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We compute the infinitesimal deformations of the restricted Melikian Lie algebra in
characteristic 5.
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1. INTRODUCTION

The restricted Melikian Lie algebra M is a restricted simple Lie algebra of
dimension 125 defined over the prime field of characteristic p = 5. It was introduced
by [6], and it is the only “exceptional” simple Lie algebra which appears in the
classification of restricted simple Lie algebras over a field of characteristic p �= 2� 3
(see 1 for p > 7 and 7, for p = 5� 7). The classification problem remains still open
in characteristic 2 and 3, where several “exceptional” simple Lie algebras are known
(see 9, p. 209).

This article is devoted to the study of the infinitesimal deformations of the
restricted Melikian Lie algebra. The infinitesimal deformations have been computed
for the other restricted simple Lie algebras in characteristic p ≥ 5. [8] proved that
the simple Lie algebras of classical type are rigid, in analogy of what happens
in characteristic zero. On the other hand, the author computed the infinitesimal
deformations of the four families (Witt–Jacobson, Special, Hamiltonian, Contact) of
restricted simple algebras of Cartan-type (see [10, 11]), showing that these are never
rigid.

By standard facts of deformation theory, the infinitesimal deformations of a
Lie algebra are parametrized by the second cohomology of the Lie algebra with
values in the adjoint representation. Assuming the notations from Section 2 about
the restricted Melikian algebra M as well as the definition of the squaring operator
Sq, we can state the main result of this article.
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DEFORMATIONS OF THE RESTRICTED MELIKIAN LIE ALGEBRA 1851

Theorem 1.1. The infinitesimal deformations of the Melikian algebra M are given by

H2�M�M� = �Sq�1��F
2⊕

i=1

�Sq�Di��F
2⊕

i=1

�Sq�D̃i��F �

The strategy of our proof consists in exploiting the Hochschild–Serre spectral
sequence relative to the subalgebra of negative elements of M . A similar strategy has
been used by [5] in order to prove that the Melikian algebra does not admit filtered
deformations. As a byproduct of our proof, we give a new proof (see Theorem 3.1)
of the vanishing of the first cohomology group of the adjoint representation (5,
Proposition 2.2.13).

The referee suggested another possible approach to prove the above Main
Theorem. Namely, the restricted Melikian algebra M can be realized as a subalgebra
of the restricted contact algebra K�5� of rank 5 (see 6) in such a way that the
negative elements of M coincide with the negative elements of K�5�. This allows to
reduce the above result to the analogous result for the contact algebras (see 11).

The article is organized as follows. In Section 2 we recall, in order to fix the
notations, the basic properties of the restricted Melikian algebra, the Hochschild–
Serre spectral sequence and the squaring operators. In Section 3 we prove that
the cocycle appearing in the Main Theorem 1.1 are independent in H2�M�M�, and
we outline the strategy to prove that they generate the whole second cohomology
group. Each of the remaining four sections is devoted to carry over one of the four
steps of this strategy.

2. NOTATIONS

2.1. The Restricted Melikian Algebra M

We fix a field F of characteristic p = 5. Let A�2� = F�x1� x2�/�x
p
1 � x

p
2� be the

F -algebra of truncated polynomials in 2 variables, and let W�2� = DerFA�2� the
restricted Witt–Jacobson Lie algebra of rank 2. The Lie algebra W�2� is a free
A�2�-module with basis D1 �= �

�x1
and D2 �= �

�x2
. Let W̃�2� be a copy of W�2�, and

for an element D ∈ W�2� we indicate with D̃ the corresponding element inside W̃�2�.
The Melikian algebra M is defined as

M = A�2�⊕W�2�⊕ W̃�2��

with Lie bracket defined by the following rules (for all D�E ∈ W�2� and f� g ∈ A�2�):

�D� Ẽ� �= ˜�D� E�+ 2 div�D�Ẽ�

�D� f� �= D�f�− 2 div�D�f�

�f1D̃1 + f2D̃2� g1D̃1 + g2D̃2� �= f1g2 − f2g1�

�f� Ẽ� �= fE�

�f� g� �= 2�gD2�f�− fD2�g��D̃1 + 2�fD1�g�− gD1�f��D̃2�
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1852 VIVIANI

where div�f1D1 + f2D2� �= D1�f1�+D2�f2� ∈ A�2�. The Melikian algebra M is a
restricted simple Lie algebra of dimension 125 (see 9, Section 4.3) with a �-grading
given by (for all D�E ∈ W�2� and f ∈ A�2�):

degM�D� �= 3 deg�D��

degM�Ẽ� �= 3 deg�E�+ 2�

degM�f� �= 3 deg�f�− 2�

The lowest terms of the gradation are

M−3 = FD1 + FD2� M−2 = F · 1� M−1 = FD̃1 + FD̃2� M0 =
∑

i�j=1�2

FxiDj�

while the highest term is M23 = x41x
4
2�FD1 + FD2�. Moreover, M has a �/3�-grading

given by

M1̄ �= A�2�� M0̄ �= W�2�� M2̄ �= W̃�2��

The Melikian algebra M has a root space decomposition with respect to a canonical
Cartan subalgebra.

Proposition 2.1.

(a) TM �= �x1D1�F ⊕ �x2D2�F is a maximal torus of M (called the canonical maximal
torus).

(b) The centralizer of TM inside M is the subalgebra

CM = TM ⊕ �x21x22�F ⊕ �x41x32D̃1�F ⊕ �x31x42D̃2�F �

which is hence a Cartan subalgebra of M (called the canonical Cartan subalgebra).
(c) Let 	M �= Hom�5

�
⊕2

i=1�xiDi��5
��5� where �5 is the prime field of F . There is a

Cartan decomposition M = ⊕

∈	M

M
, where every summand M
 has dimension 5
over F . Explicitly, 

xa ∈ M�a1−2�a2−2��

xaDi ∈ M�a1−�1i�a2−�2i�
�

x̃aDi ∈ M�a1+2−�1i�a2+2−�2i�
�

In particular, if E ∈ M�
1�
2�
then degE ≡ 3�
1 + 
2� mod 5.

Proof. See [9, Section 4.3]. �

2.2. Cohomology of Lie Algebras

If � is a Lie algebra over a field F and M is a �-module, then the
cohomology groups H∗���M� can be computed from the complex of n-dimensional
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DEFORMATIONS OF THE RESTRICTED MELIKIAN LIE ALGEBRA 1853

cochains Cn���M� (n ≥ 0), that are alternating n-linear functions f � �n��� → M ,
with differential d � Cn���M� → Cn+1���M� defined by

df�
0� � � � � 
n� =
n∑

i=0

�−1�i
i · f�
0� � � � � 
̂i� � � � � 
n�

+ ∑
p<q

�−1�p+qf��
p� 
q�� 
0� � � � � 
̂p� � � � � 
̂q� � � � 
n�� (2.1)

where the sign ˆ means that the argument below must be omitted. Given f ∈
Cn���M� and � ∈ �, we denote with f� the restriction of f to � ∈ �, that is the element
of Cn−1���M� given by

f��
0� � � � � 
n−1� �= f��� 
0� � � � � 
n−1��

With this notation, the above differential satisfies the following useful formula
(for any � ∈ � and f ∈ Cn���M�):

d�� · f� = � · �df�� (2.2)

�df�� = � · f − d�f��� (2.3)

where each Cn���M� is a �-module by means of the action

�� · f��
1� � � � � 
n� = � · f�
1� � � � � 
n�−
n∑

i=1

f�
1� � � � � ��� 
i�� � � � 
n�� (2.4)

As usual we indicate with Zn���M� the subspace of n-cocycles and with Bn���M�
the subspace of n-coboundaries. Therefore, Hn���M� �= Zn���M�/Bn���M�.

