � nbminfn; gg (see Remark 3.7), we can apply

Corollary 5.5 and we get that ðybnþ1�r;nÞ? ¼ Snþ1�r, which combined with Prop-
osition 3.21(i), gives that

tAJ
r

nðCdÞ ¼ Snþ1�rB tPse¤nðCdÞ:

Since ½Gi� are e¤ective classes, we get the following inclusions of cones

coneð½G0�; . . . ; ½Gn�r�Þ � Snþ1�rB tPse¤nðCdÞ � Snþ1�r:ð5:5Þ

Since f½G0�; . . . ; ½Gn�r�g is a basis of Snþ1�r by Corollary 5.5, we infer from
the inclusions (5.5) that Sn�rB tPse¤nðCdÞ is a full dimensional cone in Sn�r,
and hence it has dimension nþ 1� r ¼ dimðybnþ1�r;nÞ?. We can therefore apply
Proposition 3.21(ii) and get that tAJ

r
nðCdÞ is a perfect face of dimension nþ 1� r

whose dual face is equal to ybnþ1�r;nB tNef
nðCdÞ. r

Remark 5.7. Let us compare Theorem 5.6 with Theorem 4.2 for a given n. We
are going to use that gonnðCÞa gþ n with equality if and only if nb g, a fact
that follows easily from Lemma 3.6.

• If db nþ g (which forces db gonnðCÞ) then the two theorems coincide.

• If d � n < ga n then Theorem 4.2 applies while Theorem 5.6 does not apply
since d < gonnðCÞ ¼ gþ n (using that ga n).

• If n < g and gonnðCÞa d < gþ n then Theorem 5.6 applies but Theorem 4.2
does not apply since maxfn; d � ng < g.

• If n < g and d < gonnðCÞ then neither one of the theorems applies.

6. Brill–Noether faces in dimension g� 1

The aim of this subsection is to describe the tautological Abel–Jacobi faces of Cd

in dimension g� 1. We will assume throughout this section that ga d (to avoid
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trivialities) and that da 2g� 2 since in the case d > 2g� 2 we have a complete
description of the tautological Abel–Jacobi faces in Theorem 4.2.

We start by using the Brill–Noether varieties in Example 3.9 in order to con-
struct subvarieties of Cd of dimension g� 1 that are suitably contracted by the
Abel–Jacobi morphism ad : Cd ! PicdðCÞ.

Proposition 6.1. Let d be such that ga da 2g� 2. For any 0a ia d � g,
consider the embedding ci : Cd�i ! Cd defined by ciðDÞ ¼ Dþ ip0, where p0 is a
fixed point of C. Then the subvariety

1i :¼ ciðC
d�gþ1�i
d�i Þ � Cd

is irreducible of dimension g� 1, its class is tautological and equal to

½1i� ¼
Xd�gþ1�i

a¼0

ð�1Þa xaþiyd�gþ1�a�i

ðd � gþ 1� a� iÞ! ;ð6:1Þ

and its image adð1iÞ in PicdðCÞ has dimension 2g� 2� d þ i.

Note that the subvarieties 1i depend on the choice of the base point p0,
but their classes ½1i� are independent of this choice. Moreover, the assertion
holds also for i ¼ d � gþ 1, where 1d�gþ1 is just the image of the embedding
cd�gþ1 : Cg�1 ! Cd , but this variety is not involved in Theorem 6.2 below as
contrad ð½1d�gþ1�Þ ¼ 0.

Proof. Note that Cd�gþ1�i
d�i is an irreducible subvariety of Cd�i of dimension

g� 1 by Example 3.9, whence 1i is an irreducible subvariety of Cd of dimension
g� 1.

The class of 1i can be computed starting from (3.4) in the same way as for-
mula (5.2) is obtained in Proposition 5.3.

Finally, by Fact 3.8(i), the dimension of ad�iðCd�gþ1�i
d�i Þ � Picd�iðCÞ is equal

to

dim ad�iðCd�gþ1�i
d�i Þ ¼ dimC

d�gþ1�i
d�i � ðd � gþ 1� iÞ ¼ 2g� 2� d þ i:

Since ad � ci is obtained by composing ad�i with the isomorphism

Picd�iðCÞ ! PicdðCÞ
L 7! Lðip0Þ;

we conclude that dim adð1iÞ ¼ dim ad�iðCd�gþ1�i
d�i Þ ¼ 2g� 2� d þ i: r

Using the subvarieties in Proposition 6.1, we can now describe tautological
Abel–Jacobi faces in dimension g� 1.
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Theorem 6.2. Let d be such that ga da 2g� 2. For any 0a ia d � g, con-
sider the classes ½1i� a Rg�1ðCdÞ given by (6.1) and set

