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1. Introduction

Simple Lie algebras over an algebraically closed field of characteristic zero were classified at the
beginning of the XIX century by Killing and Cartan. They used the non-degeneracy of the Killing form
to describe the simple Lie algebras in terms of root systems which are then classified by Dynkin
diagrams.

This method breaks down in positive characteristic because the Killing form may degenerate. In-
deed the classification problem remained open for a long time until it was recently solved, if the
characteristic of the base field is greater than 3, by Block and Wilson (see [BW88]), Strade and Wilson
(see [SW91]), Strade (see [STR89,STR92,STR91,STR93,STR94,STR98]) and Premet and Strade (see [PS97,
PS99,PS01]). The classification remains still open in characteristic 2 and 3 (see [STR04, p. 209]).

According to this classification, simple modular (that is over a field of positive characteristic) Lie
algebras are divided into two big families, called classical-type and Cartan-type algebras. The alge-
bras of classical-type are obtained by the simple Lie algebras in characteristic zero by first taking
a model over the integers (via Chevalley bases) and then reducing modulo p (see [SEL67]). The
algebras of Cartan-type were constructed by Kostrikin and Shafarevich in 1966 (see [KS66]) as finite-
dimensional analogues of the infinite-dimensional complex simple Lie algebras, which occurred in
Cartan’s classification of Lie pseudogroups, and are divided into four families, called Witt–Jacobson,
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Special, Hamiltonian and Contact algebras. The Witt–Jacobson Lie algebras are derivation algebras of
truncated divided power algebras and the remaining three families are the subalgebras of derivations
fixing a volume form, a Hamiltonian form and a contact form, respectively. Moreover in character-
istic 5 there is one exceptional simple modular Lie algebra called the Melikian algebra (introduced
in [MEL80]).

We are interested in a particular class of modular Lie algebras called restricted. These can be
characterized as those modular Lie algebras such that the p-power of an inner derivation (which
in characteristic p is a derivation) is still inner. Important examples of restricted Lie algebras are the
ones coming from groups schemes. Indeed there is a one-to-one correspondence between restricted
Lie algebras and finite group schemes whose Frobenius vanishes (see [DG70, Chapter 2]).

By standard facts of deformation theory, the infinitesimal deformations of a Lie algebra are
parametrized by the second cohomology of the Lie algebra with values in the adjoint representation
(see for example [GER64]).

It is a classical result (see [HS97]) that for a simple Lie algebra g over a field of characteristic 0
it holds that Hi(g,g) = 0 for every i � 0, which implies in particular that such Lie algebras are rigid.
The proof of this fact relies on the non-degeneracy of the Killing form and the non-vanishing of the
trace of the Casimir element, which is equal to the dimension of the Lie algebra. Therefore the same
proof works also for the simple modular Lie algebras of classical type over a field of characteristic not
dividing the determinant of the Killing form and the dimension of the Lie algebra. Actually Rudakov
(see [RUD71]) showed that such Lie algebras are rigid if the characteristic of the base field is greater
than or equal to 5 while in characteristic 2 and 3 there are non-rigid classical Lie algebras (see
[CHE05,CK00,CKK00]).

The purpose of this article is to compute the infinitesimal deformations of the first two families
of restricted simple Lie algebras of Cartan type: the Witt–Jacobson algebras W (n) and the Special
algebras S(n). Unlike the classical-type simple algebras, it turns out that these two families are not
rigid. More precisely we get the following two theorems (we refer to Sections 3.1 and 4.1 for the
standard notations concerning W (n) and S(n) and to Section 2.3 for the definition of the squaring
operators Sq).

Theorem 1.1. Assume that the characteristic p of the base field F is different from 2. Then we have

H2(W (n), W (n)
)=

n⊕
i=1

F · 〈Sq(Di)
〉

with the exception of the case n = 1 and p = 3 when it is 0.

Theorem 1.2. Assume that the characteristic of the base field F is different from 2 and moreover it is different
from 3 if n = 3. Then we have

H2(S(n), S(n)
)=

n⊕
i=1

F · 〈Sq(Di)
〉⊕

F · 〈Θ〉

where Θ is defined by Θ(Di, D j) = Dij(xτ ) and extended by 0 outside S(n)−1 × S(n)−1 .

In the two forthcoming papers [VIV2,VIV3], we compute the infinitesimal deformations of the
remaining restricted simple Lie algebras of Cartan-type, namely the Hamiltonian, the Contact and the
exceptional Melikian algebras. Moreover, in the forthcoming paper [VIV4], we apply these results to
the study of the infinitesimal deformations of the simple finite group schemes corresponding to the
simple restricted Lie algebras of Cartan type.

Let us mention that the infinitesimal deformations of simple Lie algebras of Cartan-type (in
the general non-restricted case) have been considered already by Džumadildaev in [DZU80,DZU81,
DZU89] and Džumadildaev and Kostrikin in [DK78] but a complete picture as well as detailed proofs
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were missing. More precisely: in [DK78] the authors compute the infinitesimal deformations of the
Jacobson–Witt algebras of rank 1, in [DZU80, Theorem 4] the author describes the infinitesimal defor-
mation of the Jacobson–Witt algebras of any rank but without a proof, in [DZU81] a general strategy
for the Jacobson–Witt and Hamiltonian algebras is outlined (without proofs) and finally in [DZU89]
the author clarifies this strategy and then applies it to the Jacobson–Witt algebras but with a half-
page sketch of the proof.

Our approach works for all the restricted simple Lie algebras of Cartan-type and is different from
the approach of Džumadildaev although we took from him the idea to consider relative cohomology
with respect to the subalgebra of negative degree elements. As a byproduct of our proof, we recover
the results of Celousov (see [CEL70]) on the first cohomology group of the adjoint representation
(Theorems 3.3 and 4.5).

2. Some preliminaries results on the cohomology of Lie algebras

2.1. Review of general theory

In this subsection we review, in order to fix notations, the classical theory of cohomology of Lie
algebras (see for example [HS53]).

If g is a Lie algebra over a field F and M is a g-module, then the cohomology groups H∗(g, M)

can be computed from the complex of n-dimensional cochains Cn(g, M) (n � 0), that are alternating
n-linear functions f : Λn(g) → M , with differential d : Cn(g, M) → Cn+1(g, M) defined by

d f (σ0, . . . , σn) =
n∑

i=0

(−1)iσi · f (σ0, . . . , σ̂i, . . . , σn)

+
∑
p<q

(−1)p+q f
([σp, σq], σ0, . . . , σ̂p, . . . , σ̂q, . . . , σn

)
, (2.1)

where the sign ̂ means that the argument below must be omitted. Given f ∈ Cn(g, M) and γ ∈ g,
we denote with fγ the restriction of f to γ ∈ g, that is the element of Cn−1(g, M) given by

fγ (σ0, . . . , σn−1) := f (γ ,σ0, . . . , σn−1).

With this notation, the above differential satisfies the following useful formula (for any γ ∈ g and
f ∈ Cn(g, M)):

d(γ · f ) = γ · (d f ), (2.2)

(d f )γ = γ · f − d( fγ ), (2.3)

where each Cn(g, M) is a g-module by means of the action

(γ · f )(σ1, . . . , σn) = γ · f (σ1, . . . , σn) −
n∑

i=1

f
(
σ1, . . . , [γ ,σi], . . . , σn

)
. (2.4)

As usual we indicate with Zn(g, M) the subspace of n-cocycles and with Bn(g, M) the subspace of
n-coboundaries. Therefore Hn(g, M) := Zn(g, M)/ Bn(g, M).

A useful tool to compute cohomology of Lie algebras is the following Hochschild–Serre spectral
sequence relative to a subalgebra h < g:

E p,q
1 = Hq(h, C p(g/h, M)

) ⇒ H p+q(g, M), (2.5)
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which in the case where h is an ideal of g (which we indicate as h � g) becomes

E p,q
2 = H p(g/h, Hq(h, M)

) ⇒ H p+q(g, M). (2.6)

Moreover for the second page of the first spectral sequence (2.5), we have the equality

E p,0
2 = H p(g,h; M), (2.7)

where H∗(g,h; M) are the relative cohomology groups defined (by Chevalley and Eilenberg [CE48])
from the sub-complex C p(g,h; M) ⊂ C p(g, M) consisting of cochains orthogonal to h, that is cochains
satisfying the two conditions:

f |h = 0, (2.8)

d f |h = 0 or equivalently γ · f = 0 for every γ ∈ h. (2.9)

Note that in the case where h � g, the equality (2.7) is consistent with the second spectral se-
quence (2.6) because in that case we have H p(g,h, M) = H p(g/h, Mh).

2.2. Torus actions and gradings

The Lie algebras that we consider in this paper, namely the Witt–Jacobson Lie algebra W (n) and
the Special algebra S(n), are graded algebras which admit a root space decomposition with respect
to a maximal torus contained in the 0-graded piece. Under these hypothesis, the cohomology groups
admit a very useful decomposition that we are going to review in this subsection.

Suppose that a torus T acts on both g and M in a way that is compatible with the action of g

on M , which means that t · (g · m) = (t · g) · m + t · (g · m) for every t ∈ T , g ∈ g and m ∈ M . Then the
action of T can be extended to the space of n-cochains by

(t · f )(σ1, . . . , σn) = t · f (σ1, . . . , σn) −
n∑

i=1

f (σ1, . . . , t · σi, . . . , σn).

It follows easily from the compatibility of the action of T and formula (2.3), that the action of T
on the cochains commutes with the differential d. Therefore, since the action of a torus is always
completely reducible, we get a decomposition in eigenspaces

Hn(g, M) =
⊕
φ∈Φ

Hn(g, M)φ, (2.10)

where Φ = HomF (T , F ) and Hn(g, M)φ = {[ f ] ∈ Hn(g, M) | t · [ f ] = φ(t)[ f ] if t ∈ T }. A particular case
of this situation occurs when T ⊂ g and T acts on g via the adjoint action and on M via restriction
of the action of g. It is clear that this action is compatible and moreover the above decomposition
reduces to

Hn(g, M) = Hn(g, M)0,

where 0 is the trivial homomorphism (in this situation we say that the cohomology reduces to
homogeneous cohomology). Indeed, if we consider an element f ∈ Zn(g, M)φ , then by applying for-
mula (2.3) with γ = t ∈ T we get

0 = (d f )t = t · f − d( ft) = φ(t) f − d( ft),

from which we see that the existence of a t ∈ T such that φ(t) 	= 0 forces f to be a coboundary.
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Now suppose that g and M are graded and that the action of g respects these gradings, which
means that gd · Me ⊂ Md+e for all e, d � 0. Then the space of cochains can also be graded: a homoge-
neous cochain f of degree d is a cochain such that f (ge1 × · · · × gen ) ⊂ M∑

ei+d . With this definition,
the differential becomes of degree 0 and therefore we get a degree decomposition

Hn(g, M) =
⊕
d∈Z

Hn(g, M)d. (2.11)

Finally, if the action of T is compatible with the grading, in the sense that T acts via degree 0
operators both on g and on M , then the above two decompositions (2.10) and (2.11) are compatible
and give rise to the refined weight-degree decomposition

Hn(g, M) =
⊕
φ∈Φ

⊕
d∈Z

Hn(g, M)φ,d. (2.12)

2.3. Squaring operation

There is a canonical way to produce 2-cocycles in Z 2(g,g) over a field of characteristic p > 0,
namely the squaring operation (see [GER64]). Given a derivation γ ∈ Z 1(g,g) (inner or not), one
defines the squaring of γ to be

Sq(γ )(x, y) =
p−1∑
i=1

[γ i(x), γ p−i(y)]
i!(p − i)! ∈ Z 2(g,g), (2.13)

where γ i is the ith iteration of γ . In [GER64] it is shown that [Sq(γ )] ∈ H2(g,g) is an obstruction to
integrability of the derivation γ , that is to the possibility of finding an automorphism of g extending
the infinitesimal automorphism given by γ .