A useful tool to compute cohomology of Lie algebras is the Hochschild–Serre
spectral sequence relative to a subalgebra. Given a subalgebra � < �, one can define
a decreasing filtration �F jCn���M��j=0�����n+1 on the space of n-cochains:

FjCn���M� = �f ∈ Cn���M� 
 f�
1� � � � � 
n� = 0 if 
1� � � � � 
n+1−j ∈ ���

This gives rise to a spectral sequence converging to the cohomology Hn���M�, whose
first level is equal to (see 4):

E
p�q
1 = Hq��� Cp��/��M�� �⇒ Hp+q���M�� (2.5)

In the case where � is an ideal of � (which we indicate as � � �), the above spectral
sequence becomes

E
p�q
2 = Hp��/�� Hq���M�� �⇒ Hp+q���M�� (2.6)

Moreover, for the second page of the first spectral sequence (2.5), we have the
equality

E
p�0
2 = Hp��� ��M�� (2.7)
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1854 VIVIANI

where H∗��� ��M� are the relative cohomology groups defined (by 2) from the
subcomplex Cp��� ��M� ⊂ Cp���M� consisting of cochains orthogonal to �, that is,
cochains satisfying the two conditions:

f
� = 0� (2.8)

df
� = 0 or equivalently � · f = 0 for every � ∈ �� (2.9)

Note that in the case where � � �, the equality (2.7) is consistent with the second
spectral sequence (2.6) because in that case we have Hp��� ��M� = Hp��/��M��.

Suppose that a torus T acts on both � and M in a way that is compatible
with the action of � on M , which means that t · �g ·m� = �t · g� ·m+ t · �g ·m� for
every t ∈ T , g ∈ � and m ∈ M . Then the action of T can be extended to the space of
n-cochains by

�t · f��
1� � � � � 
n� = t · f�
1� � � � � 
n�−
n∑

i=1

f�
1� � � � � t · 
i� � � � � 
n��

It follows easily from the compatibility of the action of T and formula (2.3), that
the action of T on the cochains commutes with the differential d. Therefore, since
the action of a torus is always completely reducible, we get a decomposition in
eigenspaces

Hn���M� = ⊕

∈	

Hn���M�
� (2.10)

where 	 = HomF �T� F� and Hn���M�
 = ��f� ∈ Hn���M� 
 t · �f� = 
�t��f� if t ∈ T�.
A particular case of this situation occurs when T ⊂ � and T acts on � via the adjoint
action and on M via restriction of the action of �. It is clear that this action is
compatible and moreover the above decomposition reduces to

Hn���M� = Hn���M�0�

where 0 is the trivial homomorphism (in this situation, we say that the cohomology
reduces to homogeneous cohomology). Indeed, if we consider an element f ∈
Zn���M�
, then by applying formula (2.3) with � = t ∈ T , we get

0 = �df�t = t · f − d�ft� = 
�t�f − d�ft��

from which we see that the existence of a t ∈ T such that 
�t� �= 0 forces f to be a
coboundary.

Now suppose that � and M are graded and that the action of � respects
these gradings, which means that �d ·Me ⊂ Md+e for all e� d ≥ 0. Then the space of
cochains can also be graded: a homogeneous cochain f of degree d is a cochain
such that f��e1 × · · · × �en� ⊂ M∑

ei+d. With this definition, the differential becomes
of degree 0, and therefore we get a degree decomposition

Hn���M� = ⊕
d∈�

Hn���M�d� (2.11)
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DEFORMATIONS OF THE RESTRICTED MELIKIAN LIE ALGEBRA 1855

Finally, if the action of T is compatible with the grading, in the sense that T acts via
degree 0 operators both on � and on M , then the above two decompositions (2.10)
and (2.11) are compatible and give rise to the refined weight-degree decomposition

Hn���M� = ⊕

∈	

⊕
d∈�

Hn���M�
�d� (2.12)

We will use frequently the above weight-degree decomposition with respect
to the action of the maximal torus TM ⊂ M0 of the restricted Melikian algebra M
(see Proposition 2.1).

2.3. Squaring Operation

There is a canonical way to produce 2-cocycles in Z2��� �� over a field of
characteristic p > 0, namely, the squaring operation (see 3). Given a derivation � ∈
Z1��� �� (inner or not), one defines the squaring of � to be

Sq����x� y� =
p−1∑
i=1

��i�x�� �p−i�y��

i!�p− i�! ∈ Z2��� ��� (2.13)

where �i is the i-iteration of �. In [3] it is shown that �Sq���� ∈ H2��� �� is an
obstruction to integrability of the derivation �, that is, to the possibility of finding
an automorphism of � extending the infinitesimal automorphism given by �.

3. STRATEGY OF THE PROOF OF THE MAIN THEOREM

First of all, we show that the five cocycles �Sq�D̃i��i=1�2, �Sq�1��, �Sq�Di��i=1�2

are independent in H2�M�M�. Observe that the first two cocycles have degree −5,
the third has degree −10, and the last two have degree −15. Therefore, according
to the decomposition (2.11), it is enough to show that the first two are independent,
the third is nonzero, and the last two are independent in H2�M�M�.

To prove the independence of the first two cocycles, we observe that (for i �= j)

Sq�D̃i��xiDj� xiD̃j� = Di� (3.1)

while for a cochain g ∈ C1�M�M�0�−5, we have that

dg�xiDj� xiD̃j� = �xiDj� g�xiD̃j��− �xiD̃j� g�xiDj��− g��xiDj� xiD̃j�� = 0� (3.2)

since g�xiDj� = 0 by degree reasons, g�xiD̃j� = 0 by degree and homogeneity reasons
and �xiDj� xiD̃j� = 0.

The third cocyle is nonzero because{
Sq�1��xi� xix

2
jDi� = 2Di�

Sq�1��xi� x
3
jDj� = Di�

(3.3)
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1856 VIVIANI

while for a cochain g ∈ C1�M�M�0�−10 we have that{
dg�xi� xix

2
jDi� = −g�xix

2
j ��

dg�xi� x
3
jDj� = −g�xix

2
j ��

(3.4)

Finally, the independence of the last two cocycles follows from{
Sq�Di��xiDj� x

4
i xjDj� = Dj�

Sq�Di��xiDj� x
3
i x

2
jDj� = 0�

(3.5)

together with the fact that for a cochain g ∈ C1�M�M�0�−15 we have that{
dg

(
xiDj� x

4
i x

2
jDi

) = [
xiDj� g

(
x4i xjDj

)]
�

dg
(
xiDj� x

3
i x

2
jDj

) = −g
([
xiDj� x

3
i x

2
jDj

]) = −2g
(
x4i xjDj

)
�

(3.6)

The remaining of this article is devoted to show that the above five cocycles
generate the cohomology group H2�M�M�, as stated in the Main Theorem 1.1.
We outline here the strategy of the proof that will be carried over in the next
sections. The proof is divided in five steps:

Step I: We prove in Corollary 4.4 that

H2�M�M� = H2�M�M<0�M��

Step II: We prove in Proposition 5.1 that

H2�M�M<0�M� ⊂ H2�M≥0�M−3��

where M≥0 acts on M−3 = �D1� D2�F via projection onto M≥0/M≥1 = M0 followed by
the adjoint representation of M0 onto M−3.