Wiþ1 :¼ 3½10�; . . . ; ½1i�4 � Rg�1ðCdÞ:

Then tAJ
r
g�1ðCdÞ is a non-trivial face if and only if 1a ra d � gþ 1, in which

case tAJ
r
g�1ðCdÞ is equal to Wd�gþ2�rB tPse¤g�1ðCdÞ and it is a perfect face of

dimension d � gþ 2� r.
Hence, the following chain

W1B tPse¤g�1ðCdÞ � W2B tPse¤g�1ðCdÞð6:2Þ
� � � � � Wd�gþ1B tPse¤g�1ðCdÞ � tPse¤g�1ðCdÞ

is a maximal chain of perfect non-trivial faces of tPse¤g�1ðCdÞ. The dual chain of
the chain in (6.2) is equal to

ybg�1B tNef
g�1ðCdÞ � ybg�2B tNef

g�1ðCdÞð6:3Þ

� � � � � yb2g�1�d B tNef
g�1ðCdÞ � tNef

g�1ðCdÞ:

The faces in (6.2) will be called BN(¼Brill–Noether) faces in dimension g� 1,
while the faces in (6.3) are the nef y-faces introduced after Proposition 3.21. Note
that

coneð½Cd�gþ1
d �Þ ¼ W1B tPse¤g�1ðCdÞ

is an edge (i.e. a perfect extremal ray) of tPse¤g�1ðCdÞ, which we call the BN edge
in dimension g� 1. On the other hand, since the class x is ample, the classes ½1i�
with 0 < ia d � g cannot generate an extremal ray of tPse¤g�1ðCdÞ.

Note that from Proposition 3.12(ii) it follows that coneð½Cd�gþ1
d �Þ is also an

extremal ray of the entire (non-tautological) cone Pse¤g�1ðCdÞ, although we do
not know if it is an edge of the entire cone.

Proof. Using that d � ðg� 1Þa g� 1, Proposition 3.20(i) gives that

dimðybg�r;g�1Þ? ¼ codim ybg�r;g�1 ¼ maxfd � gþ 2� r; 0g;ð6:4Þ

which, together with Proposition 3.21(i), implies that tAJ
r
g�1ðCdÞ is trivial un-

less 1a ra d � gþ 1. Therefore, from now until the end of the proof, we fix an
index r satisfying the above inequalities.

Consider the irreducible ðg� 1Þ-dimensional tautological subvarieties f10; . . . ;
1d�gg of Cd constructed in Proposition 6.1. Applying Lemma 5.4 and using (6.4),
we get that f½10�; . . . ; ½1d�g�g are linearly independent in Rg�1ðCdÞ and that, for
any 1a ia d � gþ 1,

W?
i ¼ yb2g�2�dþi;g�1:
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Combining this with Proposition 3.21(i), we get that

tAJ
r

g�1ðCdÞ ¼ Wd�gþ2�rB tPse¤g�1ðCdÞ:

Since ½1i� are e¤ective classes, we get the following inclusions of cones

coneð½10�; . . . ; ½1d�gþ1�r�Þ � Wd�gþ2�rB tPse¤g�1ðCdÞ � Wd�gþ2�r:ð6:5Þ

Since f½10�; . . . ; ½1d�gþ1�r�g is a basis of Wd�gþ2�r, we infer from the inclusions
(6.5) that Wd�gþ2�rB tPse¤g�1ðCdÞ is a full dimensional cone in Wd�gþ2�r, and
hence it has dimension d � gþ 2� r ¼ dimðybg�r;g�1Þ?. We can therefore apply
Proposition 3.21(ii) and get that tAJ

r
g�1ðCdÞ is a perfect face of dimension d � gþ

2� r whose dual face is equal to ybg�r;g�1B tNef
g�1ðCdÞ. r

We will now compare AJ rays and BN faces in dimension g� 1 with pse¤
y-faces and subordinate faces.

Remark 6.3. Let us compare Theorems 6.2 and 3.17 with Theorems 4.2 and
5.6.

• BN faces in dimension g� 1 and AJ rays exist in a range where pse¤ y-faces
do not exist.