3. The Witt–Jacobson algebra

3.1. Definition and basic properties

We first introduce some useful notations. Inside the set Z
n of n-tuples of integers, we consider

the order relation defined by a = (a1, . . . ,an) < b = (b1, . . . ,bn) if ai < bi for every i = 1, . . . ,n. We
call degree of a ∈ Z

n the number |a| = ∑n
i=1 ai . For every integer 0 � l < p, we define l := (l, . . . , l)

and we set τ := p − 1 (this n-tuple will appear often in what follows and hence it deserves a special
notation). Moreover, for every j ∈ {1, . . . ,n} we call ε j the n-tuple having 1 at the jth place and 0
otherwise.

Let A(n) = F [x1, . . . , xn]/(xp
1 , . . . , xp

n ) be the ring of p-truncated polynomial in n variables over a
field F of positive characteristic p > 0. Note that A(n) is a finite F -algebra of dimension pn with a
basis given by the elements {xa := xa1

1 · · · xan
n | a ∈ Z

n, 0 � a � τ }. Moreover it has a natural graduation

A(n) =⊕n(p−1)

i=0 A(n)i , obtained by assigning to the monomial xa the degree |a|.

Definition 3.1. The Witt–Jacobson algebra W (n) is the restricted Lie algebra DerF A(n) of derivations
of A(n) = F [x1, . . . , xn]/(xp

1 , . . . , xp
n ).

For every j ∈ {1, . . . ,n}, we put D j := ∂
∂x j

. The Witt–Jacobson algebra W (n) is a free A(n)-module

with basis {D1, . . . , Dn}. Hence dimF (W (n)) = npn with a basis over F given by {xa D j | 1 � j � n, 0 �
a � τ }.

Moreover W (n) is a graded Lie algebra with the Z-gradation defined by W (n)i :=∑n
j=1 A(n)i+1 D j

where i = −1, . . . ,n(p − 1) − 1. Note that the unique summand of negative degree is W (n)−1 =
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⊕n
i=1 F · 〈Di〉 while the summand of degree 0 is W (n)0 =⊕

1�i, j�n F · 〈xi D j〉 and its adjoint action
on W (n)−1 induces an isomorphism W (n)0 ∼= gl(n, F ).

The algebra W (n) is simple unless p = 2 and n = 1 (see [FS88, Chapter 4, Theorem 2.4]) and it
admits a root space decomposition with respect to a canonical Cartan subalgebra.

Proposition 3.2. For each i ∈ {1, . . . ,n}, let hi = xi Di .

(a) T :=∑n
i=1 F hi is a maximal torus of W (n) (called the canonical maximal torus).

(b) The centralizer of T inside W (n) is T itself, which is hence a Cartan subalgebra of W (n).
(c) Let Φ := HomFp (

⊕n
i=1 Fp ·hi,Fp), where Fp is the prime field of F . In the Cartan decomposition W (n) =⊕

φ∈Φ W (n)φ , every direct summand W (n)φ has dimension n. Moreover xa Di ∈ W (n)a−εi , where a − εi
is viewed as an element of Φ by reduction modulo p.

Proof. See [FS88, Chapter 4, Theorem 2.5]. �
3.2. Strategy of the proof of the Main Theorem

In this subsection we outline the strategy of the proof of Theorem 1.1 from the Introduction. In
particular, from now on, we assume that the base field F has characteristic p � 3. Note that in the
exceptional case n = 1 and p = 3, one has the isomorphism W (1) ∼= sl2 and hence we recover the
known vanishing result for the simple algebras of classical-type.

We first observe that the 2-cocycles Sq(Di) appearing in Theorem 1.1 are independent modulo
coboundaries unless n = 1 and p = 3, in which case it is easily seen that Sq(D1) = 0. Indeed, on one
hand, for every g ∈ C1(W (n), W (n)) and 1 � r, s � n, the following element

dg
(
x2

r Ds, xp−2
r xs Ds

)= [
x2

r Ds, g
(
xp−2

r xs Ds
)]− [

xp−2
r xs Ds, g

(
x2

r Ds
)]

cannot contain terms of negative degree. On the other hand, we get that

Sq(Di)
(
x2

r Ds, xp−2
r xs Ds

)=
{

Ds if i = r 	= s,
−3Di if i = r = s,
0 otherwise,

(3.1)

which shows the independence of the Sq(Di) modulo coboundaries, using the first case if n � 2 and
the second if p � 5.

The proof that these 2-cocycles generate the whole second cohomology group is divided into three
steps.

Step I. We prove that we can reduce to relative cohomology (see Section 2.1) with respect to the
subalgebra W (n)−1 of negative terms:

H2(W (n), W (n)
)= H2(W (n), W (n)−1; W (n)

)
.

This is achieved by first observing that the second cohomology groups reduces to homogeneous co-
homology with respect to the maximal torus T < W (n) (see Section 2.2) and then by considering
the homogeneous Hochschild–Serre spectral sequence associated to the subalgebra W (n)−1 < W (n)

(see (2.5)): (
Er,s

1

)
0 = Hs(W (n)−1, Cr(W (n)/W (n)−1, W (n)

))
0 ⇒ Hr+s(W (n), W (n)

)
0. (3.2)

We prove that (E0,1
1 )0 = (E0,2

1 )0 = 0 (Corollary 3.5) and (E1,1
2 )0 = 0 (Proposition 3.6) which gives the

conclusion by (2.7).
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Step II. Using orthogonality with respect to W (n)−1 (see (2.8) and (2.9)), we prove in Proposition 3.7
that

H2(W (n), W (n)−1; W (n)
)= H2(W (n)�0, W (n)−1

)
where W (n)�0 acts on W (n)−1 by the projection onto W (n)�0/W (n)�1 = W (n)0 followed by the
adjoint representation of W (n)0 = gl(n, F ) on W (n)−1.

Then, by using the Hochschild–Serre spectral sequence with respect to the ideal W (n)�1 � W (n)�0
(see (2.6)), we prove in Proposition 3.8 that

H2(W (n)�0, W (n)−1
)= H2(W (n)�1, W (n)−1

)W (n)0

where W (n)−1 is considered as a trivial W (n)�1-module.

Step III. We compute the invariant second cohomology group H2(W (n)�1, W (n)−1)
W (n)0 showing

that (unless p = 3 and n = 1) it is generated by the projection onto W (n)−1 of the cocycles Sq(Di)

(Proposition 3.10). The idea of the proof is to approximate this cohomology group by the truncated
cohomology groups

H2
(

W (n)�1

W (n)�d
, W (n)−1

)W (n)0

which for large d are equal to our cohomology group. The computation proceeds by induction on d
using the Hochschild–Serre spectral sequence with respect to the ideal

W (n)�d

W (n)�d+1
� W (n)�1

W (n)�d+1
.

In the course of the proof of the Main Theorem, we obtain a new proof of the following result.

Theorem 3.3 (Celousov). H1(W (n), W (n)) = 0.

Proof. The proof follows the same steps as in the proof of the Main Theorem. The spectral se-
quence (3.2), in view of the Corollary 3.5 and formula (2.7), gives that

H1(W (n), W (n)
)= H1(W (n), W (n)−1; W (n)

)
.

Then the required vanishing follows from Propositions 3.7 and 3.8. �
3.3. Reduction to W (n)−1-relative cohomology

This subsection is devoted to the first step of the proof (see Section 3.2), namely the reduction
to the relative cohomology with respect to the subalgebra W (n)−1 < W (n). First of all we want to
prove the vanishing of the homogeneous cohomology groups Hs(W (n)−1, W (n))0 appearing in the
first column of the spectral sequence (3.2). For that purpose, we need the following proposition, in
which the action of W (n)−1 on A(n) is the natural one.

Proposition 3.4. For every i = 1, . . . ,n, we denote with xp−1
i D∗

i the linear function from W (n)−1 to A(n)

which sends Di to xp−1
i and D j to 0 for j 	= i. Then we have Hs(W (n)−1, A(n)) =∧s ⊕n

i=1 F · 〈xp−1
i D∗

i 〉.
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Proof. Clearly the cochains appearing in the statement are cocycles and they are independent mod-
ulo coboundaries since it follows easily, from formula (2.1), that if g ∈ C s−1(W (n)−1, A(n)) then
dg(Di1 , . . . , Dis ) ∈ A(n) cannot contain the monomial xp−1

i1
· · · xp−1

is
.

In order to prove that the above cocycles generate the whole cohomology group, we proceed by
double induction on s and n, the case s = 0 being true since A(n)W (n)−1 = F · 1. We view A(n − 1) in-
side A(n) as the subalgebra of polynomials in the variables x2, . . . , xn and W (n − 1)−1 inside W (n)−1
as the subalgebra generated by D2, . . . , Dn . Thus the action of W (n) on A(n) restricts to the natural
action of W (n − 1) on A(n − 1).

Consider f ∈ Z s(W (n)−1, A(n)). By adding a coboundary dg and using formula (2.3) for dg and
γ = D1, we can suppose that

f |D1 : W (n − 1)s−1
−1 → xp−1

1 A(n − 1).

Moreover, since f is a cocycle, the same formula (2.3) gives

0 = (d f )D1 = [
D1, f (−)

]− d( f |D1 ).

Now observe that, by the condition above, d( f |D1 ) takes values in xp−1
1 A(n − 1) while obviously

[D1, f (−)] cannot contain monomials with the x1 erased to the (p − 1)th power. Hence it follows
that { [D1, f |W (n−1)s−1

] = 0,

d( f |D1 ) = 0.

The first equation says that f |W (n−1)s−1
takes values in A(n − 1) and hence belongs to Z s(W (n − 1)−1,

A(n − 1)). The second equation says that f |D1 ∈ Z s−1(W (n − 1)−1, xp−1
1 A(n − 1)) = Z s−1(W (n − 1)−1,

A(n − 1)) ⊗ 〈xp−1
1 〉. In both cases, by induction, we get that f ∈ Bs(W (n)−1, A(n)) + ∧s ⊕n

i=1 F ·
〈xp−1

i D∗
i 〉 and this concludes the proof. �

Corollary 3.5. We have Hs(W (n)−1, W (n)) ∼= Hs(W (n)−1, A(n)) ⊗ W (n)−1 . Therefore (E0,s
1 )0 =

Hs(W (n)−1, W (n))0 = 0 for every s � 0.

Proof. The first claim follows from the W (n)−1-decomposition W (n) = A(n) ⊗ W (n)−1 and the fact
that W (n)−1 is an abelian Lie algebra. The second claim follows from the first and the fact that
Hs(W (n)−1, A(n)) = Hs(W (n)−1, A(n))0 (by Proposition 3.4) while (W (n)−1)0 = 0. �

Now we deal with the term in position (1,1) of the above spectral sequence. We prove that it
vanishes starting from the second level.

Proposition 3.6. In the spectral sequence (3.2), we have that (E1,1
2 )0 = 0.

Proof. We have to show the injectivity of the level 1 differential map

d : (E1,1
1

)
0 → (

E2,1
1

)
0.

