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ABSTRACT. — In this paper, which is a sequel of [BKLV17], we study the convex-geometric prop-
erties of the cone of pseudoeffective n-cycles in the symmetric product C,; of a smooth curve C. We
introduce and study the Abel-Jacobi faces, related to the contractibility properties of the Abel-
Jacobi morphism and to classical Brill-Noether varieties. We investigate when Abel-Jacobi faces
are non-trivial, and we prove that for d sufficiently large (with respect to the genus of C) they form
a maximal chain of perfect faces of the tautological pseudoeffective cone (which coincides with the
pseudoeffective cone if C is a very general curve).
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1. INTRODUCTION

The study of the cone of ample or nef divisors, up to numerical equivalence, on
a projective variety X is a basic and classical tool in algebraic geometry, giving
a lot of geometrical information about X. The dual cones in the space of 1-cycles
have also been deeply studied, giving rise, for example, to very important results
in birational geometry and the minimal model program.

On the other hand, it is only in recent years that the study of higher dimen-
sional (or codimensional) cycles has highlighted its role (see for example [Pet09,
Voil0, DELV11, CC15, DJV13, Fulll, FL16, FL17a, FL17b, Ott12, Ott16] to
mention a few).

One of the most striking features of higher codimensional cycles is that they
behave in an unpredictable way, as there are examples of nef cycles with nega-
tive intersection [DELV11, Cor. 4.6] or of nef cycles that are not pseudoeffective
[DELV11, Cor. 2.2, Prop. 4.4], [Ottl5, Thm. 0.1]. While one expects these phe-
nomena not to be so special, there are so far only three examples of such varieties
(namely the n-fold self product of an elliptic curve with complex multiplication,
the self product of a principally polarized abelian surface and the variety of lines
of a very general cubic fourfold) and it becomes therefore more interesting to in-
vestigate nef and pseudoeffective cycles for classical families of varieties, such as
symmetric products of curves, as suggested in [DELV11, §6].

Let now C be a smooth projective irreducible curve of genus g and consider,
for every d > 2, its d-fold symmetric product C,;, which is the smooth projec-
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tive variety parameterizing unordered d-tuples of points of C. This is a very inter-
esting smooth d-dimensional variety whose geometry has been deeply involved
in the classical study of Brill-Noether theory [ACGH] but also, in more recent
years, in the investigation of cones of effective and nef divisors on it (an almost
thorough recap of these results can be found in the introduction of [BKLV17]).

In this paper, which is a natural sequel of [BKLV17], we study cones of
pseudoeffective and nef cycles on C,. To state our results we need to set up some
notation and recall some well-known facts.

For 0 <n <d, let N,,(C;) be the vector space of real n-cycles up to numeri-
cal equivalence. Inside this finite dimensional real vector space one can define sev-
eral interesting cones, namely Eff,,(C,), the cone of effective n-cycles, its closure
Pseff,,(Cy), the cone of pseudoeffective n-cycles and Nef,(C,), the cone of nef
n-cycles, that is cycles o € N,(Cy) such that - f > 0 for every f§ € Eff;_,(Cy).

One crucial feature of Cy, that will play a very important role in this paper, is
that it comes naturally with a well-known map, the Abel-Jacobi morphism

oq : Cg — Pic?(C)

given by sending an effective divisor D € Cy to its associated line bundle O¢(D) €
Pic?(C).
On Cy, there are two important divisor classes, up to numerical equivalence:

x=[{DeCy:D=py+D' D' €Cys}] and 0=0};([0]),

where pg is a fixed point of C and O is any theta divisor on Picd(C). It is well-
known that x is ample while @ is clearly nef being the pull-back of an ample class.

These two classes generate a graded subring R*(Cy) =@, R™(Cq) of
N*(Cy), which is called the tautological ring of cycles, whose structure is well-
understood (and independent of the given curve C), and which coincides with the
full ring N*(Cy) if C is a very general curve, see [BKLV17, Fact 2.6]. We will
also consider the natural cones 'Eff,,(C,) generated by rautological effective cycles
of dimension n, its closure 'Pseff,(Cy,), called the cone of tautological pseudoeffec-
tive cycles of dimension n, and 'Nef,(Cy), the cone of tautological nef cycles of
dimension n.

The main result of [BKLV17], generalizing the case of divisors and curves,
was to prove that the cone generated by n-dimensional diagonals is a rational
polyhedral perfect face of Pseff,(C,;) and that Pseff,(C,) is locally finitely gener-
ated at every non-zero element of that cone [BKLV17, Thm. B]. On one side this
gives a very nice face of Pseff,(Cy), but, on the other side, it opens the way to
look for other faces.

In the case of divisors and curves, the situation is well-understood if d is large:

e the other extremal ray of ‘Pseff ! (Cy) is generated by 0 if and only if d > g + 1.
Indeed, 6 is always pseudoeffective (being nef) and it is not in the interior of the
pseudoefiective cone, i.e. it is not big, if and only if &, is not birational into its
image, which happens exactly when d > g + 1.
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e The other extremal ray of 'Pseff(Cy) is generated by the ray dual to Rsq - 60
(or equivalently, 6 generates an extremal ray of ‘Nef' (Cd)) if and only if
d > gon(C) where gon(C) is the gonality of C. Indeed, € is always nef and it
is not in the interior of the nef cone, i.e. it is not ample, if and only if &, is not
a finite morphism, which happens exactly when d > gon(C).

The aim of this paper is to generalize the extremality properties of 6 for
‘Pseff’ (Cd) and 'Nef' (Cy) to the case of cycles of intermediate codimension
when d is large.

As a matter of fact the other faces that we will find will all come from the con-
tractibility properties of the Abel-Jacobi morphism, as we now explain.

Given any morphism 7 : X — Y between irreducible projective varieties, in
[FL16, §4.2] was introduced the contractibility index contr,(«) of a class « €
Pseffy (X)), for 0 < k < dim X, as the largest integer 0 < ¢ < k + 1 such that
o - " (h*17¢) = 0, where h is an ample class on Y. We point out that the con-
tractibility index does not depend on i and max{0,k — dimz(X)} < contr,(x)
< k for any non-zero a. Moreover, if o = [Z] for some irreducible subvariety
Z C X of dimension k, then contr,(«) = dim Z — dim n(Z) (cf. §3.1). This notion
gives immediately rise, for every r > 0, to the contractibility faces of Pseffy (X):

FZ'(n) = cone({x € Pseff(X) : contry () > r}),

which are indeed faces of the cone Pseff; (X)) (see Proposition 3.3).

The main question about contractibility faces is to identify for which r such
that 1 + max{0,k —dimz(X)} <r <k we have that F;="(n) is non-trivial and,
in that case, to compute its dimension and convex-geometrical properties.

With this in mind, for any 1+ max{0,n — g} <r <n, we define the Abel-
Jacobi faces

AT (Cy) = F7 () C Pseff,(Cy).

From the general properties of the contractibility faces and the classical prop-
erties of the Brill-Noether varieties (which are reviewed in §3.2) C}; :={D e Cy :
dim|D| > r}, we prove in Proposition 3.12 that:

e AJ)(Cy) is non-trivial if n < dim CJ;
AJdlmC'(Cd) is the conic hull of the irreducible components of C); of maxi-
mal dimension.

Intersecting with the tautological ring, we can also define the fautological Abel—
Jacobi faces

‘AT (Cy) := AT (Cq) 0 Ry(Cy) C ‘Pseff,,(Cy).

The following theorem (which combines Corollary 3.15, Theorem 3.17 and
Proposition 3.23) specifies some numerical ranges where we can find non-trivial
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Abel-Jacobi faces, Abel-Jacobi facets and Abel-Jacobi extremal rays com-
ing from well-known facts of Brill-Noether theory (on Brill-Noether general
curves).

THEOREM A. Let C be a curve of genus g.

W) Ifl<n<d—1andd> %
faces of Pseff,(Cy). The same is true for ‘Pseff,(Cy) if either d > g+ 1 or
P tg+l
dition in Fact 3.8(v).

(2) We have tautological Abel Jacobi facets in the following ranges:

(i) If g < n then ‘AJ"Jr “9(Cy) is a facet of ‘Pseff,(Cy).
(ii) If n < g then A .(Ca) is a facet of 'Pseff,(Cy) under one of the fol-
lowing assumptions:
(@) C admits a g, i.e. a linear series of dimension n and degree d (which
is always satisfied if g < d — n);
(b)) n=g-1;
(c) g <d and C is very general over an uncountable base field k.

(3) Assume that C is Brill-Noether general. Let 1 <d <2g—2 and let r be an
integer such that max{l,d —g+ 1} <r and p:=p(g,r,d) =g — (r+1)(g —
d+r)>0. Then

then there exist non-trivial Abel-Jacobi

and C is a Brill-Noether general curve, i.e. it satisfies the con-

AJ]

r+p

(Ca) = 'AJ,.,(Ca) = cone([Cg)).

In particular, [C}| generates an extremal ray (called the AJ(=Abel-Jacobi)
ray) of Pseff,,,(C,) and of 'Pseff, . ,(Cy).

See the comments just after Corollary 3.15 and Theorem 3.17 for the numeri-
cal ranges in the theorem.

Note that, for a Brill-Noether general curve C, if r = 1 and g+2 <d < g then
[C}] generates an extremal ray of ‘Pseff2; 4 1(Cy), and this achleves the lower
bound on d in Theorem A(1). On the other hand, we expect that the lower bound
d> % is sharp for Brill-Noether general curves (see the discussion after
Corollary 3.15), while for special curves the lower bound is far from being sharp
(see Theorem C for hyperelliptic curves).

The tautological Abel-Jacobi faces are related to an exhaustive decreasing
multiplicative filtration of the tautological ring R*(C;), which we call the
O-filtration of R*(Cy) (see §3.5) and which is defined by setting 0=""" to be
the smallest linear subspace of R”(Cy) = Ry—m(Cy) containing the monomials
{0/ xm=1 0" xm=i=1 0™}, forany 0 <m < d and any 0 < i < g+ | (with the
obvious convention that §=""" = {0} if i > m). In Proposition 3.20, we compute
the dimension of """ and we investigate its orthogonal subspace (0=t =
{o € Ry(Cy) : a- p =0 for any f € ="} C R,,(Cy). The link between tautolog-
ical Abel-Jacobi faces and the f-filtration is explained in Proposition 3.21, where
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we prove that

AT (Cy) = (07" A WPseft, (Cy) € (0F"T M)

and that if 'AJ’(Cy) is a full-dimensional cone in the linear subspace (0=""'~"")*

then 'AJ’(C,) is a perfect face of 'Pseff,(C,;) whose (perfect) dual face is
g="1""" ~ !Nef” (Cy) (faces of this kind are called nef O-faces).

Using the relation with the O-filtration, we are able to show that in many
ranges of d and n the non-trivial tautological Abel-Jacobi faces of 'Pseff,(Cy)
form a maximal chain of perfect non-trivial faces, i.e. a chain of perfect non-trivial
faces of 'Pseff,(C,) whose dimensions start from one and increase by one at each
step until getting to the dimension of 'Pseff,(C,;) minus one. In the following
theorem (which combines Theorems 4.2, 5.6, 6.2), we summarize the cases where
this happens for an arbitrary curve.

THEOREM B. Let d > 1 and n be integers such that 0 <n < d.

(1) Assume that g < max{n,d — n} (which is always satisfied if d > 2g — 2). Then
the Abel—Jacobi face 'AJ'(Cy) is equal to 09" ~ Pseff, (C,) (and we
call it pseff -face) and it is non-trivial if and only if 1 + max{0,n — g} <r <
min{n,d — g}, in which case it is a perfect face of dimension min{n,d — g} —
r+ 1

Hence, we get the following dual maximal chains of perfect non-trivial faces
of ‘Pseff,(C,) and of ‘Nef"(C,):

=mintg-d=n}.d=n  tpgeff (C,) = cone(9Mint9 4=} ymax{d—n—g.0})

C ... c g9ti-min{gnhdon Pseff,,(C,)
C "Pseff,,(Cy),
g=mint: b1 INef"(Cy) = cone (™91} ymax{n—g.0})
C.-C 029+1—min{y,d—n},n A tNefn(Cd)
C tNefn(Cd).

(2) Assume that C} # O (which is always satisfied if d > %—I—n). Then

'AJ (Cy) is a non-trivial face if and only if 1+ max{0,n—g} <r <n, in
which case 'AlJ, (Cy) is a perfect face of dimension n+ 1 —r (which we call
subordinate face).