Indeed, if we are in the numerical range of Theorem 6.2, then n ¼ g� 1
and 1a d � na g� 1 which implies that maxfn; d � ng ¼ n ¼ g� 1 < g. On
the other hand, if we are under the hypotheses of Theorem 3.17, then Cr

d

has dimension n :¼ rþ r ¼ d þ rðd � g� rÞ and codimension m :¼ d � n ¼
rðgþ r� dÞ. Now it easily checked that

n < g , d < gþ r� 1þ 1

rþ 1
;

m < g , r� 1

r
gþ r < d;

and both conditions are satisfied because of the assumptions on d. This implies
that g > maxfn; d � ng in any of the two cases, hence pse¤ y-faces are not
defined.

• BN faces in dimension g� 1 and subordinate faces coexist if only if d ¼ 2g� 2
and n ¼ g� 1, in which case they are equal.

Indeed, if we are in the numerical range of Theorem 6.2, then n ¼ g� 1 and
da 2g� 2. On the other hand, if we are in the numerical range of Theorem
5.6, then db gong�1ðCÞ ¼ 2g� 2 (see Lemma 3.6); hence we must have d ¼
2g� 2 and n ¼ g� 1. In this case, we have that

Si B tPse¤g�1ðC2g�2Þ ¼ tAJ
g�i

g�1ðC2g�2Þ ¼ Wi B tPse¤g�1ðC2g�2Þ;

for any 1a ia g� 1. Even more is true, namely that since C
g�1�i
2g�2�i ¼

G2g�2�iðjKC jÞ, we have that Gi ¼ 1i for any 0a ia g� 1.
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• AJ rays can coexist with subordinate faces if and only if r :¼ rðg; r; dÞ ¼ 0,
in which case the Abel–Jacobi ray coneð½Cr

d �Þ is equal to the subordinate edge
coneð½GdðlÞ�Þ, where l is a linear system of degree d and dimension r.

Indeed, suppose that a AJ ray coneð½Cr
d �Þ � tPse¤ rþrðCdÞ coexists with the

subordinate faces of tPse¤ rþrðCdÞ. Then it must happen that db gonrþrðCÞ,
which using that C is Brill–Noether general, translates into

d ¼ rgþ r

rþ 1
þ rb

ðrþ rÞg
rþ rþ 1

þ rþ r:

Now it is easy to see, using that rb 0 because C is a Brill–Noether general
curve, that the above inequality is satisfied if and only if r ¼ 0. In this case,
we claim that any subordinate variety G0 ¼ GdðlÞ where l is a gr

d (as in Prop-
osition 5.3) is a fiber of ad and an irreducible component of Cr

d , and Cr
d is nu-

merically equivalent to a positive multiple of G0. Indeed, since r ¼ 0 and C is
a Brill–Noether general curve, Crþ1

d ¼ j, which implies that any linear system l
of dimension r and degree d is a complete linear system jLj associated to some
L a Wr

d ðCÞ, and clearly GdðjLjÞ ¼ a�1
d ðLÞ. Moreover, GdðjLjÞ has contractibil-

ity index with respect to ad equal to r (since it has dimension r and it is a fiber
of ad ), hence it is an irreducible component of Cr

d by Fact 3.8(i). Conversely,
any irreducible component of Cr

d is of the form GdðjLjÞ for some L a Wr
d ðCÞ.

Since the class of GdðjLjÞ does not depend on the chosen L a Wr
d ðCÞ, we con-

clude that ½Cr
d � is a positive multiple of ½G0�.

7. Hyperelliptic curves

The aim of this section is to describe the tautological Abel–Jacobi faces in
tPse¤nðCdÞ for C a hyperelliptic curve. We will assume throughout this section
that da 2g� 2 since in the case d > 2g� 2 we have a complete description of
the tautological Abel–Jacobi faces in Theorem 4.2.

A crucial role is played by Brill–Noether varieties for hyperelliptic curves,
which we now study.

Proposition 7.1. Let C be a hyperelliptic curve of genus gb 2. Fix integers d
and r such that 1a da 2g� 2 and maxf0; d � gþ 1ga ra d

2 . Then Cr
d is irre-

ducible of dimension d � r and its class is a positive multiple of

Xr

k¼0

d � r� g

k

� �
xkyr�k

ðr� kÞ! :ð7:1Þ

Note that the assumption on r descends from the theorems of Riemann–Roch
and Cli¤ord, which assure that maxf0; d � gga dimjDja d

2 for any D a Cd .

Proof. We will denote by g12 the hyperelliptic linear series on C, by OCðg12Þ its
associated line bundle and by i the hyperelliptic involution on C.