In the course of this proof, we adopt the following convention: given an element f ∈ C1(W (n)−1,

C s(W (n)/W (n)−1, W (n))), we write its value on Di ∈ W (n)−1 as f Di ∈ C s(W (n)/W (n)−1, W (n)).
We want to show, by induction on the degree of E ∈ W (n)/W (n)−1, that if [df ] = 0 ∈

H1(W (n)−1, C2(W (n)/W (n)−1, W (n))) then we can choose a representative f̃ of [ f ] ∈ H1(W (n)−1,
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C1(W (n)/W (n)−1, W (n))) such that f̃ Di (E) = 0 for every i = 1, . . . ,n. So suppose that we have al-
ready found a representative f such that f Di (F ) = 0 for every F ∈ W (n)/W (n)−1 of degree less than
d and for every i. First of all, we can find a representative f̃ of [ f ] such that

f̃ Di (E) ∈ 〈xp−1
i

〉⊗ W (n)−1 (∗)

for every i and for every E ∈ W (n) of degree d. Indeed, by the induction hypothesis, the cocycle
condition for f is ∂ f Di ,D j (E) = [Di, f D j (E)]−[D j, f Di (E)]. On the other hand, by choosing an element

h ∈ C1(W (n)/ W (n)−1, W (n)) that vanishes on the elements of degree less than d, we can add to f
(without changing its cohomological class neither affecting the inductive assumption) the coboundary
∂h whose value on E is ∂hDi (E) = [Di,h(E)]. Hence, for a fixed element E of degree d, the map
Di �→ f Di (E) gives rise to an element of H1(W (n)−1, W (n)) and, by Proposition 3.4, we can chose an
element h(E) as above such that the new cochain f̃ = f + ∂h verifies the condition (∗) as above.

Note that, by the homogeneity of our cocycles, the functions f̃ Di can assume non-zero values

only on the elements E of weights −εk , for a certain k, which are the form E = xp−1
k xh Dh for some

k 	= h (note that we have already done in the case n = 1). Hence, from now on, we can assume that
d = p − 1 � 2 and pay attention only to the elements of the above form.

Now we are going to use the condition that [d f̃ ] = 0 ∈ (E2,1
1 )0, that is d f̃ = ∂ g for some g ∈

C2(W (n)/W (n)−1, W (n))0. Explicitly, for A, B ∈ W (n)/W (n)−1 we have that

∂ gDi (A, B) = [
Di, g(A, B)

]− g
([Di, A], B

)− g
(

A, [Di, B]), (3.3)

d f̃ Di (A, B) = f̃ Di

([A, B])− [
A, f̃ Di (B)

]+ [
B, f̃ Di (A)

]
− δdeg(A),0 f̃[Di ,A](B) + δdeg(B),0 f̃[Di ,B](A), (3.4)

where the last two terms in the second formula are non-zero only if deg(A) = 0 and deg(B) = 0
respectively. We apply the above formulas for the elements A = xp−2

k x2
h Dh and B = xk Dh . Taking

into account the inductive hypothesis on the degree and the homogeneity assumptions, formula (3.4)
becomes

d f̃ Di

(
xp−2

k x2
h Dh, xk Dh

)= −2 f̃ Di

(
xp−1

k xh Dh
)= αxp−1

i Dk

for a certain α ∈ F , while formula (3.3) gives

∂ gDi

(
xp−2

k x2
h Dh, xk Dh

)= [
Di, g

(
xp−2

k x2
h Dh, xk Dh

)]− g
([

Di, xp−2
k x2

h Dh
]
, xk Dh

)
.

Observe that if deg(B) = 0 and deg(A) < p − 1, then degxi
(g(A, B)) � degxi

(A) (where degxi
(−) in-

dicate the largest power of xi which appears in the argument). Indeed, by the inductive hypothesis,
formula (3.4) gives that d f̃ Di (A, B) = 0 and hence the conclusion follows by repeatedly applying for-
mula (3.3): 0 = ∂ gDi (A, B) = [Di, g(A, B)] − g([Di, A], B).

From this observation, it follows that g([Di, xp−2
k x2

h Dh], xk Dh) cannot contain a monomial of the

form xp−1
i Dk and hence neither can the element ∂ gDi (xp−2

k x2
h Dh, xk Dh), since in the above formula

the first element is a derivation with respect to Di . Therefore by imposing d f̃ Di = ∂ gDi , we obtain

that f̃ Di (xp−1
k xh Dh) = 0 which completes the inductive step. �

3.4. Reduction to W (n)0-invariant cohomology

This subsection is devoted to prove the second step of the strategy that was outlined in Sec-
tion 3.2. We consider the action of W (n)�0 on W (n)−1 obtained by the projection onto W (n)0 =
W (n)�0/W (n)�1 followed by the adjoint representation of W (n)0 = gl(n, F ) on W (n)−1.
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Proposition 3.7. For every s ∈ Z�0 , we have

Hs(W (n), W (n)−1; W (n)
)= Hs(W (n)�0, W (n)−1

)
.

Proof. For every s ∈ Z�0, consider the map

φs : C s(W (n), W (n)−1; W (n)
)→ C s(W (n)�0, W (n)−1

)
induced by the restriction to the subalgebra W (n)�0 ⊂ W (n) and by the projection W (n) �
W (n)/W (n)�0 = W (n)−1. It is straightforward to check that the maps φs commute with the differen-
tials and hence they define a map of complexes. Moreover the orthogonality conditions with respect
to the subalgebra W (n)−1 give the injectivity of the maps φs . Indeed, on one hand, the condition (2.8)
says that an element f ∈ C s(W (n), W (n)−1; W (n)) is determined by its restriction to

∧s W (n)�0. On
the other hand, condition (2.9) implies that the values of f on an s-tuple are determined, up to
elements of W (n)W (n)−1 = W (n)−1, by induction on the total degree of the s-tuple.

Therefore, to conclude the proof, it is enough to prove that the maps φs are surjective. Explicitly,
if f ∈ C s(W (n)�0, W (n)−1), consider the cochain f̃ ∈ C s(W (n), W (n)) defined by

f̃
(
xa1

, . . . , xan )=
n∑

i=1

∑
0�bi<ai

n∏
i=1

(
ai

bi

)
f
(
xa1−b1

, . . . , xan−bn )
xb1+···+bn

,

where if a,b ∈ N
n then

(a
b

) :=∏n
i=1

(ai
bi

)
.

We are done if we show that f̃ ∈ C s(W (n), W (n)−1; W (n)) since it is clear that φs( f̃ ) = f . The
first orthogonality condition (2.8) follows easily from the definition. Consider the following expression

f̃
(
xa1

, . . . , D j
(
xak )

, . . . , xan )=
∑

0�b′k<ak−ε j

∑
i 	=k

0�bi<ai

[(
ak)

j

(
ak − ε j

b′k

)∏
i 	=k

(
ai

bi

)]

× f
(
xa1−b1

, . . . , xak−ε j−bk
, . . . , xan−bn )

xb1+···+b′k+···+bn

=
n∑

i=1

∑
0�bi<ai

(
bk)

j

n∏
i=1

(
ai

bi

)
f
(
xa1−b1

, . . . , xan−bn )
xb1+···+bn−ε j ,

where we used the substitution bk = b′k + ε j together with the equality (bk) j
(ak

bk

)= (ak) j
(ak−ε j

bk−ε j

)
. Sum-

ming the above expression as k varies from 1 to n, we get [D j, f̃ (xa1
, . . . , xan

)] which proves the
second orthogonality condition (2.9). �
Proposition 3.8. Consider W (n)−1 as a trivial W (n)�1-module. Then{

H1
(
W (n)�0, W (n)−1

)= 0,

H2
(
W (n)�0, W (n)−1

)= H2
(
W (n)�1, W (n)−1

)W (n)0
.

Proof. Consider the Hochschild–Serre spectral sequence relative to the ideal W (n)�1 � W (n)�0:

Er,s
2 = Hr(W (n)0, Hs(W (n)�1, W (n)−1

)) ⇒ Hr+s(W (n)�0, W (n)−1
)
.

Note that since T ⊂ W (n)�0, we can restrict to homogeneous cohomology (see Section 2.2). Di-

rectly from homogeneity, it follows that the first line E∗,0
2 = H∗(W (n)0, W (n)−1) vanishes. Indeed
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the weights that occur in W (n)−1 are −εi while the weights that occur in W (n)0 are 0 and εi − ε j .
Therefore the weights that occur in W (n)⊗k

0 have degree congruent to 0 modulo p and hence they
cannot be equal to −εi .

On the other hand, since W (n)−1 is a trivial W (n)�1-module, we have that

H1(W (n)�1, W (n)−1
)= {

f : W (n)�1 → W (n)−1
∣∣ f
([

W (n)�1, W (n)�1
])= 0

}
.

Therefore Lemma 3.9 gives that

H1(W (n)�1, W (n)−1
)=

{
C1(W (1)1 ⊕ W (1)2, W (n)−1) if n = 1 and p � 5,

C1(W (n)1, W (n)−1) if n � 2 or n = 1 and p = 3.

From this it follows that the second line E∗,1
2 = H∗(W (n)�0, H1(W (n)�1, W (n)−1)) vanishes again for

homogeneity reasons. Indeed, on one hand, the weights that appear on H1(W (n)�1, W (n)−1) have
degree congruent to 2 or 3 modulo p (the last one can occur only for n = 1 and p � 5). On the other
hand the weights that appear on W (n)0 (that are 0 or εi − ε j ) are congruent to 0 modulo p and the
same is true for W (n)⊗k . �
Lemma 3.9. Let d � −1 be an integer and suppose that it is different from 1 if n = 1. Then[

W (n)1, W (n)d
]= W (n)d+1.

Proof. Clearly [W (n)1, W (n)d] ⊂ W (n)d+1 by definition of graded algebras. Consider formulas

[
x2

i Di, xb Dr
]=

{
bi xb+εi Dr if i 	= r,
(br − 2)xb+εr Dr if i = r.

Take an element xa Dr ∈ W (n)d+1. If ar 	= 0,3 the second formula above with i = r and b = a − εr

shows that xa Dr ∈ [W (n)1, W (n)d]. On the other hand, if there exists some i 	= r such that ai 	= 0,1
then the first formula above with b = a − εi gives that xa Dr ∈ [W (n)1, W (n)d]. Moreover if there is an
index s 	= r such that as = 1, then we use the formula[

x2
s Dr, xa−εs Ds

]= ar xa−εr+εs Ds − 2xa Dr

since the first term on the right-hand side belongs to [W (n)1, W (n)d] by what proved above. There-
fore, in virtue of our hypothesis on d, it remains to consider the elements x3

r Dr for n � 2. Choosing
an s 	= r we conclude by [

x2
r Ds, xr xs Dr

]= x3
r Dr − 2x2

r xs Ds. �
3.5. Computation of W (n)0-invariant cohomology

The aim of this subsection is to prove the following proposition that concludes the third and last
step of the proof.

Proposition 3.10. Denote with Sq(Di) the projection of Sq(Di) onto W (n)−1 . Then

H2(W (n)�1, W (n)−1
)W (n)0 =

n⊕
i=1

F · 〈Sq(Di)
〉
,

with the exception of the case n = 1 and p = 3 when it is 0.
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Proof. First of all observe that if n = 1 and p = 3, then W (n)�1 = 〈x2
1 D1〉 and hence the second

cohomology group vanishes. Hence we assume that p � 5 if n = 1. It is easy to see that the above
cocycles Sq(Di) are W (n)0-invariant and independent modulo coboundaries (same argument as in
Section 3.2). So we have to prove that they generate the second cohomology group.