Hence, we get the following dual maximal chains of perfect non-trivial faces

of ‘Pseff,(C;) and of ‘Nef"(C,):

'AT"(Cy) = cone([T4(D)]) C --- C AT} (C)) ¢ Pseff, (Cy),
g=min{m g}  tNef”(Cy) = cone(O™9:n} ymax{n—g.0})
C .- C 07" A Nef"(Cy) C Nef”(Cy),

where 1is any g/ on C and T'y(1) is the subordinate variety

I'y():={De Cy:D<E forsomeE el} C C,.
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(3) Assume that g < d < 2g — 2. Then tAJ;_1 (Ca) is a non-trivial face if and only
if 1 <r<d—g+1, in which case tAJ;_l(Cd) is a perfect face of dimension
d — g + 2 — r (which we call BN(=Brill-Noether) face in dimension g — 1).
Hence, we get the following dual maximal chains of perfect non-trivial faces
of 'Pseff, 1 (Cy) and of "Nef?™ ' (C,):

AJIT(Cy) = cone([CYT]) € - C ATL (Cy) © WPseffy 1 (Cy),
0=971971 A t!Nef ! (Cy) = cone(091) C -+~ € 2717491~ tNef? ! (Cy)
C 'Nef? ' (Cy).
See Remark 4.3 for the hypothesis g < max{n,d — n} in the theorem.

There are some overlaps between the different cases of the above Theorem B,
see Remarks 5.7 and 6.3. In Figure 1 we present the existence range of the various

&
N+
iR

1 g—1lgg+1n

Figure 1. The picture describes the existence of tautological Abel-Jacobi faces when C is
a Brill-Noether general curve. We set m = d — n. The colored area is defined by the in-
equality d > @ in Theorem A(1), so it describes the locus where we can assure the
existence of non-trivial Abel-Jacobi faces. In particular, the dark gray area is given by
Theorem B(2) and represents the locus where subordinate faces do exist. On the other
hand, AJ rays exist on the integral points of the thick lines — each having equation
(r4 1)m +rn = r*> 4 rg for some 1 <r < g — by Theorem A(3), and the dots on the line
n =g — 1 indicate where BN faces in dimension g — 1 exist, according to Theorem B(3).
The area covered by the grid is described by the condition g < max{n,m} in Theorem
B(1) which governs the existence of O-faces. Finally, Theorem A(2) guarantees the exis-
tence of Abel-Jacobi facets in the union of the area covered by the grid with the dark
gray area and the line n = g — 1. If in addiction C is assumed to be very general, then
Abel-Jacobi facets do exist also in the area on the right and above the dashed line, which
is the locus satisfying the condition n + m > g¢.
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tautological Abel-Jacobi faces in Theorems A and B for Brill-Noether general
curves.

Note that we recover from Theorem B the previously mentioned results of the
extremahty of 0 in 'Pseff' (C,) and ‘Nef' (Ca): part (1) gives that 0 is extremal
1n Pseff' (Cy) if d > g+ 1 and part (2) gives that 0 is extremal in ‘Nef'(C,) if

#0, ie. if d > gon(C) Moreover, both results are sharp. Furthermore, part
( ) of Theorem B gives that [Cgl] =0 — x e N'(C,) generates an extremal ray of
Pseff'(C,). This extends the result of the second author (see [Kou93, Rmk. 1
after Thm. 5]) from very general complex curves to arbitrary curves over an alge-
braically closed field.

According to the discussion at the end of §3.5, there is one more case (apart
from the three cases of Theorem B) where the non-trivial tautological Abel-
Jacobi faces form a maximal chain of non-trivial perfect faces, namely the case
of a hyperelliptic curve where we found such maximal chains in every pseudo-
effective cone! This is made precise in the following theorem (which summarizes
the more precise Theorem 7.3) where we restrict to the case n,d —n < ¢ since in
the remaining case g < max{n,d — n} everything follows from part (1) of Theo-
rem B.

THEOREM C. Let C be a hyperelliptic curve of genus g > 2 and fix integers d > 1
and n such that 0 < n,d — n < g (which implies that d < 2g — 2).

(1) Assume that d > 2n.
Then, for any 1 <r <n, ‘Al (C,) is a non-trivial face, in which case
AT (Cy) is a perfect face of dimension n+ 1 —r. Hence, we get the follow-
ing dual maximal chains of perfect non-trivial faces of ‘Pseff,(Cy) and of
tNef (Cd)

AT (Cy) = cone([T4(1)]) C --- C AT (Cy) C Pseff, (Cy),
0="" A Nef"(Cy) = cone(0") C --- € 0"~ 'Nef"(C;) € ‘Nef”(Cy),

where T 4(1) is the subordinate variety with respect to any linear system 1 of
degree d and dimension n.
(ii) Assume that d < 2n.

Then ‘AJ, (Cy) is a non-trivial face if and only if 1 <r <d — n, in which
case ‘A (Cy) is a perfect face of dimension d —n+1—r (which we call
hyperelliptic BN(=Brill-Noether) face). Hence, we get the following dual
maximal chains of perfect non-trivial faces of ‘Pseff,(Cy) and of 'Nef" (C,):

ATT(Cy) = cone([CIM]) C -+ C 'ATN(Cy) C 'Pseff, (Cy),
0="" A 'Nef"(C,) = cone(0") C --- C 0= 4T1" ~ !Nef"(Cy) € 'Nef"(Cy).
Note that the tautological Abel-Jacobi faces of part (i) are exactly the sub-

ordinate faces of part (2) of Theorem B, using that for a hyperelliptic curve C
we have that C/} # () precisely when d > 2n.
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From Theorem C we recover the prev1ous1y known results for 'Pseff’ (Cd)
and ‘Nef' (Cy) for C hyperelliptic: part (i) gives that 6 is extremal in ‘Nef' (Ca)
for any d > 2 = gon(C), part (i) gives that C¢~!, whose class i is positive mul-
tiple of @ — (d — g + 1)x by Proposition 7.1, is extremal in Pseff’ (Cy), which was
proved in [Muslla, Prop. HJ.

On the other hand we should point out that there are some explicit extremal
rays of Pseff(C,/,) in [Pac03, Thm. 4.1] and of Pseff!'(Cy),d =g—1,9—2 in
[Muslla, Thm. A(ii)] and in [Musl1b, Thm. I] which are not Abel-Jacobi faces.

The present work leaves open some natural questions.

QUESTION. Assume that we are in one of the cases of Theorem B.

(1) What is the structure of the Abel-Jacobi faces of dimension greater than one?
Are they rational polyhedral cones and, if yes, what are their extremal rays?

(2) Is 'Pseff,(C,) the smallest cone containing the diagonal cone and the Abel—
Jacobi faces?

2. PRELIMINARIES
2.1. Notations and conventions

Throughout, we work over an algebraically closed field of arbitrary charac-
teristic.
For any natural number # € N and any real number r € R, we set

(r):{r(rl)nw if n>0,
n 1 if n=0.

We recall from the Appendix of [BKLV17] a definition and a remark, that will
be crucial in this paper.

DErFINITION 2.1. Let V' be a finite dimensional real vector space. A (convex)
cone K inside V is a non-empty subset K of V' such that if x,y € K and
a,f € R”? then ax + fy € K. A face of K is a subcone F C K such that when-
ever x, y € K are such that x + y € F then x, y € F. A face of codimension one
is called a facet. A face F of K is perfect if either F = K or it has codimension
¢ > 1in V and there exist linear hyperplanes H; = {/; = 0}, _,_, such that

CH={ .
(2.1) {K—H, {li=0} foranyl<i<c,

CFy =N Hi.

A cone K C V is salient if it does not contain lines through the origin, and it is
Jullif <K) =V

Notice that there are faces which are not perfect, as e.g. any ray on the bound-
ary of a circular cone in the 3-dimensional real space (cf. also [BKLV17, Fig. 2]).
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REMARK 2.2. Let K C V be a salient full closed cone and let K¥ :={/ € V|
[(x) > 0Vx e K} be its dual cone. If L C V' is a subspace such that KN L is a
full cone in L and K nL* is a full cone in L+, then F := K n L is a perfect
face of K with dual face being perfect and equal to KV n L+,

To see this notice that, by hypothesis, we can choose a basis {/, ..., [} of L+
such that /; e K¥ for 1 <i<s. Then LC {ve V:[(v)=0,forall 1 <i<s},
hence they are equal as they have the same dimension. Now if x, y € K are such
that x + y € F, then, for every 1 <i<s we have that 0 = /;(x+ y) = li(x) +

li(y). But ; e KV, hencel( ) =1(y) =0, and then x, yelL Therefore x, y € F
and F is a face. Moreover clearly K V'~ L' is contained in the dual face F =
{l'e V¥ :lp =0}, hence dim F > dim(KV N L*) = dim(L*) = 5. Now dim F =
dim L and since for any face one has that

(2.2) dim F 4 dim F < dim K = dim V/
we get that
dim ¥V = dim L 4+ s < dim F 4+ dim F < dim V'

whence we have equality in (2.2) and F = K¥ n L*. Therefore both F and F are
perfect.

2.2. Symmetric product

Let C be a smooth projective irreducible curve of genus g > 1. For any integer
d > 1, we denote by C? the d-fold ordinary product of C and by C, the d-fold
symmetric product of C.

The symmetric product Cy is related to the Jacobian of C by the Abel-Jacobi
morphism

og : Cy — Pic?(C)
D — O¢(D).

The fiber of o over L e Pic?(C) is the complete linear system |L|.

Fixing a base point py € C, there is an inclusion i = i,, : C4—1 — Cy, obtained
by sending D into D + py. We will denote by X, the image of 7,,. The inclusion
ip, 1s compatible with the Abel— Jacob1 morph1sms in the sense that oy o i, =
1y, © -1, Where 2, : Pic?'(C) — Pic?(C) is the translation by py which sends
L into L(py).

2.3. Tautological ring

For any 0 <n,m < d, we will denote by N,(C;) (resp. N"(C,)) the R-vector
space of n-dimensional (resp. m-codimensional) cycles on C; modulo numer-
ical equlvalence The intersection product 1nduces a perfect duahty N™(Cy) X
Ny_m(Cyq) — R. The vector space N*(Cy) = (—Dm ON’” C;) is a graded R-
algebra with respect to the intersection product
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The tautological ring R*(Cy) is the graded R-subalgebra of N*(C;) generated
by the codimension one classes 0 = «;([®]) (where ® is any theta divisor on
J(C)) and x = [X),,] for some (equivalently any) base point p,. Observe that 0 is
a semiample class (because it is the pull-back of an ample line bundle via a regu-
lar morphism) and it is ample if and only if o, is a finite morphism, that is if and
only if d < gon(C). On the other hand, since we can move the base point p
arbitrarily, the class x is ample by the Nakai-Moisezhon criterion (see [ACGH,
Prop. VII.2.2]).

We recall from [BKLV17] the following properties of the tautological ring
R*(C,) and vector spaces R"(Cy).

PRrOPOSITION 2.3.

(i) We have that 0°" = 0 and, if se N : s < d,

g! .
Hde—3:s|<Q>: W lf‘OSSSg,
$ 0 if s>g.

(i) For any 0 <m <d, set r(m) := min{m,d —m,g}. Then R"(Cy;) has dimen-
sion r(m) + 1 and it is freely generated by any subset of r(m) + 1 monomials
belonging to {x™, x™10, ... xm—min{m.g}gmin{mg}y

In particular, the monomials {x",... ,xm‘r(’”)ﬁ"(”’)} form a basis of
R™(Cy), which is called the standard basis.
(iii) The intersection product R"(C;) x R4 (C;) — R is non-degenerate.

PrOOF. See [BKLV17, Lemma 2.2 and Prop. 2.4]. O
2.4. Cones of cycles

Let us introduce the cones of cycles we will be working with. Inside the real vec-
tor space N"(Cy), 0 <m < d, consider the (convex) cone Eff"”(C,) generated
by effective codimension m cycles (called the cone of effective cycles) and its
closure Pseft”’(Cy) (called the cone of pseudoeffective cycles). These cones are sa-
lient by [BFJ09, Prop. 1.3], [FL17a, Thm. 1.4(i)]. The intersection ‘Eff""(C,) :=
Eff""(Cys) n R™(Cy) is called the tautological effective cone and its closure
Pseff™(Cy) = Eff"(Cy) is called the tautological pseudoeffective cone. Note
that there is an inclusion ‘Pseff”(C,) C Pseff”'(C;) n R™(C,), which a priori
could be strict.

The dual of Pseff™(C,) (respectively of 'Pseff’ ™ (C,)) is the nef cone
Nef™”(Cy) € N™(C,) (resp. the tautological nef cone ‘Nef™(C,) C R™(Cy)).
Note that there is an inclusion Nef”(C,;) n R™(C,) € ‘Nef™(Cy), which a priori
could be strict.

For 0 <n<d we set Eff,(C;) := Eff"(C;) and similarly for the other
cones.

Note that, if C is a very general curve, then R*(C,;) = N*(Cy) forevery d > 1
by [BKLV17, Fact 2.6], [ACGH, VIIL5], and hence ‘Eff”(C,) = Eff”(C,),
Pseff”(Cy) = Pseff”(C,) and Nef”'(C,) = ‘Nef" (Cy).
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A case where we know a complete description of the (tautological) effective,
pseudoeflective and nef cone of cycles is the case of curves of genus one’.

EXAMPLE 2.4 (Genus 1 — [BKLV17, Example 2.9]). If the curve C has genus 1,
then for any 1 <m < d — 1 we have that N"'(C;) = R"(Cy) and

Pseft”(C,) = Nef™(Cy) = cone(x’”’lé’, x"— %x’"*lﬁ) C N™"(Cy) = R*.
This follows either by [Fulll] or by [BKLV17, Theorem B] and Theorem B(1).

