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Workshop From Lie Algebras to Quantum Groups

Helena Albuquerque∗ Samuel Lopes† Joana Teles‡

Foreword

This workshop brought together leading specialists in the topics of Lie algebras, quantum

groups and related areas. It aimed to present the latest developments in these areas as well

as to stimulate the interaction between young researchers and established specialists.

We remark on the significant role that, for the last decades, the theory of algebras has

played in the development of some areas of physics, and conversely, the importance that the

growth of physics has had in the implementation of new algebraic structures. In fact, with the

development of physics, more complex algebraic structures have arisen and the mathematical

structures that were used to explain certain physical phenomena became insufficient. For

example, there are two structures of considerable importance in contemporary mathematical

research that are deeply connected to the theory of Lie algebras: Lie superalgebras and

quantum groups.

The new supersymmetry theories that appeared in the 80’s presented, within the same

structure, particles that satisfied commutation relations and others that satisfied anti-commu-

tation relations. The algebras that existed up until then did not exhibit such a structure, and

that led to the emergence of a new mathematical structure: Lie superalgebras. The genesis of

quantum groups is quite similar. Introduced independently by Drinfel’d and Jimbo in 1985,

quantum groups appeared in connection with a quantum mechanical problem in statistical

mechanics: the quantum Yang-Baxter equation. It was realized then that quantum groups had

far-reaching applications in theoretical physics (e.g. conformal and quantum field theories),

knot theory, and virtually all other areas of mathematics. The notion of a quantum group is

also closely related to the study of integrable dynamical systems, from which the concept of

a Poisson-Lie group emerged, and to the classical Weyl-Moyal quantization.

∗Departamento de Matemática, Universidade de Coimbra, Portugal.
†Departamento de Matemática Pura, Universidade do Porto, Portugal.
‡Departamento de Matemática, Universidade de Coimbra, Portugal.
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From Clifford algebras to Cayley algebras

Helena Albuquerque∗

1 Introduction

In this paper I present some of the main results on the theory of quasiassociative algebras

that were published untill June 2006, in a study developed in collaboration with Shahn Majid,

Alberto Elduque, José Pérez-Izquierdo and A.P. Santana. It is a kind of structure that has

begin to be studied by the author and S. Majid in 1999 in the context of the theory of

cathegories of quasi-Hopf algebras and comodules [6] that generalizes the known theory of

associative algebras. Octonions appears in [6] as an algebra in the monoidal cathegory of

G-graded vector spaces. At the algebraic point of view this theory presents new examples of

a kind of quasilinear algebra that deals with a set of matrices endowed with a non associative

multiplication. In [6] the notion of a dual quasi-Hopf algebra was obtained dualizing Drinfeld’s

axioms.

A dual quasibialgebra is a (H,∆, ǫ, φ) where the coproduct ∆ : H → H ⊗ H and counit

ǫ : H → k form a coalgebra and are multiplicative with respect to a ‘product’ H ⊗H → H.

Besides, H is associative up to‘conjugation’ by φ in the sense

∑

a(1) · (b(1) · c(1))φ(a(2), b(2), c(2)) =
∑

φ(a(1), b(1), c(1))(a(2) · b(2)) · c(2) (1)

for all a, b, c ∈ H where ∆h =
∑
h(1) ⊗ h(2) is a notation and φ is a unital 3-cocycle in the

sense
∑
φ(b(1), c(1), d(1))φ(a(1), b(2)c(2), d(2))φ(a(2), b(3), c(3)) =

∑
φ(a(1), b(1), c(1)d(1))φ(a(2)b(2), c(2), d(2)),

(2)

for all a, b, c, d ∈ H, and φ(a, 0, b) = ǫ(a)ǫ(b) for all a, b ∈ H. Also φ is convolution-invertible

in the algebra of maps H⊗3 → k, i.e. that there exists φ−1 : H⊗3 → k such that

∑
φ(a(1), b(1), c(1))φ

−1(a(2), b(2), c(2)) = ǫ(a)ǫ(b)ǫ(c)

=
∑
φ−1(a(1), b(1), c(1))φ(a(2), b(2), c(2))

(3)

∗Departamento de Matemática, Universidade de Coimbra, Apartado 3008, 3001-454 Coimbra, Portugal.

E-mail:lena@mat.uc.pt. Supported by CMUC-FCT.
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for all a, b, c ∈ H. A dual quasibialgebra is a dual quasi-Hopf algebra if there is a linear map

S : H → H and linear functionals α, β : H → k such that

∑
(Sa(1))a(3)α(a(2)) = 1α(a),

∑
a(1)Sa(3)β(a(2)) = 1β(a),

∑
φ(a(1), Sa(3), a(5))β(a(2))α(a(4)) = ǫ(a),

∑
φ−1(Sa(1), a(3), Sa(5))α(a(2)β(a(4)) = ǫ(a)

(4)

for all a ∈ H.

H is called dual quasitriangular if there is a convolution-invertible map R : H ⊗H → k

such that

R(a · b, c) =
∑

φ(c(1), a(1), b(1))R(a(2), c(2))φ
−1(a(3), c(3), b(2))R(b(3), c(4))φ(a(4), b(4), c(5)),

(5)

R(a, b · c) =
∑
φ−1(b(1), c(1), a(1))R(a(2), c(2))φ(b(2), a(3), c(3))R(a(4), b(3))φ

−1(a(5), b(4), c(4))
(6)

∑

b(1) · a(1)R(a(2), b(2)) =
∑

R(a(1), b(1))a(2) · b(2) (7)

for all a, b, c ∈ H.

A corepresentation or comodule under a coalgebra means vector space V and a map

β : V → V ⊗H obeying (id⊗ ∆) ◦ β = (β ⊗ id) ◦ ∆ and (id ⊗ ǫ) ◦ β = id.

If F is any convolution-invertible map, F : H ⊗H → k obeying F (a, 0) = F (0, a) = ǫ(a)

for all a ∈ H (a 2-cochain) and H is a dual quasi-Hopf algebra then so is HF with the new

product .F , φF , RF , αF , βF given by

a ·F b =
∑
F−1(a(1), b(1))a(2)b(2)F (a(3), b(3))

φF (a, b, c) =
∑
F−1(b(1), c(1))F

−1(a(1), b(2)c(2))φ(a(2), b(3), c(3))F (a(3)b(4), c(4))F (a(4), b(5))

αF (a) =
∑
F (Sa(1), a(3))α(a(2))

βF (a) =
∑
F−1(a(1), Sa(3))β(a(2))

RF (a, b) =
∑
F−1(b(1), a(1))R(a(2), b(2))F (a(3), b(3))

(8)

for all a, b, c ∈ H. This is the dual version of the twisting operation or ‘gauge equivalence’

of Drinfeld, so called because it does not change the category of comodules up to monoidal

equivalence.

So the notion of comodule quasialgebra with the approach described in [6] is,

Definition 1.1. A G-graded algebra A is quasiassociative if is a G-graded vector space A =

⊕g∈GAg that satisfies

(ab)c = φ(ā, b̄, c̄)a(bc),∀a∈Aā ,b∈Ab̄,c∈Ac̄
, (9)

for any invertible group cocycle φ : G×G×G→ K∗ with

φ(x, y, z)φ(y, z, t) =
φ(xy, z, t)φ(x, y, zt)

φ(x, yz, t)
, φ(x, 0, y) = 1,∀x, y, z, t ∈ G. (10)
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(⇒ A0 is an associative algebra and Ag is an A0- bimodule, ∀g ∈ G)

Examples of quasiassociative algebras are KFG algebras: KFG is the same vector space

as the group algebra KG but with a different product a.b = F (a, b)ab,∀a,b∈G, where F is a

2-cochain on G. For this class of algebras the cocycle φ depends on F ,

φ(x, y, z) =
F (x, y)F (xy, z)

F (y, z)F (x, yz)
, x, y, z ∈ G (11)

and measures the associativity of the algebra. Also the map R(x, y) = F (x,y)

F (y,x)
, x, y ∈ G has an

important role in the study of these algebras because it measures the commutativity.

2 Examples of KFG algebras

In this section we exemplify some results that we have proved in [4,7]. Some known classes of

KFG algebras were studied and were characterized by the properties of the cochain F . For

example, we have studied some conexions between alternative KFG algebras and composition

algebras,

Theorem 2.1. kFG is an alternative algebra if and only if for all x, y ∈ G we have,

φ−1(y, x, z) +R(x, y)φ−1(x, y, z) = 1 +R(x, y)

φ(x, y, z) +R(z, y)φ(x, z, y) = 1 +R(z, y).
(12)

In this case, φ(x, x, y) = φ(x, y, y) = φ(x, y, x) = 1

Theorem 2.2. If G ≃ (Z2)
n then the Euclidean norm quadratic function defined by q(x) = 1

for all x ∈ G makes kFG a composition algebra if and only if F 2(x, y) = 1 for all x, y ∈ G

and F (x, xz)F (y, yz) + F (x, yz)F (y, xz) = 0 for all x, y, z ∈ G with x 6= y.

Theorem 2.3. If σ(x) = F (x, x)x for all x ∈ G is a strong involution, and F 2 = 1, then the

following are equivalent,

i) kFG is an alternative algebra,

ii) kFG is a composition algebra.

Cayley Dickson Process was studied also in [6], and it was proved that after applying

this process to a KFG algebra we obtain another K
F̄
Ḡ algebra related to the first one which

properties are predictable. In fact,

Theorem 2.4. Let G be a finite abelian group, F a cochain on it (kFG is a G-graded quasial-

gebra). For any s : G→ k∗ with s(e) = 1 we define Ḡ = G×Z2 and on it the cochain F̄ and

function s̄,
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F̄ (x, y) = F (x, y), F̄ (x, vy) = s(x)F (x, y),

F̄ (vx, y) = F (y, x), F̄ (vx, vy) = αs(x)F (y, x),

s̄(x) = s(x), s̄(vx) = −1 for all x, y ∈ G.

Here x ≡ (x, e) and vx ≡ (x, ν) denote elements of Ḡ, where Z2 = {e, ν} with product

ν2 = e.

If σ(x) = s(x)x is a strong involution, then k
F̄
Ḡ is the algebra obtained from Cayley-

Dickson process applied to kFG.

We conclude that if G = (Z2)
n and F = (−1)f then the standard Cayley-Dickson process

has Ḡ = (Z2)
n+1 and F̄ = (−1)f̄ . Using the notation ~x = (x1, · · · , xn) ∈ (Z2)

n where

xi ∈ {0, 1} we have

f̄((~x, xn+1), (~y, yn+1)) = f(~x, ~y)(1 − xn+1) + f(~y, ~x)xn+1 + yn+1f(~x, ~x) + xn+1yn+1.

Theorem 2.5.

(i) The ‘complex number’ algebra has this form with G = Z2, f(x, y) = xy, x, y ∈ Z2 where

we identify G as the additive group Z2 but also make use of its product.

(ii) The quaternion algebra is of this form with

Ḡ = Z2 × Z2, f̄(~x, ~y) = x1y1 + (x1 + x2)y2

where ~x = (x1, x2) ∈ Ḡ is a vector notation.

(iii) The octonion algebra is of this form with

¯̄G = Z2 × Z2 × Z2,
¯̄f(~x, ~y) =

∑

i≤j

xiyj + y1x2x3 + x1y2x3 + x1x2y3.

(iv) The 16-onion algebra is of this form with

¯̄̄
G = Z2 × Z2 × Z2 × Z2

and

¯̄̄
f(~x, ~y) =

∑

i≤j

xiyj +
∑

i6=j 6=k 6=i

xixjyk +
∑

distinct i,j,k,l

xixjykyl +
∑

i6=j 6=k 6=i

xiyjykx4.

Now consider a n dimensional vector space V over a field K with characteristic not 2.

Define in V a nondegenerate quadratic form q . We know that there is an orthogonal basis

{e1, · · · , en} of V with q(ei) = qi for some qi 6= 0. The Clifford algebra C(V,q), is the

associative algebra generated by 1 and {ei} with the relations e2
i

= qi.1, eiej +ejei = 0,∀i 6= j.

The dimension of C(V,q) is 2n and it has a canonical basis {ei1 · · · eip | 1 ≤ i1 < i2 · · · < ip ≤

n}.

In [9] we have studied Clifford Algebras as quasialgebras KFG and some of their repre-

sentations,
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Theorem 2.6. The algebra kFZ
n

2
can be identified with C(V,q), where F ∈ Z2(G, k) is

defined by F (x, y) = (−1)

∑

j<i

xiyj n∏

i=1

q
xiyi

i
where x = (x1, · · · xn) ∈ Zn

2
and twists kG into a

cotriangular Hopf algebra with R(x, y) = (−1)ρ(x)ρ(y)+x·y where ρ(x) =
∑

i
xi and x · y is the

dot product of Z2-valued vectors.

C(V,q) is a superalgebra considering the Z2 graduation induced by the map σ(ex) =

(−1)ρ(x)ex extended linearly.

Theorem 2.7. C(V ⊕W,q ⊕ p) ≃ C(V,q) ⊗ C(W,p) as super algebras.

(This result is known in the classical theory but with our approach is easier to prove. It

is clear from the form of F that F ((x, x′), (y, y′)) = F (x, y)F (x′, y′)(−1)ρ(x
′
)ρ(y) where {ex}

is a basis of V and {ex′} of W with the multiplication defined in the algebra product by

(a⊗ c)(b⊗ d) = a · b⊗ c · d(−1)ρ(c)ρ(b).)

We now use the above convenient description of Clifford algebras to express a ‘doubling

process’ similar to the Cayley Dickson process. Let A be a finite-dimensional algebra with

identity 1 and σ an involutive automorphism of A. For any fixed element q ∈ k∗ there is a

new algebra of twice the dimension, Ā = A⊕Av, which multiplication is given by

(a+ bv) · (c+ dv) = a · c+ qb · σ(d) + (a · d+ b · σ(c))v,

and with a new involutive automorphism,

σ̄(a+ vb) = σ(a) − σ(b)v.

We will say that Ā is obtained from A by Clifford process.

Theorem 2.8. Let G be a finite Abelian group and F a cochain as above. So kFG is a G-

graded quasialgebra and for any s : G→ k∗ with s(e) = 1 and any q ∈ k∗, define Ḡ = G×Z2

and

F̄ (x, yv) = F (x, y) = F̄ (x, y),

F̄ (xv, y) = s(y)F (x, y), F̄ (xv, yv) = qs(y)F (x, y),

s̄(x) = s(x), s̄(xv) = −s(x) for all x, y ∈ G.

Here x ≡ (x, e) and xv ≡ (x, η) where η with η2 = e is the generator of the Z2. If σ(ex) =

s(x)ex is an involutive automorphism then k
F̄
Ḡ is the Clifford process applied to kFG.
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Theorem 2.9. For any s : G → k∗ and q ∈ k∗ as above the k
F̄
Ḡ given by the generalised

Clifford process has associator and braiding

φ̄(x, yv, z) = φ̄(x, y, zv) = φ̄(x, yv, zv) = φ(x, y, z),

φ̄(xv, y, z) = φ̄(xv, yv, z) = φ(xv, y, zv) = φ(xv, yv, zv) = φ(x, y, z)
s(yz)

s(y)s(z)

R̄(x, y) = R(x, y), R̄(xv, y) = s(y)R(x, y)

R̄(x, yv) =
R(x, y)

s(x)
,

R̄(xv, yv) = R(x, y)
s(y)

s(x)
.

Theorem 2.10. If s defines an involutive automorphism σ then

1. k
F̄
Ḡ is alternative iff kFG is alternative and for all x, y, z ∈ G, either φ(x, y, z) = 1 or

s(x) = s(y) = s(z) = 1.

2. k
F̄
Ḡ is associative iff kFG is associative.

If F and s have the form F (x, y) = (−1)f(x,y), s(x) = (−1)ξ(x), q = (−1)ζ for some Z2-

valued functions f, ξ and ζ ∈ Z2 then the generalised Clifford process yields the same form with

G = Zn+1

2
and f̄((x, xn+1), (y, yn+1)) = f(x, y)+(yn+1ζ+ξ(y))xn+1, ξ̄(x, xn+1) = ξ(x)+xn+1.

Theorem 2.11. Starting with C(r, s) the Clifford process with q = 1 yields C(r+1, s). With

q = −1 it gives C(r, s + 1). Hence any C(m,n) with m ≥ r, n ≥ s can be obtained from

successive applications of the Clifford process from C(r, s).

So as an immediate consequence of the last theorem we can say that starting with C(0, 0) =

k and iterating the Clifford process with a choice of qi = (−1)ζi at each step, we arrive at the

standard C(V,q) and the standard automorphism σ(ex) = (−1)ρ(x)ex.

Besides we must note that the Clifford Process is a twisting tensor product Ā = A ⊗σ

C(k, q) where C(k, q) = k[v] with the relation v2 = q, and va = σ(a)v for all a ∈ A.

3 Quasirepresentations and quasilinear algebra

In [9] we have extended Clifford process also to representations proving that,
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Theorem 3.1. If W is an irreducible representation of A not isomorphic to Wσ defined by

the action of σ(a) then W̄ = W ⊕Wσ is an irreducible representation π of Ā obtained via the

Clifford process with q. Here

π(v) =

(

0 1

q 0

)

,

π(a) =

(

a 0

0 σ(a)

)

are the action on W ⊕W in block form (here π(a) is the explicit action of a in the direct sum

representation W ⊕Wσ). If W,Wσ are isomorphic then W itself is an irreducible representa-

tion of Ā for a suitable value of q.

More generaly we have defined an action of a quasialgebra in [6],

Theorem 3.2. A representation or ‘action’ of a G-graded quasialgebra A is a G-graded vector

space V and a degree-preserving map ◦ : A⊗ V → V such that (ab) ◦ v = φ(|a|, |b|, |v|)a ◦ (b ◦

v), 1 ◦ v = v on elements of homogeneous degree. Here |a ◦ v| = |a||v|.