Let us distinguish two cases, according to whether or not da g.
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If da g then any gr
d on C is of the form rg12 þ p1 þ � � � þ pd�2r, where p1; . . . ;

pd�2r are points of C such that no two of them are conjugate under the hyperel-
liptic involution (see [ACGH, p. 13]). Therefore, Cr

d is the image of the finite mor-
phism

Cr � Cd�2r ! Cd

ðE;DÞ 7! E þ iðEÞ þD;

from which we deduce that Cr
d is irreducible of dimension d � r. Moreover,

the class ½Cr
d � is a positive multiple (depending on its scheme-structure) of

Ad�2rðG2rðrg12ÞÞ, where A is the push operator of [BKLV17, Def. 2.2] and
G2rðrg12Þ is the subordinate variety of (5.1). Combining Facts 5.1 and [BKLV17,
Fact 2.9(ii)], one can easily prove by induction on 0a i that

AiðG2rðrg12ÞÞ ¼ i!
Xr

k¼0

r� gþ i

k

� �
xkyr�k

ðr� kÞ! ;

which for i ¼ d � 2r gives the desired formula.
If d > g then, using the isomorphism Wr

d ðCÞ !G W
r�dþg�1
2g�2�d ðCÞ obtained by

sending L into oC nL�1 and the fact that Wr�dþg�1
2g�2�d ðCÞ is irreducible of dimen-

sion equal to 2g� 2� d � 2ðr� d þ g� 1Þ ¼ d � 2r by what proved in the pre-
vious case for Cr�dþg�1

2g�2�d , we get that Wr
d ðCÞ is irreducible of dimension equal to

d � 2r. Hence Cr
d is irreducible of dimension d � r by Fact 3.8(i). Moreover,

an e¤ective degree-d divisor D on C belongs to Cr
d if and only if oCð�DÞ a

W
r�dþg�1
2g�2�d ðCÞ, which by the previous case is equivalent to saying that oCð�DÞ

¼ OCððr� d þ g� 1Þg12ÞðEÞ for some E a Cd�2r. Using that oC ¼ OCððg� 1Þg12Þ,
we conclude that

D a Cr
d , Dþ E a ðd � rÞg12 for some E a Cd�2r:

Therefore, the class of Cr
d is a positive multiple of the subordinate variety

Gdððd � rÞg12Þ whose class is given by (7.1) according to Fact 5.1. r

Corollary 7.2. Let C be a hyperelliptic curve of genus gb 2 and fix integers
db 1 and n such that 0a d � na n < g (which implies that da 2g� 2). For any
0a ia d � n, consider the embedding ci : Cd�i ! Cd defined by ciðDÞ ¼ Dþ ip0,
where p0 is a fixed point of C. Then the subvariety

1H
i :¼ ciðCd�n�i

d�i Þ � Cd

is irreducible of dimension n, its class is tautological and it is equal, up to a positive
multiple, to

½1i�H :¼
Xd�n�i

k¼0

n� g

k

� �
xkþiyd�n�i�k

ðd � n� i � kÞ! ;ð7:2Þ

and its image adð1H
i Þ in PicdðCÞ has dimension 2n� d þ i.

874 f. bastianelli et al.



Note that the subvarieties 1H
i depend on the choice of the base point p0, but

their classes ½1H
i �, which coincide with ½1i�H up to positive multiples, are inde-

pendent of this choice.

Proof. Note that Cd�n�i
d�i is an irreducible subvariety of Cd�i of dimension n by

Proposition 7.1, whence 1H
i is an irreducible subvariety of Cd of dimension n.

The class of 1H
i can be computed, up to a positive multiple, starting from

(7.1) in the same way as formula (5.2) is obtained in Proposition 5.3. Finally,
the dimension of adð1H

i Þ can be computed similarly to what was done in Propo-
sition 6.1. r

Using the subvarieties constructed in Proposition 5.3 and the ones constructed
in Corollary 7.2, we can now describe tautological Abel–Jacobi faces for hyper-
elliptic curves.

Theorem 7.3. Let C be a hyperelliptic curve of genus gb 2 and fix integers
db 1 and n such that 0a n; d � n < g (which implies that da 2g� 2).