3. ABEL—JACOBI FACES

The aim of this section is to introduce some faces of the (tautological or not)
pseudoeffective cones of C,; obtained as contractibility faces of the Abel-Jacobi
morphism «y : C; — Pic?(C).

3.1. Contractibility faces

In this subsection, we will introduce the contractibility faces associated to any
morphism 7: X — Y between irreducible projective varieties. The definition
of the contractibility faces is based on the contractibility index introduced in
[FL16, §4.2].

DEFINITION 3.1. Let 7: X — Y be a morphism between irreducible projective
varieties and fix the class # € N'(Y) of an ample Cartier divisor on Y. Given
an element a € Pseff; (X) for some 0 < k < dim X, the contractibility index of o,
denoted by contr,(x), is equal to the largest non-negative integer ¢ < k + 1 such
that o - * (h*+17¢) = 0.

Since o - 7* (h**1) = 0 for dimension reasons, the contractibility index is well-
defined and it is easy to see that it does not depend on /4. The following properties
are immediate:

e max{0,k —dimz(X)} < contr,(a) < k+ 1 and equality holds in the last in-
equality if and only if & = 0;

e contry(a) > 0 < . (o) =0;

e If o=[Z] for an irreducible subvariety Z C X of dimension k, then
contr,(Z) := contr, (o) = dim Z — dimn(Z).

DEFINITION 3.2. Let 7: X — Y be a morphism between irreducible projective
varieties and let k, r be integers such that 0 < k& < dim X, r > 0. Set

FZ"(n) = cone({a € Pseffy(X) : contry (o) > r}).

!Note that if g =0, i.e. C =P, then C; =~ P? and all the cones in question become one-
dimensional, hence trivial.
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We set ¢,(r) = —1 if there is no irreducible subvariety Z C X with contr,(Z) > r;
otherwise we define

ea(r) = max{ 0 <k <dimx ‘ there exists an irreducible subvariety Z C X }

with dim Z = k and contr,(Z) > r

Note that FZ'(n) =0 if r>k+1, FZ*"'(n) = {0}, F;’ (n) ={0} if and
only if r>1+dimX —dimz(X) and FZ"(n) = Pseffy(X) if and only if r <
max{0,k — dimz(X)}. Moreover, if ¢,(r) > 0, then r < ¢,;(r) < dim X.

The following criterion of extremality follows from [FL16, Thm. 4.15] and it
is an improvement of [CC15, Prop. 2.1, 2.2 and Rmk. 2.7].

PrROPOSITION 3.3. Let n: X — Y be a morphism between projective irreducible
varieties and fix k, r integers such that 1+ max{0,k —dimz(X)} <r<k <
dim X. Then

(i) The cone FZ'(n) is a face of Pseffy(X). In particular, the cone FZ'(m) N

Effi(X) is a face of Eff(X). Moreover FZ'(r) is non-trivial for r < k < c,(r).

(i) Suppose that r < k < c,(r). The number of irreducible subvarieties of X of

dimension k and contractibility index at least r is finite if and only if k = ¢, (r).

In this case, if we denote by Z,,...,Z, the irreducible subvarieties of X of
dimension c,(r) and contractibility index at least r, we have that

FZ () = cone([Z1],...,[Z)]) = FZ,(n) N Eff(X).
Because of (i), we will call F,="(n) the r-th contractibility face of Pseff(X).

PROOF. Note that for any o € Pseffy(X), we have « € FZ"(n) if and only if
o (h*1=r) = 0. Let B,, € Pseffy(X) be such that B, + B, € FZ'(n). Then
By -t (W) 4 By - (h517) = 0 and B, - n¥(h*17") e Pseff,_;(X) (because
n*(h) is nef, hence limit of ample classes) for i = 1,2, so that 8, - z*(h*17") =
By - ¥ (h*+17") = 0 since Pseff, |(X) is salient by [BFJ09, Prop. 1.3], [FL17a,
Thm. 1.4(i)]. Then f3,,f, € FZ'(n). This proves the first assertion in (i).

Assume now that r < k < ¢,(r) and let Z C X be an irreducible subvariety
such that dim Z = k, contr,(Z) > r. We claim that there are infinitely many irre-
ducible subvarieties W C X with dim W =k — 1 and contr, (W) > r. It follows
by this claim that F,*"(n) is non-trivial for r <k < ¢,(r). To see the claim we
consider two cases. If 7(Z) is not a point, then pick a generic codimension one
subvariety V' C n(Z) such that V intersects the open subset of 7(Z) where fibers
of 7z have dimension contr,(Z). The inverse image (7| 2) "' (V) will have an irre-
ducible component W that dominates V" and therefore with dim W =k — 1 and
contr, (W) = contr,(Z) > r. If n(Z) is a point, then pick any codimension one
subvariety W C Z. Then dim W =k — | and contr, (W) =dim W =k — 1 >r.
In either case, there are infinitely many such subvarieties W and the claim is
proved.

Consider now the first assertion of part (ii). The only if part follows imme-
diately by the claim starting with an irreducible subvariety Z C X of dimension
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¢z(r) and contractibility index at least r (such a Z exists by the definition of ¢,(r)).
The if part is proved in [FL16, Thm. 4.15(1)].

For the second assertion of (ii): the first equality follows from [FL16, Thm.
4.15(2)] and the second equality follows directly from the first one. O

REMARK 3.4. Let 1 <r <k <dimX. It is natural to wonder if the following
statements hold true:

(1) (Strong’(n)) FZ"(n) = FZ"(n) N Eff (X).
(2) (Weak'(n)) <FZ"(m)> = (F&'(m) N Effi (X))

For r =1, the above statements reduce to, respectively, the strong and weak
conjecture in [FL16, Conj. 1.1]. If Weak’(zn) holds true then FZ"(n) = {0} for
any k > c¢,(r). If we also assume that k > r > dim X’ — dimz(X) + 1 it is easy to
see, using [FL16, Thm. 4.13], that the last expectation holds. Moreover, since
FZ'(m) C FZ"!(n) we expect that FZ'(n) = {0} when k > ¢,(1).

3.2. Brill-Noether varieties

In order to apply the previous criterion to the Abel-Jacobi map o, : Cy; —
Pic"(C), we need to know the subvarieties of C; that have contractibility index
at least r with respect to «y. As we will see in Claim 3.13, these subvarieties turn
out to be contained in the Brill-Noether variety C; C Cy which is defined (set
theoretically) as:

C):={D e C;:dim|D| > r}.

Note that C} = o, (W](C)) where W/(C) is the Brill-Noether variety in
Pic’(C) which is defined (set theoretically) as

Wi(C) = {L e Pic’(C) : h°(C,L) = r+1}.

The Brill-Noether varieties C; and W;(C) are in a natural way determinantal
varieties (see [ACGH, Chap. IV]). From the Riemann—Roch theorem, we have
the following trivial cases for W (C) and C}:

e If r < max{—1,d — g} then W](C) = Pic?(C), and hence C} = C,.

elfr=0and d <g—1 then oz : C) = Cy— W)(C) is a resolution of singu-
larities.

o [fd >2g — 1 then

C; ifr<d-—g,
0 ifr>d-—yg.

Pic!(C) ifr<d—y,

Wi (C) = and C) =
a(C) {(Z) ifr>d-—g, d {

The non-emptiness of CJ is equivalent to the existence of a linear system of
degree d and dimension r on C, and we define an invariant of C controlling the
existence of such linear systems.
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DEerFINITION 3.5. For any integer r > 1, the r-th gonality index of C, denoted by
gon,(C), is the smallest integer d such that C admits a g;.

Clearly, d > gon,(C) if and only if the curve C admits a g;. Observe that if
r =1 then gon,(C) is the (usual) gonality gon(C) of C. The possible values that
the r-th gonality index can achieve are described in the following

LEMMA 3.6. The r-th gonality index of C satisfies the following

g+r ifrz=g,
1 =
6. eon,(C)= {5, TrE
32 2r < gon,(C) < y(r) := "9 +r ifl<r<g-2,
A +1
B

where the first inequality is achieved if and only if C is hyperelliptic and the second
inequality is achieved for the general curve C.

ProoOF. From Clifford’s inequality and the Riemann—Roch theorem, it follows
easily that:

® any gs_l on C is such that d > 2g — 2 with equality if and only if the ggg__lz is
the complete canonical system |Kc|;
e if r > g then any g/, is such that d > r 4 g > 2g.

These two facts imply the first part of the statement.

For the second part of the statement: the lower bound is provided by
Clifford’s theorem and we have equality if and only if the curve is hyperelliptic;
the upper bound is provided by Brill-Noether theory and equality holds for the
general curve by [ACGH, Chap. V, Thm. 1.5] (the proof of Griffiths and Harris
works over any algebraically closed field, see [Oss14]). O

REMARK 3.7. It follows easily from the previous lemma that if d > gon,,(C)
then d —n > min{n, g}, or equivalently that r(n) := min{n,d — n, g} = min{n, g}.

The properties of the Brill-Noether varieties (in the non-trivial cases) are col-
lected in the following fact that summarizes the main results of the classical Brill—
Noether theory (see [ACGH, Chap. IV and VII]).

Fact 3.8. Fix integers r and d such that max{l,d —g+1} <rand 1 <d <
2g — 2.

(i) The open subset C)\Ct' C C is dense. Therefore, the morphism (O‘d)\cg :
C, — W] is generically a P"-fibration and each irreducible component of C},
has contractibility index exactly r.

(ii) C} is non-empty if and only if d > gon,(C). In particular, we have the fol-
lowing

(3.3) dZy(r):—{r;fl—‘+r:>C§7é(b:>d22r.
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(iil) If C} is non-empty, every irreducible component of C}; has dimension at least
r+plg,rd)=r+g—(r+1)(g—d+r)=d—r(g—d+r) and at most
r+(d—-2r)=d—r

(iv) Assume that either C) is empty or has pure dimension r + p(g,r,d). Then the
class of C} is equal to

r

[Cé]:C[r’::H(g d+r+z

g d+r+a 1 ocr r)—ao
'Z 1) ) 6qd+)

al(r —a)!

(v) Assume that C is a general curve of genus g.
® If p(g,r,d) <0 then C} is empty; i
e If p(g,r,d) =0 then C}, is a disjoint union of g![[;_, T dr i
Jective spaces of dimension r; (g —d+r+i)!
® If p(g,r,d) > 0 then C} is irreducible of dimension r + p(g,r,d).

A curve satisfying the conditions of (v) is called a Brill-Noether general curve.

PRrROOF. (i): the first assertion follows from the fact that there are no irreducible
components of C); contained in C[;“ by [ACGH, Chap. IV, Lemma 1.7] (the
proof works over any algebraically closed field). Using that the restriction of oy
to C)\C;™! is a P"-fibration, the remaining assertions follow.

(ii): C} is non-empty if and only if there exists a g, on C which is equivalent
to the condition d > gon,(C). The chain of implications (3.3) follows then from
Lemma 3.6.

Using (i), part (iii) follows from the fact that every irreducible component of
W/ (C) has dimension greater or equal to p(g,r,d) by [ACGH, Chap. IV, Lemma
3.3], [KL72, KL74] and dimension at most d — 2r by Martens’ theorem (see
[ACGH, Chap. IV, Thm. 5.1], [Mar67, Thm. 1])

For part (iv), see [ACGH, Chap. VII, §5] (the proof works over any algebrai-
cally closed field).

Part (v): we will distinguish three cases according to the sign of p(g,r,d). If
p(g,r,d) < 0 then W;(C) is empty by [ACGH, Chap. V, Thm. 1.5] (the proof
of Griffiths and Harris works over any algebraically closed field, see [Ossl4])
and hence also C} is empty. If p(g,r,d) =0 then W/(C) consists of finitely
many g/, (see [ACGH, Chap. V, Thm. 1.3 and 1.6] — again holding over any

i!
(g—d+r+i) by
Castelnuovo’s formula [ACGH, Chap. V, Formula (1.2)], [KL74]; hence the
result for C) follows. If p(g,r,d) > 0 then W;(C) is irreducible of dimension
p(g,r,d) by [ACGH, Chap. V, Thm. 1.4, Cor. of Thm. 1.6] and by [Gie82],
[FL81, Thm. 1.1 and Rmk. 1.7], from which we deduce that C} is irreducible of
dimension r + dim W, (C) = r + p(g, r,d) using (i). 0

algebraically closed field), whose number is equal to g!T[;_,

There are some Brill-Noether varieties that are pure of the expected dimen-
sion for any curve (and not only for the general curve), as described in the follow-
ing example.
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ExaMPLE 3.9. For any g < d < 2g — 2, the Brill-Noether variety Cj_gH is
irreducible of the expected dimension g — 12. Indeed, the variety de_gH(C) is
irreducible of dimension 2g — 2 — d since it is isomorphic, via the residuation
map L+— Kc® L', to the variety Wzog_z_d(C) = Im(ay-2-4). We conclude
that C;l*g” is irreducible of dimension d — g + 1 4+ dim defgﬂ(C) =g—1by
Fact 3.8(i).

