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1. Introduction

Simple Lie algebras over an algebraically closed field of positive characteristic different from 2 and 3 were classified by
Wilson–Block (see [1]) in the restricted case and by Strade (see [2]) and Premet–Strade (see [3]) in the general case. The
classification remains still open in characteristic 2 and 3 (see [4, page 209]).
According to this classification, simple modular (that is over a field of positive characteristic) Lie algebras are divided

into two big families, called classical-type and Cartan-type algebras. The algebras of classical-type are obtained by the
simple Lie algebras in characteristic zero by first taking a model over the integers (via Chevalley bases) and then reducing
modulo p (see [5]). The algebras of Cartan-type were constructed by Kostrikin–Shafarevich in 1966 (see [6]) as finite-
dimensional analogues of the infinite-dimensional complex simple Lie algebras, which occurred in Cartan’s classification of
Lie pseudogroups, and are divided into four families, called Witt–Jacobson, Special, Hamiltonian and Contact algebras. The
Witt–Jacobson Lie algebras are derivation algebras of truncated divided power algebras and the remaining three families
are the subalgebras of derivations fixing a volume form, a Hamiltonian form and a contact form, respectively. Moreover in
characteristic 5 there is one exceptional simple modular Lie algebra called the Melikian algebra (introduced in [7]).
A particular important class of simple modular Lie algebras are the ones which are restricted. These can be characterized

as those modular Lie algebras such that the p-power of an inner derivation (which in characteristic p is a derivation) is still
inner (see [8] or [4]). Important examples of restricted Lie algebras are the ones coming from group schemes. Indeed, there
is a bijection between restricted Lie algebras over k and infinitesimal k-group schemes of height one (see [9, Chap. 2]).
This paper is devoted to the study of the infinitesimal deformations of the restricted simple Lie algebras. The simple Lie

algebras of classical-type are known to be rigid over a field of characteristic different from 2 and 3 (see [10]), in analogy
of what happens in characteristic zero. In the papers [11,12], the author computed the infinitesimal deformations of the
Witt–Jacobson, Special andMelikian restricted simple Lie algebras. In this paper, we compute the infinitesimal deformations
of the Contact algebras K(n) and the Hamiltonian algebras H(n) over a field F of characteristic different from 2 and 3.
By standard facts of deformation theory, the infinitesimal deformations of a Lie algebra are parametrized by the second

cohomology of the Lie algebra with values in the adjoint representation (see for example [14]).
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Before stating themain results of this paper, we recall that there is a canonical way to produce 2-cocycles in Z2(g, g) for a
modular Lie algebra g over a field of characteristic p > 0, namely the squaring operation (see [14]). Given an element γ ∈ g,
one defines the squaring of γ to be

Sq(γ )(x, y) =
p−1∑
i=1

[ad(γ )i(x), ad(γ )p−i(y)]
i!(p− i)!

∈ Z2(g, g) (1.1)

where ad(γ )i is the i-iteration of the inner derivation ad(γ ).
Assuming the (standard) notations from Sections 2.1 and 3.1 about the Contact algebras K(n) and the Hamiltonian

algebras H(n), we can state the main results of this paper.

Theorem 1.1. Let n = 2m+ 1 ≥ 3. Then

H2(K(n), K(n)) =
2m⊕
i=1

〈Sq(xi)〉F ⊕ 〈Sq(1)〉F .

Theorem 1.2. Let n = 2m ≥ 2. Then if n ≥ 4 we have that

H2(H(n),H(n)) =
n⊕
i=1

〈Sq(xi)〉F
⊕
i<j
j6=i′

〈Πij〉F

m⊕
i=1

〈Πi〉F

⊕
〈Φ〉F ,

where the above cocycles are defined (and vanish outside) by

Πij(xa, xb) = x
p−1
i′ x

p−1
j′ [Di(x

a)Dj(xb)− Di(xb)Dj(xa)] for j 6= i, i′,
Πi(xixa, xi′xb) = xa+b+(p−1)εi+(p−1)εi′ if a+ b < σ i,

Πi(xk, xσ
i
) = −σ(k)xσ−εk′ for any 1 ≤ k ≤ n,

Φ(xa, xb) =
∑
0<δ≤a,̂b
|δ|=3

(a
δ

)(b
δ̂

)
σ(δ)δ!xa+̂b−δ−̂δ.

If n = 2 then

H2(H(2),H(2)) =
2⊕
i=1

〈Sq(xi)〉F
⊕
〈Φ〉F .

In two forthcomingpapers [15,13],weuse the above computations to determine the restricted infinitesimal deformations
of the restricted simple Lie algebras and the infinitesimal deformations of their associated simple finite group schemes.

2. Contact algebra

2.1. Definition and basic properties

We first introduce some notations about the setNn of n-tuple of natural numbers.We consider the order relation defined
by a = (a1, . . . , an) < b = (b1, . . . , bn) if ai < bi for every i = 1, . . . , n. We define the degree of a ∈ Nn as |a| =

∑n
i=1 ai

and the factorial as a! =
∏n
i=1 ai!. For two multi-indices a, b ∈ Nn such that b ≤ a, we set

( a
b

)
:=
∏n
i=1

(
ai
bi

)
=

a!
b!(a−b)! . For

every integer j ∈ {1, . . . , n}we call εj the n-tuple having 1 at the j-th entry and 0 outside.
Throughout this section we fix a field F of characteristic p 6= 2, 3 and an odd integer n = 2m + 1 ≥ 3. For any

j ∈ {1, . . . , 2m}, we define the sign σ(j) and the conjugate j′ of j as follows:

σ(j) =
{
1 if 1 ≤ j ≤ m,
−1 ifm < j ≤ 2m, and j′ =

{
j+m if 1 ≤ j ≤ m,
j−m ifm < j ≤ 2m.

Given a multi-index a = (a1, . . . , a2m) ∈ N2m, we define the sign of a as σ(a) =
∏
σ(i)ai and the conjugate of a as

the multi-index â such that âi = ai′ for every 1 ≤ i ≤ 2m. We are going to use often the following special n-tuples:
0 := (0, . . . , 0), τ := (p− 1, . . . , p− 1) and σ := (p− 1, . . . , p− 1, 0).
Let A(n) = F [x1, . . . , xn]/(x

p
1, . . . , x

p
n) be the ring of p-truncated polynomials in n-variables. Note that A(n) is a finite

F-algebra of dimension pn with a basis given by the monomials {xa = xa11 · · · x
an
n | a ∈ Nn, a ≤ τ }.

Consider the operator DH : A(n)→ W (n) := DerFA(n) defined as

DH(f ) =
2m∑
j=1

σ(j)Dj(f )Dj′ =
m∑
i=1

[Di(f )Di+m − Di+m(f )Di] ,

where, as usual, Di := ∂
∂xi
∈ W (n).
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WedenotewithK ′(n) the graded Lie algebra over F whoseunderlying F-vector space isA(n) = F [x1, . . . , xn]/(x
p
1, . . . , x

p
n),

endowed with the grading defined by deg(xa) = |a| + an − 2 and with the Lie bracket defined by

[xa, xb] = DH(xa)(xb)+
[
an deg(xb)− bn deg(xa)

]
xa+b−εn .

Definition 2.1. The Contact algebra is the derived subalgebra of K ′(n):

K(n) := K ′(n)(1) = [K ′(n), K ′(n)].

We need the following characterization of K(n) (see [8, Chap. 4, Theo. 5.5]).

Proposition 2.2. Denote with K ′(n)<τ the sub-vector space of K ′(n) generated over F by the monomials xa such that a < τ .
Then

K(n) =
{
K ′(n) if p 6 |(m+ 2),
K ′(n)<τ if p | (m+ 2).

We can describe explicitly the low degree terms of K(n) together with their adjoint action. The negative graded pieces
of K(n) are K(n)−2 = 〈1〉F whose adjoint action is like the action of 2Dn on A(n) and K(n)−1 = ⊕2mi=1〈xi〉F where the adjoint
action of xi is like σ(i)Di′ + xiDn. The piece K(n)0 of degree 0 is generated by the central element xn whose adjoint action
is given by [xn, xa] = deg(xa)xa and by xixj (with 1 ≤ i, j ≤ 2m) whose adjoint action is like σ(i)xjDi′ + σ(j)xiDj′ . Hence
K(n)0 ∼= sp(2m, F)⊕ 〈xn〉F .
The algebra K(n) admits a root space decomposition with respect to a canonical Cartan subalgebra.

Proposition 2.3. (a) TK := ⊕mi=1〈xixi′〉F ⊕ 〈xn〉F is a maximal torus of K(n) (called the canonical maximal torus).
(b) The centralizer of TK inside K(n) is the subalgebra CK = {xa | ai = ai′ and deg(xa) ≡ 0 mod p}, which is hence a Cartan
subalgebra (called the canonical Cartan subalgebra). The dimension of CK is pm if p 6 |(m+ 2) and pm − 1 otherwise.

(c) Let ΦK := HomFp(⊕
n
i=1〈xixi′〉Fp ⊕ 〈xn〉Fp , Fp), where Fp is the prime field of F . We have a Cartan decomposition K(n) =

CK ⊕φ∈ΦK−0 K(n)φ , where K(n)φ = {x
a
| ai+m − ai ≡ φ(xixi′)∀i = 1, . . . ,m and deg(xa) ≡ φ(xn)}. The dimension of

every K(n)φ , with φ ∈ ΦK − 0, is pm.

Proof. See [8, Chap. 4, Theo. 5.6 and 5.7]. �

2.2. Proof of the Main Theorem 1.1

In this section, assuming the results of the next section, we give a proof of the Main Theorem 1.1.
Proof of the Main Theorem 1.1. It is easy to see that the cochains appearing in Theorem 1.1 are cocycles and that they are
independent in H2(K(n), K(n)). Therefore, we are left with showing that dimF H2(K(n), K(n)) = n. We divide the proof in
three steps.
STEP I: It is enough to show that dimF H2(K(n), K ′(n)) = n since there is an inclusion

H2(K(n), K(n)) ↪→ H2(K(n), K ′(n)).

Indeed, if p does not divide m + 2 then K ′(n) = K(n) and we get the equality. Otherwise there is an exact sequence of
K(n)-modules

0→ K(n)→ K ′(n)→ 〈xτ 〉F → 0 (2.1)

where 〈xτ 〉F ∼= F is the trivial K(n)-module. We get the desired inclusion since H1(K(n), F) = 0, which follows from the
fact that [K(n), K(n)] = K(n).
STEP II: We have that

H2(K(n), K ′(n)) = H2(K(n)≥0, Fλ−σ ),

where Fλ−σ is the one-dimensional representation of K(n)≥0 onwhich xn acts as−2 and all the others elements act trivially.
This follows from the general results of [16]. Indeed, it is easily seen that K ′(n) is the restricted K(n)-module induced

from the restricted K(n)≥0-submodule 〈xτ 〉F ⊂ K ′(n). In the notation of [16], the K(n)≥0-module 〈xτ 〉F is isomorphic to Fλ,
where Fλ is the one-dimensional K(n)≥0-module corresponding to the Lie algebra homomorphism λ : K(n)≥0 → F whose
only non-zero value is λ(xn) = −2m− 4 ≡ deg xτ = (2m+ 2)(p− 1)− 2 mod p.
Moreover, consider the Lie algebra homomorphism σ : K(n)≥0 → F given by σ(x) := tr(adK(n)/K(n)≥0x) for x ∈ K(n)≥0

(see [16, Pag. 155]). It is easily seen that the only non-zero value of σ is given by σ(xn) = −2m− 2.
Therefore we have that γ − σ : K(n)≥0 → F is the Lie algebra homomorphism sending xn to −2 and vanishing on the

other elements. Moreover, using Lemma 2.5, it is straightforward to check that, in the notation of [16], we have the equality

{[x, y] − (λ− σ)(x)y+ (λ− σ)(y)x | x, y ∈ K(n)≥0} := (K(n)≥0)
(1)
λ−σ = I := ker(λ− σ).