Step III: We prove in Corollary ?? that

H2�M≥0�M−3� ⊂
2⊕

i=1

�Sq�D̃i��F ⊕H2�M≥1�M−3�
M0�

where M≥1 acts trivially on M−3.

Step IV: We prove in Proposition 7.1 that

H2�M≥1�M−3�
M0 =

2⊕
i=1

�Sq�Di��F ⊕ �Sq�1��F �

As a byproduct of our Main Theorem, we obtain a new proof of the following
result (5, Proposition 2.2.13; see also 9, Chapter 7).

Theorem 3.1 [5]. H1�M�M� = 0.
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DEFORMATIONS OF THE RESTRICTED MELIKIAN LIE ALGEBRA 1857

Proof. The spectral sequence (4.1), together with Proposition 4.1, gives that

H1�M�M� = E1�0
2 = H1�M�M<0�M��

The Proposition 5.1 gives that H1�M�M<0�M� ⊂ H1�M≥0� M−3�� Using the spectral
sequence (6.1), together with Propositions 6.1 and 6.2, we get the vanishing of this
last group. �

4. STEP I: REDUCTION TO M<0-RELATIVE COHOMOLOGY

In this section, we carry over the first step outlined in Section 3. To this aim,
we consider the homogeneous Hochschild–Serre spectral sequence associated to the
subalgebra M<0 < M (see Section 2.2):(

Er�s
1

)
0
= Hs�M<0� C

r�M/M<0�M��0 ⇒ Hr+s�M�M�0 = Hr+s�M�M�� (4.1)

We adopt the following notation: given elements E1� � � � � En ∈ M<0 and G ∈ M ,
we denote with �GE1�����En

the cochain of Cn�M<0�M� whose only nonzero values are

�GE1�����En
�E
�1�� � � � � E
�n�� = sgn�
�G�

for any permutation 
 ∈ Sn.

Proposition 4.1. In the above spectral sequence (4.1), we have(
E0�1

1

)
0
= (

E0�2
1

)
0
= 0�

Proof. Consider the Hochschild–Serre spectral sequence associated to the ideal
M−3 � M≤−2:

Er�s
2 = Hr�M≤−2/M−3� H

s�M−3�M�� ⇒ Hr+s�M≤−2�M�� (4.2)

The lowest term M−3 = �D1� D2�F acts on M = A�2�⊕W�2�⊕ W̃�2� via its
natural action on A�2� and via adjoint representation on W�2� and W̃�2�. Hence,
according to [10, Proposition 3.4 and Corollary 3.5], we have that (for s = 0� 1� 2)

Hs�M−3�M� =



M<0 if s = 0�⊕
G∈M<0

〈
�
x41G

D1
� �

x42G

D2

〉
F

if s = 1�⊕
G∈M<0

〈
�
x41x

4
2G

D1�D2

〉
F

if s = 2�

Moreover, M≤−2/M−3 = �1�F acts on the above cohomology groups Hs�M3�M� via
its adjoint action on M<0 = �1� ⊕ �D1� D2� ⊕ �D̃1� D̃2�, that is,

�1� 1� = 0� �1� Di� = 0� �1� D̃i� = Di�
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1858 VIVIANI

Hence, using that the above Hochschild–Serre spectral sequence (4.2) is degenerate
since M≤−2/M−3 = �1�F has dimension 1, we deduce that

Hs�M≤−2�M� =



M−3 ⊕M−2 if s = 0�⊕
G∈M−3⊕M−2

〈
�
x41G

D1
� �

x42G

D2

〉
F

⊕
H∈M−2⊕M−1

��H1 �F if s = 1�⊕
G∈M−3⊕M−2

〈
�
x41x

4
2G

D1�D2

〉
F

⊕
H∈M−2⊕M−1

〈
�
x41H

1�D1
� �

x42H

1�D2

〉
F

if s = 2�

Finally, consider the homogeneous Hochschild–Serre spectral sequence
associated to the ideal M≤−2 � M<0:

�Er�s
2 �0 = Hr�M<0/M≤−2� H

s�M≤−2�M��0 ⇒ Hr+s�M<0�M�0� (4.3)

From the explicit description of above, one can easily check that the only nonzero
terms and nonzero maps of the above spectral sequence that can contribute to
Hs�M<0�M�0 for s = 1� 2 are

(
E0�1

2

)
0
= 〈

�11
〉
F
→ (

E2�0
2

)
0
= 〈

�1
D̃1�D̃2

〉
F
�

(
E0�2

2

)
0
=

2⊕
i=1

〈
�
x4i
Di�1

〉
F
→ (

E2�1
2

)
0
=

2⊕
i=1

〈
�
x4i

Di�D̃1�D̃2

〉
F
�

where the maps are given by the differentials. Using the relation �D̃1� D̃2� = 1, it is
easy to see that all the above maps are isomorphisms, and hence the conclusion
follows. �

In the next proposition, we need the following lemma.

Lemma 4.2. We have that

H1�M<0�M� = ⊕
k�h

〈
�
x4kDh

Dk

〉
F

⊕
i �=j

〈
�
Dj

D̃i

〉
F
⊕ 〈

�
D1

D̃1
− �

D2

D̃2

〉
F
�

Proof. From the (nonhomogeneous) Hochschild–Serre spectral sequence
associated to the ideal M≤−2 � M<0:(

Er�s
2

) = Hr�M<0/M≤−2� H
s�M≤−2�M�� ⇒ Hr+s�M<0�M��

we deduce the exact sequence

0 → H1�M<0/M≤−2�M
M≤−2�

→ H1�M<0�M� → H1�M≤−2�M�M<0/M≤−2
�−→ H2�M<0/M≤−2�M

M≤−2��
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DEFORMATIONS OF THE RESTRICTED MELIKIAN LIE ALGEBRA 1859

Using the computation of Hs�M≤−2�M� for s = 0� 1 from the Proposition 4.1, it is
easily seen that 

H1
(
M<0/M≤−2�M

M≤−2
) = ⊕

i�j��Dj

D̃i
�F

�ad�1��F
�

H1�M≤−2�M�M<0/M≤−2 = ⊕
h�k

〈
�
x4hDk

Dh

〉
F
⊕ 〈

�11
〉
F
�

H2�M<0/M≤−2�M
M≤−2� = 〈

�1
�D̃1�D̃2�

〉
F
�

Using the relation �D̃1� D̃2� = 1, it is easy to see that ���11� = �1
�D̃1�D̃2�

, which gives the
conclusion. �

Proposition 4.3. In the above spectral sequence (4.1), we have that �E1�1
2 �0 = 0�

Proof. We have to show the injectivity of the level 1 differential map

d �
(
E1�1

1

)
0
−→ (

E2�1
1

)
0
�

In the course of this proof, we adopt the following convention: given an element
f ∈ C1�M<0� C

s�M/M<0�M�, we write its value on D ∈ M<0 as fD ∈ Cs�M/M<0�M�.
We want to show, by induction on the degree of E ∈ M/M<0, that if

�df� = 0 ∈ H1�M<0� C
2�M/M<0�M��, then we can choose a representative f̃ of �f� ∈