Theorem 3.3. Let |i| ∈ G for i = 1, · · · , n be a choice of grading function. Then the usual

n× n matrices Mn with the new product

(α · β)ij =
∑

k

αi

kβ
k
j

φ(|i|, |k|−1, |k||j|−1)

φ(|k|−1, |k|, |j|−1)
,∀α, β ∈Mn

form a G-graded quasialgebra Mn,φ, where |Ei
j| = |i||j|−1 ∈ G is the degree of the usual basis

element of Mn. An action of a G-graded quasialgebra A in the n-dimensional vector space

with grading |i| is equivalent to an algebra map ρ : A→Mn,φ.

Several properties of quasilinear algebra can be proved using this class of matrices with

a “quasi-associative” multiplication. For example we can study a quasi-LU decomposition

for some matrix X ∈ Mn,φ:(Note that this study generalizes the known LU decomposition

of a matrix in the usual associative algebra of square matrices n × n.) We began studying

elementary “quasi-matrices” and “quasi-elementary” operations and we can conclude that,

Theorem 3.4. Let X ∈ Mn,φ. There are quasi-permutation matrices Pi1,j1
, Pi2,j2

, ..., Pik ,jk
,

an upper triangular matrix U and a lower triangular matrix L with lii = φ(i−1, i, i−1) such

that Pi1,j1
(Pi2,j2

(...(Pik ,jk
X))...) = L.U

9



4 Division quasialgebras

In [7] we have studied cocycles and some properties of quasialgebras graded over the ciclic

group Zn. Using the definition of a 3-cocycle in a group G we proved that a Z2-graded

quasialgebra is either an associative superalgebra or an antiassociative superalgebra (aaq-

algebra) with cocycle defined by,φ(x, y, z) = (−1)xyz,∀x, y, z,∈ Z2.

In Z3 every cocycle has the form

φ111 = α, φ112 = β, φ121 =
1

ωα
, φ122 =

ω

β
, φ211 =

α

βω
,

φ212 = αω, φ221 =
β

ωα
, φ222 =

ω

α

for some α, β ∈ K∗ with ω a cubic root of the unity. Here φ(1, 1, 1) = φ111, etc. is a shorthand.

Definition 4.1. The quasiassociative algebra A = ⊕g∈GAg is said to be a quasiassociative

division algebra if it is unital (1 ∈ A0) and any nonzero homogeneous element has a right and

a left inverse. Given such an algebra we denote the right inverse of 0 6= u ∈ Ag by u−1 and

the left inverse by u−1

L
. Notice that, since A0 is a division associative algebra, the left and

right inverses of any nonzero element of A0 coincide.

For any nonzero u ∈ Ag, the elements u−1 and u−1

L
are in A−g, and we have u−1 =

φ(−g, g,−g)u−1

L
. For 0 6= u ∈ Ag and 0 6= w ∈ Ah, we have (uw)−1 = φ(h,−h,−g)

φ(g,h,−g−h)
w−1u−1.

It is easy to prove that for division quasiassociative algebra, the null part A0 is a division

associative algebra and Ag is an A0-bimodule satisfying Ag = A0ug = ugA0, for any nonzero

ug ∈ Ag, any g ∈ G.

In [5] we have studied division antiassociative algebras and characterized antiassociative

algebras with semisimple (artinian) even part and odd part that is a unital bimodule for the

even part.

Theorem 4.1. Given a division (associative) algebra D, σ an automorphism of D such that

there is an element a ∈ D∗ with σ2 = τa : d 7→ ada−1 and with σ(a) = −a, on the direct sum

of two copies of D: ∆ = D ⊕Du (here u is just a marking device), define the multiplication

(d0 + d1u)(e0 + e1u) = (d0e0 + d1σ(e1)a) + (d0e1 + d1σ(e0))u. (13)

Then with ∆0 = D and ∆1 = Du, this is easily seen to be a division aaq-algebra. We

will denote by < D,σ, a > the division aaq-algebra ∆ described before. The aaq-algebras

< D,σ, a > exhaust, up to isomorphism, the division aaq-algebras with nonzero odd part.

10



In general, it was proved in [2] that,

Theorem 4.2. Let D be a division associative algebra over K, G a finite abelian group and

φ : G × G × G → K∗ a cocycle. Suppose that for each g, h, l ∈ G, there are automorphisms

ψg of D and non zero elements cg,h of D satisfying

ψgψh = cg,hψg+hc
−1

g,h
(14)

and

cg,hcg+h,l = φ(g, h, l)ψg(ch,l)cg,h+l (15)

In the direct sum of |G| copies of D, ∆ = ⊕g∈GDug (ug is a marking device with u0 = 1),

consider the multiplication defined by

d1(d2ug) = (d1d2)ug

(d1ug)d2 = (d1ψg(d2))ug

(d1ug)(d2uh) = (d1ψg(d2)cg,h)ug+h,

(16)

for d1, d2 ∈ D and g, h ∈ G. Then with ∆0 = D and ∆g = Dug,∆ is a quasiassociative

G-graded division algebra. Conversely, every quasiassociative G graded division algebra can

be obtained this way.

As an interesting particular case of division quasialgebras we have studied the alternative

ones in [4]. We called strictly alternative algebras the alternative algebras that are not

associative.

Theorem 4.3. There are no strictly alternative division quasialgebras over fields of charac-

teristic 2.

Let A = ⊕g∈GAg be a strictly alternative division quasialgebra. Then G/N ∼= Z2×Z2×Z2

where N = {x ∈ A : (x,A,A) = 0}.

In [4] we have proved that any strictly alternative division quasialgebra over a field of

characteristic different from 2 can be obtained by a sort of “graded Cayley-Dickson doubling

process” built from the associative division algebra AN = ⊕g∈NAg.

Definition 4.2. Let K be a field, G an abelian group and N ≤ S ≤ T ≤ G a chain of

subgroups with [T : S] = 2 and T = S ∪ Sg with g2 ∈ N . Let β : G 7→ K be the map given by

β(g) = 1 if g ∈ N and β(g) = −1 if g 6∈ N . Let F : S × S → K× be a 2-cochain such that

F (s1, s2)

F (s2, s1)
= β(s1)β(s2)β(s1s2)

(
= (∂β)(s1, s2)

)

11



for any s1, s2 ∈ S and let 0 6= α ∈ K. Then the 2-cochain F̄ = F(T,g,α) : T × T → K× defined

by

F̄ (x, y) = F (x, y)

F̄ (x, yg) = F (y, x)

F̄ (xg, y) = β(y)F (x, y)

F̄ (xg, yg) = β(y)F (y, x)α

(17)

for any x, y ∈ S, is said to be the 2-cochain extending F by means of (T, g, α).

Theorem 4.4. Let k be a field of characteristic 6= 2 and K/k a field extension. Let G be an

abelian group, N a subgroup of G such that G/N ∼= Z2 × Z2 × Z2 and N1 and N2 subgroups

of G such that N < N1 < N2 < G. Let β : G 7→ K× be the map given by β(x) = 1

for x ∈ N and β(x) = −1 for x 6∈ N and F0 : N ×N 7→ K× a symmetric 2-cocycle. Let

g1, g2, g3 ∈ G with N1 = 〈N, g1〉, N2 = 〈N1, g2〉 and G = 〈N2, g3〉, and let α1, α2, α3 be nonzero

elements in K. Consider the extended 2-cochains F1 = (F0)(N1,g1,α1)
, F2 = (F1)(N2,g2,α2) and

F3 = (F2)(G,g3,α3)
. Then KF3

G is a strictly alternative division quasialgebra over k.

Conversely, if k is a field and A is a strictly alternative division quasialgebra over k then

the characteristic of k is 6= 2 and there are K,G,N,F0, α1, α2, α3 satisfying the preceding

conditions such that A ∼= KF3
G.

5 Quasialgebras with simple null part

In [5] we have classified antiassociative quasialgebras which even part is semisimple (artinian)

and the odd part is a unital bimodule for the even part. We have concluded that,

Theorem 5.1. Any unital aaq-algebra with semisimple even part is a direct sum of ideals

which are of one of the following types:

(i) A = A0 ⊕A1 with A0 simple artinian and (A1)
2 6= 0.

(ii) A = A0 ⊕ A1 with A0 = B1 ⊕ B2, where B1 and B2 are simple artinian ideals of A0,

and A1 = V12 ⊕ V21, where V 2

12
= 0 = V 2

21
, V12V21 = B1 and V21V12 = B2.

(iii) A trivial unital aaq-algebra with a semisimple even part.

To better understand the last theorem consider two types of aaq-algebras with semisimple

artinian even part:� Let ∆ be a division aaq-algebra and consider a natural number n. The set Matn(∆) is

an aaq-algebra whose even part is Matn(∆0);

12



� Let ∆ be a division aaq-algebra and consider natural numbers n,m. The set M̃atn,m(D)

of (n+m) × (n+m) matrices over D, with the chess-board Z2-grading:

M̃atn,m(D)0 =

{(

a 0

0 b

)

: a ∈Matn(D), b ∈Matm(D)

}

M̃atn,m(D)1 =

{(

0 v

w 0

)

: v ∈Matn×m(D), w ∈Matm×n(D)

}
(18)

with multiplication given by,

(

a1 v1

w1 b1

)

·

(

a2 v2

w2 b2

)

=

(

a1a2 + v1w2 a1v2 + v1b2

w1a2 + b1w2 −w1v2 + b1b2

)

.

M̃atn,m(D) is an aaq-algebra, whose even part is isomorphic to Matn(D)×Matm(D).

Then,

Theorem 5.2. Any unital aaq-algebras with semisimple even part A = A0 ⊕ A1 is a finite

direct sum of ideals A = A1 ⊕ · · · ⊕Ar ⊕ Â1 ⊕ · · · ⊕ Âs ⊕ Ã where:

For i = 1, · · · , r, Ai is isomorphic to Matni
(∆i) for some ni and some division aaq-algebra

∆i.

For j = 1, · · · , s, Âj is isomorphic to M̃atnj ,mj
(Dj) for some division algebra Dj and

natural numbers nj and mj.

Ã is a trivial unital aaq-algebras with semisimple even part. Moreover, r, s, the ni’s and

the pairs {nj ,mj} are uniquely determined by A; and so are (up to isomorphism) Ã, the

division aaq-algebras ∆i’s and the division algebras Dj’s.

In general if A = ⊕g∈GAg is a quasiassociative algebra over the field K , with simple

artinian null part B = A0, then it is isomorphic to V ⊗D∆⊗DV
∗, where ∆ is a quasiassociative

division algebra, V is a simple A0−module and D = EndA0
(V ). This is equivalent to the

following theorem [1],

Theorem 5.3. Any quasiassociative algebra A with simple artinian null part is isomorphic

to an algebra of matrices Matn(∆), for some integer n and quasiassociative division algebra

∆. The integer n is uniquely determined by A and so is, up to isomorphism, the division

algebra ∆.
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6 Wedderburn quasialgebras

A Wedderburn quasialgebra is a unital quasialgebra that satisfies the descending chain con-

dition on graded left ideals and with no nonzero nilpotent graded ideals [3]. In this paper it

was proved an analogous of the Wedderburn-Artin Theorem for quasialgebras.

The first result obtained in [3] it was that if A is a Wedderburn quasialgebra, then the

null part A0 is a Wedderburn algebra.

Consider natural numbers n1, . . . , nr, define the matrix algebra Mn1+···+nr(k) having a

basis consisting of the elements

Ekl

ij
= En1+···+ni−1+k,n1+···+nj−1+l (19)

where, as usual, Eij denotes the matrix with 1 in the (i, j) entry and 0’s elsewhere. The

multiplication is,

Ekl

ij
Epq

mn
= δjmδlpE

kq

in
. (20)

Let R be a quasialgebra with cocycle φ. Consider in G a grading function |1|, . . . , |r| ∈ G

and take natural numbers n1, · · · , nr. Define the set of matrices,

M̃φ

n1,··· ,nr
(R) =< xkl

ij
>=< Ekl

ij
x >, : x ∈ R, 1 ≤ i, j ≤ r, 1 ≤ k ≤ ni, 1 ≤ l ≤ nj (21)

that is a G-graded algebra for the gradation,

|xkl

ij
| = |i||x||j|−1 (22)

for homogeneous x, and multiplication given by

xkl

ij
ypq

mn
= δjmδlp

φ(|i|, |x||j|−1, |j||y′||n|−1)φ(|x||j|−1, |j|, |y||n|−1)

φ(|x|, |j|−1, |j|)φ(|x|, |y|, |n|−1)
(xy)kq

in
. (23)

In fact, M̃φ

n1,...,nr(R) is a quasialgebra with cocycle φ.

The main result in [3] is,

Theorem 6.1. Let A be a Wedderburn quasialgebra. Then A is isomorphic to a finite direct

sum of quasialgebras of the form M̃
φ

n1,...,nr(D̂), where D̂ is a division quasi-algebra with cocycle

φ.
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Freudenthal’s magic supersquare in characteristic 3

Isabel Cunha∗ Alberto Elduque†

Abstract

A family of simple Lie superalgebras over fields of characteristic 3, with no counter-

part in Kac’s classification in characteristic 0 have been recently obtained related to an

extension of the classical Freudenthal’s Magic Square. This article gives a survey of these

new simple Lie superalgebras and the way they are obtained.

1 Introduction

Over the years, many different constructions have been given of the excepcional simple Lie

algebras in Killing-Cartan’s classification, involving some nonassociative algebras or triple

systems. Thus the Lie algebra G2 appears as the derivation algebra of the octonions (Cartan

1914), while F4 appears as the derivation algebra of the Jordan algebra of 3 × 3 hermitian

matrices over the octonions and E6 as an ideal of the Lie multiplication algebra of this Jordan

algebra (Chevalley-Schafer 1950).

In 1966 Tits [Tit66] gave a unified construction of the exceptional simple Lie algebras,

valid over arbitrary fields of characteristic 6= 2, 3 which uses a couple of ingredients: a unital

composition algebra (or Hurwitz algebra) C, and a central simple Jordan algebra J of degree

3:

T (C, J) = der C ⊕ (C0 ⊗ J0) ⊕ der J,

where C0 and J0 denote the sets of trace zero elements in C and J . By defining a suitable

Lie bracket on T (C, J), Tits obtained Freudenthal’s Magic Square ([Sch95, Fre64]):
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T (C, J) H3(k) H3(k × k) H3(Mat2(k)) H3(C(k))

k A1 A2 C3 F4

k × k A2 A2 ⊕ A2 A5 E6

Mat2(k) C3 A5 D6 E7

C(k) F4 E6 E7 E8

At least in the split cases, this is a construction which depends on two unital composition

algebras, since the Jordan algebra involved consists of the 3 × 3 hermitian matrices over

a unital composition algebra. Even though the construction is not symmetric on the two

Hurwitz algebras involved, the result (the Magic Square) is symmetric.

Over the years, several symmetric constructions of Freudenthal’s Magic Square based on

two Hurwitz algebras have been proposed: Vinberg [Vin05], Allison and Faulkner [AF93] and

more recently, Barton and Sudbery [BS, BS03], and Landsberg and Manivel [LM02, LM04]

provided a different construction based on two Hurwitz algebras C, C ′, their Lie algebras of

triality tri(C), tri(C ′), and three copies of their tensor product: ιi(C ⊗ C ′), i = 0, 1, 2. The

Jordan algebra J = H3(C
′), its subspace of trace zero elements and its derivation algebra can

be split naturally as:

J = H3(C
′) ∼= k3 ⊕

(
⊕2

i=0ιi(C
′)
)
,

J0
∼= k2 ⊕

(
⊕2

i=0ιi(C
′)
)
,

der J ∼= tri(C ′) ⊕
(
⊕2

i=0ιi(C
′)
)
,

and the above mentioned symmetric constructions are obtained by rearranging Tits construc-

tion as follows:

T (C, J) = der C ⊕ (C0 ⊗ J0) ⊕ der J

∼= der C ⊕ (C0 ⊗ k2) ⊕
(
⊕2

i=0C0 ⊗ ιi(C
′)
)
⊕
(
tri(C ′) ⊕ (⊕2

i=0ιi(C
′))
)

∼=
(
tri(C) ⊕ tri(C ′)

)
⊕
(
⊕2

i=0
ιi(C ⊗ C ′)

)
.

This construction, besides its symmetry, has the advantage of being valid too in charac-

teristic 3. Simpler formulas are obtained if symmetric composition algebras are used, instead

of the more classical Hurwitz algebras. This led the second author to reinterpret the above

construction in terms of two symmetric composition algebras [Eld04].

An algebra endowed with a nondegenerate quadratic form (S, ∗, q) is said to be a symmetric

composition algebra if it satisfies
{

q(x ∗ y) = q(x)q(y),

q(x ∗ y, z) = q(x, y ∗ z).
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for any x, y, z ∈ S, where q(x, y) = q(x + y) − q(x) − q(y) is the polar of q.

Any Hurwitz algebra C with norm q, standard involution x 7→ x̄ = q(x, 1)1 − x, but with

new multiplication

x ∗ y = x̄ȳ,

is a symmetric composition algebra, called the associated para-Hurwitz algebra.

The classification of symmetric composition algebras was given by Elduque, Okubo, Os-

born, Myung and Pérez-Izquierdo (see [EM93, EP96, KMRT98]). In dimension 1,2 or 4, any

symmetric composition algebra is a para-Hurwitz algebra, with a few exceptions in dimension

2 which are, nevertheless, forms of para-Hurwitz algebras; while in dimension 8, apart from

the para-Hurwitz algebras, there is a new family of symmetric composition algebras termed

Okubo algebras.

If (S, ∗, q) is a symmetric composition algebra, the subalgebra of so(S, q)3 defined by

tri(S) = {(d0, d1, d2) ∈ so(S, q)3 : d0(x ∗ y) = d1(x) ∗ y + x ∗ d2(y)∀x, y ∈ S}

is the triality Lie algebra of S, which satisfies:

tri(S) =







0 if dim S = 1,

2-dim’l abelian if dimS = 2,

so(S0, q)
3 if dim S = 4,

so(S, q) if dim S = 8.