We conclude using [16, Thm. 3.6(1)].
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STEP III: In Section 2.3, we prove that

dim
F
H2(K(n)≥0, Fλ−σ ) = dim

F
H2(K(n)≥1, Fλ−σ )K(n)0 = n. �

2.3. Computation of H2(K(n)≥0, Fλ−σ )

This section is devoted to complete the third step of the proof of the Main Theorem as outlined in Section 2.2, that is the
computation of H2(K(n)≥0, Fλ−σ ). This is done in Propositions 2.4 and 2.6.
Recall that Fλ−σ is the one-dimensional representation of K(n)≥0 on which xn acts as−2 and all the other elements act

trivially. This action becomes homogeneous with respect to the weight decomposition of K(n)≥0 if we give the weight−2εn
to the generator of Fλ−σ . As remarked in [11, Sec. 2.1], in this situation we have that

H2(K(n)≥0, Fλ−σ ) = H2(K(n)≥0, Fλ−σ )0,
where the subscript 0means that we consider only homogeneous cochainswith respect to the natural action of themaximal
torus TK (see Proposition 2.3).

Proposition 2.4. We have that

H2(K(n)≥0, Fλ−σ ) = H2(K(n)≥1, Fλ−σ )K(n)0 .

Proof. Consider the Hochschild–Serre spectral sequence (see [17]) associated to the ideal K(n)≥1 C K(n)≥0:

Er,s2 = H
r(K(n)0,Hs(K(n)≥1, Fλ−σ ))⇒ Hr+s(K(n)≥0, Fλ−σ ).

We are going to prove that the first two lines of the above spectral sequence vanish, which clearly imply the Proposition.
The first line E∗,02 = H

∗(K(n)0, Fλ−σ ) vanish for homogeneity reasons. Indeed, the weight of Fλ−σ is−2εn 6= 0, while the
weights occurring on K(n)0 are {±εi ± εj, 1 ≤ i, j ≤ 2m} and hence the weights that occur on K(n)⊗k0 cannot contain εn
with a non-trivial coefficient.
On the other hand, since Fλ−σ is a trivial K(n)≥1-module and [K(n)≥1, K(n)≥1] = K(n)≥2 by Lemma 2.5 below, we have

that

H1(K(n)≥1, Fλ−σ ) = C1(K(n)1, Fλ−σ ).

From this equality, we deduce that the second line E∗,12 = H∗(K(n)0,H1(W (n)≥1, Fλ−σ )) vanish again for homogeneity
reasons. Indeed the n-component of the weights appearing in H1(K(n)≥1, Fλ−σ ) = C1(K(n)1, Fλ−σ ) is −3εn 6= 0 (because
p ≥ 5) while the weights appearing in K(n)⊗k0 have trivial n-component. �

Lemma 2.5. Let d be an integer greater than or equal to−2. Then

[K(n)1, K(n)d] = K(n)d+1.

Proof. The inclusion [K(n)1, K(n)d] ⊂ K(n)d+1 is clear. In order to prove the other inclusion, we consider an element
xa ∈ K(n)d+1 and we have to show that it belongs to the commutators [K(n)1, K(n)d].
The elements of K(n)1 are of the form xixjxk or xixn (for some 1 ≤ i, j, k ≤ 2m). The former ones act, via adjoint

action, as DH(xixjxk)− xixjxkDn while the latter ones act as σ(i)xnDi′ + xi deg−xixnDn. Consider the decomposition K ′(n) =
⊕
p−1
k=0 A(2m)x

k
n. The proof is by induction on the coefficient an, which in what follows is called the xn-degree of x

a.
First of all consider the case of xn-degree equal to 0, that is the case xa ∈ A(2m). If there exists an index 1 ≤ i ≤ 2m such

that ai ≥ 2 and ai′ < p− 1, then we conclude by means of the following formula

[x3i , x
a−2εi+εi′ ] = 3σ(i)(ai′ + 1)xa.

Therefore it remains to consider the elements xa for which ai = ai′ = p− 1 or 0 ≤ ai, ai′ ≤ 1 for every 1 ≤ i ≤ 2m. If there
exists a couple (ai, ai′) = (1, 1), we are done by the formula

[x2i xi′ , x
a−εi ] = σ(i)(2ai′ − ai + 1)xa = 2σ(i)xa.

If there exists a couple (ai, ai′) = (1, 0), then there are two possibilities: either xa = xi or there exists an index j 6= i, i′ such
that aj ≥ 1. In the first case we use [xixn, 1] = −2xi while in the second we conclude by means of the following formula

[x2i xj, x
a−εi+εi′−εj ] = 2σ(i)xa + σ(j)aj′x

a+εi+εi′−εj−εj′ ,

together with the fact that the second element on the right-hand side belongs to [K(n)1, K(n)d] by what proved above.
Hence we are left with considering the elements xa for which every couple of conjugated coefficients (ai, ai′) is equal to
(0, 0) or (p− 1, p− 1). If there are two indices 1 ≤ i 6= j ≤ m such that (ai, ai′) = (0, 0) and (aj, aj′) = (p− 1, p− 1) we
use the formula

[x2j xi, x
a+εi′−2εj ] = 2(p− 1)xa+εi+εi′−εj−εj′ + xa,



1706 F. Viviani / Journal of Pure and Applied Algebra 213 (2009) 1702–1721

together with the fact that the first term on the right-hand side belongs to [K(n)1, K(n)d] by what proved above. Since the
case xa = 1 is excluded by the hypothesis d+ 1 ≥ −1, it remains to consider the element xa = xσ for which we can take an
appropriate linear combination of the two equations (with k = 0):

[x3i , x
σ−3εixk+1n ] = −3σ(i)x

σ−εi−εi′ xk+1n − (k+ 1)x
σ xkn, (2.2)

[x2i xi′ , x
σ−2εi−εi′ xk+1n ] = −σ(i)x

σ−εi−εi′ xk+1n − (k+ 1)x
σ xkn. (2.3)

For the inductive step, suppose that an = k ≥ 1 and that we have already proved the desired inclusion for the elements of
xn-degree less than or equal to k− 1. If there exists an index i such that ai < p− 1, then the formula

[xi′xn, xa+εi−εn ] = σ(i′)(ai + 1)xa + (d− an + 1)xa+εi+εi′−εn ,

together with the induction hypothesis, gives the conclusion. Otherwise our element is equal to xσ xkn. If k < p − 1, then
one concludes by taking an appropriate linear combination of the above formulas (2.2) and (2.3). Finally for the element
xσ xp−1n = xτ (which can occur only if p 6 |m + 2), the conclusion follows from the formula (for an arbitrarily chosen
1 ≤ i ≤ 2m)

[xixn, xσ−εixp−1n ] = −2(m+ 2)x
τ . �

For the remaining part of this subsection, we identify the K(n)0-module Fλ−σ with the K(n)0-module F ∼= 〈1〉F = K(n)−2.
On both these modules, K(n)≥1 acts trivially.

Proposition 2.6. We have that

H2(K(n)≥1, F)K(n)0 =
2m⊕
i=1

〈Sq(xi)〉F ⊕ 〈Sq(1)〉F ,

where Sq(xi) is the projection of Sq(xi) onto 〈1〉F ∼= F (analogously for Sq(1)).

Proof. It is easy to check that the above cocycles are independent modulo coboundaries, so we have to prove that they
generate the whole cohomology group.
The strategy of the proof is exactly the same as that of the proposition [11, Prop. 3.10], that is to compute, step-by-step

as d increases, the truncated invariant cohomology groups

H2
(
K(n)≥1
K(n)≥d+1

, F
)K(n)0

.

Observe that if d is big enough (at least 2(m+ 1)(p− 1)− 1) then K(n)≥d+1 = 0 and hence we get the cohomology we are
interested in. On the other hand, by homogeneity, we get that

H2
(
K(n)≥1
K(n)≥2

, F
)K(n)0

= C2 (K(n)1, F)K(n)0 = 0.

By taking the Hochschild–Serre spectral sequence (see [17]) associated to the ideal K(n)d =
K(n)≥d
K(n)≥d+1

C
K(n)≥1
K(n)≥d+1

(for d ≥ 2):

Er,s2 = H
r
(
K(n)≥1
K(n)≥d

,Hs(K(n)d, F)
)
⇒ Hr+s

(
K(n)≥1
K(n)≥d+1

, F
)
, (2.4)

we get the same diagram as in [11, Prop. 3.10] (the vanishing of E0,22 and the injectivity of the map α are proved in exactly
the same way).
By taking the cohomologywith respect toK(n)0 and using the Lemmas 2.8, 2.9 and 2.11,we see that the only cocycles that

contribute to the required cohomology group are {Sq(x1), . . . , Sq(x2m), Sq(1)} since the cocycle inv ◦ [−,−] ∈ (E1,1∞ )
K(n)0

in degree 2m(p− 1)+ 2µ− 3 is annihilated by inv ∈ C1(K(n)2m(p−1)+2µ−2, F)K(n)0 . �

The remaining part of this section is devoted to the proof of the lemmas that were used in the proof of Proposition 2.6.
In the next two lemmas, we are going to compute the K(n)0-invariant terms (E

1,1
2 )K(n)0 and (E1,1

∞
)K(n)0 . Observe that, since

K(n)d is in the center of
K(n)≥1
K(n)≥d+1

, we have that Hs(K(n)d, F) = C s(K(n)d, F) and
K(n)≥1
K(n)≥d+1

acts trivially on it. Therefore, using

Lemma 2.5, we deduce that E1,12 = C
1(K(n)1 × K(n)d, F).

Lemma 2.7. Let 0 ≤ µ, ν ≤ p− 1 such that µ ≡ m mod p and ν ≡ (m+ 1) mod p. Then we have that⊕
d≥2

C1(K(n)1 × K(n)d, F)K(n)0 = 〈Φ1〉F ⊕ 〈Φ2〉F ⊕ 〈Ψ1〉F ⊕ 〈Ψ2〉F ,
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where the above cochains are defined by
Φ1(xixn, xi′xp−1n ) = σ(i),
Φ2(xa, x̂axp−2n ) = σ(a)a! if a ∈ N2m and |a| = 3,
Ψ1(xixn, xσ−εixµn ) = 1,
Ψ2(xa, xσ−axνn) = 1 if a ∈ N2m and |a| = 3.