H1�M<0� C
1�M/M<0�M�� such that f̃D�E� = 0 for every D ∈ M<0. So suppose that

we have already found a representative f such that fD�F� = 0 for every F ∈ M/M<0

of degree less than d and for every D ∈ M<0. First of all, we can find a representative
f̃ of �f� such that



f̃Di
�E� =

2∑
j=1

�
j
i x

4
i Dj for i = 1� 2�

f̃1�E� = 0�

f̃D̃1
�E� = �1D2 + �D1�

f̃D̃2
�E� = �2D1 − �D2�

(∗)

for everyE ∈ M of degree d. Indeed, by the induction hypothesis, the cocycle condition
for f is �fD�D′�E� = �D� fD′�E��− �D′� fD�E��− f�D�D′��E� for any D�D′ ∈M<0. On the
other hand, by choosing an element h ∈ C1�M/M<0�M� that vanishes on the
elements of degree less than d, we can add to f (without changing its cohomological
class neither affecting the inductive assumption) the coboundary �h whose value
on E are �hD�E� = �D� h�E��. Hence, for a fixed element E of degree d, the map
D �→ fD�E� gives rise to an element of H1�M<0�M� and, by Lemma 4.2, we can
chose an element h�E� as above such that the new cochain f̃ = f + �h verifies the
condition �∗� of above.
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1860 VIVIANI

Note that, by the homogeneity of f̃ , we have the following pairwise disjoint
possibilities for E:

�
j
i �= 0 for i = 1� 2 ⇒ E ∈ {

xjx
2
j+1� x

4
j xj+1Dj+1�

˜x3j x
3
j+1Dj�

˜x2j x
4
j+1Dj+1

}
�

�j �= 0 ⇒ E ∈ {
xjx

4
j+1� x

2
j+1Dj� x

4
j x

3
j+1Dj+1� x̃

3
jDj�

˜x2j xj+1Dj+1

}
�

� �= 0 ⇒ E ∈ {
x41x

3
2D1� x

3
1x

4
2D2�

˜x21x2D1�
˜x1x

2
2D2

}
�

Now we are going to use the condition that �df̃ � = 0 ∈ �E2�1
1 �0, that is df̃ = �g

for some g ∈ C2�M/M<0�M�0. Explicitly, for A�B ∈ M/M<0, we have that (for any
D ∈ M<0)

�gD�A� B� = �D� g�A� B��− g��D�A�� B�− g�A� �D� B��� (4.4)

df̃D�A� B� = f̃D��A� B��− �A� f̃D�B��+ �B� f̃D�A��− f̃�D�A��B�+ f̃�D�B��A�� (4.5)

where the last two terms in the first formula can be nonzero only if �D�A� ∈ M≥0

and �D� B� ∈ M≥0, respectively, where the last two terms in the second formula can
be nonzero only if �D�A� ∈ M<0 and �D� B� ∈ M<0, respectively.

Suppose first that �
j
i �= 0 for a fixed j and for i = 1� 2. Then it is

straightforward to check that for each E in the above list it is possible to find
two elements A�B ∈ M such that �A� B� = E, deg�B� = 0, and A does not belong
to the above list. Apply the above formulas for each such pair �A� B�. Taking into
account the inductive hypothesis on the degree and the homogeneity assumptions,
the formula (4.5) becomes

df̃Di
�A� B� = f̃Di

��A� B�� = f̃Di
�E� = �

j
i x

4
i Dj�

while the formula (4.4) gives

�gDi
�A� B� = �Di� g�A� B��− g��Di� A�� B��

The first term in the last expression is a derivation with respect to Di, and therefore
it cannot involve the monomial x4i Dj . The same is true for the second term as it
follows by applying the formulas (4.5) and (4.4) for the elements ad�Di�

k�A� (with
k = 1� � � � � p− 1) and B, and using the vanishing hypothesis:{

df̃Di
�ad�Di�

k�A�� B� = 0�

�gDi
�ad�Di�

k�A�� B� = �Di� g�ad�Di�
k�A�� B��− g�ad�Di�

k+1�A�� B��

Therefore, we conclude that �ji = 0, an absurd. The other cases �j �= 0 and � �= 0 are
excluded using a similar argument. �

Finally, we get the main result of this section.

Corollary 4.4. We have that

H2�M�M� = H2�M�M<0�M��
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DEFORMATIONS OF THE RESTRICTED MELIKIAN LIE ALGEBRA 1861

Proof. From the spectral sequence (4.1), using the vanishing of �E0�2
1 �0

(Proposition 4.1) and of �E1�1
1 �0 (Proposition 4.3), we get that

H2�M�M� = (
E2�0

�
)
0
= (

E2�0
2

)
0
= H2�M�M<0�M�� �

5. STEP II: REDUCTION TO M≥0-COHOMOLOGY

In this section, we carry over the second step of proof of the main theorem
(see Section 3).

Consider the action of M≥0 on M−3 = �D1� D2�F obtained via projection onto
M≥0/M≥1 = M0 followed by the adjoint representation of M0 onto M−3.

Proposition 5.1. We have that{
H1�M�M<0�M� ⊂ H1�M≥0�M−3��

H2�M�M<0�M� ⊂ H2�M≥0�M−3��

Proof. For every s ∈ �≥0, consider the map


s � C
s�M�M<0�M� → Cs�M≥0�M−3�

induced by the restriction to the subalgebra M≥0 ⊂ M and by the projection
M � M/M≥−2 = M−3. It is straightforward to check that the maps 
s commute
with the differentials, and hence they define a map of complexes. Moreover, the
orthogonality conditions with respect to the subalgebra M<0 give the injectivity of
the maps 
s. Indeed, on one hand, the condition (2.8) says that an element f ∈
Cs�M�M<0�M� is determined by its restriction to ∧sM≥0. On the other hand, the
condition (2.9) implies that the values of f on an s-tuple are determined, up to
elements of MM<0 = M−3, by induction on the total degree of the s-tuple.

The map 
0 is an isomorphism since

C0�M�M<0�M� = MM<0 = M−3 = C0�M≥0�M−3��

From this, we get the first statement of the proposition. Moreover, it is easily
checked that if g ∈ C1�M≥0�M−3� is such that dg ∈ C2�M�M<0�M�, then g ∈
C1�M�M<0�M�. This gives the second statement of the proposition. �

6. STEP III: REDUCTION TO M0-INVARIANT COHOMOLOGY

In this section, we carry over the third step of the proof of the Main Theorem
(see Section 3). To this aim, we consider the Hochschild–Serre spectral sequence
relative to the ideal M≥1 � M≥0:

Er�s
2 = Hr�M0� H

s�M≥1�M−3�� �⇒ Hr+s�M≥0�M−3�� (6.1)

The first line E∗�0
2 of the above spectral sequence vanish.
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1862 VIVIANI

Proposition 6.1. In the above spectral sequence (6.1), we have for every r ≥ 0

Er�0
2 = Hr�M0�M−3� = 0�

Proof. Observe that, since the canonical maximal torus TM is contained in M0,
we can restrict to homogeneous cohomology (see Section 2.2). But there are no
homogeneous cochains in Cr�M0�M−3�. Indeed the weights that occur in M−3 are
−�i while the weights that occur in M0 are 0 and �i − �j . Therefore the weights that
occur in M⊗k

0 have degree congruent to 0 modulo 5, and hence they cannot be equal
to −�i. �

Next, we determine the groups Er�1
2 = Hr�M0� H

1�M≥1�M−3�� for r = 1� 2 of
the above spectral sequence (6.1).

Proposition 6.2. In the above spectral sequence (6.1), we have that

Er�1
2 =

{
0 if r = 0�

�Sq�D̃1�� Sq�D̃2��F if r = 1�

where Sq�D̃i� (for i = 1� 2) is the restriction of Sq�D̃i� to M0 ×M2.