The construction given by Elduque in [Eld04] starts with two symmetric composition

algebras S, S′ and considers the Z2 × Z2-graded algebra

g(S, S′) =
(
tri(S) ⊕ tri(S′)

)
⊕
(
⊕2

i=0
ιi(S ⊗ S′)

)
,

where ιi(S ⊗ S′) is just a copy of S ⊗ S′, with anticommutative multiplication given by:� tri(S) ⊕ tri(S′) is a Lie subalgebra of g(S, S′),� [(d0, d1, d2), ιi(x ⊗ x′)] = ιi
(
di(x) ⊗ x′

)
,� [(d′

0
, d′

1
, d′

2
), ιi(x ⊗ x′)] = ιi

(
x ⊗ d′

i
(x′)

)
,� [ιi(x ⊗ x′), ιi+1(y ⊗ y′)] = ιi+2

(
(x ∗ y) ⊗ (x′ ∗ y′)

)
(indices modulo 3),� [ιi(x ⊗ x′), ιi(y ⊗ y′)] = q′(x′, y′)θi(tx,y) + q(x, y)θ′i(t′

x′,y′),
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for any x, y ∈ S, x′, y′ ∈ S′, (d0, d1, d2) ∈ tri(S) and (d′
0
, d′

1
, d′

2
) ∈ tri(S′). The triple tx,y =

(
q(x, .)y−q(y, .)x, 1

2
q(x, y)1−rxly,

1

2
q(x, y)1−lxry

)
is in tri(S) and θ : (d0, d1, d2) 7→ (d2, d0, d1)

is the triality automorphism in tri(S); and similarly for t′ and θ′ in tri(S′).

With this multiplication, g(S, S′) is a Lie algebra and, if the characteristic of the ground

field is 6= 2, 3, Freudenthal’s Magic Square is recovered.

dim S′

g(S, S′) 1 2 4 8

1 A1 A2 C3 F4

2 A2 A2 ⊕ A2 A5 E6

dimS
4 C3 A5 D6 E7

8 F4 E6 E7 E8

In characteristic 3, some attention has to be paid to the second row (or column), where

the Lie algebras obtained are not simple but contain a simple codimension 1 ideal.

dim S′

g(S, S′) 1 2 4 8

1 A1 Ã2 C3 F4

2 Ã2 Ã2 ⊕ Ã2 Ã5 Ẽ6

dimS
4 C3 Ã5 D6 E7

8 F4 Ẽ6 E7 E8� Ã2 denotes a form of pgl3, so [Ã2, Ã2] is a form of psl3.� Ã5 denotes a form of pgl6, so [Ã5, Ã5] is a form of psl6.� Ẽ6 is not simple, but [Ẽ6, Ẽ6] is a codimension 1 simple ideal.

The characteristic 3 presents also another exceptional feature. Only over fields of this

characteristic there are nontrivial composition superalgebras, which appear in dimensions 3

and 6. This fact allows to extend Freudenthal’s Magic Square with the addition of two further

rows and columns, filled with (mostly simple) Lie superalgebras.

A precise description of those superalgebras can be done as contragredient Lie superalge-

bras (see [CEa] and [BGL]).

Most of the Lie superalgebras in the extended Freudenthal’s Magic Square in character-

istic 3 are related to some known simple Lie superalgebras, specific to this characteristic,

constructed in terms of orthogonal and symplectic triple systems, which are defined in terms

of central simple degree three Jordan algebras.
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2 The Supersquare and Jordan algebras

It turns out that the Lie superalgebras g(Sr, S1,2) and g(Sr, S4,2), for r = 1, 4 and 8, and their

derived subalgebras for r = 2, are precisely the simple Lie superalgebras defined in [Eld06b]

in terms of orthogonal and symplectic triple systems and strongly related to simple Jordan

algebras of degree 3.

Let S be a para-Hurwitz algebra. Then,

g(S1,2, S) =
(
tri(S1,2) ⊕ tri(S)

)
⊕
(
⊕2

i=0
ιi(S1,2 ⊗ S)

)

=
(
(sp(V ) ⊕ V ) ⊕ tri(S)

)
⊕
(
⊕2

i=0
ιi(1 ⊗ S)

)
⊕
(
⊕2

i=0
ιi(V ⊗ S)

)
.

Consider the Jordan algebra of 3 × 3 hermitian matrices over the associated Hurwitz

algebra:

J = H3(S̄) =












α0 ā2 a1

a2 α1 ā0

ā1 a0 α2




 : α0, α1, α2 ∈ k, a0, a1, a2 ∈ S







∼= k3 ⊕
(
⊕2

i=0ιi(S)
)
.

In [CEb, Theorem 4.9.] it is proved that:







g(S1,2, S)0̄
∼= sp(V ) ⊕ der J (as Lie algebras),

g(S1,2, S)1̄
∼= V ⊗ Ĵ (as modules for the even part).

Therefore, some results concerning Z2-graded Lie superalgebras and orthogonal triple

systems ([Eld06b]) allow us to conclude that Ĵ = J0/k1 is an orthogonal triple system with

product given by

[x̂ŷẑ] =
(
x ◦ (y ◦ z) − y ◦ (x ◦ z)

)
ˆ

(x̂ = x + k1).

Orthogonal triple systems were first considered by Okubo [Oku93].

Theorem 1 (Elduque-Cunha [CEb]). The Lie superalgebra g(S1,2, S) is the Lie superalgebra

associated to the orthogonal triple system Ĵ = J0/k1, for J = H3(S̄).

In order to analyze the Lie superalgebras g(S4,2, S), let V be, as before, a two dimensional

vector space endowed with a nonzero alternating bilinear form. Assume that the ground field
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is algebraically closed. Then (see [CEb]) it can be checked that g(S8, S) can be identified to

a Z2-graded Lie algebra

g(S8, S) ≃
(
sp(V ) ⊕ g(S4, S)

)
⊕
(
V ⊗ T (S)

)
,

for a suitable g(S4, S)-module T (S) of dimension 8 + 6dimS.

In a similar vein, one gets that g(S4,2, S) can be identified with

g(S4,2, S) ≃ g(S4, S) ⊕ T (S).

Hence, according to [CEb, Theorem 5.3, Theorem 5.6]:

Corollary 1 (Elduque-Cunha). Let S be a para-Hurwitz algebra, then:

1. T (S) above is a symplectic triple system.

2. g(S4,2, S) ∼= inder T ⊕ T is the Lie superalgebra attached to this triple system.

Remark 1. Symplectic triple systems are closely related to the so called Freudenthal triple

systems (see [YA75]). The classification of the simple finite dimensional symplectic triple

systems in characteristic 3 appears in [Eld06b, Theorem 2.32] and it follows from this clas-

sification that the symplectic system triple T (S) above is isomorphic to a well-known triple

system defined on the set of 2 × 2-matrices

(

k J

J k

)

, with J = H3(S̄).

The next table summarizes the previous arguments:

g S1 S2 S4 S8

S1,2 Lie superalgebras attached to orthogonal

triple systems Ĵ = J0/k1

S4,2 Lie superalgebras attached to symplectic

triple systems

(

k J

J k

)

(J a degree 3 central simple Jordan algebra)
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3 Final remarks

In the previous section, the Lie superalgebras g(Sr, S1,2) and g(Sr, S4,2) (r = 1, 2, 4, 8) in the

extended Freudenthal’s Magic Square have been shown to be related to Lie superalgebras

which had been constructed in terms of orthogonal and symplectic triple systems in [Eld06b].

Let us have a look here at the remaining Lie superalgebras in the supersquare:

The result in [CEa, Corollary 5.20] shows that the even part of g(S1,2, S1,2) is isomorphic

to the orthogonal Lie algebra so7(k), while its odd part is the direct sum of two copies of

the spin module for so7(k), and therefore, over any algebraically closed field of characteristic

3, g(S1,2, S1,2) is isomorphic to the simple Lie superalgebra in [Eld06b, Theorem 4.23(ii)],

attached to a simple null orthogonal triple system.

For g(S4,2, S4,2), as shown in [CEa, Proposition 5.10 and Corollary 5.11], its even part is

isomorphic to the orthogonal Lie algebra so13(k), while its odd part is the spin module for

the even part, and hence that g(S4,2, S4,2) is the simple Lie superalgebra in [Elda, Theorem

3.1(ii)] for l = 6.

Only the simple Lie superalgebra g(S1,2, S4,2) has not previously appeared in the literature.

Its even part is isomorphic to the symplectic Lie algebra sp8(k), while its odd part is the

irreducible module of dimension 40 which appears as a subquotient of the third exterior

power of the natural module for sp8(k) (see [CEa, §5.5]).
Also g(S1,2, S1,2) and g(S1,2, S4,2) are related to some orthosymplectic triple systems [CEb],

which are triple systems of a mixed nature.

In conclusion, notice that

the main feature of Freudenthal’s Magic Supersquare is that among all the Lie superal-

gebras involved, only g(S1,2, S1) ∼= psl2,2 has a counterpart in Kac’s classification in charac-

teristic 0. The other Lie superalgebras in Freudenthal’s Magic Supersquare, or their derived

algebras, are new simple Lie superalgebras, specific of characteristic 3.
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On graded Lie algebras and intersection cohomology

G. Lusztig∗

This is the text of a lecture given at the University of Coimbra in June 2006; a more

complete version will appear elsewhere.

1

Let G be a reductive connected group over C. Let LG be the Lie algebra of G. Let ι : C∗ −→

G be a homomorphism of algebraic groups. Let

Gι = {g ∈ G; gι(t) = ι(t)g for all t ∈ C∗}.

We have LG = ⊕n∈ZLnG where

LnG = {x ∈ LG; Ad(ι(t))x = tnx ∀t ∈ k∗}.

Now Gι acts on LkG by the adjoint action. If k 6= 0 this action has finitely many orbits. Fix

∆ = {n,−n}

where n ∈ Z − {0}. For n ∈ ∆ let ILnG be the set of all isomorphism classes of irreducible

Gι-equivariant local systems on various Gι-orbits in LnG. For L,L′ in ILnG (on the orbits

O,O′) and i ∈ Z let mi;L,L′ be the multiplicity of L′ in the local system obtained by restricting

to O′ the i-th cohomology sheaf of the intersection cohomology complex IC(Ō,L).

Let mL,L′ =
∑

i
mi,L,L′vdimO−dimO′−〉. These form the entries of the multiplicity matrix.

The problem is to compute it.

Example 1. Let V be a vector space of dimension 4 with a nonsingular symplectic form.

Let G = Sp(V ). Let V1, V−1 be Lagangian subspaces of V such that V = V1 ⊕ V−1. Let

∆ = {2,−2}. Define ι : C∗ −→ G by ι(t)x = tx if x ∈ V1, ι(t)x = t−1x if x ∈ V−1.

We have L2G = S2V1, L−2V = S2(V ∗
1
) and IL2G consists of 4 local systems

L′, C on the orbit of dimension 0;

L∈, C on the orbit of dimension 2;

L∋, C on the orbit of dimension 3;

L△, non-trivial on the orbit of dimension 3.

∗Department of Mathematics, M.I.T., Cambridge, MA 02139
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Example 2. Let V be a vector space of dimension d. Let G = GL(V ). Assume that V is

Z-graded: V = ⊕k∈ZVk. Define ι : C∗ −→ G by ι(t)x = tkx for x ∈ Vk. Take ∆ = {1,−1}.

Let L1G = {T ∈ End(V );TVk ⊂ Vk+1∀k}. The Gι-orbits on L1G are in bijection with the

isomorphism classes of representations of prescribed dimension of a quiver of type A. In this

case our problem is equivalent to the problem of describing the transition matrix from a PBW

basis to the canonical basis of a quantized enveloping algebra U+ of type A.

This suggests that to solve our problem we must immitate and generalize the construction

of canonical bases of U+
v

.

2

Let B be the canonical basis of U+
v

the plus part of a quantized enveloping algebra of finite

simply laced type.

B was introduced in the author’s paper in J.Amer.Math.Soc. (1990) by two methods:� topological: study of perverse sheaves on the moduli space of representations of a quiver.� algebraic: define a Z[v]-lattice L in U+
v

and a Z- basis B0 of L/vL (basis at v = 0) in

terms of PBW-bases then lift B0 to B.

Another proof of the existence of B was later given by Kashiwara (Duke Math.J., 1991).

3

Let n ∈ ∆. Let L ∈ ILnG on an orbit O. We say that L is ordinary if there exists a

G-equivariant local system F on C (the unique nilpotent G-orbit in LG containig O) such

that

L appears in F|O and (C,F) appears in the Springer correspondence for G.

It is known that for L,L′ ∈ IL\G we have

L ordinary, mL,L′ 6= 0 implies L′ ordinary;

L′ ordinary, mL,L′ 6= 0 implies L ordinary.

Let I
ord

LnG
= {L ∈ ILnG;L ordinary}.

We say that (G, ι) is rigid if there exists a homomorphism γ : SL2(C) −→ G which maps

the diagonal matrix with diagonal entries tn, t−n to ι(t2)×(centre of G) for any t ∈ C∗.

Definition. Let K(LnG) be the Q(v)-vector space with two bases (L), (L) indexed by

I
ord

LnG
where L =

∑

L′ mL,L′L′.

4

Let U+
v

be as in §2. Let (ei)i∈I be the standard generators of U+
v

. Then U+
v

is the quotient

of the free associative Q(v)-algebra with generators ei by the radical of an explicit symmetric
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bilinear form on it. We have

U+

v
= ⊕νU

+

v,ν

where U+

v,ν
is spanned by the monomials

ec1

i1
ec2

i2
. . . ecr

ir

with
∑

s;is=i
cs = ν(i) for any i ∈ I. Thus U+

v
is the quotient of the Q(v)-vector space

spanned by e
c1

i1
e
c2

i2
. . . ecr

ir
as above by the radical of an explicit symmetric bilinear form on it.

5 Combinatorial parametrization of set of Gι
-orbits in LnG

Let P be the set of parabolic subgroups of G. Let

Pι = {P ∈ P; ι(C) ⊂ P}.

If P ∈ P we set P̄ = P/UP ; we have ι : C∗ −→ P̄ naturally. Let n ∈ ∆. Let P ∈ Pι be such

that (P̄ , ι) is rigid. Choose a Levi subgroup M of P such that ι(C∗) ⊂ M . Let s ∈ [LM,LM ]

be such that [s, x] = kx for any k ∈ Z, x ∈ LkM . (Note that s is unique.) Let

LrG = {x ∈ LG; [s, x] = rx},

Lr

t
G = LrG ∩ LtG.

Then

LG = ⊕r∈(n/2)Z;s∈ZLr

t
G.

We say that P is n-good if

LUP = ⊕r∈(n/2)Z;s∈Z;2t/n<2r/nLr

t
G.

Then automatically

LM = ⊕r∈(n/2)Z;s∈Z;2t/n=2r/nLr

t
G.

Let

Pn = {P ∈ Pι; (P̄ , ι) is rigid, P is n-good},

P
n

= Gι\Pn.

We claim that

P
n

∼
−→ {Gι − orbits in LnG}.

Let P,Lr

t
G be as above. Then L0

0
G = LG′ where G′ acts by Ad on Ln

n
G. Let O′ be the

unique G′-orbit on Ln

n
G. Now G′ ⊂ Gι hence there is a unique Gι-orbit O in LnG containing

O′. The bijection above is given by P 7→ O. Other parametrizations of {Gι − orbits in LnG}

were given by Vinberg (1979), Kawanaka (1987).
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6

Let B be the variety of Borel subgroups of G. Let Bι = B ∩ Pι. Let IG = {B;B ∈ Bι}. Let

J
G

= Gι\JG . Let K̃G be the Q(v)-vector space with basis (IS)S∈J
G
. For Q ∈ Pι we define

a linear map (induction)

indG

Q
−→ K̃

Q̄
−→ K̃G

by

I
Q̄ι−orbit of B′ 7→ IGι−orbit of B

where B is the inverse image of B′ under Q −→ Q̄. Let¯: Q(v) −→ Q(v) be the Q-linear map

such that vm = v−m for m ∈ Z. Define a ”bar operation” β : K̃G −→ K̃G by β(fIS) = f̄ IS .

Inspired by the results in §4 we define a bilinear pairing

(:) : K̃G × K̃G −→ Q(v)

by

(IS : IS′) =
∑

Ω

(−v)τ(Ω)

where Ω runs over the Gι-orbits on Bι ×Bι such that pr1Ω = S, pr2Ω = S ′ and if (B,B′) ∈ Ω

we set

τ(Ω) = − dim
L0U

′ + L0U

L0U ′ ∩ L0U
+ dim

LnU ′ + LnU

LnU ′ ∩ LnU
;

here U,U ′ are the unipotent radicals of B,B′. Let R be the radical of (:). Let KG = K̃G/R.

Then (:) induces a nondegenerate bilinear pairing (:) on KG. Note that β induces a map

KG −→ KG denoted again by β. Moreover indG

Q
induces a map K

Q̄
−→ KG denoted again

by indG

Q
.

For n ∈ ∆ and η ∈ P
n

we define subsets Z
η

n of KG by induction on dimG.

Assume that η ∈ P
n
, η 6= {G}. We set Z

η

n = indG

P
(Z P̄

n
) where P ∈ η.

We set Z ′
n

= ∪η∈Pn;η 6={G}Z
η

n. Then:

the last union is disjoint and indG

P
: Z{P̄} −→ Z

η

n is a bijection.

For η ∈ P
n

and P ∈ η we set dη = dim L0G− dim L0P + dim LnP . Define a partial order

≤ on Pn − {G} by

η′ < η if and ony if dη′ < dη.

η′ ≤ η if and only if η = η′ or η′ < η.

If ξ ∈ Z ′
n

we have β(ξ) =
∑

ξ′∈Z′
n

aξ,ξ1
ξ1 where aξ,ξ1

∈ Z[v, v−1] are unique and

aξ,ξ1
6= 0 implies η1 < η or ξ = ξ1 (here ξ ∈ Z

η

n, ξ1 ∈ Z
η1

n )

aξ,ξ1
= 1 if ξ1 = ξ.