Proof. An easy verification shows that the four cochains of above are K(n)0-invariants and linearly independent. We will
conclude by showing that the dimension over the base field F of the space

⊕
d≥2 C

1 (K(n)1 × K(n)d, F)
K(n)0
0 of all invariant

homogeneous cochains is less than or equal to 4.
The space K(n)1 admits the decomposition K(n)1 = A(2m)−1 · xn ⊕ A(2m)1 which is invariant under the adjoint action

of K(n)0 = A(2m)0 ⊕ 〈xn〉F . Moreover the action of K(n)0 is transitive in both the summands A(2m)−1 · xn and A(2m)1.
Therefore a K(n)0-invariant homogeneous cochain g ∈ C1

(
K(n)1 × K(n)≥2, F

)K(n)0
0 is determined by the values on any two

elements of A(2m)−1 · xn and A(2m)1, let us say x1xn and x31.
Consider an element xa ∈ K(n)≥2 such that g(x1xn, xa) 6= 0. By homogeneity the element xa must satisfy a1′ ≡

a1 + 1 mod p, aj′ = aj for every j 6∈ {1, 1′} and deg(xa) ≡ −3 mod p. If the couple (a1, a1′) would be different from
(0, 1) or (p− 2, p− 1) then the following invariance condition

0 = (x21 ◦ g)(x1xn, x
a−ε1+ε1′ ) = −2(a1′ + 1)g(x1xn, xa)

would contradict the hypothesis of non-vanishing. Therefore we can assume that (a1, a1′) = (0, 1) or (p − 2, p − 1). If
the first case holds, then necessarily (aj, aj′) = (0, 0) for every j 6∈ {1, 1′}. Indeed if this is not the case, then we get a
contradiction with the non-vanishing hypothesis by means of the following invariance condition

0 = (x1xj ◦ g)(x1xn, xa+ε1′−εj) = −2g(x1xn, xa).

Analogously, if (a1, a1′) = (p− 2, p− 1) then (aj, aj′) for every j 6∈ {1, 1′} because of the following invariance condition

0 = (x1xj ◦ g)(x1xn, x
a−ε1+εj′ ) = −σ(j)(aj′ + 1)g(x1xn, xa).

Taking into account the homogeneity condition deg(xa) ≡ −3 mod p, we get that the only non-zero values of g(x1xn,−)
can be g(x1xn, x1′x

p−1
n ) and g(x1xn, xσ−ε1x

µ
n ).

In exactly the same way, one proves that the only non-zero values of g(x31,−) can be g(x
3
1, x

3
1′x
p−2
n ) and g(x31, x

σ−3ε1xνn)
and therefore we get

dim
F
C1
(
K(n)1 × K(n)≥2, F

)K(n)0
0 ≤ 4. �

Lemma 2.8. In the above spectral sequence (2.4), we have that

(E1,1
∞
)K(n)0 =

〈Sq(1)〉F if d = 2p− 3,
〈inv ◦ [−,−]〉F if d = 2m(p− 1)+ 2µ− 3,
0 otherwise,

where inv ∈ C1(K(n)2m(p−1)+2µ−2, F)K(n)0 is defined in Lemma 2.9 and Sq(1) is the restriction of Sq(1) to K(n)1 × K(n)2p−3.

Proof. (E1,1
∞
)K(n)0 is the subspace of (E1,12 )K(n)0 = C1(K(n)1 × K(n)d, F)K(n)0 consisting of cocycles that can be lifted to

Z2
(
K(n)≥1
K(n)≥d+1

, F
)
. A direct computation shows that, with the notations of Lemma 2.7, Sq(1) = 2Sq(Dn) = 2Φ1 and

inv ◦ [−,−] = −(ν + 2)Ψ1 − νΨ2 and clearly these two cocycles can be lifted. We want to show that any other liftable
cocycle is a linear combination of them.
First of all we show that the cocycleΦ2 is not liftable. By absurd, suppose that a lifting exists and call it againΦ2. We get

a contradiction by means of the following cocycle conditions
0 = dΦ2(x3i , x

3
i′ , x

p−1
n ) = −9σ(i)Φ2(x2i x

2
i′ , x

p−1
n )+ Φ2(x3i x

p−2
n , x3i′)− Φ2(x

3
i′x
p−2
n , x3i )

= −9σ(i)Φ2(x2i x
2
i′ , x

p−1
n )+ 12σ(i),

0 = dΦ2(x2i xi′ , x
2
i′xi, x

p−1
n ) = −3σ(i)Φ2(x2i x

2
i′ , x

p−1
n )+ Φ2(x2i xi′x

p−2
n , x2i′xi)− Φ2(x

2
i′xix

p−2
n , x2i xi′)

= −3σ(i)Φ2(x2i x
2
i′ , x

p−1
n )− 4σ(i).

Finally, consider the cocycle Ψ ∈ 〈Ψ1,Ψ2〉F defined in degree 2m(p− 1)+ 2ν − 5 by

Ψ =

{
aΨ1 + bΨ2 if ν 6= 0,
bΨ2 if ν = 0,

for certain a, b ∈ F . We will show that Ψ can be lifted to Z2
(

K(n)≥1
K(n)≥2m(p−1)+2ν−4

, F
)
if and only if b(ν + 2) ≡ aν mod p and

this will conclude our proof. Indeed this implies that if ν 6= 0 then Ψ is liftable if and only if it is a multiple of inv ◦ [−,−],



1708 F. Viviani / Journal of Pure and Applied Algebra 213 (2009) 1702–1721

while if ν = 0 it implies that Ψ2 is not liftable and hence again that inv ◦ [−,−] = −2Ψ1 is the only liftable cocycle in the
span of Ψ1 and Ψ2.
So suppose that a lift exists and call it again Ψ . From the following cocycle condition

0 = dΨ (x3i , x
3
i′ , x

σ−2εi′−2εixνn) = −9σ(i)Ψ (x
2
i x
2
i′ , x

σ−2εi′−2εixνn)− 9σ(i)Ψ (x
σ−3εi′ xνn, x

3
i′)+ 9σ(i

′)Ψ (xσ−3εixνn, x
3
i ),

we deduce that Ψ (x2i x
2
i′ , x

σ−2εi′−2εixνn) = 2b. Using this, we get the following

0 = dΨ (xixn, xix2i′ , x
σ−2εi−2εi′ xνn)

= −2σ(i)Ψ (xixi′xn + x2i x
2
i′ , x

σ−2εi−2εi′ xνn)+ (−4− ν)Ψ (x
σ−εi−2εi′ xνn, xix

2
i′)+ νΨ (x

σ−εixµn , xixn)

= −2σ(i)Ψ (xixi′xn, xσ−2εi−2εi′ xνn)+ (ν + 2)b− νa.

Exchanging iwith i′ and summing the two expressions, we obtain the required congruence (ν + 2)b ≡ νa mod p. �

In the next lemma, we compute the K(n)0-invariants of the term E
0,1
2 = C

1(K(n)d, F) of the above spectral sequence
(2.4).

Lemma 2.9. Let µ be the integer defined in Lemma 2.7. We have that

C1 (K(n)d, F)K(n)0 =
{
〈inv〉F if d = 2m(p− 1)+ 2µ− 2,
0 otherwise,

where inv ∈ C1(K(n)2m(p−1)+2µ−2, F) sends xσ x
µ
n into 1 and vanish on the other elements.

Proof. First of all observe that if p divide (m+ 2), then µ = p− 2 and hence xσ xµn ∈ K(n). The (well-defined) cochain inv
is K(n)0-invariant. Indeed it is homogeneous and the invariance with respect to an element xixj ∈ K(n)0 \ TK (hence with
j 6= i′) follows from the fact that [xixj, xσ x

µ
n ] = [xixj, 1] = 0 together with the fact that xσ x

µ
n 6∈ [xixj, K(n)].

Consider next an invariant cochain f ∈ C1 (K(n)d, F)K(n)0 and let xa ∈ K(n)d be an element such that f (xa) 6= 0. Then by
homogeneity it must hold that ai = ai′ for every 1 ≤ i ≤ m and deg(xa) ≡ −2 mod p. Using the invariance with respect to
x2i or x

2
i′ , we obtain that ai = ai′ = 0 or p− 1. Otherwise, assuming, up to interchanging iwith i

′, that ai > 0 and ai′ < p− 1,
one gets the vanishing as follows

0 = (x2i ◦ f )(x
a−εi+εi′ ) = −2σ(i)(ai′ + 1)f (xa).

Moreover, if there are two pairs verifying (ai, ai′) = (0, 0) and (aj, aj′) = (p − 1, p − 1) (for j 6= i, i′), then we obtain the
vanishing by means of the following

0 = (xixj ◦ f )(xa+εi′−εj) = −σ(i)f (xa).

Finally, by imposing deg(xa) ≡ −2 mod p, we deduce that xa = 1 (which we can exclude since deg(xa) = d ≥ 2) or
xa = xσ xµn . �

In the next lemma, we compute the first cohomology group with respect to K(n)0 of the term E
0,1
2 = C

1(K(n)d, F) of the
above spectral sequence (2.4).

Lemma 2.10. Let µ be the integer defined in Lemma 2.7. We have that

H1
(
K(n)0, C1 (K(n)d, F)

)
=



2m⊕
i=1

〈Sq(xi)〉F if d = p− 2,

2m⊕
j=1

〈ωj〉F if d = 2m(p− 1)+ 2µ− 2− p,

〈xn 7→ inv〉F if d = 2m(p− 1)+ 2µ− 2,
0 otherwise,

where Sq(xi) denotes the restriction of Sq(xi) to K(n)0 × K(n)p−2 and the cocycle ωi is defined by (with j 6= i, i′){
ωi(x2i , x

σ−εi−(p−1)εi′ xµn ) = 2,
ωi(xixj, xσ−(p−1)εi′−εjxµn ) = 1.

Proof. By homogeneity we can restrict to the case d ≡ −2 mod p. First of all we claim that fxixi′ = 0 for every 1 ≤ i ≤ n and
fxn takes a non-zero value only on the element x

σ xµn . Indeed, by the homogeneity assumption, we get for an element γ ∈ TK
that 0 = df|γ = γ ◦ f − d(f|γ ) = −d(f|γ ), that is fγ ∈ C1(K(n)d, F)K(n)0 = 〈inv〉F (see Lemma 2.9). Moreover the cocycle
condition

0 = df(x2i ,x2i′ )
(xσ xµn ) = −4σ(i)fxixi′ (x

σ xµn )

gives fxixi′ = 0 for every 1 ≤ i ≤ n, while the fact that xn 6∈ [K(n)0, K(n)0] implies that fxn(x
σ xµn ) can be different from zero.
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Now we split the proof into two parts according to the cases d = (2r + 1)p− 2 or d = 2rp− 2 for some integer r .
I CASE : d = (2r + 1)p− 2.
Note that in this case, there are no coboundary elements since, by reasons of parity, C1(K(n)d, F)0 = 0. Moreover, for

a homogeneous cocycle f ∈ C1(K(n)0, C1(K(n)d, F))0, the value fx2i (x
a) can be different from 0 only if one of the following

possibilities occur

(ai, ai′) = (p− 1, 1) and aj = aj′ for every j 6= i, i′, (A)

(ai, ai′) = (p− 2, 0) and aj = aj′ for every j 6= i, i′. (B)

Analogously, if j 6= i, i′, then fxixj(x
a) can be different from 0 only if (up to interchanging i and j)

(ai, ai′) = (p− 1, 0), 1 ≤ aj′ = aj + 1 ≤ p− 1 and ak = ak′ for k 6= i, i′ j, j′. (C)

The values of types (C) are determined by the values of types (A) and (B) bymeans of the following cochain condition (where
a is a multi-index as in (C))

0 = df(xixj,x2i )(x
a−εi+εi′ )

= −σ(j)aj′ fx2i (x
a+εi′−εj′ )− σ(i)fx2i (x

a−εi+εj)+ 2σ(i)fxixj(x
a)

where in the last equation the first term is of type (A) (or vanish) and the second is of type (B) (or vanish).
The values of type (A) vanish if there exists an index j 6= i, i′ such that aj = aj′ 6= 0, because of the following condition

(where a satisfies the conditions in (A))

0 = df(xixj,x2i )(x
a+εi′−εj) = −2σ(i)fx2i (x

a).