Therefore, Fact 3.8(iv) implies that the class of C;H’H is equal to

ot d—g+1 ngd—gﬂ—a
—g o 1\

3.3. Abel-Jacobi faces

We can now study the contractibility faces F,>"(o7) associated to the Abel-Jacobi
morphism o, : C; — Pic?(C) and, since max{0,n — dimoz(Cy)} < contr,, () <

n for any non-zero cycle f € Pseff,(C;), we focus on the range 1 -+ max{0,
n—dimo,(Cy)} <r<n.

DEFINITION 3.10 (Abel-Jacobi faces). Let 0 <n < d. For any r such that 1 +
max{0,n — g} = 1 + max{0,n — dima,(Cy)} <r <n, let Al (Cy) := F>"(xq) C
Pseff,,(Cy) and call it the r-th Abel-Jacobi face in dimension n. Moreover, we
set 'AJ (Cy) := F 7" (aq) 0 ‘Pseff,(C;) C Pseff,(C,) and call it the r-th tautolog-
ical Abel-Jacobi face in dimension 7.

REMARK 3.11. Let 0 <n<d,1 +max{0,n—g} <r<n. If d <gon(C) then
6 is ample, whence AJ/(C,;) = 'AJ,(C,) = {0} by [FL17a, Cor. 3.15], [FLI16,
Prop. 3.7].

Applying Proposition 3.3 to our case, we get the following result that guaran-
tees that the Abel-Jacobi faces are non-trivial, under suitable assumptions.

PrOPOSITION 3.12. Let 1 <n<d—1andlet 1 + max{0,n — g} <r <n. Then

-1 if d < gon,(C) (or equivalently C}; = 0)

(3.5) €y (1) = {dim C) if d = gon,(C) (or equivalently C} # ().

Moreover AJ,(Cq) = {0} whenever 1+ max{0,d —g} <r <n and either d <
gon,(C) or d > gon,(C) and n > dim C}.

Assume now that d > gon,(C) (which then forces dim C; > r). Then the fol-
lowing hold:

(i) AJ,(Cy) is non-trivial if n < dim CJ,.
(i1) AJSimC{;<Cd> is equal to Al o(Cq) NEff,(Cy) and it is the conic hull of
the irreducible components of C}, dof maximal dimension.

2Indeed, these are the unique Brill-Noether varieties that are also subordinate varieties; more
specifically, Cj‘g“ =T 4(|Kc|), with the notation of (5.1).
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Furthermore, (i) holds for ‘Al (Cy) if C; has some tautological irreducible compo-
nent of maximal dimension and (ii) holds for ‘AJ) (C,) if all irreducible components
of C}; of maximal dimension are tautological.

PROOF We will apply Proposition 3.3 to the Abel-Jacobi map o, : C; —
Pic’(C).

Craw 3.13. Let Z C Cy be an irreducible subvariety of contractibility index at
least r. Then C}; # 0 and Z C CJ.

ProoF OF CLAIM 3.13. Being Z an irreducible subvariety, we have contr,,(Z) =
dimZ — dimay(Z). Then dimZ >dimoy(Z)+r and hence dima;!'(p) >
dim(a;'(p) " Z) > r for any p € ay(Z). For any D € Z, Abel’s theorem ensures
that o; ! (o4(D)) = |D|, so that dim|D| > r, i.e. D € C}; as claimed. O

Moreover we claim that each irreducible component of C) has contracti-
bility index at least r. In fact, if » > max{0,d — g} the claim follows by Fact
3.8(i) while if r <max{0,d — g} then C) = C; that has contractibility index
max{0,d — g} >r.

This proves (3.5) and, if C # 0, that the subvarieties of dimension ¢,,(r) and
contractibility index at least r are exactly the irreducible components of C); of
maximal dimension. Using these facts, the first part of the proposition follows
from Remark 3.4 and Proposition 3.3.

In order to prove the same properties for '‘AJ (C,), observe that the non-
triviality of ‘AJj;, C,(Cd) and the analogue of (ii) for ‘AJ},, ~(Cy), follow di-
rectly by our assumptlon On the other hand, the non- tr1v1a11tyl of ‘AT (Cd) for
n < dim C}; follows from the proof of Proposition 3.3 using that there is one
tautological component of C); of dimension equal to dim C). O

REMARK 3.14. According to Remark 3.4, we expect that, for any 1 + max{0,
n—g}t <r<n, AJ (C;) ={0} if either d < gon,(C) (which is equivalent to
C)=0) or d > gon,(C) and n > dim C}. In case r = 1, this would follow from
the validity of the weak conjecture 1.1 in [FL16] for the Abel-Jacobi morphism.
Indeed, we know that o, satisfies the above mentioned conjecture if d < gon;(C)
(in which case it holds trivially) and if d > ¢ and the (algebraically closed) base
field is uncountable, by [FL17b, Thm. 1.2].

As a corollary of the above proposition, we can determine some ranges of
d and n for which we can find non-trivial Abel-Jacobi faces in Pseff,(C;) or
tPseffn(Cd).

COROLLARY 3.15. Let 1 <n <d— 1 andlet C be a curve of genus g > 1.

(i) There exist non-trivial Abel-Jacobi faces of Pseff,(Cy) if d > %

(ii) There exist non-trivial Abel-Jacobi faces of ‘Pseff,,(Cy) if either d > g+ 1 or
d> % and C) has some tautological irreducible component of maximal di-
mension (Which holds true if C is a Brill-Noether general curve).
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We note that the lower bound d > ”*g“ is used to ensure that C} is non-
empty and n < dim C}, so it turns out to be sharp for Brill- Noether general
curves provided that the expectation of Remark 3.14 holds true. On the other
hand, for special curves, the lower bound is far from being sharp, see Theorem
7.3 for the case of hyperelliptic curves. Moreover, the assumption d > "“’H
automatically holds if either n > g — 1 ord —n > §.

ProOF. We will distinguish three cases.

e If g < n (which implies that g + 1 < d) then C} "' = C, by Riemann-Roch,
and hence Proposition 3.12(i) implies that AJ i "H(Cd) and ‘AT (Cy) are
non-trivial.

elf n<g<d-1 then C)=Cy by Riemann—Roch, and hence Proposition
3.12(i) implies that AJ!(C,) and UNE .(Cq) are non- tr1v1a1

e If d < g (which 1mp11es that n < g — 1) then Fact 3.8(iii) gives that dim C} >
2d —g—1if C}) #0. Hence, if n <2d — g — 1 then Proposition 3. 12() and
Fact 3.8(ii) imply that AJ! (Cd) is non-trivial and, furthermore, that ‘AJ! 2(Ca)
is non-trivial provided that C) has some tautological irreducible component of
maximal dimension. m]

REMARK 3.16. One may wonder if one could get more faces of the pseudoeffec-
tive cone of C,; by looking at contractibility faces of some other regular mor-
phism f : C; — Z to some projective variety. There is no loss of generality (using
the Stein factorization) in assuming that f is a regular fibration, i.e. f.(COc,) =
(7. Any such regular fibration is uniquely determined (up to isomorphism) by
f*(Amp(Z)) which is a face of the semiample cone of C;.

The intersection of the semiample cone with R'(C,) is a subcone of the
two dimensional cone 'Nef l(Ca;) which has two extremal rays: one is spanned
by 1, 4 = dgx — 0 which is the dual of the class of the small diagonal A, (see
[BKLV17, Cor. 3.15]) and the other one is generated by 6 provided that d >
gon(C) (see Theorem 5.6). The Abel-Jacobi morphism oy : Cy; — 04(Cy) C
Pic/(C) corresponds to the face cone(f) while the other face cone(s; ;) corre-
sponds to another fibration that we are going to describe. '

Consider the regular morphism (as in [Pac03, §2.2])

by ¢ = J(0)0)
(1 pa) = (Oc(pi _pj))lgi<jsd'

By quotienting C“ by the symmetric group S; and J(C) () by the semi-direct
d
product Z /ZZ(2> > S<21> (where S(g) acts by permutation and each copy of Z/27

acts on the corresponding factor J(C) as the inverse), we get a regular fibration
(3.6) 04+ Ca— 04(C) € Sym) (Kum(C)).

It is easily checked that the only subvariety contracted by ¢, is Ay;). We then
have ¢, (r) = —1 if r>2 and ¢, (1) = 1. By Proposition 3.3(ii) we get that
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cone(Ay) is an extremal ray of Pseff;(Cy) (which improves [Pac03, Lemma 2.2]
where the author uses the above maps to show that the class of the small diagonal
Ay lies in the boundary of Pseff;(Cy)). In fact we know more, namely that
cone(Ay)) is an edge of Pseff;(Cy) by [BKLV17, Cor. 3.15(d)]. According to
Remark 3.4, we also expect that F;="(p,) = {0} for k >2 or k =1 and r > 2.
Hence, we do not expect to find new interesting faces by looking at the contract-
ibility faces of ¢,, apart from a new (and simpler) proof of the fact that A, spans
an extremal ray of ‘Pseff;(Cy).

3.4. Abel-Jacobi rays

In this subsection, we use Proposition 3.12 to exhibit some extremal rays of
Pseff,(Cy) (and of 'Pseff,(C,)) for a Brill-Noether general curve.

THEOREM 3.17. Let max{l,d —g+ 1} < rand
that C is a Brill-Noether general curve.

Then A, (Cq) ="'AJ;, (Cq) = cone([C[’,'}), where  p:=p(g,r,d) =g —
(r+1)(g—d+r). In particular, [C}] generates an extremal ray (called the
AJ(=Abel-Jacobi) ray) of Pseff,,(Cy) and of 'Pseff,,(Cy).

1+r$d$2g—2. Assume

Note that the assumption max{l,d — g+ 1} <risjust | + max{0,n —g} <r
with n = r + p, whereas the inequality d > r:—gl + r is the sharp bound ensuring

that C) is non-empty of dimension r + p. Moreover, if r = 1 and # <d <y, the
theorem asserts that [C}] generates an extremal ray of ‘Pseffy_,—1(Cy), and this
achieves the lower bound on d in Corollary 3.15.

PrOOF. This will follow from Proposition 3.12(ii) and its analogue for the tau-
tological Abel-Jacobi faces, provided that we show that either C} is tautological
and irreducible of dimension r + p or all the irreducible components of C); are
tautological, of dimension r + p and numerically equivalent (in which case the
class of C} is a positive multiple of the class of each of its irreducible compo-
nents).

The hypothesis ;*; + r < d is equivalent to gon,(C) < d by Lemma 3.6 (which
is in turn equlvalent to C} # 0) and it implies that C, has pure dimension r + p by
Fact 3.8(v) and it has tautological class by Fact 3.8(iv). We now distinguish two
cases, according to the sign of p. If p > 0 then CJ is irreducible by Fact 3.8(v) and
we are done. If instead p = 0, then C} is a disjoint union of r-dimensional fibers
of the map o, by Fact 3.8(v). We conclude by observing that all the r-dimensional
fibers of o, are numerically equivalent and they have tautological class (indeed,
their class is equal to I'4(g};), see Fact 5.1). O

ExampLE 3.18. Two special cases of AJ rays of fixed codimension m (which are
also the unique ones in codimension m if m is a prime) are the ones generated by
the following Brill-Noether varieties:
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(i) If 1 <m < g/2 and Cis a Brill-Noether general curve, then C, ,,,, is a pure
codimension m (and irreducible if and only if m < g/2 or g = 2) subvariety
of Cy_pq1 of class

em xemfl

< ]:ﬁ_(m—l)!'

g—m+1

(i) If 1 <m < g —1 (and C is any curve) then C;}, , is a codimension m irre-

ducible subvariety of Cy,,—; of class (see Example 3.9)

m o m—o

[Crima] = Z(—l)“h-

=0

If m = 1 in each of the above special cases, we get that [C)] = 0 — x € N'(C,)
generates an extremal ray of Pseff I(Cg), thus extending [Kou93, Rmk. 1 after
Thm. 5] from very general curves to arbitrary curves.

It is natural to ask if AJ rays are perfect, i.e. if they are edges, in the entire
or tautological pseudoeffective cone. As we will see, a way to prove this for the
tautological pseudoeffective cone would be to apply Proposition 3.21(ii). On the
other hand we will show in Remark 3.24 that the unique AJ rays cone([C}]) to
which we can apply Proposition 3.21(ii), and hence deduce that they are perfect
rays, are those with p = p(g,r,d) = 0 (when we will actually see in Remark 6.3
that they coincide with the subordinate edge) and those with d = g +r — 1 (when
we will actually see in Theorem 6.2 that they coincide with the BN edge in dimen-
sion g — 1).

3.5. The O-filtration

The tautological Abel-Jacobi faces can be described in terms of a multiplicative
filtration of the tautological ring R*(C,), determined by the class 6.

DEFINITION 3.19 (The 0O-filtration). Forany 0 <m <d andany 0 <i <g+1,
let 6="" (or simply 0=" if m is clear from the context) be the smallest linear sub-
space of R"(C,y) = Ry_(Cy) containing the monomials {07x"~7, 0" xm=i=1
0™}, with the obvious convention that 0=""" = {0} if i > m.