Also,
∑

ξ2∈Z′
n

aξ,ξ2
aξ2,ξ1

= δξ,ξ1
for ξ, ξ1 ∈ Z ′

n
. By a standard argument there is a unique

family of elements cξ,ξ1
∈ Z[v] defined for ξ, ξ1 in Z ′

n
such that

cξ,ξ1
=

∑

ξ2∈Z′
n

cξ,ξ2
aξ2,ξ1

;

cξ,ξ1
6= 0 implies η1 < η or ξ = ξ1 (where ξ ∈ Z

η

n, ξ1 ∈ Z
η1

n )
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cξ,ξ1
6= 0, ξ 6= ξ1 implies cξ,ξ1

∈ vZ[v];

cξ,ξ1
= 1 if ξ = ξ1.

For ξ ∈ Z ′
n

we set W
ξ

n =
∑

ξ1∈Z′
n

cξ,ξ1
ξ1. Then β(W ξ

n) = W
ξ

n.

Define Yn : KG −→ KG by (Yn(x) : Z ′
n
) = 0 and x = Yn(x) +

∑

ξ∈Z′
n

Y γξξ where

γξ ∈ Q(v). This is well defined since the matrix ((ξ, ξ′))ξ,ξ′∈Z′
n

is invertible. Let

J−n = {ξ0 ∈ Z ′
−n

;Yn(W ξ0

−n
) 6= 0}.

Let Zn = Z ′
n

if (G, ι) is not rigid. If (G, ι) is rigid let

Zn = Z ′
n
∪ {ξ; ξ = Yn(W ξ0

−n
) for some ξ0 ∈ J−n}.

We say that Zn a PBW-basis of KG. It depends on n. For ξ ∈ Zn we define W
ξ

n as follows.

W
ξ

n is as above if ξ ∈ Z ′
n
. W

ξ

n = W
ξ

−n
where ξ = Yn(W ξ0

−n
), ξ0 ∈ J−n. We say that (W ξ

n) is

the canonical basis of KG. It does not depend on n.

Theorem. The transition matrix expressing the canonical basis in terms of the PBW basis

Zn coincides with the multiplicity matrix (mL,L′) in §1 (with L,L′ ordinary). There is an

appropriate generalization for not necessarily ordinary L,L′.
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On the quantization of a class of non-degenerate

triangular Lie bialgebras over IK[[~]]

Carlos Moreno∗ Joana Teles†

Abstract

Let IK be a field of characteristic zero. Let IK[[~]] be the principal ideal domain of

formal series in ~ over IK. Let (a, [, ]a, εa = dcr1) be a finite dimensional non-degenerate

triangular Lie-bialgebra over IK. Let (a~, [, ]a~
, εa~

= dc(~)r1(~)) be a deformation non-

degenerate triangular Lie-bialgebra over IK[[~]] corresponding to (a, [, ]a, εa = dcr1). The

aim of this talk is

a) To quantize (a~, [, ]a~
, εa = dc(~)r1(~)) in the framework by Etingof-Kazhdan for

the quantization of Lie-bialgebras. Let A
a~ , J̃

−1
r1(~)

be the Hopf Q.U.E. algebra over

IK[[~]] so obtained.

b) Let (a~, [, ]a~
, εa~

= dc(~)r′1(~)) be another deformation non-degenerate triangular

Lie-bialgebra corresponding to (a, [, ]a, εa~
= dcr

′

1). Let A
a~ , J̃

−1

r
′

1
(~)

be its quanti-

zation. Let β1(~), β′

1(~) ∈ a
∗

~
⊗̂IK[[~]] a

∗

~
be the corresponding 2-forms associated

respectively to r1(~) and r′1(~). We prove that J̃−1
r1(~) and J̃−1

r′

1(~) are equivalent in

the Hochschild cohomology of the universal enveloping algebra Ua~ if and only if

β1(~) and β′

1(~) are in the same class in the Chevalley cohomology of the Lie algebra

(a~, [, ]a~
) over IK[[~]].

Keywords: Quantum Groups, Quasi-Hopf algebras, Lie bialgebras.

1 Some definitions

1.1 Lie bialgebras and Manin triples

1.1.1 Lie bialgebras over IK

Let IK be a field of characteristic 0. Let IK[[~]] = IK~ be the ring of formal power series in ~

with coefficients in IK. It is a principal ideal domain (PID) and its unique maximal ideal is

~IK~.

Let (a, [, ]a) be a finite dimensional Lie algebra over IK.

∗Departamento de F́ısica Teórica, Universidad Complutense, E-28040 Madrid, Spain.
†CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal. E-mail:

jteles@mat.uc.pt
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� A finite dimensional Lie bialgebra over IK is a set (a, [, ]a, IK, εa) where εa : a → a ⊗ a is

a 1-cocycle of a, with values in a ⊗ a, with respect to the adjoint action of a such that

εta : a
∗ ⊗ a

∗ → a
∗ is a Lie bracket on a

∗.� It is called quasi-triangular if εa = dcr1, where dc is the Chevalley-Eilenberg coboundary,

r1 ∈ a ⊗ a is a solution to CYBE ([r1, r1] = 0) and (r1)12 + (r1)21 is ada-invariant.� In case r1 is skew-symmetric, it is said to be a triangular Lie bialgebra. Moreover if

det(r1) 6= 0 it is called a non-degenerate triangular Lie bialgebra.

1.1.2 Deformation Lie bialgebras

Consider now the IK[[~]]-module obtained from extension of the scalars IK[[~]] ⊗IK a.

Let (a~ = IK[[~]] ⊗IK a = a[[~]], [, ]a~
, IK~ = IK[[~]], εa~

), where εa~
: a~ → a~ ⊗IK~

a~ is a

1-cocycle of a~ with values in tha adjoint representation, be a Lie bialgebra over IK[[~]].

It is a deformation Lie bialgebra of the Lie bialgebra over IK, a.

1.1.3 Manin triples

A Manin triple over IK~ is a set (g~ = (g~)+ ⊕ (g~)−, [, ]g~
, <;>g~

) where� (g~, [, ]g~
) is a (finite dimensional) Lie algebra over IK~;� ((g~)±, [, ](g~ )±

, IK~

)
is a (finite dimensional) Lie algebra over IK~;� <;>g~

is a non-degenerate, symmetric, bilinear, adg~
-invariant form on g~;� [, ]g~

|(g~)±
= [, ](g~ )±

.

1.1.4 From Manin triples to Lie bialgebras

If (g~ = (g~)+ ⊕ (g~)−, [, ]g~
, <;>g~

) is a Manin triple then� There is a IK~-linear isomorphism χ−1 : (g~)− −→ (g~)∗
+

because

<;>g~
is non-degenerate.� We may define in g~ = (g~)+ ⊕ (g~)∗+ a structure of a Manin triple.� There is a structure of Lie bialgebra on (g~)+.

1.1.5 From Lie bialgebras to Manin triples

Let (a~, [, ]a~
, IK~, εa~

) be a Lie bialgebra over IK~. Then (g~ = a~ ⊕ a
∗
~
, [, ]a~⊕a∗

~
, 〈; 〉a~⊕a∗

~
),

where

[(x; ξ), (y; η)]g~
= ([x, y]a~

+ ad∗
ξ
y − ad∗

η
x; [ξ, η]a∗

~
+ ad∗

x
η − ad∗

y
ξ),
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is a Manin triple.

The set (g~ = a~ ⊕ a
∗
~
, [, ]a~⊕a∗

~
, εg~

= dc(~)r), where r ∈ g~ ⊗IK~
g~ (canonical), is a

quasi-triangular Lie bialgebra with [, ]g∗
~

=
(

[, ]a∗
~
;−[, ]a~

)

.

It is called the (quasi-triangular Lie bialgebra) classical double of the Lie bialgebra (a~, [, ]a~
, IK~, εa~

).

1.1.6 Drinfeld Theorem

Drinfeld quasi-Hopf quasi-triangular QUE algebra corresponding to the deformation Lie al-

gebra (g~ = a~ ⊕ a
∗
~
, [, ]g~

, r = a+ t ∈ g~ ⊗IK~
g~ invariant) is

(Ûg~, ·, 1,∆g~
, ǫg~

,Φg~
= eP (~t

12
;~t

23
), Sg~

, α = c−1, β = 1, Rg~
= e

~

2
t)

where c =
∑

i
XiSg~

(Yi)Zi, Φg~
=
∑

i
Xi⊗Yi⊗Zi and P is a formal Lie series with coefficients

in IK (or just in Q.)

2 Etingof-Kazhdan quantization

2.1 The classical double

2.1.1 Quantization of the double

Given the bialgebra (g~ = a~⊕a
∗
~
, [, ]a~⊕a∗

~
, εg~

= dc(~)r) double of the Lie bialgebra (a~, [, ]a~
, IK~, εa~

),

we will construct a twist of Drinfeld quasi-Hopf QUE algebra

J ∈ Ûg~⊗̂IK~
Ûg~

obtaining a Hopf QUE algebra. To do it, we need the following elements.

2.1.2 Drinfeld category

The category Mg~
is defined as� ObMg

~
= {topologically free g~-modules}, that is X ∈ ObMg

~
iff

1. X = V [[~]], where V is a vector space over IK

2. V [[~]] is a g~-module� Of course, ObMg
~

= {topologically free Ug~-modules}� HomMg~
(U [[~]], V [[~]]) is the set of g~-module morphisms, U [[~]]

f

−→ V [[~]]

1. f(a(~).x(~)) = a(~).f(x(~)), a(~) ∈ g~

2. f((a(~) ◦ b(~) − b(~) ◦ a(~))x(~)) = [a(~), b(~)]g~
f(x(~))
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and f extends in a unique way to a U(g~)-module morphism.

Theorem 2.1.1. Homg~
(U [[~]], V [[~]]) is a torsion free IK~-module.

In the topology defined by its natural filtration

{~
pHomg~

(U [[~]], V [[~]])}

its completion Ĥomg~
(U [[~]], V [[~]]) is separated, complete and a torsion free IK~-module.

It is then (see Kassel) a topologically free IK~-module, so

Ĥomg~
(U [[~]], V [[~]]) = Homa⊕a∗(U, V )[[~]].

The canonical element r ∈ g~⊗IK~
g~ defines ΩVi(~)Vj(~) ∈ EndIK~

(V1[[~]]⊗V2[[~]]⊗V3[[~]]),

i, j = 1, 2, 3; i 6= j by

ΩVi(~)Vj (~)(v1(~) ⊗ v2(~) ⊗ v3(~)) = (· · ·
i

f̂k ⊗ · · · ⊗

j

̂fk ⊗ · · ·+

+ · · ·

i

̂fk ⊗ · · · ⊗
j

f̂k ⊗ · · · ).(v1(~) ⊗ v2(~) ⊗ v3(~)).

Lemma 2.1.2. ΩVi(~)Vj (~) ∈ Homg~
(V1[[~]] ⊗ V2[[~]] ⊗ V3[[~]], V1[[~]] ⊗ V2[[~]] ⊗ V3[[~]]).

2.1.3 Tensor structure on Mg~

The element r is adg~
-invariant. The Lie associator Φg~

∈ Ûg~⊗̂Ûg~⊗̂Ûg~ is also invariant;

that is

Φg~
· (∆g~

⊗ 1)∆g~
(x(~)) = (1 ⊗ ∆g~

)∆g~
(x(~)) · Φg~

, x(~) ∈ g~.

¿From this equality and the fact that Φg~
= expP (~t12,~t23) we may define a g~-morphism

ΦV1(~),V2(~),V3(~) ∈ Hom
Ûg~

(
(V1(~)⊗̂V2(~))⊗̂V3(~) ,

V1(~)⊗̂(V2(~)⊗̂V3(~))
)
.

Theorem 2.1.3. ΦV1(~),V2(~),V3(~) is an isomorphism in category Mg~
and the set of these

isomorphisms defines a natural isomorphism between functors:

⊗(⊗× Id) −→ ⊗(Id×⊗).

2.1.4 Braided tensor structure on Mg~

For any couple

V1[[~]], V2[[~]] ∈ ObMg
~

consider the isomorphism

βV1(~)V2(~) : V1(~)⊗̂V2(~) −→ V2(~)⊗̂V1(~)

u(~)⊗̂v(~) 7−→ σ

(

e
~

2
Ω12(~)u(~)⊗̂v(~)

)

,
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where σ is the usual permutation.

Then βV1(~)V2(~) ∈ Hom
Ûg~

(
V1(~)⊗̂V2(~), V2(~)⊗̂V1(~)

)
.

Theorem 2.1.4. The set of isomorphisms βV1(~)V2(~) of Mg~
defines a natural isomorphism

between functors ⊗ −→ ⊗ ◦ σ. Then the category Mg~
has a braided tensor structure.

2.1.5 The category A� ObA = { topologically free IK~-modules }� HomA(V1[[~]], V2[[~]]) = {f : V1[[~]] −→ V2[[~]] , IK~-linear maps preserving filtrations

(⇐⇒ continuous) }

Lemma 2.1.5. The category A is a strict monoidal symmetric category:

Φ = Id :
(
V [[~]]⊗̂U [[~]]

)
⊗̂W [[~]] ≃ V [[~]]⊗̂

(
U [[~]]⊗̂W [[~]]

)
,

and

σ : V [[~]]⊗̂U [[~]] −→ U [[~]]⊗̂V [[~]]

u(~) ⊗ v(~) 7−→ v(~) ⊗ u(~).

2.1.6 The functor F

Let F be the following map

F : Mg~
−→ A

where� F(V [[~]]) = Hom
Ûg~

(Ûg~, V [[~]])

= Homa⊕a∗=g0
(Ug0, V )[[~]]� for f ∈ Homg~

(V [[~]], U [[~]]), then

F(f) ∈ HomA

(

Homg~
(Ûg~, V [[~]]),Homg~

(Ûg~, U [[~]])
)

is defined as (F(f))(g) = f ◦ g ∈ F(U [[~]]) ∈ ObA, and g ∈ F(V [[~]]).

Then F is a functor.

2.1.7 Tensor structure on F

We should now equip this functor F with a tensor structure. We will use the decomposition

g~ = a~ ⊕ a
∗
~ = (g~)+ ⊕ (g~)−

to produce such a structure.
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2.1.8 g~-modules M(~)+ and M(~)−� By Poincaré-Birkhoff-Witt theorem we have IK~-module isomorphisms

– U(g~)+ ⊗IK~
U(g~)− −→ Ug~ (product in Ug~)

– U(g~)− ⊗IK~
U(g~)+ −→ Ug~ (product in Ug~)� Let the IK~-modules of rang 1

W±(~) = {a(~).e± : a(~) ∈ IK~, e± basis}

We endow W± with a trivial U(g~)±-module structure.

– x(~)±(a(~)e±) = a(~)(x(~)±e±) = 0±, x(~)± ∈ U(g~)±� Define the corresponding induced left Ug~-modules:

M(~)± = Ug~ ⊗U(g~)±
W±(~) = · · · = U(g~)∓ · 1±

where 1± = (1 ⊗U(g~)±
e±), 1 is the unit of Ug~.

As IK~-modules M(~)± is then the IK~-module U(g~)∓.

Lemma 2.1.6. M̂(~)± ∈ ObMg
~
.

Theorem 2.1.7. There exists a unique g~-module morphism

i± : M(~)± −→M(~)± ⊗IK~
M(~)±

such that

i±(1±) = 1± ⊗IK~
1±.

It is continuous for the (~)-adic topology and extends in a unique way to a g~-module morphism

i± : M̂(~)± −→ M̂(~)±⊗̂IK~
M̂(~)±.

Theorem 2.1.8. Define the following g~-module morphism

φ : U(g~) −→M(~)+ ⊗IK~
M(~)−

by φ(1) = 1+ ⊗ 1−.

Then φ is an isomorphism of g~-modules.

Proof. If φ(1) = 1+ ⊗ 1− and φ is a g~-module morphism, the construction of φ is unique.

φ preserves the standard filtration, then it defines a map gradφ on the associated graded

objects. This map gradφ is bijective and then (Bourbaki) φ is bijective.
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2.1.9 Natural isomorphism of functors J

Definition 2.1.9. A tensor structure on the functor F : Mg~
−→ A is a natural isomorphism

of functors

J : F(·) ⊗F(·) −→ F(· ⊗ ·)

We define this tensor structure following the same pattern that in Etingof-Kazhdan.

For V~ = V [[~]], W~ = W [[~]] ∈ ObMg
~
, define

JV~ ,W~
: F(V~)⊗̂IK~

F(W~) −→ F(V~⊗̂W~)

v~ ⊗ w~ −→ JV~ ,W~
(v~ ⊗ w~),

where v~ ∈ F(V~) = Homg~
(Ug~, V~) and w~ ∈ F(W~), then

JV~ ,W~
(v~ ⊗ w~) = (v~ ⊗ w~) ◦ (φ−1 ⊗ φ−1) ◦ Φ−1

M(~)+,M(~)−,M(~)+⊗M(~)−
◦

◦ (1 ⊗ ΦM(~)−,M(~)+,M(~)−
) ◦ (1 ⊗ (σ ◦ e

~

2
ΩM(~)+,M(~)− ) ⊗ 1)◦

◦ (1 ⊗ Φ−1

M(~)+,M(~)−,M(~)−
) ◦ ΦM(~)+,M(~)+,M(~)−⊗M(~)−

◦ (i+ ⊗ i−) ◦ φ.

2.1.10 Definition of J

Theorem 2.1.10. The maps JV~ ,W~
are isomorphisms and define a tensor structure on the

functor F .

From this tensor structure we get as in the IK case the following element in Ûg~⊗̂Ûg~

J = (φ−1 ⊗ φ−1)
[(

Φ−1

1,2,34
· Φ2,3,4 · e

~

2
Ω23 · (σ23Φ

−1

2,3,4
)·

· (σ23Φ1,2,34)) (1+⊗1−⊗1+⊗1−)] .