On the other hand, the values of type (B) vanish if there exists a j 6= i, i′ such that aj = aj′ 6= p − 1 because the following
cocycle condition (where a satisfies the conditions of (B))

0 = df(xixj,x2i )(x
a−εi+εj′ ) = −σ(j)(aj′ + 1)fx2i (x

a).

Therefore a cochain f is completely determined by the values fx2i (x
p−1
i xi′) and fx2i (x

σ−εi−(p−1)εi′ xµn ), whose values determine

also the cocycles Sq(xi′) and ωi (respectively), and hence f is a linear combination of Sq(xi′) or ωi.
II CASE : d = 2rp− 2.
In this case we will prove that f vanish (up to adding a coboundary dg) except for the value fxn(x

σ xµn ) (which can be
non-zero as seen before). We have already seen that fxixi′ vanish for every 1 ≤ i ≤ n.
We first prove that, by adding coboundaries, we can modify the cochain f (without changing its cohomological class) in

such a way that it satisfies fx2i = 0 for every 1 ≤ i ≤ m. The proof is by induction on i. So suppose that for a certain k, we
have that fx2i = 0 for every i < k. We want to prove that, by adding coboundaries, we can modify f in such a way that it
verifies fx2k = 0.
First of all note that, by homogeneity and parity condition on d, fx2k (x

a) can be different from 0 only if 2 ≤ ak′ = ak+ 2 ≤
p − 1 and ah′ = ah for h 6= k, k′. Moreover if there exists an index 1 ≤ h < k ≤ m such that ah = ah′ 6= 0, (p − 1), then
fx2k (x

a) = 0 because of the following cocycle condition

0 = df(x2h,x2k )(x
a−εh+εh′ ) = −2(ah′ + 1)fx2k (x

a)

where we used that fx2h = 0 by induction. Therefore we can suppose that for 1 ≤ h < k ≤ m, ah = ah
′ = 0 or (p − 1). Fix

one of these elements xa. Define an element g ∈ C1(K(n)d, F)0 as follows:g(xa+εk−εk′ ) =
fx2k (x

a)

2ak′
,

g(xb) = 0 if b 6= a+ εk − εk′ .

By construction, if 1 ≤ h < k ≤ m then (x2h ◦ g) = 0 while (x
2
k ◦ g)(x

a) = −fx2k (x
a). Therefore the new cocycle f̃ := f + dg

satisfies the same inductive hypothesis as before and moreover it verifies f̃x2k (x
a) = 0. Repeating these modifications for all

the elements xa as before, eventually we obtain a new cochain homologous to the old one (which, by an abuse of notation,
we continue to call f ) and which satisfies fx2i = 0 for every 1 ≤ i ≤ k, as required.
Using the above conditions, we want to show that the cochain f must satisfy also fx2

i′
= 0 for every 1 ≤ i ≤ m (and hence

that fx2j = 0 for every j). Indeed, as before, we have that fx2i′
(xa) can be different from 0 only if 2 ≤ ai = ai′ + 2 ≤ p− 1 and



1710 F. Viviani / Journal of Pure and Applied Algebra 213 (2009) 1702–1721

aj = aj′ for every j 6= i, i′. Hence the required vanishing follows from the following cocycle condition

0 = df(x2i ,x2i′ )
(xa−εi+εi′ ) = −2(ai′ + 1)fx2

i′
(xa).

Finally we have to show that we can modify once more (by adding coboundaries) the cocycle f in such a way that the
previous vanishings fx2i = 0 are still satisfied and moreover also fxixj vanish for every j 6= i, i

′.
First of all, note that using cocycle conditions of type 0 = df(x2h,xixj) with h 6= i

′, j′ and the fact that fx2h = 0, we obtain the

vanishing of fxixj(x
a) for all the elements xa ∈ [x2h, K(n)d]∩K(n)−εi−εj (for h 6= i

′, j′), that is for all the elements of xa ∈ K(n)d
with the exception of the ones that verify

(ak, ak′) =
{
(0, 1) or (p− 2, p− 1) if k = i or j,
(0, 0) or (p− 1, p− 1) otherwise.

Therefore, we can assume that our xa verifies these conditions. For the rest of the proof, we introduce the following
definitions. We say that a couple (ak, ak′) is small if it is equal to (0, 0) or (0, 1) or (1, 0) according to the conditions above,
while we say that it is big if it is equal to (p− 1, p− 1) or (p− 2, p− 1) or (p− 1, p− 2). Moreover we say that xa has an
ascending jump in position k (with 1 ≤ k ≤ m − 1) if (ak, ak′) is small and (ak+1, a(k+1)′) is big, while we say that it has a
descending jump in position k if (ak, ak′) is big and (ak+1, a(k+1)′) is small.
We want to modify our cocycle f , by adding coboundaries, in such a way that fxixj(x

a) vanish if xa has a jump.
We prove this for the elements fxixi+1 with 1 ≤ i ≤ m − 1. It is enough to prove that fxixj(x

a) = 0 if there is a jump in a
position less than or equal to i. Indeed if the jump on xa occurs for h > i, then one obtains the vanishing using the cocycle
condition 0 = df(xixi+1,xhxh+1). Hence, by induction on i, suppose that we have already proved this for the elements i ≤ k− 1
and we want to prove it for fxkxk+1 . If there is a jump in the element x

a occurring in a position h < k then the vanishing
follows from a cocycle condition of type 0 = df(xhxh+1,xkxk+1) plus the induction hypothesis. If the first jump occurring in x

a

is in the k-th position, then we define an element g ∈ C1(K(n)d, F)0 as follows:
g(xa−εk′+εk+1) = fxkxk+1(x

a) if the jump is ascending,
g(xa−ε(k+1)′+εk) = fxkxk+1(x

a) if the jump is descending,
g(xb) = 0 otherwise.

By construction (and the hypothesis on xa), for every 1 ≤ j ≤ 2mwe have that (x2j ◦ g) = 0 and if 1 ≤ h < k ≤ m− 1 then
(xhxh+1 ◦ g) = 0 while (xkxk+1 ◦ g)(xa) = −fxkxk+1(x

a). Therefore the new cocycle f̃ = f + dg satisfies the same vanishing
conditions of f (namely f̃x2j = 0 for every j and f̃xhxh+1 = 0 for 1 ≤ h < k) plus the new one f̃xkxk+1(x

a) = 0. Repeating these
modifications for all the elements xa as above, we find a new cocycle (which, by an abuse of notation, we will still call f ) that
satisfies fxkxk+1 = 0, concluding thus the inductive step.
From the previous special cases, it follows also the vanishing of fxixj(x

a) (always under the presence of a jump) if
1 ≤ i, j ≤ m. Indeed, if an element xa as before has a jump in position k then the coboundary condition

0 = df(xixj,xkxk+1)(x
a+εk′−εk+1) = −σ(k)(ak′ + 1)fxixj(x

a),

in the case of an ascending jump, and

0 = df(xixj,xkxk+1)(x
a+ε(k+1)′−εk) = −σ(k+ 1)(a(k+1)′ + 1)fxixj(x

a),

in the case of a descending jump, gives the required vanishing.
Finally, the general case (in which i and j can vary from 1 to 2m) follows from cocycle conditions of type 0 = df(xixj,x2i′ )

=

−(x2i′ ◦ fxixj)− 2σ(i)fxi′ xj .
So it remains to consider only the elements xa without jumps or, in other words, it remains to prove the vanishing of the

following values of f : fxixj(xi′xj′x
p−1
n ) = αij · 1 and fxixj(x

σ−εi−εjxνn) = βij · 1, where ν ≡ m+ 1 mod p and 0 ≤ ν ≤ p− 1. The
first ones vanish because of the following two cocycle conditions{

0 = df(x2
i′
,xixj)

(xixj′xp−1n ) = −2σ(i′)αij − 2σ(i′)αi′j,

0 = df(xixj,xi′ xj)(x
2
j′x
p−1
n ) = −2σ(j)αi′j + 2σ(j)αij.

The second ones vanish because of the following two cocycle conditions{
0 = df(x2

i′
,xixj)

(xσ−εi′−εjxνn) = −2σ(i
′)(p− 1)βij − 2σ(i′)βi′j,

0 = df(xixj,xi′ xj)(x
σ−2εjxνn) = −σ(i)(p− 1)βi′j + σ(i

′)(p− 1)βij. �
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In the next (and last) lemma, we consider the differential map

d : E0,12 = C
1(K(n)d, F)→ E2,02 = H

2
(
K(n)≥1
K(n)≥d

, F
)
, (2.5)

induced by the above spectral sequence (2.4). We compute the kernel of the induced map on the first cohomology group
with respect to K(n)0.

Lemma 2.11. Consider the map

d(1) : H1(K(n)0, C1(K(n)d, F)) −→ H1
(
K(n)0,H2

(
K(n)≥1
K(n)≥d

, F
))

induced by the differential map (2.5). The kernel of d(1) is given by

Ker(d) =


2m⊕
i=1

〈Sq(xi)〉F if d = p− 2,

0 otherwise,

where Sq(xi) denotes the restriction of Sq(xi) to K(n)0 × K(n)p−2.

Proof. Clearly the cocycles Sq(xi), being the restriction of global cocycles, belong to the kernel of d. We want to show that
the other generators of H1(K(n)0, C1(K(n)d, F)) (see Lemma 2.10) does not belong to Ker(d(1)). First of all we have that

d(1)〈xn 7→ inv〉F = 〈xn 7→ inv ◦ [−,−]〉,

and this last cocycle is not a coboundary since inv ◦ [−,−] ∈ H2
(
K(n)≥1
K(n)≥d

, F
)
0
and xn acts trivially on this space.

Consider the cocycles ωi for 1 ≤ i ≤ 2m. At least one of the following values is non-zero (depending on µ):
(dωi)x2i (xixn, x

σ−2εi−(p−1)εi′ xµn ) = (ωi)x2i ([xixn, x
σ−2εi−(p−1)εi′ xµn ])

= (−3− µ)(ωi)x2i (x
σ−εi−(p−1)εi′ xµn ) = 2(−3− µ),

(dωi)x2i (x
3
i , x

σ−4εi−(p−1)εi′ xµn ) = (ωi)x2i ([x
3
i , x

σ−4εi−(p−1)εi′ xµn ])
= −µ(ωi)x2i

(xσ−εi−(p−1)εi′ xµn ) = −2µ.