(i) Assume that db 2n.
For any 0a iaminfn; gg, consider the classes ½Gi� a RnðCdÞ given by (5.2)

and set Siþ1 :¼ 3½G0�; . . . ; ½Gi�4 � RnðCdÞ. Then, for any 1a ra n, tAJ
r
nðCdÞ

is a non-trivial face, is equal to Snþ1�rB tPse¤nðCdÞ and it is a perfect face
of dimension nþ 1� r. Hence, the following chain

S1B tPse¤nðCdÞ � S2B tPse¤nðCdÞð7:3Þ
� � � � � SnB tPse¤nðCdÞ � tPse¤nðCdÞ

is a maximal chain of perfect non-trivial faces of tPse¤nðCdÞ.
(ii) Assume that da 2n.

For any 0a ia d � n, consider the classes ½1i�H a RnðCdÞ given by (7.2)
and set WH

iþ1 :¼ 3½10�H ; . . . ; ½1i�H4 � RnðCdÞ. Then tAJ
r
nðCdÞ is a non-

trivial face if and only if 1a ra d � n, in which case tAJ
r
nðCdÞ is equal to

WH
d�nþ1�rB

tPse¤nðCdÞ and it is a perfect face of dimension d � nþ 1� r.
Hence, the following chain

WH
1 B tPse¤nðCdÞ � WH

2 B tPse¤nðCdÞð7:4Þ
� � � � � WH

d�nB
tPse¤nðCdÞ � tPse¤nðCdÞ

is a maximal chain of perfect non-trivial faces of tPse¤nðCdÞ.

The dual chain of both the chains in (7.3) and (7.4) is equal to

ybnB tNef
nðCdÞ � ybn�1B tNef

nðCdÞð7:5Þ
� � � � � ybmaxf1;2n�dþ1gB tNef

nðCdÞ � tNef
nðCdÞ:

Note that the faces in (7.3) are the subordinate faces introduced in Theorem
5.6, while the faces in (7.5) are the nef y-faces introduced after Proposition 3.21.
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The faces of (7.4) are new, and they will be called hyperelliptic BN(¼Brill–
Noether) faces. Note that

coneð½Cd�n
d �Þ ¼ WH

1 B tPse¤nðCdÞ

is an edge (i.e. a perfect extremal ray) of tPse¤nðCdÞ, which we call the hyper-
elliptic BN(¼Brill–Noether) edge.

Note that from Proposition 3.12(ii) it follows that the hyperelliptic BN
edge coneð½Cd�n

d �Þ is also an extremal ray of the entire (non-tautological) cone
Pse¤nðCdÞ, although we do not know if it is an edge of the entire cone.

Proof. Part (i) follows from Theorem 5.6, using that gonnðCÞ ¼ 2n for C hy-
perelliptic and n < g by Lemma 3.6.

Let us now prove part (ii). Using that d � na na g, Proposition 3.20(i) gives
that

dimðybnþ1�r;nÞ? ¼ codim ybnþ1�r;n ¼ maxfd � nþ 1� r; 0g;ð7:6Þ

which, together with Proposition 3.21(i), implies that tAJ
r
nðCdÞ is trivial unless

1a ra d � n. Therefore, from now until the end of the proof, we fix an index r
satisfying the above inequalities.

Consider the irreducible n-dimensional tautological subvarieties f1H
0 ; . . . ;

1H
d�ng of Cd constructed in Corollary 7.2. Applying Lemma 5.4 and using (7.6),

we get that f½10�H ; . . . ; ½1d�n�Hg are linearly independent in RnðCdÞ and that, for
any 1a ia d � n,

ðWH
i Þ? ¼ yb2n�dþi;n:

Combining this with Proposition 3.21(i), we get that

tAJ
r

nðCdÞ ¼ WH
d�nþ1�rB

tPse¤nðCdÞ:

Since ½1i�H are Q-e¤ective classes, we get the following inclusions of cones

coneð½10�H ; . . . ; ½1d�n�r�HÞ � WH
d�nþ1�rB

tPse¤nðCdÞ � WH
d�nþ1�r:ð7:7Þ

Since f½10�H ; . . . ; ½1d�n�r�Hg is a basis of WH
d�nþ1�r, we infer from the inclusions

(7.7) that WH
d�nþ1�rB

tPse¤nðCdÞ is a full dimensional cone in WH
d�nþ1�r, and

hence it has dimension d � nþ 1� r ¼ dimðybnþ1�r;nÞ?. We can therefore apply
Proposition 3.21(ii) and get that tAJ

r
nðCdÞ is a perfect face of dimension d � nþ

1� r whose dual face is equal to ybnþ1�r;nB tNef
nðCdÞ. r
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