2.1.11 Quantization of the classical double

Theorem 2.1.11. The set (Ûg~, ·, 1,∆
′, ǫg~

, S′, R′), such that

∆′(u~) = J−1 · ∆g~
(u~) · J

S′(u~) = Q−1(~) · Sg~
(u~) ·Q(~),

R′ = σJ−1 · e
~

2
Ω · J,

where Q(~) is an element in Ûg~ obtained from J and Sg~
, is a quasi-triangular Hopf algebra,

and it is just the algebra obtained twisting via the element J−1 the quasi-triangular quasi-

Hopf QUE algebra obtained in Subsection 1.1.6.

In particular,

Φ · (∆g~
⊗ 1)J · (J ⊗ 1) = (1 ⊗ ∆g~

)J · (1 ⊗ J),
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J = 1 +
~

2
r +O(~2)

R = 1 + ~r +O(~2)

We call the above quasi-triangular Hopf quantized universal enveloping algebra a quanti-

zation of the quasi-triangular Lie bialgebra over IK~

(g~ = a~ ⊕ a
∗
~, [, ]g~

, εg~
= dc(~)r).

double of the Lie bialgebra (a~, [, ]a~
, εa~

) over the ring IK~.

2.2 Quantization of Lie bialgebras

2.2.1 Quasi-triangular Lie bialgebras

If the IK~-Lie bialgebra is quasi-triangular, that is, if εa~
is an exact 1-cocycle

εa~
= dc(~)r1(~), r1(~) ∈ a~ ⊗ a~

and [r1(~), r1(~)]a~
= 0, we want to obtain a quantization of the IK~-Lie bialgebra

(a~, [, ]a~
, εa~

= dc(~)r1(~)).

Following Etingof and Kazhdan and also an idea by Reshetikhin and Semenov-Tian-

Shansky, we will construct a Manin triple over IK~ and quantize it as we did before.

Lemma 2.2.1. There exist basis {ai(~), i = 1, . . . , dim a} and {bj(~), j = 1, . . . , dim a} of

the IK~-module a~ such that

r1(~) =

l∑

i=1

ai(~) ⊗ bi(~) ∈ a~ ⊗IK~
a~. (2.1)

Proof. As IK~ is a principal ideal domain (PID) and a~ is a free IK~-module, r1(~) has a rang,

l, and a theorem about matrices with entries in a PID-module asserts that basis verifying

(2.1) exist.

Let us define maps, as in Reshetikhin-Semenov,

µr1(~), λr1(~) : a
∗
~ −→ a~

as

λr1(~)(f) =
∑

ai(~).f(bi(~))

µr1(~)(f) =
∑

f(ai(~)).bi(~), f ∈ a
∗
~

and write

(a~)+ = Im λr1(~) (a~)− = Im µr1(~).
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We have

dimIK~
(a~)+ = dimIK~

(a~)− = l = rang r1(~)

We may prove as in the IK case.

Lemma 2.2.2. The mapping

χr1(~) : (a~)∗
+
−→ (a~)−

g 7−→ χr1(~)(g) = (g ⊗ 1)r1(~)

is a IK~-module morphism (IK~ is a PID and a~ is free over IK~).

(a~)+ and (a~)− are Lie subalgebras of (a~, [, ]a~
)

On the IK~-module g~ = (a~)+⊕ (a~)− we may define a skew-symmetric, bilinear mapping

such that [, ]g~
|(a~)±

= [, ](a~)±
.

Theorem 2.2.3. Let π be defined as

π : g~ = (a~)+ ⊕ (a~)− −→ a~

(x(~); y(~)) −→ x(~) + y(~).

Then,

(a) π
(
[(x(~); y(~)), (z(~);u(~))](a~ )+⊕(a~)−

)
=

= [π(x(~); y(~)), π(z(~);u(~))]a~
;

(b) ((a~)+ ⊕ (a~)−, [, ](a~)+⊕(a~)−
, IK~) is a Lie algebra over IK~.

¿From (a) and (b), π is a Lie algebra morphism.

Theorem 2.2.4. The set (g~ = (a~)+ ⊕ (a~)−, [, ]g~
, 〈; 〉g~

) where

〈(x+(~);x−(~)); (y+(~); y−(~))〉g~
= χ−1

r1(~)
(x−(~)) .y+(~) + χ−1

r1(~)
(y−(~)) .x+(~),

x+(~), y+(~) ∈ (a~)+, x−(~), y−(~) ∈ (a~)−, is a Manin triple.

In particular, the 2-form 〈; 〉g~
is adg~

-invariant.

Because it is a Manin triple the set

((a~)+, [, ](a~ )+
, ε)

where ε : (a~)+ −→ (a~)+ ⊗ (a~)+ is the transpose of the Lie bracket on (a~)∗+ defined as

[ξ(~), η(~)](a~ )
∗
+

= χ−1

r1(~)

(
[χr1(~)(ξ(~)), χr1(~)(η(~))](a~ )−

)
,

is a Lie bialgebra.
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Definition 2.2.5. Let {ei(~), i = 1, . . . , l} a basis of (a~)+ and {ei(~), i = 1, . . . , l} its dual

basis on (a~)∗+. Let

r(~) = (ei(~); 0) ⊗ (0; ei(~))

the canonical element in the IK~-module (a~)+ ⊕ (a~)∗+. Define

r(~) = (1 ⊕ χr1(~)) ⊗ (1 ⊕ χr1(~)).r(~) ∈ (a~)+ ⊕ (a~)−

We prove

Theorem 2.2.6. The set (g~ = (a~)+⊕(a~)−, [, ]g~
, εg~

= dc(~)r(~)) is a quasi-triangular Lie

bialgebra which is isomorphic to the quasi-triangular Lie bialgebra (g~ = (a~)+⊕(a~)∗
+
, [, ]g~

, εg~
=

dc(~)r(~)), double of the Lie bialgebra ((a~)+, [, ](a~ )+
, ε).

Theorem 2.2.7. Let the mapping π̃ be defined by the commutativity of the diagram

- a~

6

(a~)+ ⊕ (a~)∗
+

g~ = (a~)+ ⊕ (a~)−

�
�

�
�

��
(1 ⊕ χr1(~))

π̃

π

So, π̃ = π ◦ (1 ⊕ χr1(~)).

Then, π̃ is a Lie bialgebra homomorphism verifying

(π̃ ⊗ π̃)r(~) = r1(~).

2.2.2 Quantization of the quasi-triangular Lie bialgebra

(a~, [, ]a~
, εa~

= dc(~)r1(~), [r1(~), r1(~)]a~
= 0, r1(~) ∈ a~ ⊗ a~)

We may project using the Lie bialgebra morphism

π̃ : g~ = (a~)+ ⊕ (a~)∗
+
−→ a~

what we have done, about quantization of g~. We will get a quantization of a~. Precisely,

Theorem 2.2.8. Let (Ûa~, ·, 1,∆a~
, ǫa~

, Sa~
) be the usual Hopf algebra. Let

(Ûg~, ·, 1,∆g~
, ǫg~

,Φg~
, Sg~

, Rg~
= e

~

2
Ω)

be the quasi-triangular quasi-Hopf algebra in Subsection 1.1.6.

Let Φ̃a~
= (π̃ ⊗ π̃ ⊗ π̃)Φg~

and Ra~
= (π̃ ⊗ π̃)Rg~

, then
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� (π̃ ⊗ π̃) ◦ ∆g~
= ∆a~

◦ π̃� π̃ ◦ Sg~
= Sa~

◦ π̃� The set

(Ûa~, ·, 1,∆a~
, ǫa~

, Φ̃a~
, Sa~

, Ra~
)

is a quasi-triangular quasi-Hopf QUE algebra. We call it a quantization (quasi-Hopf

one) of the Lie bialgebra (a~, r1(~) + σr1(~)).

Let (Ûg~, ·, 1,∆
′
g~
, ǫg~

, S′
g~
, R′

g~
) where� ∆′

g~
(u~) = J−1

g~
· ∆g~

(u~) · Jg~� S′
g~

(u~) = Q−1(~) · Sg~
(u~) ·Q(~)� R′

g~
= σJ−1

g~
· e

~

2
Ω · Jg~

be the quasi-triangular Hopf QUE algebra obtained before following E-K scheme of quanti-

zation of the classical double

(g~ = (a~)+ ⊕ (a~)∗+, [, ]g~
, εg~

= dc(~)r).

Let us define� J̃a~
= (π̃ ⊗ π̃)Jg~

; ∆̃a~
(a~) = J̃−1

a~
· ∆a~

(a~) · J̃a~� R̃a~
= (π̃ ⊗ π̃)R′

g~
; ǫ̃a~

the usual counit in U(a~)� S̃a~
(a~) = Q̃−1(~)·Sa~

(a~)·Q̃(~) where Q̃ =
∑
Sa~

(ri(~)).si(~) and J̃a~
=
∑
ri(~)⊗si(~).

Theorem 2.2.9. Then the set

(Û(a~), ·, 1, ∆̃a~
, ǫ̃a~

, S̃a~
, R̃a~

)

is a quasi-triangular Hopf QUE algebra and we call it a quantization (Hopf one) of the Lie

bialgebra (a~, r1(~)). We moreover see that it is obtained by a twist via the element

J̃−1

a~

from the quasi-triangular quasi-Hopf QUE algebra in Subsection 1.1.6.

In particular, we have

Φ̃a~
· (J̃a~

)12,3 · (J̃a~
)12 = (J̃a~

)1,23 · (J̃a~
)23,

where the product · is in Ua~.
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2.2.3 Non-degenerate triangular Lie bialgebras

This is the case (a~, [, ]a~
, εa~

= dc(~)r1(~)) where� r1(~) is non-degenerate ⇐⇒ invertible , det r1(~) is a unit in IK~ (IK~ is a PID)� r1(~) is skew-symmetric

Also,� (a~)+ = a~, (a~)− = a~� g~ = a~ ⊕ a~∗

In this case, last theorem is

Theorem 2.2.10. Consider the non-degenerate triangular Lie bialgebra over IK~

(a~, [, ]a~
, εa~

= dc(~)r1(~), r1(~) ∈ a~ ⊗ a~, det r1(~) a unit in IK~,

[r1(~), r1(~)]a~
= 0),

the set (Ûa~, ·, 1, ∆̃a~
, ǫa~

, S̃a~
, R̃a~

) where� ∆̃a~
(a~) = J̃−1

a~
· ∆a~

(a~) · J̃a~� S̃a~
(a~) = Q̃−1 · Sa~

(a~) · Q̃� R̃a~
= σJ̃−1

a~
· J̃a~

, (π̃ ⊗ π̃)Ω = 0!!!

is a triangular Hopf QUE algebra. We have also the equality

(J̃a~
)12,3 · (J̃a~

)12 = (J̃a~
)1,23 · (J̃a~

)23.

We denote it as

A
a~ ,J̃

−1
a~

meaning that is obtained by a twist via J̃−1

a~
from the usual trivial Hopf triangular algebra

(Ûa~, ·, 1,∆a~
, ǫa~

, Sa~
, Ra~

= 1 ⊗ 1).

Informally, we could say that, in the Hoschild cohomology of Ua~, J̃a~
is an invariant star

product on the formal ”Lie group” on the ring IK~ whose Lie algebra is the Lie algebra a~

over the ring IK~.

Lemma 2.2.11. Let r1(~) ∈ a~ ⊗IK~
a~ as before, that is skew-symmetric and invertible. Let

β1(~) ∈ a
∗
~
∧IK~

a
∗
~

defined as

β1(~) = (β1(~))
ab
ea ⊗ eb

where

r1(~)ab. (β1(~))
ac

= δb

c

and then (β1(~))
ca
.r1(~)ba = δb

c
, r1(~)ba. (β1(~))

ca
= δb

c
. Then,
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� [r1(~), r1(~)]a~
= 0 ⇐⇒ dchβ1(~) = 0� µ−1

1
◦ dch ◦ µ1(X(~)) ⇐⇒ [r12

1
(~), 1 ⊗X(~)]a~

− [X(~) ⊗ 1, r12
1

(~)]a~
, X(~) ∈ a~� Let α(~) ∈ a

∗
~
. Then

dchα(~) = 0 ⇐⇒ 0 = [r12
1

(~), 1 ⊗ µ−1

1
(α(~))]a~

−

−[µ−1

1
(α(~)) ⊗ 1, r12

1
(~)]a~

Remember: Poisson coboundary ∂ can be defined in this case as:

−∂ = µ−1

r
◦ dch ◦ µr

- ∧
r+1(a~)

? ?∧

r
(a~)

∧
r(a~)

∧

r+1
(a~)-

µr µr

dch

−∂

and

µ−1

r
: ∧r(a~) −→ ∧r(a~)

α 7−→ µ−1

r
(α)

where
(
µ−1

r
(α)
)
i1...ir = r

j1i1

1
(~) · · · rjrir

1
(~)αj1...jr(~)

What we want is to compare the two E-K quantizations we have obtained before of two

different triangular non-degenerate Lie bialgebras defined by different elements r1(~), r′
1
(~) ∈

a~ ⊗ a~, (a~, [, ]a~
, εa~

= dc(~)r1(~)) and (a~, [, ]a~
, ε′a~

= dc(~)r′
1
(~)).

The Lie bracket in a~ is the same for both of them. The Lie bracket of the dual IK~-module

a
∗
~

is different:

[ξ(~), η(~)]a∗
~

= (dc(~)r1(~))t (ξ(~) ⊗ η(~));

[ξ(~), η(~)]′a∗
~

=
(
dc(~)r′1(~)

)t
(ξ(~) ⊗ η(~)).

And therefore their doubles:

(a~ ⊕ a
∗
~, [, ]a~⊕a∗

~
, εa~⊕a∗

~
= dc(~)r)

(a~ ⊕ a
∗
~, [, ]

′
a~⊕a∗

~

, ε′a~⊕a∗
~

= d′
c
(~)r)

although r is the same in both cases, dc(~) and d′
c
(~) are different because are defined through

the Lie bracket structures of a~ ⊕ a
∗
~
.

The main point in this comparison is the following classical fact:
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Theorem 2.2.12. Let G be a Lie group of dimension n and g its Lie algebra. Let Ad be the

adjoint representation of G (on g). Let Ad∧ be the contragradient representation of G (on

g
∗), Ad∧ = (Ad g−1)T . Then:� Ad∧ induces a representation of G on the exterior algebra ∧g

∗;� Ad∧ , g ∈ G, commutes with the Chevalley-Eilenberg diferencial, dch, on g
∗;� Ad∧ induces a representation, Ad♯, of G on the Chevalley cohomological vector space

H∗
ch

(g);� The representation Ad♯ is trivial, that is Ad♯g = IdH
∗
ch

(g), ∀g ∈ G.

We prove a theorem of this type for a Lie algebra a~ over IK~ and mappings Ad(expx(~)) =

exp(ad x(~)) : a~ −→ a~, x(~) ∈ a~.

2.2.4 Interior isomorphisms of (a~, [, ]a~
)

Theorem 2.2.13. Let X~ ∈ a~ and let

ϕ1

~ : a~ −→ a~

be defined as

ϕ1

~.Y~ = exp(~ adX~
).Y~.

Then� ϕ1

~
is well defined, that is Im ϕ1

~
⊂ a~;� ϕ1

~
is invertible;� ϕ1

~
is an isomorphism of Lie algebras.

Our interest is in the contragradient mapping

ϕ2

~ =
((
ϕ1

~

)t
)−1

=
(
exp

(
~ adt

X~

))−1
= exp(−~ adt

X~
) = exp(~ ad∗

X~
)

IK~-module isomorphism of a~. We have

ϕ2

~ ⊗ ϕ2

~ = exp(~ ad∗
X~

) ⊗ exp(~ ad∗
X~

)

=
(

exp(~ ad∗
X~

) ⊗ Ida∗
~

)

◦
(

Ida∗
~
⊗ exp(~ ad∗

X~
)
)

= exp
(

ad∗~X~
⊗ Ida∗

~
+ Ida∗

~
⊗ ad∗~X~

)

because ad∗
~X~

⊗ Ida∗
~

and Ida∗
~
⊗ ad∗

~X~
commute.
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Theorem 2.2.14. Let β~ ∈ a
∗
~
∧ a

∗
~

be a Chevalley 2-cocycle, that is,

dchβ~ = 0,

relatively to the Lie algebra structure of a~ and the trivial representation of a~ on IK~.

Then, we have

(i) (ϕ2

~
⊗ ϕ2

~
)β~ = exp

(

ad∗
~X~

⊗ Ida∗
~

+ Ida∗
~
⊗ ad∗

~X~

)

β~

= β~ + dchγ~, where γ~ ∈ a
∗
~
;

(ii) Since β~ is closed, (ϕ2

~
⊗ ϕ2

~
)β~ is closed;

(iii) If β~ is exact, (ϕ2

~
⊗ ϕ2

~
)β~ is exact;

(iv) (ϕ2

~
⊗ ϕ2

~
) acts on H2

ch
(a~) and this action is the identity.

Proof. It is enough to prove (i).

We have for n = 1 and any ei, ej ∈ a~ elements in a basis,

〈
(Id⊗ ad∗~X~

+ ad∗~X~
⊗ Id) (β~); ei ⊗ ej〉 =

= −〈β~; (Id⊗ ad~X~
+ ad~X~

⊗ Id)ei ⊗ ej〉

= −〈β~; ei ⊗ [~X~, ej ]a~
+ [~X~, ei]a~

⊗ ej〉

= −~

〈

β~; ei ⊗Xk

~C
l

kj
(~) el +Xk

~C
l

ki
(~) el ⊗ ej

〉

= −~Xk

~C
l

kj
(~)(β~)il − ~Xk

~C
l

ki
(~)(β~)lj

= −~Xk

~

(

C l

jk
(~)(β~)li +C l

ki
(~)(β~)lj

)

= −~Xk

~

(

−C l

ij
(~) (β~)lk

)

= ~Xk

~ β~ ([ei, ej ]a~
, ek)

= ~β~ ([ei, ej ]a~
,X~)

= −~β~ (X~, [ei, ej ]a~
)

= − (i(~X~)β~) [ei, ej ]a~

= dch (i(~X~)β~) (ei, ej),

where we used that β~ is a 2-cocycle (β~([x, y], z)+β~([y, z], x)+β~([z, x], y) = 0, x, y, z ∈ a~),

Ck

ij
(~) are the structure constants of the Lie algebra a~ in a basis {ei} and dchα(ea ⊗ eb) =

−α([ea, eb]).