On the other hand, for every g ∈ H2
(
K(n)≥1
K(n)≥d

, F
)
, it holds that{

(x2i ◦ g)(xixn, x
σ−2εi−(p−1)εi′ xµn ) = 0,

(x2i ◦ g)(x
3
i , x

σ−4εi−(p−1)εi′ xµn ) = 0

since [x2i , xixn] = [x
2
i , x

σ−2εi−(p−1)εi′ xµn ] = [x2i , x
3
i ] = [x

2
i , x

σ−4εi−(p−1)εi′ xµn ] = 0. �

3. Hamiltonian algebra

3.1. Definition and basic properties

Throughout this section we fix a field F of characteristic p 6= 2, 3 and an even integer n = 2m ≥ 2.
We are going to use all the notations about multi-indices introduced at the beginning of Section 2.1. We are going to use

often the following special n-tuples: 0 := (0, . . . , 0), σ := (p− 1, . . . , p− 1) and σ i := σ − (p− 1)εi − (p− 1)εi′ .
The vector space A(n) = F [x1, . . . , xn]/(x

p
1, . . . , x

p
n), endowed with the grading defined by deg(xa) = |a| − 2, becomes a

graded Lie algebra by means of
[xa, xb] = DH(xa)(xb),

where DH : A(n)→ W (n) = DerFA(n) is defined by

DH(f ) =
2m∑
j=1

σ(j)Dj(f )Dj′ =
m∑
i=1

[Di(f )Di+m − Di+m(f )Di] .

WedenotewithH ′(n) the quotient of A(n) by the central element 1 = x0 so that there is an exact sequence ofH ′(n)-modules

0→ 〈1〉F → A(n)→ H ′(n)→ 0, (3.1)
where 〈1〉F ∼= F is the trivial H ′(n)-module.

Definition 3.1. The Hamiltonian algebra is the derived subalgebra of H ′(n):

H(n) := H ′(n)(1) = [H ′(n),H ′(n)].
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There is an exact sequence of H(n)-modules (see [8, Chap. 4, Prop. 4.4]):

0→ H(n)→ H ′(n)→ 〈xσ 〉F → 0, (3.2)
where 〈xσ 〉F ∼= F is the trivial H(n)-module.
Note that the unique term of negative degree is H(n)−1 = ⊕ni=1〈xi〉F where xi acts, via the adjoint action, as DH(xi) =

σ(i)Di′ . The term of degree 0 is H(n)0 = ⊕1≤i,j≤n〈xixj〉F and its adjoint action on H(n)−1 induces an isomorphism H(2m)0 ∼=
sp(2m, F).
The algebra H(n) admits a root space decomposition with respect to a canonical Cartan subalgebra.

Proposition 3.2. (a) TH := ⊕mi=1〈xixi′〉F is a maximal torus of H(n) (called the canonical maximal torus).
(b) The centralizer of TH inside H(n) is the subalgebra CH = {xa | ai′ = ai}, which is hence a Cartan subalgebra (called the
canonical Cartan subalgebra). The dimension of CH is pm − 2.

(c) Let ΦH := HomFp(⊕
n
i=1〈xixi′〉Fp , Fp), where Fp is the prime field of F . We have a Cartan decomposition H(n) =

CH ⊕φ∈ΦH−0 H(n)φ , where H(n)φ = {x
a
| ai+m − ai ≡ φ(xixi′) mod p}. The dimension of every H(n)φ , with φ ∈ ΦH − 0, is

pm.
Proof. See [8, Chap. 4, Theo. 4.5 and 4.6]. �

3.2. Proof of the Main Theorem 1.2

In this section, assuming the results of the next two sections, we give a proof of Main Theorem 1.2. As a first step towards
the proof, we compute the cohomology group of the second cohomology group of the H(n)-module H ′(n).

Proposition 3.3. The second cohomology group of H ′(n) is given by

H2(H(n),H ′(n)) =
n⊕
i=1

〈Sq(xi)〉F
⊕
i<j

〈Πij〉F

⊕
〈Φ〉F ,

whereΠij andΦ are the cocycles appearing in Theorem 1.2.
Proof. From the exact sequence (3.1) and using Propositions 3.4 and 3.10, we get the exact sequence

0 →
n⊕
i=1

〈Sq(xi)〉F
⊕
i<j

〈Πij〉F

⊕
〈Φ〉F → H2(H(n),H ′(n))

∂
−→

→ H3(H(n), 〈1〉F )→ H3(H(n), A(n)).

We have to verify that the coboundary map ∂ is equal to zero, or in other words that the cocycles which generate
H3(H(n), 〈1〉F ) (see Proposition 3.5) do not become zero in the group H3(H(n), A(n)).
The cocycle Γij (for certain i < j, j 6= i′) cannot be the coboundary of an element h ∈ C2(H(n), A(n)). Indeed we have

that Γij(x2i , x
2
j , x

σ−(p−1)(εi′+εj′ )−εi−εj) = 4 while the element dh(x2i , x
2
j , x

σ−(p−1)(εi′+εj′ )−εi−εj) cannot contain the monomial 1
since the bracket of any two of the above elements vanish and all the three elements have degree greater than or equal to 0.
Assume now that n ≡ −4 mod p and suppose, by absurd, that the cocycle Ξ is the coboundary of a cochain

f ∈ C2(H(n), A(n)). For a multi-index 0 ≤ a ≤ σ , call φ(xa) = −φ(xσ−a) the coefficient of 1 in the element f (xa, xσ−a).
Consider a triple of elements (xa, xb, xc) ∈ H(n) × H(n) × H(n) such that a + b + c = σ + εk + εk′ (for a certain k) and
deg(xa) = deg(xb) = deg(xc) ≥ 0. By taking the coefficient of 1 in the equality Ξ(xa, xb, xc) = df (xa, xb, xc) and using the
relations ck ≡ −ak − bk mod p and ck′ = −ak′ − bk′ mod p, we get that

φ(xa)+ φ(xb) = φ(xa+b−εk−εk′ )+ 1 if akbk′ − ak′bk 6≡ 0 mod p.

By considering triples as above with deg(xa) = deg(xb) = 0, we get the relations 2φ(xixj) = φ(x2i ) + φ(x2j ) and
2 = φ(x2i )+φ(x

2
i′), fromwhichwe deduce that the restriction of φ toH(n)0 is determined by the values φ(x

2
i ) for 1 ≤ i ≤ m.

Analogously, by taking deg(xa) = 0 and deg(xb) = 1, one gets that the restriction of φ to H(n)1 is determined by the value
φ(x31) together with the restriction of φ to H(n)0. Finally, by taking deg(x

a) = 1 and 1 ≤ deg(xb) = d ≤ n(p− 1)− 5, one
gets that the values of φ on H(n)d+1 are determined by the values of φ on H(n)1 and on H(n)d. Therefore the values of φ on
the elements having degree 0 ≤ d ≤ n(p− 1)− 4 is determined by the values φ(x2i ) for 1 ≤ i ≤ m and φ(x

3
1). Explicitly, for

an element xa ∈ H(n) such that 0 ≤ deg(xa) ≤ n(p− 1)− 4, one gets the following formula

φ(xa) =

(
n∑
i=1

ai − 2

)
φ(x31)+

(
−a1 − 2a1′ −

∑
j6=1,1′

3aj
2
+ 3

)
φ(x21)+

m∑
k=2

ak − ak′
2

φ(x2k)+
n∑

h=m+1

ah.

Imposing the antisymmetric relation φ(xσ−a) = −φ(xa), we get the relation

−(n+ 4)φ(x31)+
3(n+ 4)
2

φ(x21)−
n
2
= 0,

which is impossible by the hypothesis n ≡ −4 mod p (and p 6= 2).



F. Viviani / Journal of Pure and Applied Algebra 213 (2009) 1702–1721 1713

Finally, the cocycles belonging toH3(H(n),H(n)−1; 〈1〉F ) are not in the image of the coboundarymap ∂ of above. Indeed,
consider a cohomology class ofH3(H(n), 〈1〉F ) coming fromH2(H(n),H ′(n)) and choose a representative f ∈ Z3(H(n), 〈1〉F )
such that f = ∂g where g ∈ Z2(H(n),H ′(n)). Since g takes values in H ′(n) = A(n)≥0, then the cocycle f vanish on the 3-
tuples of elements having non-negative degree. On the other hand, if f belongs to Z3(H(n),H(n)−1; 〈1〉F ), then by definition
it must vanish on the 3-tuples of elements such that at least one has negative degree. Putting together these two vanishings,
we deduce that f = 0. �

Now, using the above Proposition, we can prove the Main Theorem 1.2.
Proof of Theorem 1.2. From the exact sequence (3.2) and using that H1(H(n), 〈xσ 〉F ) = 0, we get the exact sequence

0→ H2(H(n),H(n))→ H2(H(n),H ′(n))→ H2(H(n), 〈xσ 〉F ),

so thatwe have to checkwhich of the cocycles of the above Proposition 3.3 go to 0 under the projection ontoH2(H(n), 〈xσ 〉F ).
Clearly the cocycles Sq(xi) take values in H(n) = [H ′(n),H ′(n)] by definition.
Consider the cocycles Πij ∈ H2(H(n),H ′(n)). If j 6= i, i′ then the projection of Πij onto H2(H(n), 〈xσ 〉F ) is 0. Indeed

Πij(xa, xb) ⊂ 〈xσ 〉F if and only if a + b = σ − (p − 1)εi − (p − 1)εj + εi′ + εj′ but, for these pairs of elements, it is easily
checked that Di(xa)Dj(xb) − Dj(xa)Di(xb) = (aibj − ajbi)xa+b−εi−εj = 0. On the other hand, if j = i′, then the only non-zero
values ofΠii′ are given by

Πii′(xixa, xi′xb) = xa+b+(p−1)εi+(p−1)εi′ for a+ b ≤ σ i.

Therefore, if n = 2, the cocycleΠ12 satisfyΠ12(x1, x2) = xσ and hence it cannot be lifted to H2(H(n),H(n)). On the other
hand, for n ≥ 4, if we define gi ∈ C1(H(n),H ′(n)) by gi(xσ

i
) = xσ , then the only non-zero values of the coboundary dgi (for

1 ≤ i ≤ m) can be{
dgi(xixa, xi′xb) = −gi([xixa, xi′xb]) = −xσ if a+ b = σ i,
dgi(xk, xσ

i
) = [xk, gi(xσ

i
)] = −σ(k)xσ−εk′ for any 1 ≤ k ≤ n.

ThereforeΠi = Πii′ + dgi and clearlyΠi ∈ H2(H(n),H(n)) since it vanish on the pairs (xixa, xi′xb) such that a+ b = σ i.
Consider now the cocycle Φ . We want to prove that its projection onto H2(H(n), 〈xσ 〉F ) vanish. From the explicit

description ofΦ , it follows that its projection onto 〈xσ 〉F is given by

Φ(xa, xb) =
∑

|δ|=3,δ+̂δ<a
δ+̂δ=a+b−δ

(a
δ

)(b
δ̂

)
σ(δ)δ!xσ ,

where the above sum is set equal to 0 if there are no elements δ verifying the hypothesis. Each element δ verifying the above
hypothesis contributes to the summation with the coefficient

σ(δ)δ!
(a
δ

)(b
δ̂

)
= −σ(δ)δ!

(a
δ

)(a− δ
δ̂

)
= −

σ(δ)

δ̂!

a!