The subspaces {0=""} form an exhaustive decreasing multiplicative filtration
of the tautological ring R*(Cy), in the sense that

{O} _ 029+1,m c...C 92[+1,m c gzi,m C...C 0207”1 — Rm(Cd) and
Hzi,m . 02_/,/ C 02i+j,m+l.
The properties of the #-filtration are collected in the following result.

ProPOSITION 3.20. Let 0 <m<d and 0 <i<g+ 1. Set as usual r(m) :=
min{m,d — m, g}. Then the following properties hold true.
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(i) If i <m+ 1 then the codimension of 0™ inside R"™(Cj) is equal to

‘ i if rim)=mory,
codim0="" = { max{i—g+d—m,0} if r(m)=d—-—m<g<m,
max{i —2m +d,0} ifrim)=d—m<m<y.

. > . .
Moreover, a basis of 0=""" is given by

{0'x"1.,0"x"Y  ifr(m)=mand 0 <i<m+1,
{O0'xm=1 . 09x" 9} if rm) =gand 0 <i<g+1,
{0'xm=1.,09x" 9} ifrim)=d-—m<g<mandg—(d—m)<i<g+1,

{0'x"m=1 . 0"x%) ifrm)=d—-m<m<gand2m—d <i<m+1.

(ii) Under the perfect pairing between R™(Cy) and R*="(C,) given by the intersec-
tion product (see Proposition 2.3(iii)), we have that

(02i,m>i 2 gngrlfi?dfm7

with equality if and only if one the following assumptions hold:

® g <max{m,d — m},

ei=g+lom<d-m<gandg—(d—m)+m+1<i<g+1,inwhich
case the left and right hand side are both equal to R (C,),

e =0o0rd—m<m<gand0 <i<2m—d, in which case the left and right
hand side are both equal to zero.

PROOF. Part (i) is obvious if either r(m) = m or r(m) = g, since in the former
case the elements {Qox”’, ...,0"x%} form a basis of R™(C,) while in the latter
case the elements {#°x”, ..., 09x" 9} form a basis of R"(C,) by Proposition
2.3(ii). On the other hand, if r(m) = d — m then any subset of (d —m + 1) ele-
ments of {0°x™, ..., gmin{e:m ym-min{g.m}Y form a basis of R™(Cy) by Proposition
2.3(i1). This easily imply (i) for r(m) = d — m.

Part (ii): the inclusion

(gzi,m>L ) 92{/+1—i,d—m

follows from the relation 897! = 0. We conclude with a straightforward com-
parison (left to the reader) of the codimensions of (0="™)* and of #=91-H4=m
using (i). O

The link between tautological Abel-Jacobi faces and the O-filtration is clari-
fied in the following

PROPOSITION 3.21. Let 0 <n <dand 1+ max{0,n—g} <r<n.
(i) We have an equality of subcones of "Pseff,,(Cy)
(3.7) AT (Cy) = (07" A Pseff, (C).

In particular, dim 'AJ’(C,) < dim(9=""'7"")* = codim(9="'"""),
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(ii) If dim'AJ(Cy) = dim(0="""""")" then 'AJ(C,) is a perfect face of
tPseff,,(Cy) whose ( perfect) dual face is 0" " ~ \Nef"(C,).

When the assumption of (i) holds true, the perfect face =""'~"" ~ !Nef"(C,)
of "Nef"(C,) will be called nef 0-face. A nef O-face of dimension one will be
called nef 0-edge, and using Proposition 3.20(i) it is easy to see that a nef 0-edge
is equal to

gzmin{n,g},n A tNefn(Cd) _ Cone(emin{n,g}xn—min{n,y}).

PROOF. (i): note that, since @ is the pull-back via «y : C; — Pic?(C) of an ample
line bundle on Pic"(C), from Definition 3.1 it follows that for any f§ € Pseff,(Cy)
we have

(3.8) contr,, (B) = r < f- 0" =0,

Therefore, since 'AJ; (Cy) is the conic hull of all elements 8 € ‘Pseff,(C,) having
contractibility index at least r, formula (3.8) implies that 'AJ/(C,) C (="' *
N 'Pseff,(C;). In order to prove the reverse inclusion, by contradiction assume
that there exists an element f € ‘Pseff,(C;) such that f e (0=""'"")* and
B- 0" £0. The element £ - 0""'~" lies in R?*'~"(C,) and, since it is non-zero
(which implies that » > 1), applying Proposition 2.3(iii) we find an element y €
R™Y(Cy) such that - 0""'"".y #0. But then, since 0" .y e =" we
find that /8 ¢ (9=""1~"")* which is the desired contradiction.

Part (ii): if dim 'AJ/(C,) = dim(0="""""") then ('AJ(Cy)> = (=" 77"+,
which implies that the dual face of 'AJ (C,) is equal to

((02n+1—r,n)L)l A tNef"(Cd) — 02n+1—r,n a) tI\Iefn(Cd).

Observe that 'AJ(C,) is a full cone in (#="™'"")* by assumption, while
0="1=r  !Nef” (C,) is a full cone in "' "" since 0 is nef (hence limit of
ample classes) and x is ample. Therefore, we can apply Remark 2.2 in order to
conclude that 'AJ’(C,) and 0=""'7"" ~ 'Nef"(C,) are perfect dual faces. O

REMARK 3.22. The equality (3.7) is true also for the (non-tautological) Abel-
Jacobi faces with the same proof (taking orthogonals in N,,(Cy)).

Note that Proposition 3.21(ii) gives a criterion to find perfect faces of
Pseff,(Cy). Let us see how we could apply this criterion to find facets (which
are always perfect) and edges, i.e. one-dimensional perfect faces.

The dimension of (0=""'""")* C R,(C,), which is equal to the codimension
of 9="T1=1" C R"(C,), can be computed (in the non trivial range n+ 1 — r < g)
using Proposition 3.20(i) and it is equal to:

(3.9) dim(6="""""")" = codim §="*""""
n+l—r if either r(n) = n or

r(n) =g,
max{d —g+1—-r,0} ifd—n<g<n,
max{d —n+1-r0} ifd—n<n<yg.
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Therefore, we find that

. ~1 if n <
codim(0="1"")E = 1 & dim(0Z" ") = r(n) & {:_ il ;f’; p Z

Let us now examine when, in each of the above two cases, we get indeed a tauto-
logical Abel-Jacobi facet.

ProrosITION 3.23.

(i) If g < n then tAJ"Jrl 9(Cy) is a facet of ‘Pseff,(Cy).
(ii) If n < g then AJ! . (Ca) is a facet of ‘Pseft,(C;) under one of the following
assumptions:
(a) gon,(C) < d (which is always satisfied if g < d — n);
(b)y n=g-—1;
(c) g <d and C is very general over an uncountable base field k.

Note that: (i) (and (iia) for g < d — n) is a special case of Theorem 4.2, (iia) is
a special case of Theorem 5.6, and (iib) for d — n < g — 1 (otherwise it belongs to
case (iia)) is a special case of Theorem 6.2.

PROOF. As observed above, parts (i), (iia) and (iib) are special case of theorems
that will be proved later.

Let us prove part (iic). The assumption that g < d implies that the Abel-
Jacobi morphism «, is surjective. Hence, using that k is uncountable (and alge-
braically closed) and that the fibers of o, are projective spaces, we can apply
[FL17b, Thm. 1.2] in order to conclude that (AJ!(C,))> = ker((ag), : Ny(Cy) —
N,(Pic?(C))). Since C is very general, we have that N, (C,) = R,(C,) (which also
implies that AJ!(C,) = 'AJ}(C,)) and N, (Pic?(C)) = <[®]*™") (see [BKLV17,
Fact 2. 6] and Ben Moonen s appendlx to [BKLV17]). Therefore, the kernel of
(0g), : No(Cy) — N,(Pic?(C)) is 1somorphlc to the linear space of all elements
z € R,(Cy) such that 0 = (a4),(z) - [@]" = 0" =0, that is to (="")*. Put-
ting everythlng together, we deduce that <tAJ (Cd)> (6=™")*, which implies
that tAJn(Cd) is a facet of ‘Pseff,(Cy) (since (0=™")" has codimension one in
R,(C,) as observed above). O

Let us now discuss when Proposition 3.21(ii) can be used to find edges of
Pseff,(Cy). Using (3.9), we find that

r=n if either r(n) = nor r(n) =g,
dim(0=""""t =1e{r=d—g ifd—n<g<n,
r=d—-n ifd-n<n<gy.
Let us now check, in each of the above cases, when we can apply the criterion

of Proposition 3.12 to conclude that 'AJ’ (C,) is non-zero, and hence that it is an
edge of '"Pseff,(Cy).
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We will distinguish the following cases (assuming that | <n < d — 1 to avoid
trivial faces):

(A) If g < d — n then clearly C” = C, and we deduce that '‘AJ(Cy) is non-zero;

(B) If d — n < g <n then clearly C{ ¢ = C, and we deduce that ATTI(Cy) s
non-zero;

(C) If n < d — n < g (which implies that d < 2g — 2) then 'AJ)(C,) is non-zero if
C7 has some tautological irreducible component of maximal dimension and
if n < dim C} = n + dim W} (C), which is equivalent to the non-emptiness of
W1(C), or in other words to d > gon,,(C).

(D) If d —n < n < g (which implies that d < 2g — 2) then tAJ,‘j*”(Cd) is non-
zero if C} has some tautological irreducible component of maximal dimen-
sion and if

n<dimC4" =d—n+dimw/"(C)
& dim W/ "(C)=2n—d=d—2(d—n).

By Martens’ theorem (see [ACGH, Chap. IV, Thm. 5.1]), this can happen if
eitherd —n=d —g+1,1e.n=g— 1, or C is hyperelliptic.

We will see in the next sections that indeed in all the above cases we get edges of
Pseff,(Cy): cases (A) and (B) will be analyzed in Section 4 (and indeed Case (A)
also follows from Section 5), case (C) in Section 5, case (D) with n =g — 1 in
Section 6 and case (D) for C hyperelliptic in Section 7.

Quite remarkably, we will see that in all the above cases the non-trivial tau-
tological Abel-Jacobi faces of 'Pseff,(C;) form a maximal chain of perfect
non-trivial faces, i.e. a chain of perfect non-trivial faces of 'Pseff,(C,;) whose
dimensions start from one and increase by one at each step until getting to the
dimension of 'Pseff,(C,) minus one.

REMARK 3.24. The unique AJ rays cone([C}]) to which we can apply Proposi-
tion 3.21(ii) are those with p = p(g,r,d) =0 or withd =g +r — 1.

Indeed, since ‘AJ], (C4) = cone([C}]) has dimension one, the hypothesis of
Proposition 3.21(ii) does hold true if and only if

1 = dim(6=""""7) " = codim 9=/ 1717,

Now observe that d = ’% + r and the hypothesis on d in Theorem 3.17 trans-

lates into 0 < p < g —r — 1. The dimension n = r + p and the codimension m =
d — n of C} satisty the following easily checked inequalities

n<g,
m<y,

n>m<:>L( —r=1)<
- 2r+1g =P
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Using this, we can compute the codimension of §=”"!"*” using Proposition
3.20():

codim =/*1r+»

_[pt1l if p<55(@g—r—1),
S ld=2r—p+l=rlg-—d+r-1)+1 if 555(g—r—1)<p.

Hence we see that codim =71 = 1 if either p =0 or d = g+ r — 1.

4. THE O-FACES

In this section, we are going to describe the tautological Abel-Jacobi faces of
Pseff,,(Cy) under the assumption that g < max{n,d — n}, which comes from
Proposition 3.20(ii). Note that this assumption is always satisfied if d > 2g — 2
and it is never satisfied if d < g.

Let us start with the following result that gives a lower bound on the dimen-
sion of the tautological Abel-Jacobi faces.

LEMMA 4.1. Let 0 <n <d and 1+ max{0,n — g} <r <n. The cone
HngnJrr,dfn A tPseﬂ*n(Cd) C Hngnﬂ',dfn C Rn(cd)

is contained in ‘AY(Cy) and it is a full-dimensional cone in 09" In partic-
ular, we have that

dim 'AJ(C,) = dim 9=,

PROOF. Since §=¢~"4=" C (9""1="") by Proposition 3.20(ii), we get that the
cone =974  tPseff, (C,) is contained in ‘AT’ (Cy) by (3.7).

By Definition 3.19, the linear subspace 6= """ C R,(C,) is generated
by monomials in x and 6. Since 6 is nef (hence limit of ample classes) and x is
ample we have that each monomial in x and 6 is a pseudoeffective class. This
implies that §=9 "9~ ~ tPseff,,(C,) is a full-dimensional cone in §=9"47",

O

Using the above Lemma, we can now prove the main result of this section.