So, we obtain

(Id⊗ ad∗~X~
+ ad∗~X~

⊗ Id)(β~) = dch(i~X~
β~),

for any cocycle β~ and X~ ∈ a~.
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For any elements ei, ej in a basis of a~, we have (n = 2)

〈
(Id⊗ ad∗~X~

+ ad∗~X~
⊗ Id)2β~, ei ⊗ ej

〉
=

=
〈
(Id⊗ ad∗~X~

+ ad∗~X~
⊗ Id) · dch(i~X~

β~); ei ⊗ ej
〉

= −〈dch(i~X~
β~); (Id⊗ ad~X~

+ ad~X~
⊗ Id)(ei ⊗ ej)〉

= −〈dch(i~X~
β~); ei ⊗ [~X~, ej ]a~

+ [~X~, ei]a~
⊗ ej〉

= (i~X~
β~)([ei, [~X~, ej ]a~

]a~
+ [[~X~, ei]a~

, ej ]a~
)

= (i~X~
β~)([[ej ,~X~]a~

, ei]a~
+ [[~X~, ei]a~

, ej ]a~
)

= (i~X~
β~)(−[[ei, ej ]a~

,~X~]a~
)

= (i~X~
β~)([~X~, [ei, ej ]a~

]a~
)

= (i~X~
β~) ◦ ad~X~

([ei, ej ]a~
)

= 〈dch(−(i~X~
β~) ◦ ad~X~

), ei ⊗ ej〉 .

Thus, we get

(Id⊗ ad∗~X~
+ ad∗~X~

⊗ Id)2(β~) = −dch ((i(~X~)β~) ◦ ad~X~
) .

For n = 3, we have

〈
(Id⊗ ad∗~X~

+ ad∗~X~
⊗ Id)3β~, ea ⊗ eb

〉
=

=
〈
−(Id⊗ ad∗~X~

+ ad∗~X~
⊗ Id) dch ((i~X~

β~) ◦ ad(~X~)) ; ea ⊗ eb
〉

= 〈dch ((i~X~
β~) ◦ ad(~X~)) ; (Id⊗ ad~X~

+ ad~X~
⊗ Id)(ea ⊗ eb)〉

= 〈dch((i~X~
β~) ◦ ad(~X~)) ; ea ⊗ [~X~, eb]a~

+ [~X~, ea]a~
⊗ eb〉

= −〈(i~X~
β~) ◦ ad(~X~) ; [ea, [~X~, eb]a~

]a~
+ [[~X~, ea]a~

, eb]a~
〉

= −〈(i~X~
β~) ◦ ad(~X~); [[eb,~X~]a~

, ea]a~
+ [[~X~, ea]a~

, eb]a~
〉

= 〈(i~X~
β~) ◦ ad(~X~); [[ea, eb]a~

,~X~]a~
〉

= −〈(i~X~
β~) ◦ ad(~X~) ◦ ad(~X~); [ea, eb]a~

〉

= 〈dch ((i~X~
β~) ◦ ad(~X~) ◦ ad(~X~)) ; ea ⊗ eb〉 .

Then,

(Id⊗ ad∗~X~
+ ad∗~X~

⊗ Id)3β~ = dch ((i~X~
β~) ◦ ad(~X~) ◦ ad(~X~)) .

We have obtained

(ϕ2

~ ⊗ ϕ2

~)β~ = β~ + ~ dch(i(X~)β~)+

+ ~
2dch

(

−
1

2!
(i(X~)β~) ◦ adX~

)

+

+ ~
3dch

(
1

3!
(i(X~)β~) ◦ adX~

◦ adX~

)

+ . . .
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Let us write

γ1(~) = (i(X~)β~) ∈ a
∗
~

γ2(~) =

(

−
1

2!
(i(X~)β~) ◦ adX~

)

∈ a
∗
~

γ3(~) =

(
1

3!
(i(X~)β~) ◦ adX~

◦ adX~

)

∈ a
∗
~.

Then, we have

(ϕ2

~ ⊗ ϕ2

~)β~ = β~ + dch(~γ1(~) + ~
2γ2(~) + ~

3γ3(~) + . . . )

and it is easy to get a general formula for γk(~) ∈ a
∗
~
, k ∈ IN.

Let us compute the first terms in powers of ~ of γ1(~), γ2(~), γ3(~), etc.

γ1(~) = i(X~)β~ = i(Xa ~
a−1)(βb ~

b−1) = (i(Xa)βb) ~
a+b−2

=
∑

R≥0

(
∑

a+b=R+2

i(Xa)βb

)

~
R

= i(X1)β1 + [i(X2)β1 + i(X1)β2] ~+

+ [i(X1)β3 + i(X2)β2 + i(X3)β1] ~
2+

+ [ . . . ]~3 + . . . ,

where Xa ∈ a, βb ∈ a
∗ ⊗IK a

∗ and therefore i(Xa)βb ∈ a
∗.

γ2(~) = −
1

2!
((i(X~)β~) ◦ adX~

) = −
1

2!

(

(i(Xm ~
m−1)(βl ~

l−1) ◦ adXp ~p−1

)

= −
1

2!

(
(i(Xm)βl) ◦ adXp

)
~

m+l+p−3.

As Xm ∈ a, βl ∈ a
∗ ⊗IK a

∗, the map i(Xm)βl sends a to IK, that is, i(Xm)βl ∈ a
∗. But

relatively to adXp , even being Xp ∈ a, this map doesn’t send a in a but a into a~.

Let {ei} be a basis of (a, IK), then

adXpei = [Xp, ei]a~
= [X l

p
el, ei]a~

= X l

p
[el, ei]a~

= X l

p
Ck

li
(~)ek

= X l

p

(

Ck

li
(s)~s−1

)

ek =
(

X l

p
Ck

li
(s)ek

)

~
s−1 (2.2)

where we have used

Ck

li
(~) =

∑

s≥1

Ck

li
(s)~s−1, Ck

li
(s) ∈ a.

Lemma 2.2.15. Let us consider the following mappings

Bs : a × a −→ a

(y, z) 7−→ Bs(y, z)
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where

Bs(y, z) = Bs(y
lel, z

iei) = ylziBs(el, ei) = ylziCk

li
(s)ek.

Then, we have

(i) The definition of Bs is independent of the basis {ei} on (a, IK);

(ii) Bs is a IK-bilinear mapping on a with values in a;

(iii) [el, ei]a~
= Bs(el, ei)~

s−1.

We can write (2.2) as

adXpei = (X l

p
Ck

li
(s)ek)~s−1

= X l

p
Bs(el, ei)~

s−1 = Bs(X
l

p
el, ei)~

s−1 = Bs(Xp, ei)~
s−1

= ((i(Xp)Bs)ei)~
s−1 = ((i(Xp)Bs)~

s−1)ei.

Therefore

adXp = (i(Xp)Bs) ~
s−1, s = 1, 2, 3, . . .

Here i(Xp)Bs ∈ HomIK(a, a) and doesn’t contain ~.

Returning to the expression of γ2(~), we can write now

γ2(~) = −
1

2!

(
(i(Xm)βl) ◦ adXp

)
~

m+l+p−3

= −
1

2!

(
(i(Xm)βl) ◦

(
(i(Xp)Bs)~

s−1
))

~
m+l+p−3

= −
1

2!
((i(Xm)βl) ◦ (i(Xp)Bs)) ~

m+l+p+s−4

=
∑

R≥0







∑

m+l+p+s=R+4

m,l,p,s≥1

−
1

2!
((i(Xm)βl) ◦ (i(Xp)Bs))







~
R

= −
1

2!
[(i(X1)β1) ◦ (i(X1)B1)] +

−
1

2!
[(i(X2)β1) ◦ (i(X1)B1) + (i(X1)β2) ◦ (i(X1)B1)+

+(i(X1)β1) ◦ (i(X2)B1) + (i(X1)β1) ◦ (i(X1)B2)] ~+

+ [. . . ] ~2 + . . .

50



We have also

γ3(~) =
1

3!
((i(X~)β~) ◦ adX~

◦ adX~
)

=
1

3!

(

i(Xp~
p−1)(βa~

a−1) ◦ (adXb
~

b−1) ◦ (adXq~
q−1)

)

=
1

3!
((i(Xp)βa) ◦ (i(Xb)Bs) ◦ (i(Xq)Br)) ~

p+a+b+q+s+r−6

=
∑

M≥0







∑

p+a+b+q+s+r=M+6

p,a,b,q,s,r≥1

1

3!
((i(Xp)βa) ◦ (i(Xb)Bs) ◦ (i(Xq)Br))







~
M

=
1

3!
[(i(X1)β1) ◦ (i(X1)B1) ◦ (i(X1)B1)]+

+
1

3!
[(i(X2)β1) ◦ (i(X1)B1) ◦ (i(X1)B1)+

+ (i(X1)β2) ◦ (i(X1)B1) ◦ (i(X1)B1)+

+ (i(X1)β1) ◦ (i(X2)B1) ◦ (i(X1)B1)+

+ (i(X1)β1) ◦ (i(X1)B2) ◦ (i(X1)B1)

+ (i(X1)β1) ◦ (i(X1)B1) ◦ (i(X2)B1)+

+(i(X1)β1) ◦ (i(X1)B1) ◦ (i(X1)B2)] ~+

+ [. . . ] ~2 + . . .

Then we get

(ϕ2

~ ⊗ ϕ2

~)β~ = β~ + dch(~γ1(~) + ~
2γ2(~) + ~

3γ3(~) + . . . )

= β~ + dch [i(X1)β1] ~+

+ dch

[

i(X2)β1 + i(X1)β2 −
1

2!
(i(X1)β1) ◦ (i(X1)β1)

]

~
2

+ dch [i(X1)β3 + i(X2)β2 + i(X3)β1+

−
1

2!
(i(X2)β1 ◦ i(X1)B1 + i(X1)β2 ◦ i(X1)B1+

+ i(X1)β1 ◦ i(X2)B1 + i(X1)β1 ◦ i(X1)B2)+

+
1

3!
i(X1)β1 ◦ i(X1)B1 ◦ i(X1)B1

]

~
3 + . . .
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Let us define the following elements in a
∗,

α1 = i(X1)β1

α2 = i(X2)β1 + i(X1)β2 −
1

2!
(i(X1)β1) ◦ (i(X1)β1 (2.3)

α3 = i(X1)β3 + i(X2)β2 + i(X3)β1 −
1

2!
(i(X2)β1 ◦ i(X1)B1+

+ i(X1)β2 ◦ i(X1)B1 + i(X1)β1 ◦ i(X2)B1 + i(X1)β1 ◦ i(X1)B2)+

+
1

3!
i(X1)β1 ◦ i(X1)B1 ◦ i(X1)B1

...

αk =
k∑

j=1







k−j+1
∑

i=1

(−1)i+1

i!

∑

a1+a2+b2···+ai+bi=i+k−j

a1,a2,b2,...,ai,bi≥1

(

(iXa1
βj) ◦ iXa2

Bb2
· · · ◦ iXai

Bbi

)







then

(ϕ2

~ ⊗ ϕ2

~)β~ = β~ +
∑

k≥1

dch(αk)~k, αk ∈ a
∗.

We then prove a converse of last theorem.

Theorem 2.2.16. Let

α(~) = αk~
k ∈ a

∗
~, αk ∈ a

∗, k = 1, 2, 3, . . . ,

there exists a unique element

X~ = Xl~
l−1, Xl ∈ a

verifying the equality

(
exp(ad∗~X~

) ⊗ exp(ad∗~X~
)
)
β~ = β~ + dchα(~).

Proof. If X~ = Xl~
l−1 exists verifying last equality, it must be obtained from the equalities

(2.3).

Due to the invertibility of β1, from the first equality we determine X1. Then, because we

know at this step X1, β1, β2, α2 and β1 is invertible, from the second equality we determine

X2. X3 can be computed from the third equality because β1 is invertible and at this step we

know X1, X2, B1, B2, β1, β2 and β3, etc, etc..

Recall� (a~, [, ]a~
) is a finite-dimensional Lie algebra over IK~ which is a deformation Lie algebra

of the Lie algebra (a, [, ]a) over IK.

52



� r1(~), r′
1
(~) are two elements of a~ ⊗IK~

a~ which are non degenerate skew-symmetric

and solutions of YBE relatively to the Lie algebra (a~, [, ]a~
) and such that the terms in

power ~
0 coincide and are equal to r1 ∈ a ⊗IK a.� (a~, [, ]a~
, r1(~)), (a~, [, ]a~

, r′
1
(~)) are the corresponding finite dimensional Lie bialgebras

over IK~, both deformation Lie bialgebras for the Lie bialgebra (a, [, ]a, r1) over IK.� Let ϕ1

~
: a~ −→ a~ be a Lie algebra automorphism of (a~, [, ]a~

).� Let ψ~ : a
∗
r1(~)

−→ a
∗
r
′
1
(~)

be a Lie algebra isomorphism from the Lie algebra (a∗
r1(~)

, [, ]a∗
r1(~)

)

to the Lie algebra (a∗
r
′
1
(~)
, [, ]a∗

r′
1
(~)

).� Let (ϕ1

~
, ψ~) : a~ ⊕ a

∗
r1(~)

−→ a~ ⊕ a
∗
r
′
1
(~)

be a Lie algebra isomorphism between the

doubles.� Let ϕ̃1

~
: U(a~) −→ U(a~) and ψ̃~ : U(a∗

r1(~)
) −→ U(a∗

r
′
1
(~)

) be the (which are continuous

in the (~)-adic topology) associative algebra isomorphisms extensions respectively of ϕ1

~

and ψ~.

Theorem 2.2.17. Let J̃
r1(~)

a~
and J̃

r
′
1
(~)

a~
be invariant star products obtained in Theorem 3.10.

Suppose β1(~) ∈ a
∗
~
∧IK~

a
∗
~

is defined as β1(~) = (β1(~))
ab
ea ⊗ eb where r1(~)ab. (β1(~))

ac
= δb

c

and β′
1
(~) ∈ a

∗
~
∧IK~

a
∗
~

is defined in a similar way from r′
1
(~).

Then, J̃
r1(~)

a~
and J̃

r
′
1
(~)

a~
are equivalent star products if, and only if, β1(~) and β′

1
(~) belong

to the same cohomological class. In other words, J̃
r1(~)

a~
and J̃

r
′
1
(~)

a~
are equivalent star products

if, and only if, there exists a 1-cochain α(~) ∈ a
∗
~

such that

β′1(~) = β1(~) + dchα(~).

Sketch of the proof (⇐=)� [β1(~)] = [β′
1
(~)], there exists X~ ∈ a~ such that

exp(ad∗~X~
)⊗

2

β1(~) = β′1(~).� Then ϕ1

~
= exp(ad~X~

) is a Lie algebra isomorphism a~ −→ a~ and (ϕ1

~
⊗ ϕ1

~
)r1(~) =

r′
1
(~).� The map (ϕ1

~
, ((ϕ1

~
)t)−1) is a Lie bialgebra isomorphism between a~ ⊕ a

∗
r1(~)

and a~ ⊕

a
∗
r
′
1
(~)

.� We prove that J̃
r
′
1
~

a~
= (ϕ̃1

~
⊗ ϕ̃1

~
)J̃r1~

a~
.� Using a theorem by Drinfeld, there exists an element u = exp(~X~) such that

J̃
r
′
1
~

a~
= ∆a(u) · J̃

r1~

a~
· (u−1 ⊗ u−1)

and u−1 defines the equivalence.
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Sketch of the proof (=⇒)� Hochschid cohomology on U(a~) appears.� We construct an element α(~) ∈ a
∗
~

such that

β′1(~) = β1(~) + dchα(~)

where α(~) = α1~ + α2~
2 + . . . .

2.2.5 Hochschild cohomology on the coalgebra Ua~

From a theorem by Cartier, we get

H∗
Hoch

(Γ(a~)) = ∧(a~)

where Γ(a~) is the coalgebra of divided powers (see also Bourbaki). But from Cartier and

Bourbaki, we know

Γ(a~) ≃ TS(a~) ≃ S(a~)

as IK~ bialgebras (making a proof similar to the classical one for Lie algebras over a field of

characteristic 0)

We have also an isomorphism

S(a~) ≃ U(a~)

as coalgebras. From these isomorphisms, we get what we want

H∗
Hoch

(U(a~)) ≃ ∧(a~).
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Departamento de Matemática, Universidade de Coimbra, 2003.

55



56



On central extension of Leibniz n–algebras

J. M. Casas∗

Abstract

The study of central extensions of Leibniz n-algebras by means of homological methods

is the main goal of the paper. Thus induced abelian extensions are introduced and the

classification of various classes of central extensions depending on the character of the

homomorphism θ∗(E) in the five-term exact sequence

nHL1(K) → nHL1(L)
θ∗(E)
→ M → nHL0(K) → nHL0(L) → 0

associated to the abelian extension E : 0 → M
κ
→ K

π
→ L → 0 is done. Homological char-

acterizations of this various classes of central extensions are given. The universal central

extension corresponding to a perfect Leibniz n-algebra is constructed and characterized.

The endofunctor uce which assigns to a perfect Leibniz n-algebra its universal central

extension is described. Functorial properties are obtained and several results related with

the classification in isogeny classes are achieved. Finally, for a covering f : L′ ։ L (a

central extension with L′ a perfect Leibniz n-algebra), the conditions under which an

automorphism or a derivation of L can be lifted to an automorphism or a derivation of

L′ are obtained.