(a− δ − δ̂)!
,

where in the first equality we substitute b = σ − a+ δ + δ̂ and we use the relation
(
σ−c
d

)
= (−1)|d|

(
c+d
d

)
which follows

from the congruence k!(p − 1 − k)! ≡ (−1)k+1 mod p (for 0 ≤ k ≤ p − 1). Now note that if a certain δ appears in the
above summation, then its conjugate also appears δ̂ and we have that δ 6= δ̂ because of the oddness of the degree |δ|. Using
the easy relations δ! = δ̂! and σ(δ) = (−1)|δ|σ (̂δ) = −σ (̂δ), it follows that the contributions of δ and δ̂ are opposite and
therefore the sum vanish. �

3.3. Cohomology of the trivial module

In this section we compute the second and third cohomology group of H(n)with coefficients in the trivial module F .

Proposition 3.4. The second cohomology group of the trivial module is equal to

H2(H(n), F) =


n⊕
i=1

〈Ωi〉F

⊕
〈Σ〉F if n 6≡ −4 mod p,

n⊕
i=1

〈Ωi〉F

⊕
〈Σ〉F

⊕
〈∆〉F otherwise,

where the only non-zero values of the above cocycles areΩi(x
a, xb) = ai if a+ b = σ + εi − (p− 1)εi′ ,

Σ(xk, xk′) = σ(k),
∆(xa, xb) = deg(xa) if a+ b = σ .
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Proof. Note that the cochain∆ is antisymmetric if and only if n ≡ −4 mod p, because if a+b = σ then deg(xa)+deg(xb) =
n(p− 1)− 4 ≡ −n− 4 mod p.
The verification that the above cochains are cocycles and are independent in H2(H(n), F) is straightforward and is left to

the reader. We conclude by [18, Thm 2.4], which gives that

dim
F
H2(H(n), F) =

{
n+ 1 if n 6≡ −4 mod p,
n+ 2 otherwise. �

In order to compute H3(H(n), F), we use the Hochschild–Serre spectral sequence (see [17]) relative to the subalgebra
H(n)−1 < H(n):

Er,s1 = H
s(H(n)−1, C r(H(n)/H(n)−1, F))⇒ Hr+s(H(n), F). (3.3)

For the first line of the second page of the above spectral sequence, we have the equality

Er,02 = H
r(H(n),H(n)−1; F), (3.4)

where H∗(H(n),H(n)−1; F) are the relative cohomology groups of H(n) with respect to the subalgebra H(n)−1 with
coefficients in the trivial module F (as defined in [19]).
Moreover, as remarked in [11, Sec. 2.1], we can restrict ourselves to consider homogeneous cohomology with respect to

the maximal torus TH ⊂ H(n) (see Proposition 3.2).

Proposition 3.5. The third cohomology group of the trivial module is equal to

H3(H(n), F) =


H3(H(n),H(n)−1; F)

⊕
i<j,i6=j′

〈Γij〉F if n 6≡ −4 mod p,

H3(H(n),H(n)−1; F)
⊕
i<j,i6=j′

〈Γij〉F

⊕
〈Ξ〉F otherwise

where, by definition, the only non-zero values of the above cocycles are (for j 6= i, i′){
Γij(xa, xb, xc) = aibj − ajbi if a+ b+ c = σ − (p− 1)εi′ − (p− 1)εj′ + εi + εj,
Ξ(xa, xb, xc) = σ(k)[akbk′ − ak′bk] if a+ b+ c = σ + εk + εk′ for some k.

Proof. The verification that the above cochains are cocycles is straightforward and is left to the reader. In order to show
that they freely generate the third cohomology group, we divide the proof into four steps according to the spectral sequence
(3.3).
STEP I : (E0,31 )0 = H3(H(n), F)0 = 0 by homogeneity.
STEP II : (E1,2

∞
)0 =

⊕
i<j,i6=j′〈Γij〉F .

With the notations of Lemma 3.7, consider a cochain ζ =
∑n
k=1 dkζk ∈ (E

1,2
1 )0 and suppose that it can be lifted to a global

cocycle in Z3(H(n), F)0 (which we continue to call ζ ). Consider the following cocycle condition

dζ (xi, xi′ , x2i , x
2
i′) = −4σ(i)ζ (xi, xi′ , xixi′) = −4σ(i)[σ(i

′)di − σ(i)di′ ] = 4[di + di′ ],

from which we deduce the relation di = −di′ . It is easily checked that ζ is the coboundary of the cocycle f ∈ (E
0,2
1 )0 =

H2(H(n)−1, F)0 defined by f (xi, xi′) = −di′ = di, since we have (for j 6= i, i′)

ζ (xixj, xi′ , xj′) = σ(j′)di′ − σ(i′)dj′ = d(f )(xixj, xi′ , xj′).

Suppose now that n ≥ 4. The cocycles Γij with j 6= i, i′ appearing in Lemma 3.7 are clearly lifted by the cocycles Γij.
On the other hand, the cocycles Γii′ cannot be lifted to Z3(H(n), F)0. Indeed, by absurd, suppose that we can find such a
lift and call it Γij ∈ Z3(H(n), F)0. We can suppose that Γij takes its non-zero values on the triples (xα, xβ , xγ ) such that
α + β + γ = σ i + εi + εi′ , where σ i := σ − (p− 1)εi − (p− 1)εi′ . Consider the following cocycle condition (where a, b, c
are multi-indices verifying a+ b+ c = σ i):

0 = σ(i)Γii′(x2i x
a, xi′ , xi′xb, xc) = −2Γii′(xixa, xi′xb, xc)− 2Γii′(xixa+b, xi′ , xc).

Wededuce that the value ofΓii′(xixa, xi′xb, xc) depends only on themulti-index c and therefore, for every 0 ≤ c ≤ σ i, we can
defineω(c) := Γii′(xixa, xi′xb, xc) for every pair of indices a, b such that a+b+c = σ i. By the fact thatΓij|H(n)−1×H(n)−1 = Γij,
we get{

ω(σ i) = Γij(xi, xi′ , xσ
i
) = Γij(xi, xi′ , xσ

i
) = 1,

ω(εj) = Γij(xixσ
i
−εj , xi′ , xj) = Γij(xixσ

i
−εj , xi′ , xj) = 0.

Finally consider the following cocycle condition where j 6= i, i′ and 0 ≤ d ≤ σ i is a multi-index such that dj′ > 0:

0 = σ(j)Γii′(xi, x
σ i−d+εj′ xi′ , xj, xd) = dj′ [ω(d)− ω(d− εj′)],
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where we used that ω(εj) = 0. We deduce that the value ω(d) does not depend on the coefficient dj′ and, by repeating for
every index j 6= i, i′, we conclude that ωmust be constant. But this contradicts with ω(εj) = 0 and ω(σ i) = 1.
STEP III : (E2,1

∞
)0 =

{
〈Ξ〉F if n ≡ −4 mod p,
0 otherwise.

With the notations of Lemma 3.8, consider the cochain ξ =
∑n
k=1 ekξk and suppose that it can be lifted to a global cocycle

of Z3(H(n), F)0 (which, as usual, we continue to call ξ ). From the following cocycle condition

0 = dξ(xk′ , x2k, x
2
k′ , x

σ−εk′ ) = σ(k′)ξ(x2k, x
2
k′ , x

σ−εk−εk′ )+ 4ek

together with the analogous one obtained interchanging kwith k′, we get that ek = ek′ .
If n ≡ −4 mod p, then the cochain

∑n
i=1 ξi is lifted by the global cocycle Ξ ∈ (E

2,1
∞
)0. We will show that under the

assumption that either n 6≡ −4 mod p or n ≡ −4 mod p and
∑m
i=1 ei = 0, then ξ belongs to the image of the differential

map

d : (E1,11 )0 → (E2,11 )0,

coming from the spectral sequence (3.3).
Consider the cochains ηk ∈ (E

1,1
1 )0 = H1(H(n)−1, C1(H(n)/H(n)−1, F))0 (for 1 ≤ k ≤ m), whose only non-zero values

are given by

ηk(xk, xσ−εk) = ηk(xk′ , xσ−εk′ ) = −1.

Form the cochain η :=
∑m
i=1(

ei
2 + β)ηi, where β ∈ F is defined as

β =


−

m∑
i=1
ei

n+ 4
if n 6≡ −4 mod p

0 if n ≡ −4 mod p and
m∑
i=1

ei = 0.

It is straightforward to check that the cocycle ξ − dη ∈ C1(H(n)−1, C2(H(n)/H(n)−1, F))0 is the coboundary of the cochain
g ∈ C2(H(n)/H(n)−1, F) defined by (and vanishing elsewhere)

g(xa, xσ−a) =
m∑
i=1

(ai + ai′)
ei
2
+ deg

H
(xa)β if |a|, |σ − a| ≥ 2.

This shows that [ξ ] = [dη] ∈ (E2,11 )0.
Suppose next that the cocycle ρij (for certain i < j) can be lifted to a global cocycle of Z3(H(n), F), which we continue to

call ρij. For l = 2, . . . , p− 1, we define fl := ρij(xixj′ , x
σ−lεj′ , xσ−(p−1)εi′−(p+1−l)εj′ ). Consider the following cocycle condition

for 1 ≤ l ≤ p− 1:

0 = dρij(xixj′ , xj, x
σ−lεj′ , xσ−(p−1)εi′−(p−l)εj′ )

=
−(1+ δji′)

l
+ δ1l(1+ δji′)− σ(j)(l+ 1)fl+1 + σ(j)(l− 1)fl. (∗)

The above Eq. (∗)with l = 1, . . . , p− 2 gives that

fl =
−(1+ δji′)(l− 2)σ (j)

(l− 1)l
for l = 2, . . . , p− 1.

Substituting in the above Eq. (∗)with l = p− 1, we get

0 =
−(1+ δji′)
p− 1

+ σ(j)(p− 2)
−(1+ δji′)(p− 3)σ (j)

(p− 2)(p− 1)
= (1+ δji′)− 3(1+ δji′),

which is impossible since p 6= 2. Therefore the cocycles ρij do not belong to (E2,1∞ )0.
STEP IV : (E3,0

∞
)0 = (E

3,0
2 )0 = H3(H(n),H(n)−1; F)0.

From Proposition 3.4, one can easily deduce that

(E0,2
∞
)0 = (E

0,2
2 )0 = 〈Σ〉F ,

(E1,1
∞
)0 = (E

1,1
2 )0 =


n⊕
i=1

〈Ωi〉F ⊕ 〈∆〉F if n ≡ −4 mod p,

n⊕
i=1

〈Ωi〉F otherwise.
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This implies that (E3,0
∞
)0 = (E

3,0
2 )0 and the result follows from equality (3.4). �

Remark 3.6. It can be proved that H3(H(n),H(n)−1; F) = ⊕ni=1〈Υi〉F where the cocycles Υi are defined by

Υi(xa, xb, xc) = σ(k)[akbk′ − ak′bk] if a+ b+ c = σ + pεi + εk + εk′ for some k.

We omit the proof, since we do not need this result to prove Main Theorem 1.2.

Lemma 3.7. In the above spectral sequence (3.3), we have that

(E1,21 )0 =



n⊕
k=1
〈ζk〉F〈

n∑
k=1
σ(k)ζk

〉
F

⊕
i<j

〈Γij〉F if n ≥ 4,

n⊕
k=1
〈ζk〉F〈

n∑
k=1
σ(k)ζk

〉
F

if n = 2,

where the only non-zero values of the above cocycles are{
Γij(xi, xj, x

σ−(p−1)εi′−(p−1)εj′ ) = 1,
ζk(xk, xh, xk′xh′) = σ(h) for h = 1, . . . , n.