THEOREM 4.2. Let 0 <n <d and assume that g < max{n,d —n}. Then the
Abel-Jacobi face ‘A (Cy) is equal to 09" 74" ~ Pseff, (C,), and it is non-
trivial if and only if 1 + max{0,n — g} <r <min{n,d — g}, in which case it is a
perfect face of dimension min{n,d — g} —r + 1 and codimension r — max{n — g,
0}. Hence, the following chain

(41) 0= A PelT, (Cy) € - € 297N 4 e, (C)
C '"Pseff, (Cy)
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is a maximal chain of perfect non-trivial faces of ‘Pseff,(Cy). The dual chain of
(4.1) is equal to

(42) 02min{g.n} A tNef”(Cd) C.-C 029+1—min{g7d—n} A tNef"(Cd)
C '‘Nef"(Cy).

The faces in (4.1) will be called pseff 6-faces, while the faces in (4.2) are the nef
O-faces introduced after Proposition 3.21. Note that

Cone<0min{g,d—n}xdfnfmin{g,dfn}) _ 02min{g,d—n} A tPSCffn(Cd)

_ ezmin{gvd*”} e tNCfdin(Cd)

is an edge (i.e. perfect extremal ray) of 'Pseff,(C,), which we will call the pseff
0- edge and it coincides with the nef #-edge. On the other hand, since the class
x is ample, the other monomlals in x and 0 cannot generate an extremal ray of
either 'Pseff,(C,) or of !Nef?™"(C,).

ProOF. Fix an integer r such that 1 + max{0,n — g} < r < n. Using the assump-
tion g < max{n,d — n}, Proposition 3.20(ii) implies that

(02n+]7r7n)L _ 02{]*”‘#)*75177! g Rn(cd)

This, together with Proposition 3.21(i) and Lemma 4.1, gives the equality of
cones

AT (Cy) = 07974 ~ WPPseff, (Cy)
and the fact that

dim tAJ;(Cd) — dim(92n+1—r7n)J_.

Hence we can apply Proposition 3.21(ii) in order to conclude that 'AJ (C,) is a
perfect face of 'Pseff,(C,) whose dual face is equal to ="' "" ~ !Nef”(C )
Finally, Proposition 3.20(i) gives that the linear subspace (0>”+1 rmy L
R,(C4) is non-trivial if and only if 1+ max{0,n — ¢} <r < min{n,d — g} in
which case it has dimension min{n,d — g} —r + 1. O

REMARK 4.3. Notice that, outside of the range g < max{n,d — n}, the cones
0=" n 'Pseff,(C,;) may not be faces of ‘Pseff,,(C,). To see this let m be odd and
such that | <m < g— 1 and let d = g+ m — 1. Now, by (3.4), the coefficient of
x™in [CL, ] s (= 1)™ < 0 while, for any m-codimensional diagonal, the same
coeflicient is positive by [BKLV17 Prop. 3.1]. Hence, in 'Pseff,_(Cyim—1), the
class [C},, ;] and the m-codimensional diagonals lle in different half-spaces
with respect to the hyperplane 6=, which then implies that 6= ~ ‘Pseff g—1(Ca)

is not a face of "Pseff,_(Cyim_1).
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Let us finish this section by giving upper and lower bounds for the dimension
of the tautological Abel-Jacobi faces in the numerical ranges not included in the
above Theorem 4.2.

PROPOSITION 4.4. Assume that g > max{n,d — n}. Then

(i) ‘AT (Cy) is trivial unless 1 < r < min{n,d — n}.
(ii) If 1 <r <min{n,d — n} then

(4.3) max{d + 1 —g —r,0} <dim'AJ (Cy) <r(n) —r+ 1.

In particular, if 1 <r <d — g (which forces g+ 1 < d) then 'AJ (C,) is non-
trivial.

PROOF. Observe that ‘Al (C,) is defined only for 1 = 1+ max{0,n — g} <r <
n. Under this assumption, Proposition 3.21(i) and Lemma 4.1 give that

(4.4) dim 09747 < dim ‘AT (C,) < codim 9=
Using the assumption g > max{n,d — n} and Proposition 3.20(i), we compute

. Sntlern n+1—r fn<d-n<y,

(45)  codimd _{max{d—n—r+l,0} ifd—n<n<y.
Therefore if d —n <r (which can only happen in the second case) then
codim 0=""'""" = 0, while if r < d — n then codim 0=""""" = r(n) — r + 1. Us-
ing the upper bound in (4.4), this implies that 'AJ (C,) = (0) if d — n < r (which
proves (i)) and that dim 'AJ (C,) <r(n) —r+1ifr <d —n.

On the other hand, using again the assumption g > max{n,d — n} and Prop-
osition 3.20(i), we compute

d+1—g—r ifr<d-g,

(4.6) dim =9~"H7d=n — { ,
0 otherwise.

If we plug this formula into the lower bound in (4.4), we get the lower bound of
part (ii), and this finishes the proof. O

REMARK 4.5. Note that the upper bound and lower bound in the above Propo-
sition 4.4 (which are always different except in the special casesn =g or d —n =
g, which we exclude in the discussion that follows) can be strict. For example:

e If d < gon(C) (which implies that d < % by Lemma 3.6) then Remark 3.11
gives that 'AJ (Cy) = {0} for any 1 < r < min{n,d — n}, which shows that the
lower bound in (4.3) is (trivially) achieved but not the upper bound.

e The AJ rays of Theorem 3.17 do not achieve the lower bound in (4.3), which is
zero since d — g + 1 < r, while they achieve the upper bound only if p(g,r,d) =
0ord=g+r—1 (see Remark 3.24).
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e In each of the cases specified in Proposition 3.23(ii), tAJ,ll(Cd) is a facet,
hence its dimension achieves the upper bound in (4.3) but not the lower
bound.

e We will show in the sequel that the upper bound in (4.3) is achieved for any
1 <r <min{n,d — n} if either gon,(C) <d <n+ g (see Theorem 5.6), or if
n=g—1and g <d <2g—2 (see Theorem 6.2), or if g > max{n,d — n} and
C is hyperelliptic (see Theorem 7.3); and in each of these cases, the lower bound
is not achieved.

5. SUBORDINATE FACES

In this section, we are going to describe some of the Abel-Jacobi faces using sub-
ordinate varieties.

Recall that the subordinate variety of a linear system [ is defined (set theoreti-
cally) as

(5.1) I'y(1):={De Cy:D < E forsome E € l}.

There is a natural scheme structure on I';(I) (indeed I';(I) is a determinantal va-
riety) and the class of T'4(I) is computed as follows (see [ACGH, Chap. VIII, §3],
[KL74, §1] — the proof works over any algebraically closed field).

Fact 5.1. LetLbe a o) on C and fix an integer d such that | > d > s. Then T'4(1)
is of pure dimension s and it has class equal to

d—s —d—% xk d—s—k
rl =3 (787 s < RiG

k=0 ’

REMARK 5.2. It is worth noticing that a subordinate variety was already used
to describe the Mori cone of C;, when C is a very general curve of even genus
g = 2d > 4. In particular, it follows from [Pac03, Theorem 1.1] that if | is any
gy, on C, then the class [['4(I)] spans one extremal ray of the 2-dimensional
cone Pseff;(C,) = 'Pseff;(C,), whereas the other ray is generated by the class of
the small diagonal 6 = {dp | p € C}.

Using subordinate varieties, we construct subvarieties of C, that are suitably
contracted by the Abel-Jacobi map a, : C; — Pic?(C).

PROPOSITION 5.3. Let 1 < n < d with the property that d > gon, (C). Fix a lin-
ear system | of degree d and dimension n on C. For any 0 < i < min{n, g}, consider
the embedding ;- C4—; — Cy defined by ,(D) = D + ipy, where pg is a fixed
point of C. Then the subvariety

L= y(Ta—i(1)) € Ca
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has pure dimension n, its class is tautological and equal to

d—i—n k+ipnd—i—n—k
d—g—n\ x*70
(52) i) = ; < k >(a’—i—n—k)!’

and its image o4(T;) in Pic?(C) is irreducible of dimension i.

Note that the subvarieties I'; depend on the choices of the linear system I[
and of the base point py, but their classes [I';] are independent of these choices.
We remark further that the last part of the assertion needs the assumption i <
min{n, g}, as dim a(I';) < min{dim [y ,(1), dim Pic?(C)} = min{n, g}.

PrOOF. Note that min{n, g} < d —n by Remark 3.7, whence we have that i <
d — n. Fact 5.1 implies that I'y_;(1) is pure n-dimensional, whence so is I';. More-
over since the image of y; has class equal to x’ and the pull-back map v pre-
serves the classes x and 6, the class of I'; is obtained by taking the class of
I'y_i(l) in R,(C,_;) given by Fact 5.1, interpreting it as a class in R,.;(C,) and
then multiplying it by x’; in this way we get the formula (5.2).

The linear system [ is a sublinear system of a complete linear system |L|
fordsome L € Pic?(C). Consider the i-dimensional irreducible subvariety of
Pic“(C):

Vi:={L(-D+ipy) : D € Ci}.

We claim that o,(T';) = V;, which will conclude the proof. In fact if ¥ € ay(T;)
then there is D’ € I';_;(I) such that ¥ =~ Oc(D’ + ipy). But there is also E € |
such that £ > D’ whence, setting D = E — D’ we see that D € C; and ¥ =~
L(—D +ipy) € V;. Vice versa if & € V; then ¥ =~ L(—D + ipy) for some D € C;.
Since dim[ = n > i there is E € [ such that £ > D. Setting D' = E — D we find
that D’ € C;_; and D' < E, so that D' e T'y_;(1), D' +ipy € T'; and a,(D’ + ipo)
= @C(D/+lp0) ~ . O

The intersection of the classes [[';] with the monomials §/x"/ is easily com-
puted via the projection formula as follows.

LEMMA 5.4. Let Z be any pure n-dimensional subvariety of Cy such that
dimoy(Z) = i. Then

0 ifi<j,

AR Jy =i —
2] o'~ {>0 ifi>].

PROOF. Observe that, since [Z] - 0/x"~/ € No(Cy) = R, we have that [Z] - ¢/x"~/
= (ag),([Z] - 0/x"7) € No(Pic?(C)) = R. In order to compute the last quantity,
we use the projection formula for the Abel-Jacobi map oy:

(2a),(12] - 0'x"7) = (2a), ([2] - x"7) - [O).
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Since x is an ample class on Cy, for each irreducible component Z; of Z, the class
[Zk] - x"/ can be represented by a j-dimensional irreducible subvariety W) con-
tained in Z such that dim o, (W) = min{dim oy(Zy), j}. Passing to the pushfor-
ward, we get

i 0 if dimocd(Zk) < J,
(O(d)*([zk] - X J) = (Ocd)*([Wk]) = {deg((“d)wk) . [Otd(Wk)] if dimotd(Zk) > .

Since dim oy (Z) = i we get that dim o;(Z;) < i for every k and there is a ko such
that dim «y(Zy,) = i. We conclude by observing that, in the case j < i, we have
that [og( Wi, )] - [@] > 0 because dim ay(W;,) = j and © is ample on Pic?(C).

O

COROLLARY 5.5. Let 0 < n < d such that d —n > min{n, g} and let {Z;} ™29}
be pure n-dimensional subvarieties of Cy such that dim o, (Z;) = i. Then the classes
{[Z0], -, [Zmingn,g}]} are linearly independent in N,(Cq) and we have that

{2}y, [ZDF o R (Ca) = 07"
has codimension i + 1 in R"(Cy), for every 0 < i < min{n, g}.

PROOF. The space R"(C,) is freely generated by {0°x”, ..., 0"" x"="(} by Prop-
osition 2.3(ii), where r(n) = min{n, g} because of the assumption on d. Now
Lemma 5.4 implies that

{Zo), .. [ZDE A RYNCy) = 0= forany 0 < i < r(n).

The subspace 6= ¢ R"(C,) has codimension i + 1 by Proposition 3.20(i). If
we apply this result to i = r(n) we deduce that the classes {[Zy], ..., [Zmin{n,g}]}
are linearly independent in N, (C,) and this concludes the proof. |

Using the subvarieties in Proposition 5.3, we can now describe tautological
Abel-Jacobi faces under suitable numerical assumptions.

THEOREM 5.6. Let 0 <n <d,1 +max{0,n —g} <r <n and assume that d >
gon,(C). For any 0 <i < min{n, g}, consider the classes [I';] € R,(Cy) given by
(5.2) and set

Ziv1:=L[Lol,.. ., [T]> C Ru(Ca).

Then '‘AJ ,’;(Cd) is a non-trivial face, is equal to %, 1, " ‘Pseff,,(C,) and it is a per-
fect face of dimension n + 1 — r. Hence, the following chain
(5.3) %) N Pseff,(Cy) C 2y n Pseff, (Cy)

C -+ C Zinfn, gy N 'Pseff,(Cy) C Pseff, (Cy)

is a maximal chain of perfect non-trivial faces of ‘Pseff,,(Cy). The dual chain of the
chain in (5.3) is equal to
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(5.4) 02min{n,g} A tNCfn(Cd) - GZmin{n,g}fl A tNefn(Cd)
C - C 07 A WNef"(Cy) € Nef"(Cy).