Consider the truncated cohomology groups

H2
(

W (n)�1

W (n)�d
, W (n)−1

)W (n)0

as d increases. Observe that if d � np − (n + 1) then W (n)�d+1 = 0 and hence we get the cohomology
we are interested in. Moreover if n � 2 then Lemma 3.12 below gives

H2
(

W (n)�1

W (n)�2
, W (n)−1

)W (n)0

= C2(W (n)1, W (n)−1
)W (n)0 = 0,

while if n = 1 (and p � 5) then by homogeneity we have that

H2
(

W (1)�1

W (1)�3
, W (1)−1

)W (1)0

= C1(W (1)1 × W (1)2, W (1)−1
)

0 = 0.

The algebra W (n)�1 has a decreasing filtration {W (n)�d}d=1,...,n(p−1)−1 and the adjoint action of
W (n)0 respects this filtration. We consider one step of this filtration

W (n)d = W (n)�d

W (n)�d+1
� W (n)�1

W (n)�d+1

and the related Hochschild–Serre spectral sequence

Er,s
2 = Hr

(
W (n)�1

W (n)�d
, Hs(W (n)d, W (n)−1

)) ⇒ Hr+s
(

W (n)�1

W (n)�d+1
, W (n)−1

)
. (3.5)

We fix a certain degree d and we study, via the above spectral sequence, how the truncated cohomol-
ogy groups change if we pass from d to d + 1. By what was said above, we can assume that d > 1 if
n � 2 and d > 2 if n = 1.

Observe that, since W (n)d is in the center of W (n)�1/W (n)�d+1 and W (n)−1 is a trivial mod-
ule, then Hs(W (n)d, W (n)−1) = C s(W (n)d, W (n)−1) and W (n)�1/W (n)�d acts trivially on it. Since

E0,2∞ = 0 by Lemma 3.11 below, the above spectral sequence gives us the two following exact se-
quences

C1(W (n)d, W (n)−1)

α

H2
(

W (n)�1
W (n)�d

, W (n)−1

)

E2,0∞ H2
(

W (n)�1
W (n)�d+1

, W (n)−1

)
E1,1∞
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where the injectivity of the map α follows from the exactness of the sequence

E1,0∞ = H1
(

W (n)�1

W (n)�d
, W (n)−1

)
↪→ H1

(
W (n)�1

W (n)�d+1
, W (n)−1

)
� E0,1∞ = Ker(α)

together with Lemma 3.9 which says that the first two terms are both equal to C1(W (n)1, W (n)−1).
Moreover, Lemma 3.9 gives that

E1,1∞ ⊂ E1,1
2 =

{
C1(W (n)1 × W (n)d, W (n)−1) if n � 2,

C1([W (1)1 ⊕ W (1)2] × W (1)d, W (1)−1) if n = 1.
(3.6)

By taking cohomology with respect to W (n)0 and using Lemmas 3.12, 3.13, 3.14, 3.15 below, we see
that the only terms responsible for the growth of the invariant truncated cohomology groups are
H1(W (n)0, C1(W (n)d, W (n)−1)) if n � 2 and d = p − 1 (see Lemma 3.15) and (E1,1∞ )W (n)0 if n = 1 and
d = p − 2 (see Lemma 3.13). In both cases, we get the desired statement. �
Lemma 3.11. In the above spectral sequence (3.5), we have E0,2

3 = 0.

Proof. By definition, E0,2
3 is the kernel of the map

d : C2(W (n)d, W (n)−1
)= E0,2

2 → E2,1
2 = H2

(
W (n)�1

W (n)�d
, C1(W (n)d, W (n)−1

))
that sends a 2-cochain f to the element d f given by d f(E,F )(G) = − f ([E, F ], G) whenever deg(E) +
deg(F ) = d and 0 otherwise.

The subspace of coboundaries B2(
W (n)�1
W (n)�d

, C1(W (n)d, W (n)−1)) is the image of the map

∂ : C1
(

W (n)�1

W (n)�d
, C1(W (n)d, W (n)−1

))→ C2
(

W (n)�1

W (n)�d
, C1(W (n)d, W (n)−1

))
that sends the element g to the element ∂ g given by ∂ g(E,F )(G) = −g[E,F ](G). Hence ∂ g vanishes on
the pairs (E, F ) for which deg(E) + deg(F ) = d.

Therefore, if an element f ∈ C2(W (n)d, W (n)−1) is in the kernel of d, that is d f = ∂ g for some g
as before, then it should satisfy f ([E, F ], G) = 0 for every E, F , G such that deg(G) = d and deg(E) +
deg(F ) = d. By letting E vary in W (n)1 and F in W (n)d−1, the bracket [E, F ] varies in all W (n)d by
Lemma 3.9 (note that we are assuming d � 3 if n = 1). Hence the preceding condition implies that
f = 0. �
Lemma 3.12. If n � 2 and d � 1, then

C1(W (n)1 × W (n)d, W (n)−1
)W (n)0 = 0.

Proof. Note that invariance with respect to T ⊂ W (n)0 is the same as homogeneity, hence we can
limit ourselves to considering homogeneous cochains. In particular this implies the vanishing if d 	≡
p − 2 mod p.

Consider a homogeneous cochain f ∈ C1(W (n)1 × W (n)d, W (n)−1)
W (n)0 . Since the action of W (n)0

on W (n)1 is transitive, the result will follow if we prove that f (x2
1 D2,−) = 0. Indeed, assuming this

is the case, imposing invariance respect to an element xi D j ∈ W (n)0, we get

0 = (xi D j ◦ f )
(
x2

1 D2,−
)= − f

([
xi D j, x2

1 D2
]
,−)− f

(
x2

1 D2, [xi D j,−])+ [
xi D j, f

(
x2

1 D2,−
)]

= − f
([

xi D j, x2
1 D2

]
,−),
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which shows the vanishing for f when restricted to [xi D j, x2
1 D2]. Continuing in this way one gets the

vanishing of f on every element of W (n)1 and hence the vanishing of f . So it is enough to prove
that for every element xa Dr ∈ W (n)d one has f (x2

1 D2, xa Dr) = 0.
Suppose that p � 5. Then by the homogeneity assumption on f , we have the required vanishing

as soon as a1 = 0 or a2 = p − 1 (because p � 5!). If a1 � 1 and a2 < p − 1, we proceed by induction
on a1. Suppose that we have proved the vanishing for all the elements xb Ds such that b1 < a1. Then,
using the induction hypothesis, the following invariance condition

0 = (x1 D2 ◦ f )
(
x2

1 D2, xa−ε1+ε2 Dr
)= − f

(
x2

1 D2, (a2 + 1)xa Dr
)

gives the required vanishing.
Finally, in the case p = 3, we can apply the same inductive argument, provided that we first

prove the vanishing in the case when a1 = 0 or a2 = p − 1 = 2. This vanishing is provided by the
homogeneity of f unless xa Dr is equal to x2

2 D2, x2x j D j or x1x2
2x2

j D2 (with 3 � j � n). In this three
exceptional cases one proves the vanishing using the following invariance conditions:

⎧⎪⎨⎪⎩
0 = (x1 D2 ◦ f )

(
x1x2 D2, x2

2 D2
)= − f

(
x2

1 D2, x2
2 D2

)− f (x1x2 D2,2x1x2 D2),

0 = (x j D2 ◦ f )
(
x2

1 D2, x2
2 D j

)= − f
(
x2

1 D2,2x2x j D j − x2
2 D2

)
,

0 = (x j D2 ◦ f )
(
x2

1 D2, x1x2
2x2

j D2
)= [

x j D2, f
(
x2

1 D2, x1x2
2x2

j D2
)]

.

�

Lemma 3.13. Consider the above spectral sequence (3.5). If n = 1 then

(
E1,1

3

)
0 = (

E1,1∞
)

0 =
{

〈Sq(D1)〉 if d = p − 2,

0 otherwise,

where Sq(D1) denotes the restriction of Sq(D1) to W (1)1 × W (1)p−2 .

Proof. For n = 1 we have that T = W (1) and therefore the W (n)0-invariance is the same as homo-
geneity. By formula (3.6) and homogeneity, we get

(
E1,1

2

)
0 =

⎧⎨⎩ 〈x3
1 D1 × xp−2

1 D1 → D1〉 if d = p − 3,

〈x2
1 D1 × xp−1

1 D1 → D1〉 if d = p − 2,

0 otherwise.

The term (E1,1∞ )0 = (E1,1
3 )0 is the kernel of the differential map d : (E1,1

2 )0 → (E3,0
2 )0 = H3(

W (1)�1
W (1)�d

,

W (1)−1)0. In view of the explicit description of (E1,1
2 )0 as above, it is enough to show that the map

d is different from 0 if d = p − 3, since if d = p − 2 then the cocycle Sq(D1) belongs to (E1,1∞ )0 and is

different from 0 because Sq(D1)(x2
1 D1, xp−1

1 D1) = −3D1 ( 	= 0 for p � 5!).

So let d = p − 3 (and hence p � 7) and suppose that d〈x3
1 D1 × xp−2

1 D1 → D1〉 = ∂ g for g ∈
C2(

W (1)�1
W (1)�p−3

, W (1)−1)0. If p = 7 then g = 0 for homogeneity reasons. Otherwise (if p > 7) then

note that the cocycle d〈x3
1 D1 × xp−2

1 D1 → D1〉 vanishes on the triples (x2
1 D1, x j+1

1 D1, xp−1− j
1 D1) for

3 � j � (p − 3)/2 and hence we get the following conditions on g:

0 = ∂ g
(
x2

1 D1, x j+1
1 D1, xp−1− j

1 D1
)

= −( j − 1)g
(
x j+2

1 D1, xp−1− j
1 D1

)+ (p − 3 − j)g
(
xp− j

1 D1, x j+1
1 D1

)
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from which, by decreasing induction on j, we deduce that g(x j+1
1 D1, xp− j

1 D1) = 0 and hence that
g = 0. But this is absurd since

d
〈
x3

1 D1 × xp−2
1 D1 → D1

〉(
x2

1 D1, x3
1 D1, xp−3

1 D1
)= −(p − 5)D1 	= 0. �

Lemma 3.14. Let d ∈ Z�0 . Then we have C1(W (n)d, W (n)−1)
W (n)0 = 0.

Proof. Observe that C1(W (n)d, W (n)−1)
W (n)0 ⊂ C1(W (n)d, W (n)−1)0 and the last term is non-

vanishing only if d = p − 1 and n � 2, in which case we have the homogeneous cochains
g(xp−1

i x j D j) = ai
j Di , ai

j ∈ F (for i 	= j). We get the vanishing of g by means of the following co-
cycle condition

0 = dgxi D j

(
xp−2

i x2
j D j

)= −2g
(
xp−1

i x j D j
)= −2ai

j Di . � (3.7)

Lemma 3.15. Let d ∈ Z�0 . Then

H1(W (n)0, C1(W (n)d, W (n)−1
))=

{⊕n
i=1〈Sq(Di)〉 if n � 2 and d = p − 1,

0 otherwise,

where Sq(Di) denotes the restriction of Sq(Di) to W (n)0 × W (n)p−1 .

Proof. Observe that, since the maximal torus T is contained in W (n)0, the cohomology with respect
to W (n)0 reduces to homogeneous cohomology. Hence the required group can be non-zero only if
d ≡ p − 1 mod p (and hence only if n � 2). More precisely, since the weights appearing on W (n)−1
are −εk and the weights appearing on W (n)0 are εi − ε j (possibly with i = j), the weights appearing
on W (n)d can be −εi + ε j − εk (for every 1 � i, j,k � n). Hence the required group can be non-zero
only if d = p − 1 or d = 2p − 1 (this last case only if n � 3).