Proof. Consider the exact sequence

0→ C1(xσ , F)→ C1(H ′(n)/H ′(n)−1, F)→ C1(H(n)/H(n)−1, F)→ 0, (3.5)

where C1(xσ , F) is a trivial H(n)−1-module. The coboundary map

H1(H(n)−1, C1(H(n)/H(n)−1, F))0
∂(2)
−→ H2(H(n)−1, C1(xσ , F))0

is surjective. Indeed consider the cocycles ηk ∈ H1(H(n)−1, C1(H(n)/H(n)−1, F))0 (with 1 ≤ k ≤ m), defined as

ηk(xk, xσ−εk) = ηk(xk′ , xσ−εk′ ) = −1.

It is easy to check that ∂ (2) sends ηk into the cocycles {(xk, xk′ , xσ ) 7→ −2} which generate the last group
H2(H(n)−1, C1(xσ , F))0.
Using the above surjectivity, together with the vanishing H3(H(n)−1, C1(xσ , F))0 = 0 which follows directly by

homogeneity considerations, we get that

(E1,22 )0 = H2(H(n)−1, C1(H ′(n)/H ′(n)−1, F))0.

Consider now the following exact sequence of H(n)−1-modules

0→ C1(H ′(n)/H ′(n)−1, F)→ C1(A(n), F)→ C1(A(n)<0, F)→ 0, (3.6)

obtained from the fact that H ′(n)/H ′(n)−1 = A(n)/A(n)<0 (see (3.1)). Using the following isomorphism of H(n)−1-modules

χ : A(n)
∼=
−→ C1(A(n), F)

xa 7→ χxa(xb) =
{
1 if b = σ − a,
0 otherwise,

(3.7)

together with [11, Prop. 3.4], we get that

H1(H(n)−1, C1(H ′(n)/H ′(n)−1, F))0 = H1(H(n)−1, C1(A(n), F))0 = ⊕ni=1〈Ωi〉F ,

where the cocyclesΩi are defined by (and vanish outside)Ωi(xi, xσ−(p−1)εi′ ) = 1. Therefore we get the exact sequence

0→ H1(H(n)−1, C1(A(n)<0, F))0
∂(2)
−→ (E1,21 )0 → H2(H(n)−1, C1(A(n), F))0.

The first group on the left is generated over F by the cocycles ζ̃k (k = 1, . . . , n) defined by ζ̃k(xk, xk′) = 1 and subject to the
relation

∑n
k=1 σ(k

′)̃ζk = 0 coming from the element 〈1 7→ 1〉F ∈ C1(A(n)<0, F)0. It is easily checked that ∂ (2)(̃ζk) = ζk.
Moreover, using the isomorphism (3.7) of H(n)−1-modules A(n) ∼= C1(A(n), F) and [11, Prop. 3.4], we get that

H2(H(n)−1, C2(A(n), F))0 is freely generated over F by the cocycles Γij for 1 ≤ i < j ≤ n. We conclude by observing
that Γij can be lifted to H2(H(n)−1, C1(H ′(n)/H ′(n)−1, F))0 if and only if n ≥ 4. �
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Lemma 3.8. In the above spectral sequence (3.3), we have that

(E2,11 )0 =


n⊕
k=1

〈ξk〉F
⊕
i<j

〈ρij〉F if n ≥ 4,

n⊕
k=1

〈ξk〉F⊕ if n = 2,

where the only non-zero values of the above cocycles are
ξk(xh, xh′xk, xσ−εk) = σ(h)(1+ δh′k) for every h = 1, . . . , n,

ρij(xi, x
σ−lεj′ , xσ−(p−1)εi′−(p−l)εj′ ) = −

σ(j)
l

for every l = 1, . . . , p− 1,

ρij(xj, xσ−lεi′ , x
σ−(p−l)εi′−(p−1)εj′ ) =

σ(i)
l

for every l = 1, . . . , p− 1.

Proof. Consider the following exact sequence of H(n)−1-modules

0→ C2(H ′(n)/H ′(n)−1, F)→ C2(A(n), F)
res
−→ C1(A(n)<0 × A(n), F)→ 0, (3.8)

It is easy to see that C1(A(n)<0 × A(n), F)
H(n)−1
0 is generated by the cocycle ζ defined by ζ (1, xσ ) = ζ (xi, xσ−εi) = 1 (for

every i = 1, . . . , n) and that the image of ζ under the first coboundary map is non-zero and equal to−
∑n
k=1 ξk. Therefore,

using Lemma 3.9, we get that

H1(H(n)−1, C2(H ′(n)/H ′(n)−1, F))0 =

〈
n∑
k=1

ξk

〉
F

. (3.9)

Consider finally the following exact sequence

C1(H(n)/H(n)−1, F)
θ
↪→ C2(H ′(n)/H ′(n)−1, F) � C2(H(n)/H(n)−1, F), (3.10)

where the map θ sends the cocycle g into the cocycle θ(g) defined by θ(g)(xσ , xa) = g(xa). By taking cohomology, we get
the exact sequence

H1(H(n)−1, C2(H ′(n)/H ′(n)−1, F))0 → (E2,11 )0
∂(2)
−→ (E1,21 )0.

We conclude by using (3.9), Lemma 3.7 and the facts that ∂ (2)(ρij) = 2Γij and ∂ (2)(ξk) = σ(k)ζk′ . �

Lemma 3.9. Consider A(n) as a H(n)−1-module. Then we have that

H1(H(n)−1, C2(A(n), F))0 = 0.

Proof. During this proof, we use the generators Di := σ(i′)xi′ of H(n)−1. Moreover, if g ∈ C2(A(n), 1), we set g̃(xa, xb) :=
g(xa,xb)
a!b! where, as usual, for a multi-index a = (a1, . . . , an) we set a! :=

∏
i ai!. Analogously, if f ∈ C

1(H(n)−1, C(A(n), F)),

we set f̃Di(x
a, xb) :=

fDi (x
a,xb)
a!b! where fDi ∈ C

2(A(n), F) denotes, as usual, the value of f on Di ∈ H(n)−1.
Take a homogeneous cochain f ∈ Z1(H(n)−1, C2(A(n), F))0 The cocycle conditions for f are Di ◦ fDj = Dj ◦ fDi for every

1 ≤ i, j ≤ n.
STEP I: The cocycle f verifies the following condition

0 =
βi∑

k=−αi

(−1)k f̃Di(x
α+kεi , xβ−kεi) for every (xα, xβ) such that αi + βi ≤ p− 1. (∗)

For every pair (xα, xβ) as above (such that αi + βi ≤ p− 1), define

φi(xα, xβ) :=
βi∑

k=−αi

(−1)k f̃Di(x
α+kεi , xβ−kεi).

We have to prove that φi(xα, xβ) = 0. Using the cocycle conditions Dj ◦ f̃Di = Di ◦ f̃Dj and a telescopic sum, it is easy to see
that (Dj ◦ φi)(xα, xβ) = 0 for every j 6= i. From these conditions, we get that (for every index j 6= i)

φi(xα, xβ) =
{
0 if αj + βj < p− 1 for some j 6= i,
(−1)|β|−βiφi(xα+β−σ+(p−1−βi)εi , xσ−(p−1−βi)εi) otherwise.



1718 F. Viviani / Journal of Pure and Applied Algebra 213 (2009) 1702–1721

So assume that we are in the second case, that is αj + βj ≥ p − 1 for every j 6= i. Consider the same formula as above
for the couple (xβ , xα). By using using the antisymmetry of φi and the property φi(xα+dεi , xβ−dεi) = (−1)dφi(xα, xβ) for
−αi ≤ d ≤ p− 1− αi and−βi ≤ d ≤ p− 1− βi, we obtain[

(−1)|β| + (−1)|α|
]
φi(xα+β−σ+(p−1−βi)εi , xσ−(p−1−βi)εi) = 0.

Now recall that f is homogeneous and therefore we have to consider only the pairs (xα, xβ) such that the sum of the weights
of xα, xβ and Di is 0. Using the conditions αi + βi ≤ p − 1 and αj + βj ≥ p − 1 for every j 6= i, we find the equalities (and
not merely the congruences modulo p):

αi′ + βi′ = αi + βi + (p− 1) and αj′ + βj′ = αj + βj for every j 6= i, i′.

We deduce that |α| + |β| is even and, substituting in the expression above, we get the required vanishing.
STEP II: The cocycle f is a coboundary.
We have to find an element g ∈ C(A(n), F)0 such that fDi = Di ◦ g . For a homogeneous pair (x

a, xb) (that is a pair such
that the sum of the weights of xa and xb is 0), we define

g̃(xa, xb) =


ai∑
k=0

(−1)k f̃Di(x
a−kεi , xb+(k+1)εi) if ai + bi < p− 1,∑

∅6=I⊂{1,...,n}

∑
(c,d)∈SI (a,b)

(−1)|I|−1sign(c, d)
2

f̃DI (x
c, xd) if a+ b ≥ σ ,

where for a non-empty subset I of {1, . . . , n} (of cardinality |I|), we define SI(a, b) to be the set of pairs (c, d) of multi-
indices verifying: ci + di = ai + bi + 1 and min(ai, bi) + 1 ≤ ci, di ≤ max(ai, bi) if i ∈ I and cj = aj, dj = bj if j 6∈ I (in
particular SI(a, b) 6= ∅ if and only if ai 6= bi for i ∈ I). Moreover, if (c, d) ∈ SI(a, b), we put sign(c, d) =

∏
i∈I signi(c, d) and

signi(c, d) = di − bi or ci − ai according, respectively, to the cases bi < ai and ai < bi. Finally, if I = {i1, . . . , ir}, we put
fDI := Di1 ◦· · ·◦Dir−1 ◦ fDir which does not depend upon the order of the elements of I by the cocycle conditions verified by f .
The cochain g is well-defined because if i and j are two indices such that ai + bi < p − 1 and aj + bj < p − 1, then the

following expression

g̃(xa, xb) =
ai∑
k=0

aj∑
h=0

(−1)k+h(Di ◦ f̃Dj)(x
a−kεi−hεj , xb+(k+1)εi+(h+1)εj)

is symmetric in i and j because of Di ◦ fDj = Dj ◦ fDi and reduces, via a telescopic sum, to the first expression occurring in the
definition of g̃ .
Moreover it is clear from the definition that g̃ is antisymmetric in the case a+ b ≥ σ , while in the case ai + bi < p− 1

(for a certain i) the antisymmetry follows from the condition (∗) of above.
Finally we have to check that (Di ◦ g̃)(xα, xβ) = f̃Di(x

α, xβ) for every index i and every pair (xα, xβ) such that the sum of
the weights of xα, xβ and of Di is 0. If αi = βi = 0 then (Di ◦ g̃)(xα, xβ) = 0 and f̃Di(x

α, xβ) = 0 by condition (∗) of above. If
αi = 0 and βi < 0 then we get that (Di ◦ g̃)(xα, xβ) = −g̃(xα, xβ−εi) is equal to f̃Di(x

α, xβ) by the first case of the definition
of g̃ . The case αi > 0 and βi = 0 follows from the preceding one by the antisymmetry of g . Therefore we are left with the
case αi, βi > 0.
Suppose first that α + β − εi 6≥ σ . Take an index j (may be equal to i) such that (α + β − εi)j < p − 1. Using the first

case of the definition of g , we have

(Di ◦ g̃)(xα, xβ) =
αj∑
k=0

(−1)k+1(Di ◦ f̃Dj)(x
α−kεj , xβ+(k+1)εj)