The faces in (5.3) will be called subordinate faces, while the faces in (5.4) are
the nef 6-faces introduced after Proposition 3.21. Note that

cone([[p]) = Z; N Pseff,(Cy)

is an edge (i.e. a perfect extremal ray) of 'Pseff,(C,), which we call the subordi-
nate edge. On the other hand, we do not expect that the classes [I';] with 0 < i <
min{n, g} generate an extremal ray of ‘Pseff,(C,). Using the fact that x is ample,
we can prove that they are not extremal, unless, possibly, when g > d —n > n.

PrOOF. Consider the pure n-dimensional tautological subvarieties {Ty,..., T}
of C; constructed in Proposition 5.3 (indeed the last subvariety I', will be of no
use in what follows). Since d —n > min{n, g} (see Remark 3.7), we can apply
Corollary 5.5 and we get that (§=""'""")* =%, . which combined with Prop-
osition 3.21(i), gives that

tAJ}Z(Cd) = szrlfr (@) tPSCﬂn(Cd),
Since [['}] are effective classes, we get the following inclusions of cones
(55) COHC([ro], sy [rn—r]) g Zn-‘rl—r M tPSCff,,(Cd) C 211+1—)~-

Since {[I],..., [T} is a basis of X,;;_, by Corollary 5.5, we infer from
the inclusions (5.5) that X, , N 'Pseff,(C,) is a full dimensional cone in X, ,,
and hence it has dimension n + 1 — r = dim(6=""1""")*. We can therefore apply
Proposition 3.21(ii) and get that 'AJ) (C,) is a perfect face of dimension n+ 1 —r
whose dual face is equal to "1 ~"" ~ 'Nef”(C,). O

REMARK 5.7. Let us compare Theorem 5.6 with Theorem 4.2 for a given n. We
are going to use that gon,(C) < g + n with equality if and only if n > g, a fact
that follows easily from Lemma 3.6.

e If d > n+ g (which forces d > gon,(C)) then the two theorems coincide.

e If d —n < g <n then Theorem 4.2 applies while Theorem 5.6 does not apply
since d < gon,(C) = g + n (using that g < n).

e If n < g and gon,(C) <d < g+ n then Theorem 5.6 applies but Theorem 4.2
does not apply since max{n,d —n} < g.

e If n < g and d < gon,(C) then neither one of the theorems applies.

6. BRILL-NOETHER FACES IN DIMENSION ¢ — |

The aim of this subsection is to describe the tautological Abel-Jacobi faces of C,
in dimension g — 1. We will assume throughout this section that g < d (to avoid



870 F. BASTIANELLI ET AL.

trivialities) and that d < 2g — 2 since in the case d > 2g — 2 we have a complete
description of the tautological Abel-Jacobi faces in Theorem 4.2.

We start by using the Brill-Noether varieties in Example 3.9 in order to con-
struct subvarieties of C; of dimension g — 1 that are suitably contracted by the
Abel-Jacobi morphism o, : C; — Pic‘l(C ).

ProrosITION 6.1. Let d be such that g <d <2g—2. For any 0 <i<d —g,
consider the embedding \; : Cq_; — Cy defined by \;(D) = D + ipy, where py is a
fixed point of C. Then the subvariety

Y, =y (CO T C ¢y

is irreducible of dimension g — 1, its class is tautological and equal to

d—g+1-i x1+i0d7g+17c47i
1 Yi - —1 8 )
(6.1) [ ; RN 7 ey g,

and its image oq(Y;) in Pic?(C) has dimension 2g — 2 — d + i.

Note that the subvarieties Y; depend on the choice of the base point py,
but their classes [Y;] are independent of this choice. Moreover, the assertion
holds also for i =d — g+ 1, where Y;_,, is just the image of the embedding
Va_gi1 + Cg1 — Cy, but this variety is not involved in Theorem 6.2 below as
contr,, ([Yg—g4+1]) = 0.

PrROOF. Note that Cj_*lr"“*" is an irreducible subvariety of C;_; of dimension
g — 1 by Example 3.9, whence Y; is an irreducible subvariety of C,; of dimension
g— 1.

The class of Y; can be computed starting from (3.4) in the same way as for-
mula (5.2) is obtained in Proposition 5.3. _ '

Finally, by Fact 3.8(i), the dimension of ocd_,-(Cj_’f’“”) C Pic?(C) is equal
to

dimeoy ;(CI 9"y =dim CI 9" —(d—g+1—-i)=2g—2—d +i.
Since oy o i, is obtained by composing «,_; with the isomorphism

Pic?'(C) — Pic?(C)
L— L(ipo),

we conclude that dim oy (Y;) = dim oy, (Cd SN g —2—d +i. 0

Using the subvarieties in Proposition 6.1, we can now describe tautological
Abel-Jacobi faces in dimension g — 1.
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THEOREM 6.2. Let d be such that g <d <2g—2. For any 0 <i <d —g, con-
sider the classes [Y;] € Ry_1(Cyq) given by (6.1) and set

QH-I = <[Y0]7 SRR [Y1]> - Rg—l(cd)-

Then tAJ;_I(Cd) is a non-trivial face if and only if 1 <r <d — g+ 1, in which
case tAJ;fl(Cd) is equal to Qu_gy>—, 0 'Pseffy_(Cy) and it is a perfect face of
dimensiond — g +2 —r.

Hence, the following chain

(6.2) QN "Pseff,_1(Cy) T Qy N Pseffy_1(Cy)
c---C Qd—g+1 N tPseﬂ‘g_l(Cd) C ‘Pseffg_l(Cd)

is a maximal chain of perfect non-trivial faces of 'Pseff,_i(Cy). The dual chain of
the chain in (6.2) is equal to

(63) 079" A ™Nef?! ' (Cy) € 07972 A Nef? ' (Cy)
C---coF A tNefg_l(Cay) C tNef‘(’_l(Cd).

The faces in (6.2) will be called BN(=Brill-Noether) faces in dimension g — 1,
while the faces in (6.3) are the nef -faces introduced after Proposition 3.21. Note
that

cone([CY9™)) = Q n 'Pseff, 1(Cy)

is an edge (i.e. a perfect extremal ray) of "Pseff,_;(Cy), which we call the BN edge
in dimension g — 1. On the other hand, since the class x is ample, the classes [Y}]
with 0 < i < d — g cannot generate an extremal ray of 'Pseff,_(Cy).

Note that from Proposition 3.12(ii) it follows that cone([Cj_"H}) is also an
extremal ray of the entire (non-tautological) cone Pseff,_;(C,), although we do

not know if it is an edge of the entire cone.
Proor. Using thatd — (g — 1) < g — 1, Proposition 3.20(i) gives that
(6.4)  dim(0=9 "9 = codim 6=97"9"" = max{d — g +2 —r,0},

which, together with Proposition 3.21(i), implies that 'AJ, | (C,) is trivial un-
less 1 <r <d— g+ 1. Therefore, from now until the end of the proof, we fix an
index r satisfying the above inequalities.

Consider the irreducible (¢ — 1)-dimensional tautological subvarieties { Yo, . . .,
Y44} of C4 constructed in Proposition 6.1. Applying Lemma 5.4 and using (6.4),
we get that {[Y],...,[Y4s_4]} are linearly independent in R,_;(Cy) and that, for
anyl <i<d-g+1,

QJ_ _ H229—2—d+i7g—1
; .
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Combining this with Proposition 3.21(i), we get that
‘AT, (Ca) = Qq_gia—r N 'Pseffy_1(Cy).
Since [Y;] are effective classes, we get the following inclusions of cones
(6.5) cone([Yol, ..., [Yo—gsi—r]) € Qu_gio—r 0 Pseffy_1(Ca) C Qu_gi2-s-

Since {[Yo),...,[Ya—g+1-]} is a basis of Qy_4.»,, we infer from the inclusions
(6.5) that Qu_y12—, N 'Pseff,_;(Cy) is a full dimensional cone in Q444> ,, and
hence it has dimension d — g + 2 — r = dim(0=9 "9~ 1)*. We can therefore apply
Proposition 3.21(ii) and get that tAJ;?I (Cy) is a perfect face of dimension d — g +
2 — r whose dual face is equal to %9971 ~ !Nef? ' (C,). O

We will now compare AJ rays and BN faces in dimension g — 1 with pseff
O-faces and subordinate faces.

REMARK 6.3. Let us compare Theorems 6.2 and 3.17 with Theorems 4.2 and
5.6.

e BN faces in dimension g — 1 and AJ rays exist in a range where pseff 6-faces
do not exist.

Indeed, if we are in the numerical range of Theorem 6.2, then n =g — 1
and 1 <d —n < g — 1 which implies that max{n,d —n} =n=g—1<g. On
the other hand, if we are under the hypotheses of Theorem 3.17, then C}
has dimension n:=r+p=d+r(d —g—r) and codimension m:=d —n =
r(g +r—d). Now it easily checked that

<gsd<gH 1+ !
n r— —
g g R

r—1
m<g<:)7g+r<d7

and both conditions are satisfied because of the assumptions on d. This implies
that g > max{n,d —n} in any of the two cases, hence pseff O-faces are not
defined.

e BN faces in dimension g — 1 and subordinate faces coexist if only if d = 2g — 2
and n = g — 1, in which case they are equal.

Indeed, if we are in the numerical range of Theorem 6.2, then n = g — 1 and

d <2g — 2. On the other hand, if we are in the numerical range of Theorem
5.6, then d > gon,_;(C) = 2g — 2 (see Lemma 3.6); hence we must have d =
2g — 2 and n = g — 1. In this case, we have that

E,' N tPseffy_l(ng_z) = tAJZ::(ng_z) = Q,' N tPSfog_l(ng_z),

for any 1 <i<g—1. Even more is true, namely that since CZJ;I =
I'yy-2-i(|Kc|), we have that I'; = Y; forany 0 <i < g — 1.
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e AJ rays can coexist with subordinate faces if and only if p := p(g,r,d) =0,
in which case the Abel-Jacobi ray cone([C}]) is equal to the subordinate edge
cone([T4(I)]), where [ is a linear system of degree d and dimension r.

Indeed, suppose that a AJ ray cone([C}]) C "Pseff,,(Cy) coexists with the
subordinate faces of ‘Pseff,,,(Cy). Then it must happen that d > gon,. ,(C),
which using that C is Brill-Noether general, translates into

d:rg+p+r2 (r+p)g +r+p.
r+1 r+p+1

Now it is easy to see, using that p > 0 because C is a Brill-Noether general
curve, that the above inequality is satisfied if and only if p = 0. In this case,
we claim that any subordinate variety I'y = I'y(I) where [ is a g/, (as in Prop-
osition 5.3) is a fiber of «; and an irreducible component of CJ, and C} is nu-
merically equivalent to a positive multiple of I'y. Indeed, since p = 0 and C is
a Brill-Noether general curve, C;"! = (), which implies that any linear system |
of dimension r and degree d is a complete linear system |L| associated to some
L e WJ(C), and clearly T'y(|L|) = a;'(L). Moreover, I'y(|L|) has contractibil-
ity index with respect to o, equal to r (since it has dimension r and it is a fiber
of 0y4), hence it is an irreducible component of C); by Fact 3.8(i). Conversely,
any irreducible component of C} is of the form I'y(|L|) for some L € W;(C).
Since the class of I'y(|L|) does not depend on the chosen L € W;](C), we con-
clude that [C}] is a positive multiple of [I'].

7. HYPERELLIPTIC CURVES

The aim of this section is to describe the tautological Abel-Jacobi faces in
Pseff,(Cy) for C a hyperelliptic curve. We will assume throughout this section
that d < 2g — 2 since in the case d > 2g — 2 we have a complete description of
the tautological Abel-Jacobi faces in Theorem 4.2.

A crucial role is played by Brill-Noether varieties for hyperelliptic curves,
which we now study.

PROPOSITION 7.1. Let C be a hyperelliptic curve of genus g > 2. Fix integers d
and r such that 1 < d < 2g —2 and max{0,d — g+ 1} <r < 4. Then C}, is irre-
ducible of dimension d — r and its class is a positive multiple of

(7.1) )3 (d_li_g) {Zkor,;;'

k=0

Note that the assumption on r descends from the theorems of Riemann—Roch
and Clifford, which assure that max{0,d — g} < dim|D| < 4 for any D € C,.