1 Introduction

The state of a classical dynamic system is described in Hamiltonian mechanics by means

of N coordinates q1, . . . , qN and N momenta p1, . . . , pN . The 2N variables {q1, . . . , pN} are

referred as canonical variables of the system. Other physically important quantities as energy

and momentum are functions F = F (q, p) of the canonical variables. These functions, called

observables, form an infinite dimensional Lie algebra with respect to the Poisson bracket

{F,G} =
∑

N

i=1
( ∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi
). The equation of motion are q̇i = ∂H

∂pi
and ṗi = −∂H

∂qi
, where

the Hamiltonian operator of the system H is the total energy. These equations may be written

in terms of Poisson brackets as q̇i = {qi,H}; ṗi = {pi,H}. In general the time evolution of an

observable F is given by Ḟ = {F,H}.

The simplest phase space for Hamiltonian mechanics is R
2 with coordinates x, y and

canonical Poisson bracket {f1, f2} = ∂f1

∂x

∂f2

∂y
− ∂f1

∂y

∂f2

∂x
= ∂(f1,f2)

∂(x,y)
. This bracket satisfies the

∗Dpto. Matemática Aplicada I, Universidad de Vigo, E. U. I. T. Forestal, Campus Universitario A Xun-

queira, 36005 Pontevedra, Spain. Email:jmcasas@uvigo.es
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Jacobi identity {f1, {f2, f3}}+{f3, {f1, f2}}+{f2, {f3, f1}} = 0 and give rise to the Hamilton

equations of motion df

dt
= {H, f}.

In 1973, Nambu [23] proposed the generalization of last example defining for a tern of

classical observables on the three dimensional space R
3 with coordinates x, y, z the canonical

bracket given by {f1, f2, f3} = ∂(f1,f2,f3)

∂(x,y,z)
where the right hand side is the Jacobian of the

application f = (f1, f2, f3) : R
3 → R

3. This formula naturally generalizes the usual Poisson

bracket from a binary to a ternary operation on the classical observables. The Nambu-

Hamilton generalized motion equations include two Hamiltonian operators H1 and H2 and

have the form df

dt
= {H1,H2, f}. For the canonical Nambu bracket the following fundamental

identity holds

{{f1, f2, f3}, f4, f5} + {f3, {f1, f2, f4}, f5} + {f3, f4, {f1, f2, f5}} =

{f1, f2, {f3, f4, f5}}

This formula can be considered as the most natural generalization, at least from the dynamical

viewpoint, of the Jacobi identity. Within the framework of Nambu mechanics, the evolution

of a physical system is determined by n−1 functionsH1, . . . ,Hn−1 ∈ C
∞(M) and the equation

of motion of an observable f ∈ C∞(M) is given by df/dt = {H1, . . . ,Hn−1, f}.

These ideas inspired novel mathematical structures by extending the binary Lie bracket

to a n-ary bracket. The study of this kind of structures and its application in different areas

as Geometry and Mathematical Physics is the subject of a lot of papers, for example see [8],

[10], [11], [12], [13], [14], [16], [22], [24], [25], [26], [27], [28], [29], [30] and references given

there.

The aim of this paper is to continue with the development of the Leibniz n-algebras theory.

Concretely, using homological machinery developed in [3], [4], [5], [8] we board an extensive

study of central extensions of Leibniz n-algebras. Thus in Section 3 we deal with induced

abelian extensions and Section 4 is devoted to the classification of various classes of central

extensions depending on the character of the homomorphism θ∗[E] in the five-term exact

sequence

nHL1(K) → nHL1(L)
θ∗(E)

→ M → nHL0(K) → nHL0(L) → 0

associated to the abelian extension E : 0 → M
κ
→ K

π
→ L → 0. Homological characterizations

of this various classes of central extensions are given. When we restrict to the case n = 2 we

recover results on central extensions of Leibniz algebras in [2], [6], [7], [9].

Sections 5 and 6 are devoted to the construction and characterization of universal central

extensions of perfect Leibniz n-algebras. We construct an endofunctor uce which assigns to a

perfect Leibniz n-algebra its universal central extension. Functorial properties are obtained

and several results related with the classification in isogeny classes are achieved. Finally, in

Section 7 we analyze the conditions to lift an automorphism or a derivation of L to L′ in a

covering (central extension where L′ is a perfect Leibniz n-algebra) f : L ։ L′.
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2 Preliminaries on Leibniz n-algebras

A Leibniz n-algebra is a K-vector space L equipped with a n-linear bracket [−, . . . ,−] : L⊗n →

L satisfying the following fundamental identity

[[x1, x2, . . . , xn], y1, y2, . . . , yn−1] =

n∑

i=1

[x1, . . . , xi−1, [xi, y1, y2, . . . , yn−1], xi+1, . . . , xn] (1)

A morphism of Leibniz n-algebras is a linear map preserving the n-bracket. Thus we have

defined the category of Leibniz n-algebras, denoted by nLeib. In case n = 2 the identity (1)

is the Leibniz identity, so a Leibniz 2-algebra is a Leibniz algebra [18, 19, 20], and we use

Leib instead of 2Leib.

Leibniz (n + 1)-algebras and Leibniz algebras are related by means of the Daletskii’s

functor [10] which assigns to a Leibniz (n + 1)-algebra L the Leibniz algebra Dn(L) = L⊗n

with bracket

[a1 ⊗ · · · ⊗ an, b1 ⊗ · · · ⊗ bn] :=
n∑

i=1

a1 ⊗ · · · ⊗ [ai, b1, . . . , bn] ⊗ · · · ⊗ an (2)

Conversely, if L is a Leibniz algebra, then also it is a Leibniz n-algebra under the following

n-bracket [8]

[x1, x2, . . . , xn] := [x1, [x2, . . . , [xn−1, xn]]] (3)

Examples:

1. Examples of Leibniz algebras in [1], [19] provides examples of Leibniz n-algebras with

the bracket defined by equation (3).

2. A Lie triple system [17] is a vector space equipped with a ternary bracket [−,−,−] that

satisfies the same identity (1) (particular case n = 3) and, instead of skew-symmetry,

satisfies the conditions [x, y, z] + [y, z, x] + [z, x, y] = 0 and [x, y, y] = 0. It is an easy

exercise to verify that Lie triple systems are non-Lie Leibniz 3-algebras.

3. R
n+1 is a Leibniz n-algebra with the bracket given by [

→
x1,

→
x2, . . . ,

→
xn] := det(A), where

A is the following matrix











→
e1

→
e2 . . .

→
en+1

x11 x21 . . . x(n+1)1

x12 x22 . . . x(n+1)2

. . . . . . . . . . . .

x1n x2n . . . x(n+1)n











Here
→
xi= x1i

→
e1 +x2i

→
e2 + · · ·+x(n+1)i

→
en+1 and {

→
e1,

→
e2, . . . ,

→
en+1} is the canonical basis

of R
n+1.
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4. An associative trialgebra is a K-vector space A equipped with three binary operations:

⊣,⊥,⊢ (called left, middle and right, respectively), satisfying eleven associative relations

[21]. Then A can be endowed with a structure of Leibniz 3-algebra with respect to the

bracket

[x, y, z] = x ⊣ (y ⊥ z) − (y ⊥ z) ⊢ x− x ⊣ (z ⊥ y) + (z ⊥ y) ⊢ x

= x ⊣ (y ⊥ z − z ⊥ y) − (y ⊥ z − z ⊥ y) ⊢ x

for all x, y, z ∈ A.

5. Let C∞(Rn) be the algebra of C∞-functions on R
n and x1, . . . , xn be the coordinates on

R
n. Then C∞(Rn) equipped with the bracket [f1, . . . , fn] = det( ∂fi

∂xj
)i,j=1,...,n is a n-Lie

algebra [12], so also it is a Leibniz n-algebra.

Let L be a Leibniz n-algebra. A subalgebra K of L is called n-sided ideal if [l1, l2, . . . , ln] ∈

K as soon as li ∈ K and l1, . . . , li−1, li+1, . . . , ln ∈ L, for all i = 1, 2, . . . , n. This definition

guarantees that the quotient L/K is endowed with a well defined bracket induced naturally

by the bracket in L.

Let M and P be n-sided ideals of a Leibniz n-algebra L. The commutator ideal of

M and P, denoted by [M,P,Ln−2], is the n-sided ideal of L spanned by the brackets

[l1, . . . , li, . . . , lj , . . . , ln] as soon as li ∈ M, lj ∈ P and lk ∈ L for all k 6= i, k 6= j; i, j, k ∈

{1, 2, . . . , n}. Obviously [M,P,Ln−2] ⊂ M∩P. In the particular case M = P = L we obtain

the definition of derived algebra of a Leibniz n-algebra L. If L = [L, n. . .,L] = [Ln], then the

Leibniz n-algebra is called perfect.

For a Leibniz n-algebra L, we define its centre as the n-sided ideal

Z(L) = {l ∈ L | [l1, . . . , li−1, l, li+1, . . . , ln] = 0,∀li ∈ L, i = 1, . . . , î, . . . , n}

An abelian Leibniz n-algebra is a Leibniz n-algebra with trivial bracket, that is, the

commutator n-sided ideal [Ln] = [L, . . . ,L] = 0. It is clear that a Leibniz n-algebra L is

abelian if and only if L = Z(L). To any Leibniz n-algebra L we can associate its largest

abelian quotient Lab. It is easy to verify that Lab
∼= L/[Ln].

A representation of a Leibniz n-algebra L is a K-vector space M equipped with n actions

[−, . . . ,−] : L⊗i⊗ M ⊗L⊗(n−1−i) → M, 0 ≤ i ≤ n − 1, satisfying (2n − 1) axioms which are

obtained from (1) by letting exactly one of the variables x1, . . . , xn, y1, . . . , yn−1 be in M and

all the others in L.

If we define the multilinear applications ρi : L⊗n−1 → EndK(M) by

ρi(l1, . . . , ln−1)(m) = [l1, . . . , li−1,m, li, . . . , ln−1], 1 ≤ i ≤ n− 1

ρn(l1, . . . , ln−1)(m) = [l1, . . . , ln−1,m]

then the axioms of representation can be expressed by means of the following identities [3]:
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1. For 2 ≤ k ≤ n,

ρk([l1, . . . , ln], ln+1, . . . , l2n−2) =
n∑

i=1

ρi(l1, . . . , l̂i, . . . , ln) · ρk(li, ln+1, . . . , l2n−2)

2. For 1 ≤ k ≤ n,

[ρ1(ln, . . . , l2n−2), ρk(l1, . . . , ln−1)] =

n−1∑

i=1

ρk(l1, . . . , li−1, [li, ln, . . . , l2n−2], li+1, . . . , ln−1)

being the bracket on EndK(M) the usual one for associative algebras.

A particular instance of representation is the case M =L, where the applications ρi are

the adjoint representations

adi(l1, . . . , ln−1)(l) = [l1, . . . , li−1, l, li, . . . , ln−1], 1 ≤ i ≤ n− 1

adn(l1, . . . , ln−1)(l) = [l1, . . . , ln−1, l]

If the components of the representation ad : L⊗n−1 → EndK(L) are ad = (ad1, . . . , adn),

then Ker ad = {l ∈ L | adi(l1, . . . , ln−1)(l) = 0,∀(l1, . . . , ln−1) ∈ L⊗n−1, 1 ≤ i ≤ n}, that is,

Ker ad is the centre of L.

Now we briefly recall the (co)homology theory for Leibniz n-algebras developed in [3, 8].

Let L be a Leibniz n-algebra and let M be a representation of L. Then Hom(L,M) is a

Dn−1(L)-representation as Leibniz algebras [8]. One defines the cochain complex nCL
∗(L,M)

to be CL∗(Dn−1(L),Hom(L,M)). We also put nHL
∗(L,M) := H∗(nCL

∗(L,M)). Thus,

by definition nHL
∗(L,M) ∼= HL∗(Dn−1(L),Hom(L,M)). Here CL⋆ denotes the Leibniz

complex and HL⋆ its homology, called Leibniz cohomology (see [19, 20] for more information).

In case n = 2, this cohomology theory gives 2HL
m(L,M) ∼= HLm+1(L,M), m ≥ 1 and

2HL
0(L,M) ∼= Der(L,M). On the other hand, nHL

0(L,M) ∼= Der(L,M) and nHL
1(L,M)

∼= Ext(L,M), where Ext(L,M) denotes the set of isomorphism classes of abelian extensions

of L by M [8].

Homology with trivial coefficients of a Leibniz n-algebra L is defined in [3] as the homology

of the Leibniz complex nCL⋆(L) := CL⋆(Dn−1(L),L), where L is endowed with a structure

of Dn−1(L) symmetric corepresentation [20]. We denote the homology groups of this complex

by nHL⋆(L). When L is a Leibniz 2-algebra, that is a Leibniz algebra, then we have that

2HLk(L) ∼= HLk+1(L), k ≥ 1. Particularly, 2HL0(L) ∼= HL1(L) ∼= L/[L,L] = Lab. On the

other hand, nHL0(L) = Lab and nHL1(L) ∼= (R ∩ [Fn])/[R,Fn−1] for a free presentation

0 → R → F → L → 0.

Moreover, to a short exact sequence 0 → M → K → L → 0 of Leibniz n-algebras we can

associate the following five-term natural exact sequences [3]:

0 → nHL
0(L, A) → nHL

0(K, A) → HomL(M/[M,M,Kn−2], A) →
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nHL
1(L, A) → nHL

1(K, A) (4)

for every L-representation A, and

nHL1(K) → nHL1(L) → M/[M,Kn−1] → nHL0(K) → nHL0(L) → 0 (5)

3 Induced abelian extensions

An abelian extension of Leibniz n-algebras is an exact sequence E : 0 → M
κ
→ K

π
→ L → 0

of Leibniz n-algebras such that [k1, . . . , kn] = 0 as soon as ki ∈ M and kj ∈ M for some

1 ≤ i, j ≤ n (i. e., [M,M,Kn−2] = 0). Here k1, . . . , kn ∈ K. Clearly then M is an abelian

Leibniz n-algebra. Let us observe that the converse is true only for n = 2. Two such extensions

E and E′ are isomorphic when there exists a Leibniz n-algebra homomorphism from K to K′

which is compatible with the identity on M and on L. One denotes by Ext(L,M) the set of

isomorphism classes of extensions of L by M .

If E is an abelian extension of Leibniz n-algebras, then M is equipped with a L-representation

structure given by

[l1, . . . , li−1,m, li+1, . . . , ln] = [k1, . . . , ki−1, κ(m), ki+1, . . . , kn]

such that π(kj) = lj , j = 1, . . . , i− 1, i+ 1, . . . , n, i = 1, 2, . . . , n.

The abelian extensions of Leibniz n-algebras are the objects of a category whose mor-

phisms are the commutative diagrams of the form:

0 // M1

α

��

κ1 // K1

β

��

π1 // L1

γ

��

// 0

0 // M2

κ2 // K2

π2 // L2
// 0

We denote such morphism as (α, β, γ) : (E1) → (E2). It is evident that α and γ satisfy the

following identities

α([l1, . . . , li−1,m, li+1, . . . , ln]) = [γ(l1), . . . , γ(li−1), α(m), γ(li+1), . . . , γ(ln)]

i = 1, 2, . . . , n, provided than M2 is considered as L1-representation via γ. That is, α is a

morphism of L1-representations.

Given an abelian extension E and a homomorphism of Leibniz n-algebras γ : L1 → L we

obtain by pulling back along γ an extension Eγ of M by L1, where Kγ = K ×L L1, together

with a morphism of extensions (1, γ′, γ) : Eγ → E. We call to the the extension (Eγ) the

backward induced extension of E.

Proposition 1. Every morphism (α, β, γ) : E1 → E of abelian extensions of Leibniz n-

algebras admits a unique factorization of the form

E1

(α,η,1)

→ Eγ

(1,γ
′
,γ)

→ E
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Given a homomorphism of L-representations α : M → M0 we obtain the extension αE :

0 → M0

κ0→ αK
π0→ L → 0 by putting αK = (M0⋊K)/S, where S = {(α(m),−κ(m)) | m ∈M}.

We call to the the extension αE the forward induced extension of E.

Proposition 2. Every morphism (α, β, γ) : E → E0 of abelian extensions of Leibniz n-

algebras admits a unique factorization of the form

E
(α,α

′
,1)

→ (αE)
(1,ξ,γ)

→ (E0)

through the forward induced extension determined by α.

4 Various classes of central extensions

Let E : 0 → M
κ
→ K

π
→ L → 0 ∈ Ext(L,M) be. Since M is a L-representation, we have

associated to it the exact sequence (4)

0 → Der(L,M)
Der(π)

→ Der(K,M)
ρ

→ HomL(M,M)
θ
∗
(E)

→ nHL
1(L,M)

π
∗

→ nHL
1(K,M)

Then we define ∆ : Ext(L,M) → nHL
1(L,M),∆([E]) = θ∗(E)(1M). The naturality of the

sequence (4) implies the well definition of ∆. Now we fix a free presentation 0 → R
χ

→ F
ǫ
→

L → 0, then there exists a homomorphism f : F → K such that π.f = ǫ, which restricts to

f : R → M. Moreover f induces a L-representation homomorphism ϕ : R/[R,R,Fn−2] → M

where the action from L on R/[R,R,Fn−2] is given via ǫ, that is,

[l1, . . . , li−1, r, li+1, . . . , ln] = [x1, . . . , xi−1, r, xi+1, . . . , xn] + [R,R,Fn−2]

where ǫ(xj) = lj , j ∈ {1, . . . , i− 1, i+ 1, . . . , n}, i ∈ {1, . . . , n}. The naturality of sequence (4)

induces the following commutative diagram

Der(K,M)

f
∗

��

// HomL(M,M)

ϕ
∗

��

θ
∗
(E)

//
nHL

1(L,M) //
nHL

1(K,M)

f
∗

��

Der(F ,M)
τ
∗

// HomL(R/[R,R,Fn−2],M)
σ
∗

//
nHL

1(L,M) //
nHL

1(F ,M)

Having in mind that nHL
1(F ,M) = 0 [8], then ∆[E] = θ∗(E)(1M) = σ∗ϕ∗(1M) = σ∗(ϕ).