Proof. Using the Lemma 6.3 below, we have that

H1�M≥1�M−3� =
{
f ∈ C1�M1 +M2�M−3� 
 f�x̃1D1� = −f�x̃2D2�

}
�

Observe that, since the canonical maximal torus TM is contained in M0,
we can restrict to homogeneous cohomology (see Section 2.2). The vanishing of
E0�1

2 follows directly from the fact that there are no homogeneous cochains in
C1�M0� H

1�M≥1�M−3��.

The elements Sq�D̃i� for i = 1� 2 belong to H1�M0� H
1�M≥1�M−3�� and are

non-zero in virtue of the formulas (3.1) and (3.2). Moreover, it is easy to see that,
for homogeneity reasons, C1�M0� H

1�M≥1�M−3��0 is generated by Sq�D̃i� (i = 1� 2),
which gives the conclusion. �

Lemma 6.3. �M≥1�M≥1� = M≥3 + �x̃1D1 + x̃2D2�F �

Proof. Clearly, �M≥1�M≥1� ⊂ M≥2 and �M≥1�M≥1� ∩M2 = �M1�M1�. Since M1 =
�x1� x2�F , we have that �M1�M1� = ��x1� x2��F = �−2�x̃1D1 + x̃2D2��F . Hence the
proof is complete if we show that M≥3 ⊂ �M≥1�M≥1�. We will consider the �/3�-
grading on M , and we will consider separately M≥3 ∩Mi, with i = 0� 1� 2.

(i) M≥3 ∩M0 ⊂ �M≥1�M≥1� because of the formula �xj� x̃
aDi� = xjx

aDi�
(ii) M≥3 ∩M1 = M≥4 ∩M1 ⊂ �M≥1�M≥1��

Indeed, the formula �xaDi� xi� = �1− 2ai�x
a shows that xa (with 
a
 ≥ 2)

belongs to �M≥1�M≥1� provided that xa �= x31x
3
2, and this exceptional case is

handled with the formula �x21x
4
2D2� x1� = −2 · 4x31x32.
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DEFORMATIONS OF THE RESTRICTED MELIKIAN LIE ALGEBRA 1863

(iii) M≥3 ∩M2 = M≥5 ∩M2 ⊂ �M≥1�M≥1��

Indeed, the formula �x2i Di� x̃
aDj� = ˜�x2i Di� x

aDj�+ 4 ˜xixaDj = �ai + 4− �ij�˜xa+�iDj shows the inclusion for the elements of M≥5 ∩M2 with the exception of

the two elements of the form ˜x2i x4jDj for i �= j, for which we use the formula

�x2i Dj�
˜xix4jDi� = 4 ˜x3i x3jDi − 2 ˜x2i x4jDj . �

Finally, we get the result we were interested in.

Corollary 6.4. We have that

H2�M≥0�M−3� ⊂
2⊕

i=1

�Sq�D̃i��F ⊕H3�M≥1�M−3�
M0 �

Proof. From the above spectral sequence (6.1), using the Propositions 6.1 and 6.2,
we get the exact sequence

0 → �Sq�D̃1�� Sq�D̃2��F → H2�M≥0�M−3� → H2�M≥1�M−3�
M0�

which gives the conclusion. �

7. STEP IV: COMPUTATION OF M0-INVARIANT COHOMOLOGY

In this section, we carry over the fourth and last step of the proof of the Main
Theorem by proving the following proposition.

Proposition 7.1. We have that

H2�M≥1�M−3�
M0 =

2⊕
i=1

�Sq�Di��F ⊕ �Sq�1��F �

Proof. The strategy of the proof is to compute, step by step as d increases, the
truncated invariant cohomology groups

H2

(
M≥1

M≥d+1

�M−3

)M0

�

Observe that if d ≥ 23, then M≥d+1 = 0, and hence we get the cohomology we are
interested in.

The Lie algebra M≥1 has a decreasing filtration �M≥d�d=1�����23, and the adjoint
action of M0 respects this filtration. We consider one step of this filtration

Md = M≥d

M≥d+1

�
M≥1

M≥d+1

and the related Hochschild–Serre spectral sequence

Er�s
2 = Hr

(
M≥1

M≥d

�Hs�Md�M−3�

)
⇒ Hr+s

(
M≥1

M≥d+1

�M−3

)
� (7.1)
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1864 VIVIANI

We fix a certain degree d, and we study, via the above spectral sequence, how the
truncated cohomology groups change if we pass from d to d + 1. It is easily checked
that, by homogeneity, we have H2

(M≥1

M≥3
�M−3

)M0 ⊂ C2�M1�M−3�0 = 0� Therefore, for
the rest of this section, we suppose that d ≥ 3. Observe also that, since Md is in the
center of M≥1/M≥d+1, and M−3 is a trivial module, then Hs

(
Md�M−3

) = Cs�Md�M−3�,
and M≥1/M≥d acts trivially on it.

Consider the following exact sequence deduced from the spectral
sequence (7.1)

E1�0
� = H1

(
M≥1

M≥d

�M−3

)
↪→ H1

(
M≥1

M≥d+1

�M−3

)
� E0�1

� �

From the above Lemma 6.3 (using that d ≥ 3), we get that the first two terms are
equal to

H1

(
M≥1

M≥d

�M−3

)
= H1

(
M≥1

M≥d+1

�M−3

)
= C1

(
M≥1

M≥3 + �x̃1D1 + x̃2D2�F
�M−3

)
and therefore we deduce that E0�1

� = 0. Together with the vanishing E0�2
� = 0 proved

in the Lemma 7.2 below, we deduce the following exact diagram:

We take the cohomology with respect to M0 and use the Lemmas 7.3–7.5.
Observe that the cocycle inv � �−�−� ∈ �E1�1

� �M0 which appears for d = 15
is annihilated by the differential of inv ∈ �E0�1

2 �M0 = C1�Md�M−3�
M0 for d = 17.

Moreover, the element �xiDj → �ij inv� ∈ H1�M0� C
1�M17�M−3�� does not belong to

the kernel of the differential map

d � H1�M0� C
1�M17�M−3�� = H1

(
M0� E

0�1
2

) → H1
(
M0� E

2�0
2

)
�

Indeed the element �xiDj → �ij inv� does not vanish on TM , and the same is true for
its image through the map d, while any coboundary of H1�M0� E

2�0
2 � must vanish

on TM by homogeneity. Therefore, the only cocycles that contribute to the required
cohomology group are �Sq�1�� Sq�D1�� Sq�D2��. �

The remaining part of this section is devoted to prove the lemmas that were
used in the proof of the above proposition. In the first lemma, we show the
vanishing of the term E0�2

� of the above spectral sequence (7.1).
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DEFORMATIONS OF THE RESTRICTED MELIKIAN LIE ALGEBRA 1865

Lemma 7.2. In the above spectral sequence (7.1), we have E0�2
3 = 0.

Proof. By definition, E0�2
3 is the kernel of the map

d � C2�Md�M−3� = E0�2
2 → E2�1

2 = H2

(
M≥1

M≥d

� C1�Md�M−3�

)
that sends a 2-cochain f to the element df given by df�E�F��G� = −f��E� F��G�

whenever deg�E�+ deg�F� = d, and 0 otherwise.
The subspace of coboundaries B2

(M≥1

M≥d
� C1�Md�M−3�

)
is the image of the map

� � C1

(
M≥1

M≥d

� C1�Md�M−3�

)
→ C2

(
M≥1

M≥d

� C1�Md�M−3�

)
that sends the element g to the element �g given by �g�E�F��G� = −g�E�F��G�� Hence
�g vanishes on the pairs �E� F� for which deg�E�+ deg�F� = d.