Consider first the case d = 2p − 1 (n � 3). A homogeneous cochain f ∈ C1(W (n)0, C1(W (n)2p−1,

W (n)−1))0 takes the following non-zero values

fxi D j

(
xp−1

i xp−1
k x j xh Dh

)= αh
i jk Dk

for every i, j,k mutually distinct and h 	= i,k. From the vanishing of d f , we get

0 = d f(xi D j ,xk Di)

(
xp−1

i xp−1
k x j xh Dh

)
= −[xk Di, fxi D j

(
xp−1

i xp−1
k x j xh Dh

)]+ fxk D j

(
xp−1

i xp−1
k x j xh Dh

)= αh
i jk Di + αh

kji Di,

0 = d f(xi D j xk D j)

(
xp−1

i xp−1
k x j xh Dh

)
= [

xi D j, fxk D j

(
xp−1

i xp−1
k x j xh Dh

)]− [
xk D j, fxi D j

(
xp−1

i xp−1
k x j xh Dh

)]= −αh
kji D j + αh

i jk D j .

Adding these two equations, it follows that 2αh
i jk = 0 and hence f = 0.

Consider now the case d = p − 1. First of all, a homogeneous cocycle f must satisfy fxi Di = 0.
Indeed, by formula (2.3), we have 0 = d f |xi Di = xi Di ◦ f − d( f |xi Di ) from which, since the first term
vanishes for homogeneity reasons, it follows that f |xi Di ∈ C1(W (n)p−1, W (n)−1)

W (n)0 which is zero
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by Lemma 3.14. Therefore a homogeneous cocycle can take the following non-zero values (for i, j,k
mutually distinct):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fxi D j

(
xp−2

i x2
j D j

)= αi j Di,

fxi D j

(
xp−1

i xk Dk
)= αk

i j D j,

fxi D j

(
xp−2

i x j xk Dk
)= βk

i j Di,

fxi D j

(
xp−1

k x j Di
)= γ k

i j Dk,

fxi D j

(
xp−1

i x j Dk
)= δk

i j Dk,

fxi D j

(
xp−1

i x j Di
)= βi j Di,

fxi D j

(
xp−1

i x j D j
)= γi j D j .

By possibly modifying f with a coboundary (see formula (3.7)), we can assume that αi, j = 0. Using

this, we get the vanishing of αk
i j , βk

i j and γ k
i j by means of the following three cocycle conditions:

0 = d f(xi D j ,xi Dk)

(
xp−2

i x2
k Dk

)= [
xi D j, fxi Dk

(
xp−2

i x2
k Dk

)]+ fxi D j

(
2xp−1

i xk Dk
)= [−αik + 2αk

i j

]
D j,

0 = d f(xi D j ,xi Dk)

(
xp−3

i x j x
2
k Dk

)= − fxi Dk

(
xp−2

i x2
k Dk

)+ fxi D j

(
2xp−2

i x j xk Dk
)= [−αik + 2βk

i j

]
Di,

0 = d f(xi D j ,xk D j)

(
xp−2

k x2
j Di

)= − fxk D j

([
xi D j, xp−2

k x2
j Di

])+ fxi D j

([
xk D j, xp−2

k x2
j Di

])
= − fxk D j

(
2xp−2

k x j xi Di
)+ fxk D j

(
xp−2

k x2
j D j

)+ fxi D j

(
2xp−1

k x j Di
)= [−2β i

kj + αkj + 2γ k
i j

]
Dk.

The coefficients δk
i j and βi j are determined by the coefficients γi j by the following two cocycle condi-

tions:

0 = d f(xi D j ,xi Dk)

(
xp−2

i x j xk Dk
)

= − fxi Dk

(
xp−1

i xk Dk
)+ fxi D j

(
xp−1

i x j Dk
)− [

xi Dk, fxi D j

(
xp−2

i x j xk Dk
)]

= [−γik + δk
i j + βk

i j

]
Dk = [−γik + δk

i j

]
Dk, (∗)

0 = d f(xi D j ,x j Di)

(
xp−1

i x j D j
)

= fxi D j

(−xp−2
i x2

j D j
)+ fxi D j

(−xp−1
i x j Di

)− [
x j Di, fxi D j

(
xp−1

i x j D j
)]

= [−αi j − βi j + γi j]Di = [−βi j + γi j]Di . (∗∗)

The coefficients γi j satisfy the relation γi j = γik (for i, j, k mutually distinct as before). Indeed from
the cocycle condition

0 = d f(xi D j ,xi Dk)

(
xp−1

i x j Di
)

= − fxi Dk

(
xp−1

i x j D j
)− [

xi Dk, fxi D j

(
xp−1

i x j Di
)]+ fxi D j

(−xp−1
i x j Dk

)
= [−α

j
ik + βi j − δk

i j

]
Dk = [

βi j − δk
i j

]
Dk,

and using the relations (∗) and (∗∗) as above, we get γi j = βi j = δk
i j = γik := γi .
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We conclude the proof by observing that the elements Sq(Di) are independent modulo cobound-
aries (if n � 2) as it follows from

Sq(Di)
(
xi D j, xp−1

i x j D j
)= 1

(p − 1)!
[

Di(xi D j), (Di)
p−1(xp−1

i x j D j
)]= D j . �

4. The special algebra

4.1. Definition and basic properties

Throughout this section, we use the notations introduced in Section 3.1 and we fix an integer
n � 3. Consider the following map, called divergence:

div :

⎧⎪⎨⎪⎩
W (n) → A(n),

n∑
i=1

f i Di �→
n∑

i=1

Di( f i).

Clearly it is a linear map of degree 0 that satisfies the following formula (see [FS88, Chapter 4,
Lemma 3.1]):

div
([D, E])= D

(
div(E)

)− E
(
div(D)

)
.

Therefore the space S ′(n) := {E ∈ W (n) | div(E) = 0} is a graded subalgebra of W (n) and we have an
exact sequence of S ′(n)-modules

0 → S ′(n) → W (n)
div→ A(n)<τ → 0. (4.1)

Definition 4.1. The Special algebra is the derived algebra of S ′(n):

S(n) := S ′(n)(1) = [
S ′(n), S ′(n)

]
.

In order to describe the structure of S(n), we introduce the following maps (for 1 � i, j � n)

Dij :
{

A(n) → W (n),

f �→ D j( f )Di − Di( f )D j .

Note that Dij(A(n)) ⊂ S ′(n) and moreover if
∑n

i=1 f i Di and
∑n

j=1 g j D j are two elements of S ′(n)

then we have the following formula[
n∑

i=1

f i Di,

n∑
j=1

g j D j

]
= −

∑
1�i, j�n

Dij( f i g j), (4.2)

which in particular gives the following special case[
Dij( f ), Dij(g)

]= Dij
(

Dij( f )(g)
)
. (4.3)

Theorem 4.2. The algebra S(n) satisfies the following properties:

(i) S(n) is generated by the elements Dij( f ) for f ∈ A(n) and 1 � i < j � n.
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(ii) We have the following exact sequence of S(n)-modules

0 → S(n) → S ′(n) →
n⊕

i=1

F · 〈xτ−(p−1)εi Di
〉→ 0, (4.4)

where the last term is a trivial S(n)-module.
(iii) S(n) is a restricted simple graded Lie algebra of dimension (n − 1)(pn − 1).

Proof. See [FS88, Chapter 4, Proposition 3.3, Theorems 3.5 and 3.7]. �
Note that the unique term of negative degree is S(n)−1 =⊕n

i=1 F · 〈Di〉 while the term of degree 0
is S(n)0 = ⊕n

i=2 F · 〈xi Di − x1 D1〉⊕1� j 	=k�n F · 〈x j Dk〉 and its adjoint action on S(n)−1 induces an
isomorphism S(n)0 ∼= sl(n, F ).

The algebra S(n) admits a root space decomposition with respect to a canonical Cartan subalgebra.

Proposition 4.3. Recall that hi := xi Di for every i ∈ {1, . . . ,n}.

(a) T S := T ∩ S(n) =⊕n
i=2 F · 〈hi − h1〉 is a maximal torus of H(n) (called the canonical maximal torus).

(b) The centralizer of T S inside S(n) is the subalgebra

C S =
⊕

2� j�n
0�a�p−2

F · 〈D1 j
(
xa+ε1+ε j

)〉

which is hence a Cartan subalgebra (called the canonical Cartan subalgebra). The dimension of C H is
(n − 1)(p − 1).

(c) Let ΦS := HomFp (
⊕n

i=2 Fp〈hi − h1〉,Fp), where Fp is the prime field of F . In the Cartan decomposition
S(n) = C S

⊕
φ∈ΦS −0 S(n)φ , the dimension of every S(n)φ , with φ ∈ ΦS − 0, is (n − 1)p.

Proof. See [FS88, Chapter 4, Theorem 3.6]. �
4.2. Strategy of the proof of the Main Theorem

In this subsection, we outline the strategy of the proof of Theorem 1.2 from the Introduction.
Hence, from now on, we assume that the characteristic p of the base field F is different from 2.

We first check that Θ is a cocycle. It is enough to verify that it is a cocycle when restricted to
S(n)−1 and that it is S(n)0-invariant:

dΘ(Di, D j, Dk) = [
Di, D jk

(
xτ
)]− [

D j, Dik
(
xτ
)]+ [

Dk, Dij
(
xτ
)]

= −D jk
(
xτ−εi

)+ Dik
(
xτ−ε j

)− Dij
(
xτ−εk

)= 0

and (for h 	= k)

(xh Dk ◦ Θ)(Di, D j) = [
xh Dk, Dij

(
xτ
)]+ δihΘ(Dk, D j) + δ jhΘ(Di, Dk)

= δhj Dki
(
xτ
)− δhi Dkj

(
xτ
)+ δih Dkj

(
xτ
)+ δ jh Dik

(
xτ
)= 0.

Moreover the cocycles Θ and Sq(Di) appearing in Theorem 1.2 are independent modulo cobound-
aries. Indeed, if γ ∈ {Sq(D1), . . . ,Sq(Dn),Θ} then we have (for i 	= j)
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γ (Di, D j) =
{

Dij(xτ ) if γ = Θ,

0 otherwise,
and

γ
(
xi D j, D ji

(
xp−1

i x2
j

))=
{−2Di if γ = Sq(Di),

0 otherwise,
(4.5)

while for every g ∈ C1(S(n), S(n)) the coboundary dg(Di, D j) = [Di, g(D j)] − [D j, g(Di)] cannot con-

tain the monomial Dij(xτ ) for degree reasons and dg(xi D j, D ji(xp−1
i x2

j )) = [xi D j, g(D ji(xp−1
i x2

j ))] −
[D ji(xp−1

i x2
j ), g(xi D j)] cannot contain the monomial Di .

Assuming the results of the next subsection, we complete the proof of Theorem 1.2.

Proof of Theorem 1.2. From the sequence (4.1), using Proposition 4.6, we get the exact sequence

0 → H1(S(n), A(n)<τ

) ∂→ H2(S(n), S ′(n)
)→ H2(S(n), W (n)

)
.

By Proposition 4.8, we known that H2(S(n), W (n)) is generated by the cocycles Sq(Di). These clearly
belong to H2(S(n), S ′(n)) and hence the above exact sequence splits

H2(S(n), S ′(n)
)=

n⊕
i=1

〈
Sq(Di)

〉⊕
∂ H1(S(n), A(n)<τ

)
.