ProOOF. We will denote by g} the hyperelliptic linear series on C, by O¢(g}) its
associated line bundle and by : the hyperelliptic involution on C.
Let us distinguish two cases, according to whether or not d < g.
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If d < g then any g/, on C is of the form rg} + pi + -+ - + pa—2s, Where py, ...,
Pa—2 are points of C such that no two of them are conjugate under the hyperel-
liptic involution (see [ACGH, p. 13]). Therefore, C} is the image of the finite mor-
phism

G x Cd72r - Cd
(E,D) — E +1(E) + D,

from which we deduce that C) is irreducible of dimension d —r. Moreover,
the class [C}] is a positive multiple (depending on its scheme-structure) of
A2 (Ty,(rgl)), where 4 is the push operator of [BKLV17, Def. 2.2] and
[, (rg}) is the subordinate variety of (5.1). Combining Facts 5.1 and [BKLV17,
Fact 2.9(ii)], one can easily prove by induction on 0 < i that

i I g i xR
Ay =13 (")
k=0 :

which for i = d — 2r gives the desired formula. N

If d > g then, using the isomorphism W;(C) = Wzrgidzt 9°1(C) obtained by
sending L into wc ® L~' and the fact that Wzrg_:‘;tgd_ '(C) is irreducible of dimen-
sion equal to 29 —2 —d —2(r —d + g — 1) = d — 2r by what proved in the pre-
vious case for C;;fl; _QJI, we get that W/ (C) is irreducible of dimension equal to
d —2r. Hence C} is irreducible of dimension d —r by Fact 3.8(i). Moreover,
an effective degree-d divisor D on C belongs to CJ if and only if wc(—D) €
W;L]_fl;gc,_ 1(C), which by the previous case is equivalent to saying that wc(—D)
= Oc((r—d+g—1)g})(E) for some E € Cy_s,. Using that wc = Oc((g — 1)g1),
we conclude that

DeCies D+Ee(d—r)g) forsomeE e Cy o

Therefore, the class of C) is a positive multiple of the subordinate variety
[y((d — r)gi) whose class is given by (7.1) according to Fact 5.1. O

COROLLARY 7.2. Let C be a hyperelliptic curve of genus g > 2 and fix integers
d > 1 and n such that 0 < d —n < n < g (which implies that d < 2g — 2). For any
0 <i <d — n, consider the embedding \y; : Cy_; — C, defined by (D) = D + ipy,
where pg is a fixed point of C. Then the subvariety

Y/ =y (CI) C Cy

1

is irreducible of dimension n, its class is tautological and it is equal, up to a positive
multiple, to

d—n—i _ k+i0d7n7i7k
2 )7 = AR A AR
(72) Y4 ,;( k )(d—n—i—k)!’

and its image oq(Y}") in Pic?(C) has dimension 2n — d + .
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Note that the subvarieties YiH depend on the choice of the base point p, but
their classes [Y7], which coincide with [Y;]” up to positive multiples, are inde-
pendent of this choice.

PrOOF. Note that C§~"" is an irreducible subvariety of C,_; of dimension n by
Proposition 7.1, whence T,H is an irreducible subvariety of C; of dimension 7.
The class of YZ.H can be computed, up to a positive multiple, starting from
(7.1) in the same way as formula (5.2) is obtained in Proposition 5.3. Finally,
the dimension of acd(YiH ) can be computed similarly to what was done in Propo-
sition 6.1. O

Using the subvarieties constructed in Proposition 5.3 and the ones constructed
in Corollary 7.2, we can now describe tautological Abel-Jacobi faces for hyper-
elliptic curves.

THEOREM 7.3. Let C be a hyperelliptic curve of genus g > 2 and fix integers
d > 1 and n such that 0 < n,d — n < g (which implies that d < 2g — 2).

(1) Assume that d > 2n.

For any 0 < i < min{n, g}, consider the classes [I';] € R,(Cy) given by (5.2)
and set Ziy1 = {[[y],...,[Ti]> C Ry(Cy). Then, for any 1 <r <n, ‘Al (Cy)
is a non-trivial face, is equal to %,,1_, n 'Pseft,(Cy) and it is a perfect face
of dimension n + 1 — r. Hence, the following chain
(7.3) 2 N Pseff, (Cy) C Ty n 'Psefl, (Cy)

C - CX,n "Pseff,(Cy) C "Pseff,(Cy)
is a maximal chain of perfect non-trivial faces of ‘Pseff,(Cy).
(1) Assume that d < 2n.

For any 0 < i < d — n, consider the classes [Y;|" € R,(Cy) given by (7.2)
and set Q1| = o)™, Y™y € Ry(Cy). Then ‘A (Cq) is a non-
trivial face if and only if 1 <r <d —n, in which case ‘AJ)(Cy) is equal to
QI 0 'Psefl,,(Cy) and it is a perfect face of dimension d —n+1—r.
Hence, the following chain

(7.4)  Qff A 'Pseff,(Cy) € QI A 'Pseff,(C,)
- QA 'Pseff,(Cy) C 'Pseff,(Cy)

is a maximal chain of perfect non-trivial faces of ‘Pseff,(Cy).
The dual chain of both the chains in (7.3) and (7.4) is equal to

(7.5) 0"~ 'Nef"(Cy) € 0"~ 'Nef"(Cy)
C - gEmax{l2n=dtl} S tNef" () C TNef”(Cy).

Note that the faces in (7.3) are the subordinate faces introduced in Theorem
5.6, while the faces in (7.5) are the nef f-faces introduced after Proposition 3.21.
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The faces of (7.4) are new, and they will be called hyperelliptic BN(=Brill-
Noether) faces. Note that

cone([C4™"]) = Qff A Pseff,(Cy)

is an edge (i.e. a perfect extremal ray) of 'Pseff,(C,), which we call the hyper-
elliptic BN(=Brill-Noether) edge.

Note that from Proposition 3.12(ii) it follows that the hyperelliptic BN
edge cone([CY™]) is also an extremal ray of the entire (non-tautological) cone

¢

Pseff,,(Cy), although we do not know if it is an edge of the entire cone.

PRrROOF. Part (i) follows from Theorem 5.6, using that gon,(C) = 2n for C hy-
perelliptic and n < g by Lemma 3.6.

Let us now prove part (ii). Using that d — n < n < g, Proposition 3.20(i) gives
that

(7.6) dim(0=""17"")+ = codim """ = max{d —n+ 1 — r,0},

which, together with Proposition 3.21(i), implies that ‘AJ (C,) is trivial unless
1 <r < d — n. Therefore, from now until the end of the proof, we fix an index r
satisfying the above inequalities.

Consider the irreducible n-dimensional tautological subvarieties {Yé" e
Y 1 of C; constructed in Corollary 7.2. Applying Lemma 5.4 and using (7.6),
we get that {[X]”, ..., [Ys_,]"} are linearly independent in R,(C,) and that, for
any 1 <i<d—n,

(QH) 1 _ 022n—d+i,n
; .
Combining this with Proposition 3.21(i), we get that

‘AT (Cq) = Q. 0 'Pseff, (Cy).

Since [Y;]"” are Q-effective classes, we get the following inclusions of cones
(7.7)  cone([Xo], ..., [Yan )y C QM | A 'Pseff,(Cs) QM. ..

Since {[Yo]”,...,[Y4n_]""} is a basis of Q7 ., ., we infer from the inclusions
(7.7) that Q| , A 'Pseff,(C,) is a full dimensional cone in Qf ., and
hence it has dimension d — n + 1 — r = dim(0>""'""")". We can therefore apply
Proposition 3.21(ii) and get that 'AJ’ (C,) is a perfect face of dimension d — n +
1 — r whose dual face is equal to 0=~ ~ !Nef” (Cy). 0

ACKNOWLEDGMENTS. We would like to thank Dawei Chen, Izzet Coskun and Brian Lehmann for
helpful discussions. Research partially supported by INJAM (GNSAGA) and by the MIUR na-
tional projects “Geometria delle varieta algebriche”” PRIN 2010-2011 and ““Spazi di moduli e appli-
cazioni”” FIRB 2012.



EFFECTIVE CYCLES ON THE SYMMETRIC PRODUCT OF A CURVE, II. THE ABEL—JACOBI FACES 877

[ACGH]

[BKLV17]

[BFJOY]
[CC15]
[DELV11]
[DIV13]
[Fulll]
[FL16]
[FL17a]
[FL17b)
[FL81]
(Gie82]
[KL72]
[KL74]
[Kou93]
[Mar67]
[Musl1a]
[Mus11b]
[Oss14]
[Ott12]

[Ott16]

REFERENCES

A. ARBARELLO - M. CORNALBA - P. A. GRIFFITHS - J. HARRIS, Geometry
of algebraic curves. Vol. I. Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences|, 267. Springer-Verlag, New
York, 1985.

F. BasTianeLLI - A. F. Lopez - A. Kouvipakis - F. Viviani, Effective
cycles on the symmetric product of a curve, I: the diagonal cone. (with an
appendix of B. Moonen). Trans. Amer. Math. Soc. 372 (2019), no. 12, 8709—
8758.

S. Boucksom - C. FAVRE - M. JoNssON, Differentiability of volumes of divisors
and a problem of Teissier. J. Algebraic Geom. 18 (2009), no. 2, 279-308.

D. CHEN - 1. CoskUN, Extremal higher codimension cycles on moduli spaces of
curves. Proc. Lond. Math. Soc. (3) 111 (2015), no. 1, 181-204.

O. DEBARRE - L. EIN - R. LAZARSFELD - C. VOISIN, Pseudoeffective and nef
classes on abelian varieties. Compositio Math. 147 (2011), 1793-1818.

O. DEBARRE - Z. JIANG - C. VOISIN, Pseudo-effective classes and pushforwards.
Pure Appl. Math. Q. 9 (2013), no. 4, 643-664.

M. FULGER, The cones of effective cycles on projective bundles over curves.
Math. Z. 269 (2011), no. 1-2, 449-459.

M. FULGER - B. LEHMANN, Morphisms and faces of pseudo-effective cones.
Proc. Lond. Math. Soc. 112 (2016), no. 4, 651-676.

M. FULGER - B. LEHMANN, Positive cones of dual cycle classes. Algebr. Geom.
4 (2017), no. 1, 1-28.

M. FULGER - B. LEHMANN, Kernels of numerical pushforwards. Adv. Geom. 17
(2017), no. 3, 373-378.

W. FuLTON - R. LAZARSFELD, On the connectedness of degeneracy loci and
special divisors. Acta Math. 146 (1981), no. 3—4, 271-283.

D. GIESEKER, Stable curves and special divisors: Petri’s conjecture. Invent.
Math. 66 (1982), no. 2, 251-275.

S. L. KLEIMAN - D. LAKSov, On the existence of special divisors. Amer. J.
Math. 94 (1972), 431-436.

S. L. KLEIMAN - D. Laksov, Another proof of the existence of special divisors.
Acta Math. 132 (1974), 163-176.

A. KOUVIDAKIS, Divisors on symmetric products of curves. Trans. Amer. Math.
Soc. 337 (1993), no. 1, 117-128.

H. H. MARTENS, On the varieties of special divisors on a curve. J. Reine Angew.
Math. 227 (1967), 111-120.

Y. MUSTOPA, Residuation of linear series and the effective cone of C,;. Amer. J.
Math. 133 (2011), no. 2, 393-416.

Y. Mustopa, Kernel bundles, syzygies of points, and the effective cone of Cy_».
Int. Math. Res. Not. IMRN 2011, no. 6, 1417-1437.

B. OSSERMAN, A simple characteristic-free proof of the Brill-Noether theorem.
Bull. Braz. Math. Soc. (N.S.) 45 (2014), no. 4, 807-818.

J. C. OTTEM, Ample subvarieties and g-ample divisors. Adv. Math. 229 (2012),
no. 5, 2868-2887.

J. C. OTTEM, On subvarieties with ample normal bundle. J. Eur. Math. Soc.
(JEMS) 18 (2016), no. 11, 2459-2468.



878 F. BASTIANELLI ET AL.

[Ott15] J. C. OTTEM, Nef cycles on some hyperkahler fourfolds. Preprint
arXiv:1505.01477.

[Pac03] G. PACIENZA, On the nef cone of symmetric products of a generic curve. Amer.
J. Math. 125 (2003), no. 5, 1117-1135.
[Pet09] T. PETERNELL, Submanifolds with ample normal bundles and a conjecture of

Hartshorne. In Interactions of classical and numerical algebraic geometry, Con-
temporary Mathematics, vol. 496 (American Mathematical Society, Providence,
RI, 2009), 317-330.

[Voil0] C. VoisiN, Coniveau 2 complete intersections and effective cones. Geom. Funct.
Anal. 19 (2010), 1494-1513.

Received 4 October 2019,
and in revised form 22 September 2020

Francesco Bastianelli

Dipartimento di Matematica

Universita degli Studi di Bari Aldo Moro
Via Edoardo Orabona 4

70125 Bari, Italy
francesco.bastianelli@uniba.it

Alexis Kouvidakis

Department of Mathematics and Applied Mathematics
University of Crete

Voutes University Campus

70013 Heraklion, Greece

kouvid@math.uoc.gr

Angelo Felice Lopez

Dipartimento di Matematica e Fisica
Universita di Roma Tre

Largo San Leonardo Murialdo 1
00146 Roma, Italy
lopez@mat.uniroma3.it

Filippo Viviani

Dipartimento di Matematica e Fisica
Universita di Roma Tre

Largo San Leonardo Murialdo 1
00146 Roma, Italy
filippo.viviani@gmail.com


http://arxiv.org/abs/1505.01477

	mkACGH
	mkBFJ09
	mkBKLV17
	mkCC15
	mkDELV11
	mkDJV13
	mkFL16
	mkFL17a
	mkFL17b
	mkFL81
	mkFul11
	mkGie82
	mkKL72
	mkKL74
	mkKou93
	mkMar67
	mkMus11a
	mkMus11b
	mkOss14
	mkOtt12
	mkOtt16
	mkEnd-page
	mkOtt15
	mkPac03
	mkPet09
	mkVoi10