Therefore, if an element f ∈ C2�Md�M−1� is in the kernel of d, that is, df = �g

for some g as before, then it should satisfy f��E� F��G� = 0 for every E� F�G such
that deg�G� = d and deg�E�+ deg�F� = d. By letting E vary in M1 and F in Md−1,
the bracket �E� F� varies in all Md by Lemma 6.3 (note that we are assuming d ≥ 3).
Hence the preceding condition implies that f = 0. �

In the new two lemmas, we compute the M0-invariants and the first
M0-cohomology group of the term E0�1

2 = C1�Md�M−3� in the above spectral
sequence (7.1).

Lemma 7.3. Define inv � M17 → M−3 by (i �= j):

inv
(
x3i x

3
j D̃i

) = 
�i�Di and inv
(
x4i x

2
j D̃i

) = 
�i�Dj�

where 
�i� = 1 or −1 if i = 1 or i = 2, respectively. Then

C1�Md�M−3�
M0 =

{�inv� if d = 17�

0 otherwise.

Proof. By homogeneity, we can assume that d ≡ 2 mod 5. We will consider the
various cases separately.

d=7 Since M7 = A�2�3 = �x31� x21x2� x1x22� x32�F with weights �1� 3�, �0� 4�,
�4� 0�, �3� 1�, respectively, a homogeneous cochain g ∈ C1�Md�M−3�

M0 can take the
nonzero values g�x2i xj� = aiDj for i �= j. We obtain the vanishing from the following
M0-invariance condition:

0 = �xjDi � g��x3i � = −g�3x2i xj� = −3aiDj�
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1866 VIVIANI

d=12 A homogeneous cochain g ∈ C1�M12�M−3�0 can take the nonzero
values: g�x4i xjDj� = �ijDi for i �= j. We get the vanishing of g by mean of the
following cocycle condition:

0 = dgxiDj

(
x3i x

2
jDj

) = −2g
(
x4i xjDj

) = −2�ijDi� (7.2)

d=17 M17 = W̃�2�5 =
⊕

i �=j�k�x4i x2j D̃k�F
⊕

i �=j�k�x3i x3j D̃k� with weights �i − �j −
�k and −�k, respectively. A homogeneous cochain g ∈ C1�Md�M−3�

M0 can take
the nonzero values: g�x3i x

3
j D̃i� = �iDi and g�x4i x

2
j D̃i� = �iDj for i �= j. The only

M0-invariance conditions are the following:
�xiDj � g�

(
x2i x

4
j D̃i

) = −g
(
4x3i x

3
j D̃i − x2i x

4
j D̃j

) = �−4�i + �j�Di�

�xiDj � g�
(
x2i x

4
j D̃j

) = [
xiDj� g

(
x2i x

4
j D̃j

)]− g
(
4x3i x

3
j D̃j

) = �−�j − 4�j�Dj�

�xiDj � g�
(
x3i x

3
j D̃i

) = �−�i − 3�i + �j�Dj�

from which it follows that �i = �i = −�j = −�j , that is, g is a multiple of inv.

d=22 Since M22 = A�2�8 = �x41x42� with weight �2� 2�, there are no
homogeneous cochains. �

Lemma 7.4. We have that

H1�M0� C
1�Md�M−3�� =


2⊕

i=1

�Sq�Di��F if d = 12�

�xiDj �→ �ij inv�F if d = 17�

0 otherwise,

where Sq�Di� is the restriction of Sq�Di� to M0 ×M12 and inv � M17 → M3 is the
cochain defined in Lemma 7.3.

Proof. By homogeneity, we can assume that d ≡ 2 mod 5 and consider the
various cases separately.

d=7 Consider a homogeneous cochain f ∈ C1�M0� C
1�M7�M−3��0.

By applying cocycle conditions of the form 0 = df�xkDk�xiDj�
, it follows that fxkDk

∈
C1�M7�M−3�

M0 = 0 (by the preceding lemma). By homogeneity, f can take only the
following nonzero values for i �= j: fxiDj

�x3j � = biDi and fxiDj
�xix

2
j � = ciDj .

By possibly modifying f with a coboundary dg (see Lemma 7.3), we can
suppose that bi = bj = 0. The following cocycle condition

0 = df�xiDj�xjDi�

(
x2i xj

) = [
xiDj� fxjDi

(
xjx

2
i

)]− fxjDi

(
x3i
)+ fxiDj

(
2xix

2
j

)
= �−cj − bj + 2ci�Dj = �−cj + 2ci�Dj�

gives that cj = 2ci = 4cj , and hence that ci = cj = 0, that is, f = 0.

d=12 First of all, the cocycles Sq�Di� for i = 1� 2 belong to H1�M0� C
1�M12�

M−3��0 since they are restriction of global cocycles, and, moreover, they are
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DEFORMATIONS OF THE RESTRICTED MELIKIAN LIE ALGEBRA 1867

independent as it follows from the formulas (3.5) and (3.6). It remains to show
that the above cohomology group has dimension less than or equal to 2. Consider
a homogeneous cocycle f ∈ C1�M0� C

1�M12�M−3��0. First of all, we observe that f
must satisfy fxiDi

= 0� Indeed, by the formula (2.3), we have 0 = df
xiDi
= xiDi � f −

d�f
xiDi
� from which, since the first term vanishes for homogeneity reasons, it follows

that f
xiDi
∈ C1�Mp−1�M−1�

M0 which is zero by the previous Lemma 7.3. Therefore,
f can take only the following nonzero values (for i �= j):

fxiDj

(
x3i x

2
jDj

) = �ijDi�

fxiDj

(
x4i xjDi

) = �ijDi�

fxiDj

(
x4i xjDj

) = �ijDj�

By possibly modifying f with a coboundary (see formula (7.2)), we can assume that
�ij = 0. The coefficients �ij are determined by the coefficients �ij in virtue of the
following cocycle condition:

0 = df�xiDj�xjDi�

(
x4i xjDj

) = fxiDj

(−x3i x
2
jDj

)+ fxiDj

(−x4i xjDi

)+
−[

xjDi� fxiDj

(
x4i xjDj

)] = �−�ij − �ij + �ij�Di = �−�ij + �ij�Di�

Therefore, the cohomology group depends on the two parameters �12 and �21, and
hence has dimension less than or equal to 2.

d=17 Consider a homogeneous cochain f ∈ C1�M0� C
1�M17�M−3��0.

By imposing cocycle conditions of the form 0 = df�xkDk�xiDj�
, one obtains that

fxkDk
∈ C1�M17�M−3�

M0 = �inv� (by the preceding lemma). Put fxkDk
= �k · inv.