On the other hand, from the sequence (4.4), we get the exact sequence

0 → H2(S(n), S(n)
)→ H2(S(n), S ′(n)

)→
n⊕

i=1

H2(S(n), xτ−(p−1)εi Di
)
,

where we used that H1(S(n), M) = 0 for a trivial S(n)-module M . Since the cocycles Sq(Di) belong
to H2(S(n), S(n)), we are left with verifying which of the elements of ∂ H1(S(n), A(n)<τ ) (which we
know by Proposition 4.4) belong to H2(S(n), S(n)).

Consider first the cocycle ad(xτ ) : Di �→ Di(xτ ) = −xτ−εi . It lifts to the cocycle ãd(xτ ) ∈
C1(S(n), W (n)) given by ãd(xτ ) : Di �→ xτ Di and 0 on the other elements. Therefore the only non-zero
values of ∂(ãd(xτ )) can be (for k 	= h):

∂
(
ãd
(
xτ
))

(Di, D j) = [
Di, xτ D j

]− [
D j, xτ Di

]= −Dij
(
xτ
)
,

∂
(
ãd
(
xτ
))

(Di, xk Dh) = −[xk Dh, xτ Di
]− ãd

(
xτ
)([Di, xk Dh])

= δikxτ Dh − φ(δik Dh) = 0

and hence we have that ∂(ad(xτ )) = −Θ .
Consider now the element χi ∈ H1(S(n), A(n)<τ ) and choose a lifting χ̃i ∈ C1(S(n), W (n)) in such

a way that if χi(γ ) = 0 then χ̃i(γ ) = 0. Then (if j 	= i), we have

∂(χi)
(

D j, xτ−(p−1)(εi+ε j)Di
)= [

D j, χ̃i
(
xτ−(p−1)(ε j+εi)

)]= xτ−(p−1)ε j D j,

because the only possible lifting to W (n) of the element χi(xτ−(p−1)(εi+ε j)Di) = xτ−(p−1)ε j is
xτ−(p−2)ε j D j . On the other hand, for every cochain g ∈ C1(S(n), xτ−(p−1)ε j ) we have
dg(D j, xτ−(p−1)εi−(p−1)ε j Di) = 0 because the module is trivial and [D j, xτ−(p−1)εi−(p−1)ε j Di] = 0.
Hence the projection of ∂(χi) into H2(S(n), xτ−(p−1)ε j ) is non-zero and therefore ∂(χi) /∈ H2(S(n),

S(n)). �
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Proposition 4.4. Consider the natural action of S(n) on A(n)<τ . We have

H1(S(n), A(n)<τ

)=
n⊕

i=1

〈χi〉 ⊕ 〈
ad
(
xτ
)〉
,

where the χi ∈ H1(S(n), A(n)<τ ) are defined by

χi
(
xa Dk

)=
{

xa · xp−1
i if k = i,

0 otherwise.

Proof. First of all note that χi takes values in A(n)<τ (and not merely on A(n)) since xτ−(p−1)εi Di /∈
S(n). To prove that χi are cocycles, it is enough to verify the following two cocycle conditions (where
j,h,k are different from i)

d(χi)
(

Dij
(
xa), Dhk

(
xb))= −Dhk

(
xb)(D j

(
xa)xp−1

i

)− χi
([

Dij
(
xa), Dhk

(
xb)])

= −Dhk
(
xb)(D j

(
xa)xp−1

i

)+ χi
(

Dhk
(
xb)(D j

(
xa))Di

)= 0,

d(χi)
(

Dij
(
xa), Dih

(
xb))= Dij

(
xa)(Dh

(
xb)xp−1

i

)− Dih
(
xb)(D j

(
xa)xp−1

i

)
− χi

(
Dij

(
xa)(Dh

(
xb))Di − Dih

(
xb)(D j

(
xa))Di

)
= Dh

(
xb)Dij

(
xa)(xp−1

i

)− D j
(
xa)Dih

(
xb)(xp−1

i

)= 0.

The independence of the above cocycles γi and ad(xτ ) modulo coboundaries follows from the fact
that if γ ∈ {χ1, . . . ,χn,ad(x(τ ))} then

γ (Di) =
⎧⎨⎩ xp−1

i if γ = χi,

Di(xτ ) = −xτ−εi if γ = ad(xτ ),

0 otherwise,

while for any g ∈ A(n)<τ the element dg(Di) = Di(g) cannot the monomials xp−1
i or xτ−εi .

In order to prove that the whole cohomology group is generated by the above cocycles, we con-
sider the exact sequence of S(n)-modules

0 → A(n)<τ → A(n) → 〈
xτ
〉→ 0,

where 〈xτ 〉 is a trivial S(n)-module. By taking cohomology and using the fact that H1(S(n), xτ ) = 0,
we obtain

H1(S(n), A(n)<τ

)= 〈
ad
(
xτ
)〉⊕ H1(S(n), A(n)

)
.

Finally, to compute the last cohomology group we use the Hochschild–Serre spectral sequence with
respect to the subalgebra S(n)−1 < S(n):

Er,s
1 = Hs(S(n)−1, Cr(S(n)/S(n)−1, A(n)

)) ⇒ Hr+s(S(n), A(n)
)
.

Note that E0,1
1 = H1(S(n)−1, A(n)) = ⊕n

i=1 F · 〈xp−1
i D∗

i 〉 (by Proposition 3.4) and the χi are global
cocycles lifting them. On the other hand, by the same argument as in Proposition 3.7, we have that
E1,0

2 = H1(S(n), S(n)−1; A(n)) = H1(S(n)�0,1). But this last group vanishes since [S(n)�0, S(n)�0] =
S(n)�0 as it follows easily from Lemma 4.7 above. �

In the course of the proof of the main result, we obtain a new proof of the following result.
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Theorem 4.5 (Celousov).

H1(S(n), S(n)
)=

n⊕
i=1

ad
(
xτ−(p−1)εi Di

)⊕ ad(x1 D1).

Proof. From the exact sequence (4.4) of S(n)-modules and using the fact that S ′(n)S(n) = H1(S(n),

xτ−(p−1)εi ) = 0, we get that

H1(S(n), S(n)
)=

n⊕
i=1

〈
ad
(
xτ−(p−1)εi Di

)〉⊕ H1(S(n), S ′(n)
)
.

From the exact sequence (4.1) and using the facts that W (n)S(n) = 0 and A(n)
S(n)
<τ = F · 〈1〉 to-

gether with Proposition 4.6, an easy computation with the coboundary map gives H1(S(n), S ′(n)) =
〈ad(x1 D1)〉. �
4.3. Cohomology of W (n)

In this section we complete the proof of the Main Theorem by computing the first and the second
cohomology group of W (n) as an S(n)-module.

Proposition 4.6. H1(S(n), W (n)) = 0.

Proof. Consider the homogeneous Hochschild–Serre spectral sequence (2.5) with respect to the sub-
algebra S(n)−1 < S(n):(

Er,s
1

)
0 = Hs(S(n)−1, Cr(S(n)/S(n)−1, W (n)

))
0 ⇒ Hr+s(S(n), W (n)

)
0. (4.6)

Note that the vertical line E0,∗
1 = H∗(S(n)−1, W (n))0 = H∗(W (n)−1, W (n))0 vanishes by Corollary 3.5

and hence we get that

H1(S(n); W (n)
)= H1(S(n), S(n)−1; W (n)

)
.

The same argument of Proposition 3.7, using S(n)S(n)−1 = S(n)−1, gives that

H1(S(n), S(n)−1; W (n)
)= H1(S(n)�0, S(n)−1

)
,

where S(n)−1 is an S(n)�0-module via the projection S(n)�0 � S(n)0 followed by the adjoint repre-
sentation of S(n)0 on S(n)−1.

Now consider the Hochschild–Serre spectral sequence (2.6) relative to the ideal S(n)�1 � S(n)�0:

Er,s
2 = Hr(S(n)0, Hs(S(n)�1, S(n)−1

)) ⇒ Hr+s(S(n)�0, S(n)−1
)
. (4.7)

By direct inspection, it is easy to see that E1,0
2 = H1(S(n)0, S(n)−1) = 0 for homogeneity reasons.

On the other hand, since S(n)−1 is a trivial S(n)�1-module, it follows from Lemma 4.7 above

that H1(S(n)�1, S(n)−1) = C1(S(n)1, S(n)−1) and hence that E0,1
2 = C1(S(n)1, S(n)−1)

S(n)0 = 0 by
Lemma 4.10 above. �
Lemma 4.7. Let d � −1 be an integer. Then[

S(n)1, S(n)d
]= S(n)d+1.
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Proof. The inclusion [S(n)1, S(n)d] ⊂ S(n)d+1 is obvious, so we fix an element Dij(xa) ∈ S(n)d+1 (that
is deg(xa) = d + 3 � 2) and we want to prove that it belongs to [S(n)1, S(n)d].

Suppose first that ai � 2 and a j < p − 1. Then we are done by formula[
x2

i D j, Dij
(
xa−2εi+ε j

)]= Dij
(
x2

i D j
(
xa−2εi+ε j

))= (a j + 1)Dij
(
xa).

Therefore (by interchanging i and j) it remains to consider the elements xa for which ai = a j = p − 1
or 0 � ai,a j � 1. We first consider the elements satisfying this latter possibility. If ai = a j = 1 then
we use formula (see (4.3))[

Dij
(
x2

i x j
)
, Dij

(
xa−εi

)]= Dij
((

x2
i Di − 2xi x j D j

)(
xa−εi

))= −2Dij
(
xa).

On the other hand, if (ai,a j) = (1,0) then, by the hypothesis deg(xa) = d + 3 � 2, there should exist
an index k 	= i, j such that ak � 1 and hence we use formula[

Dij
(
x2

i xk
)
, Dij

(
xa−εi−εk+ε j

)]= −2Dij
(
xa).

Analogously, if ai = a j = 0 then there should exist either two different indices k,h /∈ {i, j} such that
ak,ah � 1 or one index k 	= i, j such that ak � 2. We reach the desired conclusion using formula (with
h = k in the second case) [

Dij(xkxhx j), Dij
(
xa−εh−εk+εi

)]= Dij
(
xa).

Hence we are reduced to considering the elements Dij(xa) such that ai = a j = p − 1. Here we have to
use the hypothesis that n � 3. Suppose first that there exist an index k /∈ {i, j} such that ak 	= p − 2.
Consider formula (see (4.2))[

Dik
(
xkx2

i

)
, Dij

(
xa−εi

)]= −2Dij
(
xa)+ 2Dik

(
xa+εk−ε j

)+ 4Dkj
(
xa−εi+εk

)
.

The last two elements have k-coefficients different from p − 1 (by the hypothesis ak 	= p − 2) and
therefore belong to [S(n)1, S(n)d] by what proved above. This implies also that our element Dij(xa)

belongs to [S(n)1, S(n)d].
At this point, only the elements Dij(xa) with a = p − 2 + εi + ε j are left. Consider the following

linear system (where k 	= i, j):⎧⎪⎨⎪⎩
[

Dik
(
xkx2

i

)
, Dij

(
xa−εi

)]= −2Dij
(
xa)+ 2Dik

(
xa−ε j+εk

)− 4D jk
(
xa−εi+εk

)
,[

Dik
(
x2

k xi
)
, Dij

(
xa−εk

)]= −2Dij
(
xa)+ Dik

(
xa−ε j+εk

)− D jk
(
xa−εi+εk

)
,[

Dik(xi x j xk), Dij
(
xa−ε j

)]= −Dij
(
xa)+ 2Dik

(
xa−ε j+εk

)− D jk
(
xa−εi+εk

)
.