=

αj∑
k=0

(−1)k+1(Dj ◦ f̃Di)(x
α−kεj , xβ+(k+1)εj) = f̃Di(x

α, xβ),

where in the last equality we used a telescopic summation.
On the other hand, suppose that α+β− εi ≥ σ . We need two auxiliary facts before proving the required equality in this

case. First of all, observe that the hypothesis α + β − εi ≥ σ forces the equalities (and not merely the congruences modulo
p) αi + βi − 1 = αi′ + βi′ and αj + βj = αj′ + βj′ for every j 6= i, i′. Therefore the sum of the degrees of the multi-indices
|α| + |β|must be odd. Moreover, we can re-write the second expression occurring in the definition of g in a way that will
be more suitable for our purpose. Fix an index i, a homogeneous pair (xa, xb) satisfying a+ b ≥ σ and suppose that ai < bi.
By splitting the summation occurring in the definition of g̃(xa, xb) according to the cases I = {i}, I = {i} ∪ J and I = J with
i ∈ J 6= ∅, and using a telescopic summation, we get

2̃g(xa, xb) =
bi−ai∑
k=1

(−1)k f̃Di(x
a+kεi , xb+(1−k)εi)+

∑
i6∈J 6=∅

∑
(c,d)∈SJ (a,b)

(−1)|J|+bi−ai+1sign(c, d)f̃DJ (x
c+(bi−ai)εi , xd−(bi−ai)εi). (∗∗)
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If ai = bi then the above expression is trivially true while if ai > bi then we get an analogous expression using the antisym-
metry of g .
Finally, in order to prove the required equality (Di◦ g̃)(xα, xβ) = f̃Di(x

α, xβ), we have to distinguish two cases:αi < βi−1
and αi = βi (the case αi > βi follows by antisymmetry). In the first case αi < βi, consider

−2(Di ◦ g̃)(xα, xβ) = 2̃g(xα−εi , xβ)+ 2̃g(xα, xβ−εi)

and apply formula (∗∗) to the terms (xα−εi , xβ) and (xα, xβ−εi), which verify the required conditions in virtue of our hypoth-
esis. By summing the first terms in the corresponding expressions (∗∗), we get

− f̃Di(x
α, xβ)+ (−1)δi f̃Di(x

α+δiεi , xβ−δiεi), (∗ ∗ ∗ 1)

where we put δi := βi − αi − 1 ≥ 0. By summing the last terms in the corresponding expressions (∗∗) and using that
if i 6∈ J then a pair (c, d) belongs to SJ(α, β) if and only if (c − εi, d) ∈ SJ(α − εi, β) (and, analogously, if and only if
(c, d− εi) ∈ SJ(α, β − εi)), we obtain∑

i6∈J 6=∅

∑
(c,d)∈SJ (α,β)

(−1)δi+|J|sign(c, d)(Di ◦ f̃DJ )(x
c+δiεi , xd−δiεi). (∗ ∗ ∗ 2)

Using that Di ◦ f̃DJ = DJ ◦ f̃Di and iterated telescopic summations, the above expression (∗ ∗ ∗2) reduces to

− (−1)δi f̃Di(x
α+δiεi , xβ−δiεi)− (−1)|β|−|α| f̃Di(x

β , xα). (∗ ∗ ∗2′)

Summing expressions (∗∗∗1) and (∗∗∗2′) and using the fact that |β|+|α| is odd,we end upwith−f̃Di(x
α, xβ)+ f̃Di(x

β , xα) =
−2f̃Di(x

α, xβ). �
The proof in the other case αi = βi is similar apart from the fact that one has to use both the expression (∗∗) and the

analogous one with ai > bi. We leave the details to the reader. �

3.4. Cohomology of A(n)

In this section we compute the second cohomology group of the H(n)-module A(n).

Proposition 3.10. The second cohomology group of A(n) is given by

H2(H(n), A(n)) =


n⊕
i=1

〈Sq(xi)〉F
n⊕
i=1

〈Ωi〉
⊕
i<j

〈Πij〉F

⊕
〈Φ〉F if n 6≡ −4 mod p,

n⊕
i=1

〈Sq(xi)〉F
n⊕
i=1

〈Ωi〉
⊕
i<j

〈Πij〉F

⊕
〈Φ〉F

⊕
〈∆〉F otherwise.

whereΩi and ∆ are the cocycles of Proposition 3.4, Φ and Πij (with j 6= i′) are the cocycles of Theorem 1.2 and the remaining
cocyclesΠii′ are defined by (and vanish outside):

Πij(xixa, xi′xb) = xa+b+(p−1)εi+(p−1)εi′ if a+ b ≤ σ i.

Proof. It is straightforward to verify that the above cochains are cocycles and that they are independent in H2(H(n), A(n)).
Therefore it is enough to prove that

dim
F
H2(H(n), A(n)) =


(n
2

)
+ 2n+ 1 if n 6≡ −4 mod p,(n

2

)
+ 2n+ 2 otherwise.

It is easily seen that A(n) is the restricted H(n)-module induced from the restricted trivial H(n)≥0-submodule F ∼= 〈xσ 〉F ⊂
A(n). Moreover, it is also easy to see that the Lie algebra homomorphism σ : H(n)≥0 → F given by σ(x) := tr(adH(n)/H(n)≥0x)
for x ∈ H(n)≥0 (see [16, Pag. 155]) is trivial.
Moreover, using Lemma 3.12, it is straightforward to check that, in the notation of [16], we have the equality

[H(n)≥0,H(n)≥0] := H(n)
(1)
≥0 = H(n)≥0.

Therefore, using [16, Thm. 3.6(2)], we get that

H2(H(n), A(n)) = H2(H(n)≥0, F)⊕
2∧
(H(n)/H(n)≥0).

Since dimF
∧2
(H(n)/H(n)≥0) =

( n
2

)
, we conclude using Proposition 3.11. �
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Proposition 3.11. The second cohomology group of H(n)≥0 with coefficients in the trivial module F is given by

H2(H(n)≥0, F) =


n⊕
i=1

〈Sq(xi)〉F
n⊕
i=1

〈Ωi〉F

⊕
〈Φ〉F if n 6≡ −4 mod p,

n⊕
i=1

〈Sq(xi)〉F
n⊕
i=1

〈Ωi〉F

⊕
〈Φ〉F

⊕
〈∆〉F otherwise.

where Ωi and ∆ are the cocycles of Proposition 3.4, Φ and Πij (with j 6= i′) are the cocycles of Theorem 1.2 and Sq(xi) is the
projection of Sq(xi) onto 〈1〉F ∼= F .

Proof. We prove first that

H2(H(n)≥0, F) = H2(H(n)≥1, F)H(n)0 ,

where H(n)0 acts on H(n)≥1 via adjoint action. To this aim, consider the Hochschild–Serre spectral sequence with respect
to the ideal H(n)≥1 C H(n)≥0:

Er,s2 = H
r(H(n)0,Hs(H(n)≥1, F))⇒ Hr+s(H(n)≥0, F). (3.11)

By Lemma 3.12 and homogeneity, it follows that

E1,12 = H
1(H(n)0,H1(H(n)≥1, F)) = H1(H(n)0, C1(H(n)1, F))0 = 0.

Therefore we are left with showing that H2(H(n)≥0, F) = 0. First of all, we prove that Z1(H(n)0, F)0 = 0. Indeed, a
homogeneous element g ∈ C1(H(n)0, 1)0 can only take the following non-zero values g(xixi′) = αi · 1, with αi = αi′ ∈ F .
The vanishing of g follows from the following cocycle condition

0 = dg(x2i , x
2
i′) = −4σ(i)g(xixi′) = −4σ(i)αi. (∗)

Consider now a homogeneous cochain f ∈ C2(H(n)0, F)0. By applying the cocycle condition to the elements of TH and using
homogeneity, one gets that f|TH ∈ Z

1(H(n)0, 1)0 which vanishes as proved above. Moreover, by adding to f a coboundary,
we can suppose that f (x2i , x

2
i′) = 0 (see Eq. (∗) of above). Therefore the only non-zero values of f can be f (xixj, xi′xj′) = αij ·1

(for j 6= i, i′) with the obvious relations αij = αji and αij = −αi′j′ . We conclude by means of the following cocycle condition

0 = df (x2i , xi′xj, xi′xj′) = −2σ(i)αij + 2σ(i)αij′ ,

which gives αij = αij′ = αi′j′ = −αij and hence αij = 0.
In order to computeH2(H(n)≥1, F)H(n)0 , wewill use the same strategy of Proposition 2.6, that is to compute, step-by-step

as d increases, the truncated invariant cohomology groups

H2
(
H(n)≥1
H(n)≥d+1

, F
)H(n)0

.

By using the Hochschild–Serre spectral sequence associated to the ideal

H(n)d =
H(n)≥d
H(n)≥d+1

C
H(n)≥1
H(n)≥d+1

,

we obtain the same diagram as in [11, Prop. 3.10] (the vanishing of E0,22 and the injectivity of the map α are proved in
exactly the same way) and then we take the cohomology with respect to H(n)0. An easy inspection of their proof shows
that Lemmas 2.7, 2.9 and 2.10 of the preceding section (for the algebra K(2m+ 1)) can be easily adapted to the present case
simply by ignoring the variable x2m+1. In particular we get that (for d ≥ 1)

C1(H(n)1 × H(n)d, F)H(n)0 =
{
〈Φ2〉F if d = 1,
〈Ψ2〉F if d = n(p− 1)− 5,

C1(H(n)d, F)H(n)0 = 0,

H1(H(n)0, C1(H(n)d, F)) =
{
⊕〈Sq(xi)〉F if d = p− 2,
⊕
n
i=1〈ωi〉F if d = n(p− 1)− p− 2.

whereΦ2,Ψ2 and ωi are defined as in the case of K(n) but ignoring the part involving the variable x2m+1 = xn.
By definition Sq(xi) is the restriction of Sq(xi) and it is easy to see that ωi is the restriction ofΩi. Moreover if we extend

Φ2 by 0 outside H(n)1 × H(n)1, then it is clear thatΦ2 ∈ H2(H(n)≥0, F) ⊂ H2(H(n)≥1, F)H(n)0 and thatΦ2 is the restriction
of the cocycleΦ (see also [11, Prop. 3.7]).
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Finally, suppose that there is a lifting ofΨ2 to a globalH(n)0-invariant cocycle of Z2(H(n)≥1, A(n)), whichwewill continue
to call Ψ2. Then using the cocycle condition 0 = dΨ2|H(n)1 together with Lemma 3.12 and proceeding by induction on the
degree, it is easy to see that Ψ2 must agree with∆ on the couples (xa, xb) ∈ H(n)≥1 × H(n)≥1 such that a+ b = σ and we
know from Proposition 3.4 that∆ is an antisymmetric cocycle if and only if n ≡ −4 mod p. �

Lemma 3.12. Let d be an integer greater than or equal to−1. Then

[H(n)1,H(n)d] = H(n)d+1.

Proof. The proof is the same as the first part of Lemma 2.5 (where we consider elements belonging to A(2m) ⊂ K(2m+ 1))
except for the fact that we do not have to consider the elements xi because they have degree−1 and the element xσ which
does not belong to H(n). �
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