By homogeneity, the other nonzero values of f are (for i �= j):

fxiDj

(
x2i x

4
j D̃i

) = �iDi� fxiDj

(
x2i x

4
j D̃j

) = �iDj� fxiDj

(
x3i x

3
j D̃i

) = 
iDj�

By possibly modifying f with a coboundary dg, we can assume that fx1D2
=

0 (see Lemma 7.3). Considering all the cocycle conditions of the form 0 =
df�x1D2�x2D1�

= �x1D2 � fx2D1
�− fx1D1

+ fx2D2
, one gets

0 = df�x1D2�x2D1�

(
x31x

3
2D̃1

) = −3�2 + 
2 − ��1 − �2��

0 = df�x1D2�x2D1�

(
x31x

3
2D̃2

) = 
2 + 3�2 − ��1 − �2��

0 = df�x1D2�x2D1�

(
x21x

4
2D̃2

) = 
2 + ��1 − �2��

0 = df�x1D2�x2D1�

(
x41x

2
2D̃1

) = �2 − �2 + ��1 − �2��

Since the 4× 4 matrix associated to the preceding system of 4 equations in the 4
variables �2, �2, 
2, �1 − �2 is invertible (it has determinant equal to 2), we conclude
that fx2D1

= 0 and fx1D1
= fx2D2

is a multiple of inv.

d=22 There are no homogeneous cochains. �
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1868 VIVIANI

In the last lemma, we compute the M0-invariants of the term E1�1
� of the above

spectral sequence (7.1). In view of Lemma 6.3 and the hypothesis d ≥ 3, we have that

E1�1
2 = C1

(
M1 ⊕M2

�x1D̃1 + x2D̃2�
×Md�M−3

)
�

Lemma 7.5. In the above spectral sequence (7.1), we have that

�E1�1
� �M0 =


〈
Sq�1�

〉
F

if d = 6�

�inv � �−�−��F if d = 15�

0 otherwise,

where Sq�1� is the restriction of Sq�1� to M1 ×M6, and inv � �−�−� is defined by

�inv � �−�−���E� F� = inv��E� F���

where inv � M17 → M−3 is the M0-invariant map defined in Lemma 7.3.

Proof. The term �E1�1
� �M0 = �E1�1

3 �M0 is the kernel of the map

d �
(
E1�1

2

)M0 −→ (
E3�0

2

)M0 ↪→ E3�0
2 = H3

(
M≥1

M≥d

�M−3

)
�

In order to avoid confusion, during this proof, we denote with �f ∈ B3
(M≥1

M≥d
�M−3

)
(instead of the usual df ) the coboundary of an element f ∈ C2

(M≥1

M≥d
�M−3

)
.

Note that M1 = �x1� x2�F with weights, respectively, �4� 3� and �3� 4�, while
M2/�x1D̃1 + x2D̃2� = �x1D̃1 = −x2D̃2� x1D̃2� x2D̃1�F with weights, respectively, �2� 2�,
�3� 1�, and �1� 3�. Note also that after the identification x1D̃1 = −x2D̃2, the
action of M0 = W�2�0 on M2/�x1D̃1 + x2D̃2� is given by (for i �= j) �xiDj� xiD̃j� =
0, �xiDj� x1D̃1� = 
�j�xiD̃j and �xiDj� xjD̃i� = −2
�j�x1D̃1, where 
�j� = 1�−1 if,
respectively, j = 1� 2.

By homogeneity, an M0-invariant cochain of E1�1
2 can assume nonzero values

only on M1 ×Md if d ≡ 1 mod 5 or on M2 ×Md if d ≡ 0 mod 5. We will consider
the various cases separately.

d=5 M5 = W̃�2�1 =
⊕

i�k�x2i D̃k�F
⊕

k�x1x2D̃k�F with weights �2� 2�+ 2�i −
�k and �3� 3�− �k, respectively. A homogeneous cochain g ∈ �E1�1

2 �M0 can take only
the following nonzero values (for i �= j):

{
g
(
x1D̃1� xixjD̃i

) = hiDi� g
(
x1D̃1� x

2
j D̃j

) = kiDi�

g
(
xiD̃j� x

2
j D̃i

) = liDi� g
(
xiD̃j� xixjD̃i

) = miDj� g
(
xiD̃j� x

2
j D̃j

) = niDj�
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DEFORMATIONS OF THE RESTRICTED MELIKIAN LIE ALGEBRA 1869

Consider the following M0-invariance conditions:

0 = �xiDj � g�
(
xjD̃i� x

2
j D̃j

) = 2�
�j�ki −mj�Di�

0 = �xiDj � g�
(
xjD̃i� xixjD̃i

) = �2
�j�hi − nj +mj�Di�

0 = �xiDj � g�
(
xiD̃j� x

2
j D̃i

) = �−li − 2mi + ni�Dj�

0 = �xiDj � g�
(
xjD̃i� xixjD̃j

) = �−mj + 2
�j�hj − lj�Dj�

0 = �xiDj � g�
(
xjD̃i� x

2
i D̃i

) = �−nj + 2
�j�kj + lj�Dj�

From the first 3 equations, one obtains that �mj� nj� lj� = 
�j��ki� 2hi + ki� 2hi − ki�,
and substituting in the last two equations, one finds that hi = hj �= h and ki = kj �= k.

Suppose now that g is in the kernel of the map d, that is, dg = −�f for
some f ∈ C2�M≥1/M≥5�M−3�. Applying 0 = dg + �f to the triples �xi� xjD̃j� xixj�

and �xj� xiD̃j� xixj� for i �= j, we get the two conditions

{
f
(
xixjD̃j� xixj

) = 2
�i�g
(
xjD̃j� x

2
i D̃i

) = −2kDj�

f
(
xixjD̃j� xixj

) = 2
�j�g
(
xiD̃j� x

2
j D̃j

) = −2�2h+ k�Dj�

from which it follows that h = 0. Considering now the triples �xi� xrD̃r � xixj� and
�xi� xrD̃r � x

2
j � (for i �= j and some r = 1� 2), we get

{
f
(
xixrD̃r � xixj

) = 2
�i�g
(
xrD̃r� x

2
i D̃i

) = 2
�i�
�r�kDj�

f
(
xixrD̃r � x

2
j

) = −
�i�g
(
xrD̃r� xixjD̃i − 2x2j D̃j

) = 2
�i�
�r�kDi�

Finally, considering the triple �xi� x
2
i Di� xixjDi�, and using the two preceding

relations, we get

0 = �dg + �f��xi� x
2
i Di� xixjDi� = f��x2i Di� xi�� xixjDi�− f��xixjDi� xi�� x

2
i Di�

= 3f�xjxiDi� x
2
i �− f�x2i Di� xixj� = −6kDj − 2kDj = 2kDj�

from which it follows that k = 0, that is g = 0.

d=6 First of all, the cocycle Sq�1� is an element of �E1�1
� �M0 since it is the

restriction of a global cocycle and is nonzero in virtue of formulas (3.3) and (3.4).
Therefore, it remains to show that the dimension of �E1�1

� �M0 is at most 1. Consider
a cochain g ∈ �E1�1

2 �M0 , which is in particular homogeneous. Since M6 = W�2�2 =⊕
i�k�x2i Dk�F

⊕
k�x1x2Dk�F with weights 2�i − �k and �1� 1�− �k, respectively, g can

take only the following nonzero values (for i �= j):

{
g
(
xi� xix

2
jDi

) = ciDi� g
(
xi� x

2
i xjDi

) = eiDj�

g
(
xi� x

3
jDj

) = diDi� g
(
xi� xix

2
jDj

) = fiDj�
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1870 VIVIANI

Consider the following M0-invariance conditions:
0 = �xiDj � g�

(
xi� x

3
jDi

) = −g
(
xi� 3xix

2
jDi − x3jDj

) = �−3ci + di�Di�

0 = �xiDj � g�
(
xi� xix

2
jDi

) = �−ci − 2ei + fi�Dj�

0 = �xiDj � g�
(
xi� x

3
jDj

) = �xiDj� diDi�− g�xi� 3xix
2
jDj� = �−di − 3fi�Di�

0 = �xiDj � g�
(
xj� xix

2
jDi

) = �−ci − 2fj + ej�Di�

From the first 3 equations, one gets �fi� ci� di� = �ei�−ei� 2ei�, and substituting
into the last equation, one finds ei = ej �= e. Therefore, �E1�1