Since the matrix

(−2 2 −4
−2 1 −1
−1 2 −1

)
has determinant equal to 8 and hence is invertible over F , from the

preceding system we get that Dij(xa) ∈ [S(n)1, S(n)d]. �
Proposition 4.8. Assume that the characteristic of the base field F is different from 3 if n = 3. Then

H2(S(n), W (n)
)=

n⊕
i=1

F · 〈Sq(Di)
〉
.

Proof. We have already proved that the above cocycles are independent modulo coboundaries so that
we are left with showing that they generate the whole second cohomology group. This will be done
in several steps.



4124 F. Viviani / Journal of Algebra 320 (2008) 4102–4131
Step I. H2(S(n), W (n)) = H2(S(n), S(n)−1; W (n)).
Consider the homogeneous Hochschild–Serre spectral sequence (4.6) with respect to the subalge-

bra S(n)−1 < S(n). Since, by Corollary 3.5, the vertical line E0,∗
1 = H∗(S(n)−1, W (n))0 vanishes, we

will conclude this first step by showing that (E1,1
2 )0 = 0.

The proof of that is similar to the one of Proposition 3.6. We sketch a proof referring to
that proposition for notations and details. So suppose that we have an element [ f ] ∈ (E1,1

1 )0 =
H1(S(n)−1, C1(S(n)/S(n)−1, W (n))0 that goes to 0 under the differential map d : (E1,1

1 )0 → (E2,1
1 )0.

First of all, arguing by induction on degree as in Proposition 3.6, we can find a representative f̃ of
the class [ f ] such that for a certain d and for every i = 1, . . . ,n, we have that

{
f̃ Di (F ) = 0 for every F ∈ S(n): deg(F ) < d,

f̃ Di (E) ∈ 〈xp−1
i

〉⊗ W (n)−1 for every E ∈ S(n): deg(E) = d.

By homogeneity, it is easy to see that f̃ Di can take non-zero values only on the elements E of the
form (for a certain k) {

Dkh
(
xa+εh

)
for 1 � a � p − 1 and h 	= k, (I)

xp−1
k (xr Dr − xs Ds) for k, r, s mutually distinct. (II)

In particular, note that the degree d of E is at least n − 1 � 2. Now we can conclude the proof
using exactly the same argument as in Proposition 3.6: we have to find, for every E as above, two
elements A ∈ S(n)0 and B ∈ S(n)d such that [A, B] = E and A /∈ S(n)−ε j , S(n)ε2+···+εn for any j =
2, . . . ,n (which are exactly the weights appearing on S(n)−1). Explicitly: if E is of type (II) we take
B = xk Dr and A = 1/2 · Drs(xp−2

k x2
r xs); if E is of type (I) with a 	= p − 2 then we take B = xk Dh and

A = −1/(a + 2) · Dkh(xa+2εh−εk ). Finally if E is of type (I) with a = p − 2, then, choosing an index j
different from k and h (this is possible since n � 3), the same argument as above gives the vanishing
of f̃ Di on the following two elements

{
3Dhj

(
xp−2−εk+ε j+εh

)− Dhk
(
xp−2+εh

)= [
xk Dh, D jk

(
xp−2−εk+ε j+εh

)]
,

2Dhj
(
xp−2−εk+ε j+εh

)− 2Dhk
(
xp−2+εh

)= [
x j Dh, D jk

(
xp−2+εh

)]
.

But then, since the matrix
( 3 −1

2 −2

)
has determinant equal to −4 and hence is invertible over F , we can

take an appropriate linear combination of the two elements above to get the vanishing of f̃ Di on the
element Dhk(xp−2+εh ).

Step II. H2(S(n), S(n)−1; W (n)) ↪→ H2(S(n)�1, S(n)−1)
S(n)0 .

First of all, exactly as in Proposition 3.7 (using that S(n)S(n)−1 = S(n)−1), we get

H2(S(n), S(n)−1; W (n)
)= H2(S(n)�0, S(n)−1

)
where as usual S(n)−1 is an S(n)�0-module via the projection S(n)�0 � S(n)0 followed by the adjoint
representation of S(n)0 on S(n)−1.

Finally, we consider the Hochschild–Serre spectral sequence (4.7) with respect to the ideal
S(n)�1 � S(n)�0. Using that E2,0

2 = H2(S(n)0, S(n)−1) = 0 for homogeneity reasons and E1,1
2 =

H1(S(n)0, C1(S(n)1, S(n)−1)) = 0 by Lemmas 4.7 and 4.11, we get the inclusion

H2(S(n)�0, S(n)−1
)
↪→ H2(S(n)�1, S(n)−1

)S(n)0
.
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Step III. H2(S(n)�1, S(n)−1)
S(n)0 =⊕n

i=1 F · 〈Sq(Di)〉.
The strategy of the proof is the same as that of Proposition 3.10: to compute, step by step as d

increases, the truncated invariant cohomology groups

H2
(

S(n)�1

S(n)�d+1
, S(n)−1

)S(n)0

.

By Lemma 4.9, we get that H2(
S(n)�1
S(n)�2

,1)S(n)0 = C2(S(n)1, S(n)−1)
K (n)0 = 0. On the other hand, if

d � n(p − 1) − 2 then S(n)�d+1 = 0 and hence we get the cohomology we are interested in.

Consider the Hochschild–Serre spectral sequence associated to the ideal S(n)d = S(n)�d
S(n)�d+1

�
S(n)�1

S(n)�d+1
:

Er,s
2 = Hr

(
S(n)�1

S(n)�d
, Hs(S(n)d, S(n)−1

)) ⇒ Hr+s
(

S(n)�1

S(n)�d+1
, S(n)−1

)
. (4.8)

We get the same diagram as in Proposition 3.10 (the vanishing of E0,2
3 and the injectivity of the map

α are proved in exactly the same way). We conclude by taking cohomology with respect to S(n)0 and
using Lemmas 4.9, 4.10 and 4.11 below. �
Lemma 4.9. Assume that the characteristic of F is different from 3 if n = 3. Then in the above spectral se-
quence (4.8), we have that

(
E1,1∞

)S(n)0 = 0.

Proof. For the above spectral sequence (4.8), we have the inclusion

(
E1,1∞

)S(n)0 ⊂ (
E1,1

2

)S(n)0 = C1(S(n)1 × S(n)d, S(n)−1
)S(n)0

.

Let f be a homogeneous cochain belonging to C1(S(n)1 × S(n)d, S(n)−1)
S(n)0 . Since the action of

S(n)0 on S(n)1 is transitive, the cochain f is determined by its restriction f (x2
1 D2,−) (see the

proof of Lemma 3.12). Even more, f is determined by its restriction to the pairs (x2
1 D2, E) for which

f (x2
1 D2, E) ∈ 〈D2〉, which is equivalent to E ∈ S(n)−2

∑
i�2 εi

by the homogeneity of f . Indeed, the val-

ues of f on the other pairs (x2
1, F ) for which f (x2

1 D2, F ) ∈ 〈D j〉 (for a certain j 	= 2) are determined
by the invariance condition

0 = (x j D2 ◦ f )
(
x2

1 D2, F
)= [

x j D2, f
(
x2

1 D2, F
)]− f

(
x2

1 D2, [x j D2, F ]).
A base for the space S(n)−2

∑
i�2 εi

consists of the elements

D1k
(
xp−1−ε1+εk

)
for k 	= 1, (A)

D3h
(
xa−2ε1+ε3+εh

)
for 0 � a � p − 2 and h 	= 3. (B)

For the elements of type (A) with k � 3, we get the vanishing as follows

0 = (x1 Dk ◦ f )
(
x2

1 D2, D1k
(
xp−1−2ε1+2εk

))= − f
(
x2

1 D2, D1k
(
xp−1−ε1+εk

))
.

On the other hand for the element D12(xp−1−ε1+ε2 ), we first use the following invariance condition
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0 = (x1 D2 ◦ f )
(
x2

1 D2, D12
(
xp−1−2ε1+2ε2

))
= [

x1 D2, f
(
x2

1 D2, D12
(
xp−1−2ε1+2ε2

))]− f
(
x2

1 D2, D12
(
xp−1−ε1+ε2

))
,

and then we get the vanishing by means of the following

0 = (x1 D2 ◦ f )
(
x2

1 D2, D12
(
xp−1−3ε1+3ε2

))= −2 f
(
x2

1 D2, D12
(
xp−1−2ε1+2ε2

))
.

Consider now an element D3h(xa−2ε1+ε3+εh ) of type (B) and suppose that a 	= p − 2. Also in this case
we get the vanishing using the following condition

0 = (x1 D3 ◦ f )
(
x2

1 D2, D3h
(
xa−3ε1+2ε3+εh

))= −(a + 2) f
(
x2

1 D2, D3h
(
xa−2ε1+ε3+εh

))
.

Therefore it remains to consider only the elements of type (B) with a = p − 2. Define
f (x2

1 D2, D3h(xp−2−2ε1+ε3+εh )) := γh D2 for every h 	= 3. Consider the following invariance conditions
for h 	= 1,3:

0 = (x1 D3 ◦ f )
(
x2

1 D2, D1h
(
xp−2−2ε1+ε3+εh

))= [−γ1 + 4γh]D2 if p � 5, (∗)

0 = (x1 D3 ◦ f )
(
x2

1 D2, D1h
(
x1+ε1+ε3+εh

))= γh D2 if p = 3, (∗′)

0 = (x4 D3 ◦ f )
(
x2

1 D2, D12
(
xp−2−ε1+ε2+ε3−ε4

))= [−γ1 + 3γ2]D2 if n � 4. (∗∗)

If n � 4 and p � 5 then, using (∗∗) and (∗) with h = 2, we get that γ1 = γ2 = 0. Substituting
γ1 = 0 in (∗), we find γh = 0 for every h.

If n � 4 and p = 3, then from (∗′), we get the vanishing of γh for all h 	= 1 and from (∗∗) we get
the vanishing of γ1.

Finally, if n = 3 (and p � 5 by hypothesis) then from (∗) we get that γ1 = 4γ2. We want to prove
that if f ∈ (E1,1∞ )S(n)0 then γ2 = 0. So suppose that f can be lifted to an S(n)0-invariant global cocycle
(which we will continue to call f ). First of all, by using the S(n)0-invariance condition 0 = (x2 D3 ◦
f )(x2

1 D2, D21(xp−2−ε1+ε3 )), we get that f (x2
1 D3, D21(xp−2−ε1+ε3 )) = −5γ2 D2. Using this, we find the

following cocycle condition (where we use that p � 5)

0 = d f
(
x2

1 D2, x3
1 D3, D12

(
xp−2−3ε1+ε2+ε3

))
= − f

(
x2

1 D3, D21
(
xp−2−ε1+ε3

))+ f
(
x2

1 D2, D31
(
xp−2−ε1+ε3

)− 5D32
(
xp−2−2ε1+ε2+ε3

))
= 5γ2 D2 + 4γ2 D2 − 5γ2 D2,

from which we deduce that γ2 = 0. �
Lemma 4.10. Let d ∈ Z�0 . Then C1(S(n)d, S(n)−1)

S(n)0 = 0.

Proof. Obviously an S(n)0-invariant cochain g ∈ C1(S(n)d, S(n)−1) must be homogeneous. Fix Di ∈
S(n)−1 and let φi be the corresponding weight (hence φi = εi if i � 2 while φ1 =∑n

j=2 ε j ). A base for
the space S(n)φi (which has dimension (n − 1)p) consists of the following elements (plus Di ):

xp−1
i ⊗ T S , (A)

Dij
(
xa+ε j

)
for j 	= i and 1 � a � p − 1. (B)

We have to show that g vanishes on the elements of the above form.
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An element of type (A) must be of the form xp−1
i D jk(x j xk) = xp−1

i (x j D j − xk Dk) for some j,k 	= i.
The vanishing of g on such an element follows from

0 = (xi D j ◦ g)
(

D jk
(
xp−2

i x2
j xk
))= −2g

(
xp−1

i D jk(x j xk)
)
. (∗)

Consider now an element Dij(xa+ε j ) of type (B) and suppose that a 	= p −2. Then we get the vanishing
by means of

0 = (xi D j ◦ g)
(

D ji
(
xa+2ε j−εi

))= (a + 2)g
(

Dij
(
xa+ε j

))
. (∗∗)

Therefore it remains to prove the vanishing for the elements Dij(xp−2+ε j ). Put g(Dij(xp−2+ε j )) :=
αi

j Di for i 	= j. Chose three indices i, j, k mutually distinct (which is possible since n � 3) and consider
the following cocycle condition

0 = (2xi D j ◦ g)
(

D jk
(
xp−2+ε j+εk−εi

))
= [

xi D j, g
(

Dik
(
xp−2+εk

)− Dij
(
xp−2+ε j

))]+ 2g
(

D jk
(
xp−2+εk

))
= (

αi
j − αi

k + 2α
j

k

)
D j, (∗∗∗)

where in the first equality we used the relation Dik(xp−2+εk ) − Dij(xp−2+ε j ) = 2D jk(xp−2+ε j+εk−εi ).
Summing Eq. (∗∗∗) with the one obtained interchanging k with j, we get

α
j

k + αk
j = 0. (∗∗∗1)

Moreover, summing Eq. (∗∗∗) with the analogous one obtained by interchanging i with j and using
the antisymmetric property (∗∗∗1), we obtain

αi
k + α

j
k = 0. (∗∗∗2)

Finally, using Eqs. (∗∗∗1) and (∗∗∗2), we get αi
j = −αk

j = α
j

k and αi
k = −α

j
k . Substituting into

Eq. (∗∗∗), we find 4α
j

k = 0. �
Lemma 4.11. Let d ∈ Z�0 . Then

H1(S(n)0, C1(S(n)d, S(n)−1
))=

{⊕n
i=1 F · 〈Sq(Di)〉 if d = p − 1,

0 otherwise,

where Sq(Di) denotes the restriction of Sq(Di) to S(n)0 × S(n)p−1 .

Proof. First of all, observe that the computations made at the beginning of Section 4.2 show
that the above cocycles Sq(Di) are independent modulo coboundaries. Consider a cocycle f ∈⊕

d�0 Z 1(S(n)0, C1(S(n)d, S(n)−1)). Since the maximal torus T S is contained in S(n)0, we can as-
sume that f is homogeneous. Exactly as in the proof of Lemma 3.15, one can show, using the above
Lemma 4.10, that the restriction of f to the maximal torus T S is zero. Therefore, by homogeneity, the
cocycle f can take only the following non-zero values (with 1 � i, j,k � n mutually distinct):
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fxi D j (E) ⊂ 〈D j〉 if E =

⎧⎪⎨⎪⎩
xp−1

i Dkh(xkxh) for h 	= i,k, (1A)
Dih(xa+εh ) for a 	= 0, p − 2 and h 	= i, (1B)

D jh(xp−2−εi+ε j+εh ) for h 	= j, (1C)

fxi D j (E) ⊂ 〈Di〉 if E =

⎧⎪⎨⎪⎩
D jh(xp−2

i x2
j xh) for h 	= j, (2A)

D jh(xa+2ε j−2εi+εh ) for a 	= 0, p − 2, h 	= j, (2B)

Dkh(xp−2−2εi+ε j+εk+εh ) for h 	= k, (2C)

fxi D j (E) ⊂ 〈Dk〉 if E =

⎧⎪⎨⎪⎩
D jh(x−εi+2ε j−εk+εh ) for h 	= j, (3A)
D jh(xa−εi+2ε j−εk+εh ) for a 	= 0, p − 2, h 	= j, (3B)

Dkh(xp−2−εi+ε j+εh ) for h 	= k. (3C)

We want to show that we can modify f , by adding coboundaries and the cocycles Sq(Di), in such
a way that it vanishes on the above elements. We divide the proof in several steps according to the
elements of the above list.

(2A) For every index i, we choose an index j 	= i and we modify f , by adding a multiple of

Sq(Di), in such a way that fxi D j (D ji(xp−1
i x2

j )) = 0 (see Eq. (4.5)). Moreover, by adding a coboundary

dg , we can further modify f in such a way that fxi D j (D jk(xp−2
i x2

j xk)) = 0 for every k 	= i, j (see Eq. (∗)

of Lemma 4.10). Therefore we get the required vanishing for the chosen index j. Using this, we obtain
the following cocycle condition (for every k 	= i, j and h 	= j):

0 = d f(xi D j ,xi Dk)

(
D jh

(
x−3εi+ε j+εk+εh

))= −2 fxi Dk

(
D jh

(
x−2εi+ε j+εk+εh

))
,

from which we get the required vanishing, using (for h 	= k) the transformation rule Dkh(xp−2
i x2

k xh) =
2D jh(x−2εi+ε j+εk+εh ) − D jk(x−2εi+ε j+2εk ).

(3A) If p � 5 then we get the required vanishing by means of the following condition, where we
used the vanishing of the elements of type (2A):

0 = d f(xk D j ,xi D j)

(
D jh

(
x−2εk+3ε j−εk+εh

))= −3 fxi D j

(
D jh

(
x−εi+2ε j−εk+εh

))
.

If p = 3 a little extra-work is necessary and we have to consider the following three conditions ac-
cording to the three cases h 	= i,k, h = i and h = k respectively:

0 = d f(xk Dh,xi D j)

(
x2

i x2
k D jh

(
x2

j xh
))= [

xk Dh, fxi D j

(
x2

i x2
k D jh

(
x2

j xh
))]

,

0 = d fxi D j ,xk D j)

(
xkx2

j Di
)= − fxi D j

(
2x2

k x j Di
)= fxi D j

(
x2

k D ji
(
x2

j

))
,

0 = d f(xi D j ,xk Di)

(
x2

i D jk
(
x2

j

))= −[xk Di, fxi D j

(
x2

i D jk
(
x2

j

))]
,

where in the last condition we used the first two vanishing.
(1A) Using the vanishing of (2A) and (3A), we get

0 = d f(xi D j ,xi Dk)

(
xp−2

i Dkh
(
x2

k xh
))= 2 fxi D j

(
xp−1

i Dkh(xkxh)
)
.

(2B) Fix an integer 1 � a � p−1 different from p−2 and define fxi D j (D jh(xa+2ε j−2εi+εh )) = γ i
jh Di

for every j 	= i,h. By adding a coboundary dg , we can modify f in such a way that γ i
ji = 0 for every

j 	= i (see Eq. (∗∗) of Lemma 4.10). Consider first the cocycle condition (for i, j,k mutually distinct)

0 = d f(xi D j ,xi Dk)

(
Dij

(
xa−2εi+2ε j+εk

))
= (a + 2) fxi D j

(
D ji

(
xa−εi+ε j+εk

))− (a + 2) fxi D j

(
Dki

(
xa−εi+ε j+εk

))− (a − 2)γ i
jk Di .
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By considering the analogous condition obtained by interchanging j with k together with the trans-
formation rule

(a + 2)D ji
(
xa−εi+ε j+εk

)= (a + 1)Dki
(
xa−εi+2εk

)− (a − 1)Dkj
(
xa−2εi+2εk+ε j

)
,

we get the relation (1 − a)γ i
kj + γ i

jk = 0. Next consider the other cocycle condition

0 = d f(xi D j ,xi Dk)

(
D jk

(
xa−3εi+2ε j+2εk

))= (a + 2)
(
γ i

kj + γ i
jk

)
Di .

Since det
( 1−a 1

a+2 a+2

)= −a(a + 2) 	= 0, putting together these two relations we get that γ i
jk = 0.

(3B) If a 	= p − 3 then, using the vanishing of the elements of type (2B), we get

0 = d f(xk D j ,xI D j)

(
D jh

(
xa−2εk+3ε j−εi+εh

))= −(a + 3) fxi D j

(
D jh

(
xa−εi+2ε j−εk+εh

))
.

If a = p − 3 (and hence p � 5) we use the following condition (again by the vanishing of (2B))

0 = d f(xk Di ,xi D j)

(
Dih

(
xp−3−2εk+εi+ε j+εh

))= 2 fxi D j

(
Dih

(
xp−3−εk+ε j+εh

))
,

together with the transformation rule (if h 	= i, j)

3D jh
(
xp−3−εi+2ε j−εk+εh

)= −(2 + δhk)Dij
(
xp−3−εk+2ε j

)+ Dih
(
xp−3−εk+ε j+εh

)
.

(1B) Take indices r 	= i, j and s 	= r and consider the following condition (using the vanishing of
(2B) and (3B))

0 = d f(xi D j ,xi Dr )

(
Drs

(
xa+εr−εi+εs

))= (a + 2) fxi D j

(
Drs

(
xa−εi+εr+εs

))
.

By taking r = h and s = i, we get the required vanishing if h 	= j. If h = j and a 	= p − 1, we use the
transformation rule

(a + 1)Dij
(
xa+ε j

)= (a + 1)2 Dri
(
xa+εr

)− a(a + 1)Drj
(
xa−εi+εr+ε j

)
.

If h = j and a = p − 1 we use the following condition (by the vanishing of (2B) and (3B))

0 = d f(xk D j ,xi D j)

(
D ji

(
xp−1−εk+2ε j

))= fxi D j

(
Dij

(
xp−1+ε j

))
.

(1C) We define fxi D j (D jk(xp−2−εi+ε j+εk )) = β i
jk D j for every j 	= i,k (but possibly i = k). The space

of all such cochains has dimension n(n − 1)2. Using the notations of Lemma 4.10, the subspace of
coboundaries is formed by the β i

jk such that there exist {αi
j: i 	= j} with the property that 2β i

jk =
αi

j − αi
k + 2α

j
k (see Eq. (∗∗∗) of Lemma 4.10). Moreover in the above quoted lemma, we prove that

different values of αi
j give rise to different values of β i

jk . Hence the dimension of the subspace of
coboundaries is n(n − 1). Therefore, in order to prove the vanishing of the elements of type (1C), it
will be enough to exhibit n(n − 1)(n − 2) linearly independent relations among the coefficients β i

jk .
Fix three integers i, j, k mutually distinct and consider the following cocycle condition

0 = d f(xi D j ,x j Dk)

(
D jk

(
xp−2+ε j+εk−εi

))= (−β
j

kj + β i
jk + β i

kj

)
Dk.

We get first of all that the β ’s with two coincident indices are determined by those with three dif-
ferent indices and this give n(n − 1) linearly independent relations. Moreover we deduce also that for
any k 	= j the value of the sum β i

jk + β i
kj is independent of i and this give n(n − 1)(n − 3) linearly
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independent relations. Since the two types of relations are also independent one of the other, the
total number of independent relations we get is n(n − 1)(n − 2), as required.

(3C) Using the vanishing of (1C), we get

0 = d f(xi D j ,x j Dk)

(
Dkh

(
xp−2+εk+εh−εi

))= − fxi D j

(
Dkh

(
xp−2+εh−εi+ε j

))
.

(2C) Using the vanishing of (1C) and (3C), we compute

0 = d f(xi Dk,xi D j)

(
Dkh

(
xp−2−2εi+ε j+εk+εh

))
= [

xi Dk, fxi D j

(
Dkh

(
xp−2−2εi+ε j+εk+εh

))]
. �
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