� �M0 depends on one
parameter and hence has dimension at most 1.

d=10 M10 = A�2�4 =
⊕

i�x4i �F
⊕

i �=j�x3i xj�F
⊕

i �=j�x2i x2j �F with weights
2�i − 2�j , �i − �j and �0� 0�, respectively. Consider a cochain g ∈ �E1�1

2 �M0 . Since
M0 acts transitively on M2, to prove the vanishing of g it is enough to prove
that g�x1D̃2�−� = 0� By homogeneity the only possible nonzero such values are
g�x1D̃2� x

3
1x2� and g�x1D̃2� x

4
1�, and the vanishing follows from the M0-invariance

conditions:{
0 = �x1D2 � g�

(
x1D̃2� x

2
1x

2
2

) = −g
(
x1D̃2� 2x

3
1x2

)
�

0 = (
x1D̃2 � g

)(
x1D̃2� x

3
1x2

) = [
x1D2� g�x1D̃2� x

3
1x2�

]− g
(
x1D̃2� x

4
1

)
�

d=15 M15 = W�2�5 =
⊕

i �=j�k�x4i x2jDk�F
⊕

i �=j�k�x3i x3jDk�F with weights −�i +
2�j − �k and 3�i + 3�j − �k, respectively. A homogeneous cochain g ∈ �E1�1

2 �M0 can
take only the following nonzero values (for i �= j):{

g
(
x1D̃1� x

3
i x

3
jDi

) = piDi� g
(
x1D̃1� x

2
i x

4
jDj

) = qiDi�

g
(
xiD̃j� x

2
i x

4
jDi

) = riDi� g
(
xiD̃j� x

3
i x

3
jDi

) = siDj� g
(
xiD̃j� x

2
i x

4
jDj

) = tiDj�

Consider the following M0-invariance conditions:

0 = �xiDj � g�
(
xjD̃i� x

2
i x

4
jDj

) = 2�
�j�qi − 2sj�Di�

0 = �xiDj � g�
(
xjD̃i� x

3
i x

3
jDi

) = �2
�j�pi − 3tj + sj�Di�

0 = �xiDj � g�
(
xiD̃j� x

2
i x

4
jDi

) = �−ri + si + ti�Dj�

0 = �xiDj � g�
(
xjD̃i� x

3
i x

3
jDj

) = �−sj + 2
�j�pj − 3rj�Dj�

0 = �xiDj � g�
(
xjD̃i� x

4
i x

2
jDi

) = �−tj + 2
�j�qj + rj�Dj�

From the first 3 equations, one gets that �sj� tj� rj� = 
�j��−2qi�−pi + qi�−pi − qi�,
and substituting in the last two equations, one obtains pi = pj �= p and qi = qj �= q.

Suppose now that g is in the kernel of d, that is, dg = −�f for some f ∈
C2�M≥1/M≥15�M−3�. Applying 0 = dg + �f to the triple �xi� xjD̃j� x

4
i xjD̃i� for i �= j,

we get

0 = −f
(
�xi� xjD̃i�� x

4
i xjD̃i

)+ g
(
�xi� x

4
i xjD̃i�� xjD̃i

) = f
(
xixjDi� x

4
i xjD̃i

)
�
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DEFORMATIONS OF THE RESTRICTED MELIKIAN LIE ALGEBRA 1871

Considering the triple �xj� xiD̃i� x
4
i xjD̃i�, and using the preceding vanishing,

we obtain

0 = −f
(
xixjD̃i� x

4
i xjD̃i

)− g
(
xiD̃i� x

4
i x

2
j D̃i

) = −
�i�qDj�

that is, q = 0. For p = 1, one obtains that g = inv � �−�−�, which is clearly in the
kernel of d since it is the restriction of a cocycle on M≥1 ×M≥1.

d=16 M16 = A�2�6 =
⊕

i �=j�x2i x4j �F ⊕ �x31x32�F with weights 2�j and �1� 1�,
respectively. A homogeneous cochain g ∈ �E1�1

2 �M0 can take the nonzero values (for
i �= j): g�xi� x

2
i x

4
j � = aiDi and g�xi� x

3
1x

3
1� = biDj for i �= j. We get that ai = aj = bi =

bj �= a by considering the following M0-invariant conditions:{
0 = �xiDj � g�

(
xi� x

2
i x

4
j

) = �xiDj� aiDi�− g
(
xi� 4x

3
i x

3
j

) = �−ai + bi�Dj�

0 = �xiDj � g�
(
xj� x

2
i x

4
j

) = −g
(
xi� x

2
i x

4
j

)− g
(
xj� 4x

3
i x

3
j

) = �−ai + bj�Di�

Now suppose that g is in the kernel of the map d, that is, dg = −�f for
some f ∈ C2�M≥1/M≥16�M−3�. Applying the relation 0 = dg + �f to the two triples
�xi� xj� x

4
i x

2
jDi� and �xi� xj� x

3
i x

3
jDi� for i �= j, we get{

f
(
x1D̃1 + x2D̃2� x

4
i x

2
jDi

) = g
(
�xi� x

4
i x

2
jDi�� xj

)− g
(
�xj� x

4
i x

2
jDi�� xi

) = a�

f
(
x1D̃1 + x2D̃2� x

3
i x

3
jDi

) = g
(
�xi� x

3
i x

3
jDi�� xj

)− g
(
�xj� x

3
i x

3
jDi�� xi

) = a�
(∗)

Considering the triples �x1� x1D̃1 + x2D̃2� x
3
1x

2
2D̃1� and �x1� x1D̃1 + x2D̃2� x

2
1x

3
2D̃2�, and

using �∗�, we get{
f
(
x21D1 + x1x2D2� x

3
1x

2
2D̃1

) = −f
(
x1D̃1 + x2D̃2� x

4
1x

2
2D1

)− g
(
x1� x

3
1x

3
2

) = −2a�

f
(
x21D1 + x1x2D2� x

2
1x

3
2D̃2

) = −f
(
x1D̃1 + x2D̃2� x

3
1x

3
2D2

)+ g
(
x1� x

3
1x

3
2

) = 0�
(∗∗)

Finally, using the relations �∗∗�, we get the vanishing of g by mean of the following:

0 = �dg + �f�
(
x1� x

2
1D1 + x1x2D2� x

2
1x

3
2

) = −f
([
x1� x

2
1D1 + x1x2D2

]
� x21x

3
2

)
+ f

([
x1� x

2
1x

3
2

]
� x21D1 + x1x2D2

)− g
([
x21D1 + x1x2D2� x

2
1x

3
2

]
� x1

)
= f

(−x31x
2
2D̃1 + 2x21x

3
2D̃2� x

2
1D1 + x1x2D2

)− g
(−x31x

3
2� x1

) = −2a− a = −3a�

d=20 M20 = W̃�2�6 =
⊕

i �=j�k�x4i x3j D̃k�F with weights �i − �k. A
homogeneous cochain g ∈ �E1�1

2 �M0 can take only the nonzero values
g�xiD̃j� x

4
i x

3
j D̃j� = �iDi. The vanishing follows from the M0-invariance conditions

0 = �xiDj � g�
(
xiD̃j� x

3
i x

4
j D̃j

) = −4g
(
xiD̃j� x

4
i x

3
j D̃j

) = �iDi�

d=21 Since M21 = W�2�7 = �x41x42D1� x
4
1x

4
2D2�F with weights �3� 4� and

�4� 3�, respectively, there are no homogeneous cochains. �
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