Proposition 3. ∆ : Ext(L,M) → nHL
1(L,M) is an isomorphism.

Proof. It is a tedious but straightforward adaptation of the Theorem 3.3, p 207 in [15]. ⋄

Definition 1. Let E : 0 →M
κ
→ K

π
→ L → 0 be an extension of Leibniz n-algebras. We call

E central if [M,Kn−1] = 0.
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Associated to E we have the isomorphism nHL
k(L,M)

θ∗∼= Hom(nHLk(L),M) (see The-

orem 3 in [3]). Let us observe that M is a trivial L-representation since E is a central

extension. On the other hand, ∆[E] ∈ nHL
1(L,M), then θ∗∆[E] ∈ Hom(nHL1(L),M).

Moreover θ∗∆[E] = θ∗(E), being θ∗(E) the homomorphism given by the exact sequence (5):

nHL1(K) → nHL1(L)
θ∗(E)

→ M → nHL0(K) → nHL0(L) → 0

When 0 → M → K → L → 0 is a central extension, the sequence (5) can be enlarged

with a new term as follows (see [5]):

⊕n−1

i=1
Ji → nHL1(K) → nHL1(L) → M → nHL0(K) → nHL0(L) → 0 (6)

where Ji = (M⊗ n−i. . . ⊗M ⊗ Kab⊗ i. . . ⊗Kab) ⊕ (M⊗ n−i−1. . . ⊗M ⊗ Kab ⊗ M ⊗ Kab⊗ i−1. . .

⊗Kab) ⊕ · · · ⊕ (Kab⊗ i. . . ⊗Kab ⊗ M⊗ n−i. . . ⊗M).

According to the character of the homomorphism θ∗∆[E] we can classify the central

extensions of Leibniz n-algebras. Thus we have the following

Definition 2. The central extension E : 0 →M
κ
→ K

π
→ L → 0 is called:

1. Commutator extension if θ∗∆[E] = 0.

2. Quasi-commutator extension if θ∗∆[E] is a monomorphism.

3. Stem extension if θ∗∆[E] is an epimorphism.

4. Stem cover if θ∗∆[E] is an isomorphism.

Let us observe that Definition 2 in case n = 2 agrees with the definitions in [2] for Leibniz

algebras. It is clear, by naturality of sequence (5), that the property of a central extension

which belongs to any of the described classes only depends on the isomorphism class.

Following, we characterize the various classes defined in terms of homological properties.

Proposition 4. The following statements are equivalent:

1. E is a commutator extension.

2. 0 → M → nHL0(K) → nHL0(L) → 0 is exact.

3. π∗ : [Kn]
∼
→ [Ln].

4. M ∩ [Kn] = 0.
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Proof. E is a commutator extension ⇔ θ∗(E) = 0 ⇔ 0 → M → nHL0(K) → nHL0(L) →

0 is exact (use sequence (5)) ⇔ M ∩ [Kn] = 0 ⇔ [Kn]
∼
→ [Ln] (use next diagram)

M ∩ [Kn]
��

��

// // [Kn]
��

��

π∗ // // [Ln]
��

��
M

����

// // K

����

π // // L

����
M

M∩[Kn]
// // Kab

π // // Lab

(7)

⋄

Proposition 5. The following statements are equivalent:

1. E is a quasi-commutator extension.

2. nHL1(π) : nHL1(K) → nHL1(L) is the zero map.

3. 0 → nHL1(L) → M → nHL0(K) → nHL0(L) → 0 is exact.

4. nHL1(L) ∼= M ∩ [Kn].

Proof. θ∗(E) is a monomorphism ⇔ Ker θ∗(E) = Im π∗ = 0 ⇔ π∗ : nHL1(K) → nHL1(L)

is the zero map ⇔ 0 → nHL1(L) → M → nHL0(K) → nHL0(L) → 0 is exact (by exactness

in sequence (5)).

For the equivalence of last statement we must use that the monomorphism θ∗(E) factors

as nHL1(L) ։ M ∩ [Kn] →֒ M. ⋄

Corollary 1. If E is a quasi-commutator extension with nHL1(L) = 0, then E is a commu-

tator extension.

Proof. M ∩ [Kn] ∼= nHL1(L) = 0. ⋄

Corollary 2. Let E be a central extension with K a free Leibniz n-algebra, then E is a

quasi-commutator extension.

Proof. nHL1(K) = 0 [8] and use sequence (5). ⋄

Proposition 6. The following statements are equivalent:

1. E is a stem extension.

2. κ∗ : M → nHL0(K) is the zero map.

3. π : nHL0(K)
∼
→ nHL0(L).

4. M ⊆ [Kn].
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Proof. In exact sequence (5), θ∗(E) is an epimorphism ⇔ κ∗ = 0 ⇔ π∗ is an isomorphism.

In diagram (7), Kab
∼= Lab ⇔

M

M∩[Kn]
= 0 ⇔ M ⊆ [Kn]. ⋄

Proposition 7. Every class of central extensions of a L-trivial representation M is forward

induced from a stem extension.

Proof. Pick any central extension class E : 0 → M → K → L → 0, then θ⋆(E) :

nHL1(L) → M factors as i.τ : nHL1(L) ։ M ∩ [Kn] = M1 →֒ M. As M1 is a trivial L-

representation, then given τ there exists a central extension E1 ∈ nHL
1(L,M1) such that

θ⋆(E1) = τ . Moreover, E1 is a stem extension since θ⋆(E1) is an epimorphism. By naturality

of sequence (5) on the forward construction E1 → i(E1), we have that θ⋆
i(E1) = iθ∗(E1) =

iτ = θ⋆(E), i. e., i(E1) = E, and so E is forward induced by E1, which is a stem extension. ⋄

Proposition 8. Let L be a Leibniz n-algebra and let U be a subspace of nHL1(L), then there

exists a stem extension E with U = Ker θ⋆∆[E].

Proof. We consider the quotient vector space M = nHL1(L)/U as a L-trivial represen-

tation. We consider the central extension E : 0 → M → K → L → 0 ∈ nHL
1(L,M). Thus

θ⋆∆[E] = θ⋆(E) ∈ Hom(nHL1(L),M). If θ⋆(E) : nHL
1(L) → M = nHL

1(L)/U is the canon-

ical projection, then there exists a central extension E : 0 → M → K → L → 0 such that

θ⋆∆[E] = θ⋆(E) is the canonical projection. Associated to E we have the exact sequence (5),

in which U = Ker θ⋆(E) = Ker θ⋆∆[E]. Moreover E is a stem extension since θ⋆∆[E] = θ⋆(E)

is an epimorphism. ⋄

Proposition 9. The following statements are equivalent:

1. E is a stem cover.

2. π : nHL0(K)
∼
→ nHL0(L) and nHL1(π) : nHL1(K) → nHL1(L) is the zero map.

Proof. θ⋆(E) is an isomorphism in sequence (6). ⋄

Corollary 3. A stem extension is a stem cover if and only if U = 0.

Proof. U = 0 ⇔ Ker θ⋆(E) = 0 ⇔ θ⋆(E) : nHL1(L) → M is an isomorphism. ⋄

5 Universal central extensions

Definition 3. A central extension E : 0 → M
κ
→ K

π
→ L → 0 is called universal if for

every central extension E′ : 0 → M ′ → K′ π
′

→ L → 0 there exists a unique homomorphism

h : K → K′ such that π′h = π.

Lemma 1. Let 0 → N → H
π
→ L → 0 be a central extension of Leibniz n-algebras, being

H a perfect Leibniz n-algebra. Let 0 → M → K
σ
→ L → 0 be another central extension of

Leibniz n-algebras. If there exists a homomorphism of Leibniz n-algebras φ : H → K such

that σφ = π, then φ is unique.
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Proof. See Lemma 5 in [4]. ⋄

Lemma 2. If 0 → N → H
ρ

→ K → 0 and 0 → M → K
π
→ L → 0 are central extensions with

K a perfect Leibniz n-algebra, then 0 → L = Ker π ◦ ρ→ H
π◦ρ
→ L → 0 is a central extension.

Moreover, if K is a universal central extension of L, then 0 → N → H
ρ

→ K → 0 splits.

Proof. Since K is a perfect Leibniz n-algebra, then ρ restricts to the epimorphism ρ′ :

Z(H) ։ Z(K). From this argument and using classical techniques it is an easy task to end

the proof. ⋄

Lemma 3. If K is a perfect Leibniz n-algebra and π : K ։ L is an epimorphism, then L is

a perfect Leibniz n-algebra.

Lemma 4. If E : 0 → M
i
→ K

π
→ L → 0 is a universal central extension, then K and L are

perfect Leibniz n-algebra.

Proof. Assume that K is not a perfect Leibniz n-algebra, then Kab is an abelian Leibniz

n-algebra and, consequently, is a trivial L-representation. We consider the central exten-

sion E : 0 → Kab → Kab × L
pr

→ L → 0, then the homomorphisms of Leibniz n-algebras

ϕ,ψ : K → Kab × L, ϕ(k) = (k, π(k));ψ(k) = (0, π(k)), k ∈ K verify that pr ◦ ϕ = π = pr ◦ ψ,

so E can not be a universal central extension. Lemma 3 ends the proof. ⋄

Theorem 1.

1. If E : 0 → M → K
π
→ L → 0 is a central extension with K a perfect Leibniz n-algebra

and every central extension of K splits, if and only if E is universal.

2. A Leibniz n-algebra L admits a universal central extension if and only if L is perfect.

3. The kernel of the universal central extension is canonically isomorphic to nHL1(L,K).

Proof. See Theorem 5 in [3]. The equivalence of statement (1) is due to Lemma 2. ⋄

Corollary 4. The central extension 0 → M → K
π
→ L → 0 is universal if and only if

nHL0(K) = nHL1(K) = 0 (that is, K is a superpefect Leibniz n-algebra).

Proof. By Theorem 1 (1) K is a perfect Leibniz n-algebra, so nHL0(K) = Kab = 0. On

the other hand, the splitting of any central extension by K is equivalent to nHL1(K) = 0,

since 0 → 0 → K
∼
→ K → 0 is the universal central extension of K (that is, K is centrally

closed) . ⋄

Corollary 5. Let E : 0 → M → K
π
→ L → 0 be a central extension with L a perfect Leibniz

n-algebra. E is a stem cover if and only if nHL0(K) = nHL1(K) = 0.
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Proof. From the exact sequence (5) associated to E and Proposition 9. ⋄

Remark. Let us observe that the stem cover of a perfect Leibniz n-algebra L is isomorphic

to the universal central extension of L.

Proposition 10. Let E : 0 → M → K
π
→ L → 0 be a central extension of Leibniz n-algebras.

If K is a perfect Leibniz n-algebra, then the sequence 0 → nHL1(K) → nHL1(L) → M → 0

is exact and nHL0(L) = 0.

Proof. L is perfect by Lemma 3. Exact sequence (6) associated to E ends the proof. ⋄

Following we achieve a construction of the universal central extension of a perfect Leibniz

n-algebra slightly different to the construction given in [4]. This approach permits us to obtain

new results concerning to the endofunctor uce which assigns to a perfect Leibniz n-algebra its

universal central extension. To do this, we recall that the computation of the homology with

trivial coefficients of a Leibniz n-algebra L (see [3]) uses the chain complex

· · · → nCL2(L) = CL2(L
⊗n−1,L) = L⊗2n−1 d2→ nCL1(L) = CL1(L

⊗n−1,L) = L⊗n d1→

d1→ nCL0(L) = CL0(L
⊗n−1,L) = L → 0

where

d2(x1 ⊗ · · · ⊗ x2n−1) = [x1, x2, . . . , xn] ⊗ xn+1 ⊗ · · · ⊗ x2n−1−

n∑

i=1

x1 ⊗ · · · ⊗ xi−1 ⊗ [xi, xn+1, . . . , x2n−1] ⊗ xi+1 ⊗ · · · ⊗ xn

and

d1(x1 ⊗ · · · ⊗ xn) = [x1, x2, . . . , xn]

Let L be a perfect Leibniz n-algebra. As K-vector spaces, we consider the submodule I of

L⊗n spanned by the elements of the form

[x1, x2, . . . , xn] ⊗ xn+1 ⊗ · · · ⊗ x2n−1−

n∑

i=1

x1 ⊗ · · · ⊗ xi−1 ⊗ [xi, xn+1, . . . , x2n−1] ⊗ xi+1 ⊗ · · · ⊗ xn

for all x1, . . . , x2n−1 ∈ L. Let us observe that I = Im d2. Then we construct uce(L) = L⊗n/I.

We denote by {x1, . . . , xn} the element x1 ⊗ · · · ⊗ xn + I of uce(L). By construction the

following identity holds in uce(L)

{[x1, x2, . . . , xn], xn+1, . . . , x2n−1} =

n∑

i=1

{x1, . . . , xi−1, [xi, xn+1, . . . , x2n−1], xi+1, . . . , xn} (8)
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The linear map d1 vanishes on the elements of I, so it induces an epimorphism d : uce(L) → L

which is defined by d({x1, x2, . . . , xn}) = [x1, x2, . . . , xn]. Let us observe that Ker d = Ker

d1/I = Ker d1/Im d2 = nHL1(L). On the other hand, the K-vector space uce(L) is endowed

with a structure of Leibniz n-algebra by means of the following n-ary bracket:

[x1, x2, . . . , xn] := {d(x1), d(x2), . . . , d(xn)}

for all x1, . . . , xn ∈ uce(L). In this way d becomes into a Leibniz n-algebras homomorphism.

Particularly, the following identity holds:

[{x11, . . . , x1n}, {x21, . . . , x2n}, . . . , {xn1, . . . , xnn}] =

{[x11, . . . , x1n], [x21, . . . , x2n], . . . , [xn1, . . . , xnn]}

Consequently, d : uce(L) ։ L is an epimorphism of Leibniz n-algebras. Actually d : uce(L) ։

[Ln], but if L is perfect, then L = [Ln]. It is an easy task, using identity (8) and Lemma 1,

to verify that the epimorphism d : uce(L) ։ [Ln] is the universal central extension of L when

L is a perfect Leibniz n-algebra.

By the uniqueness and having in mind the constructions of the universal central extension

given in [4] we derive that uce(L) ∼= [Fn]/[R,Fn−1] ∼= L⋆ n. . . ⋆L, where 0 → R → F → L → 0

is a free presentation of the perfect Leibniz n-algebra L and ⋆ denotes a non-abelian tensor

product of Leibniz n-algebras introduced in [4].

As we can observe, last construction does not depend on the perfectness of the Leibniz

n-algebra L, that is, in general case, we have constructed the universal central extension of

[Ln]. Following we explore the functorial properties of this construction. So we consider a

homomorphism of perfect Leibniz n-algebras f : L′ → L. Let IL′ and IL be as the submod-

ule defined previously. The canonical application f⊗n : nCL1(L
′) = L′⊗n → nCL1(L) =

L⊗n, f⊗n(x1 ⊗ · · · ⊗ xn) = f(x1) ⊗ · · · ⊗ f(xn) maps IL′ into IL, thus it induces a linear

map uce(f) : uce(L′) → uce(L), uce(f){x1, . . . , xn} = {f(x1), . . . , f(xn)}. Moreover uce(f) is

a homomorphism of Leibniz n-algebras.

On the other hand, one verifies by construction that the following diagram is commutative:

uce(L′)
uce(f)

//

d′

����

uce(L)

d
����

L′
f

// L

(9)

Thus we have a right exact covariant functor uce : nLeib → nLeib and, consequently, an

automorphism f of L gives rise to an automorphism uce(f) of uce(L). The commutativity

of last diagram implies that uce(f) leaves nHL1(L) invariant. Thus, we obtain the group

homomorphism

Aut(L) → {g ∈ Aut(uce(L)) : g(nHL1(L)) = nHL1(L)} : f 7→ uce(f)
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6 Isogeny classes in nLeib

Definition 4. A Leibniz n-algebra L is said to be unicentral if every central extension π :

K → L maps Z(K) onto Z(L):

Z(K) // //
��

��

Z(L)
��

��
Ker(π)

::

::
v

v
v

v
v

v
v

v
v

// // K
π // // L

Proposition 11. Let L be a perfect Leibniz n-algebra, then L is unicentral.

Proof. Lab = 0, so the Ganea map C : ⊕n

i=1
Ji → nHL1(L) given by the exact sequence

(6) associated to the central extension 0 → Z(L) → L → L/ZL → 0 is the zero map, so

Corollary 3.6 in [5] ends the proof. ⋄

Under certain hypothesis the composition of universal central extensions is again a uni-

versal central extension:

Corollary 6. Let 0 → N → H
τ
→ K → 0 and 0 → M → K

π
→ L → 0 be two central

extensions of Leibniz n-algebras. Then π ◦ τ : H ։ L is a universal central extension if and

only if τ : H ։ K is a universal central extension.

Proof. If π ◦ τ : H ։ L is a universal central extension, then nHL0(H) = nHL1(H) = 0

by Corollary 4, this Corollary also implies that 0 → N → H
τ
→ K → 0 is a universal central

extension.

Conversely, if 0 → N → H
τ
→ K → 0 is a universal central extension, then K is perfect

by Theorem 1, (2), then π ◦ τ : H ։ L is a central extension by Lemma 2. Now Corollary 4

ends the proof. ⋄

Proposition 12. For every perfect Leibniz n-algebra L there is the isomorphism L
Z(L)

∼=
uce(L)

Z(uce(L))
.

Proof. If L is perfect, then L is unicentral by Proposition 11, so in the following diagram

Z(uce(L)) // //
��

��

Z(L)
��

��
uce(L) // // L

the kernels of the horizontal morphisms coincide, and then the cokernels of the vertical mor-

phisms are isomorphic. ⋄

Remark: For a Leibniz n-algebra L satisfying that L/Z(L) is unicentral, then the central

extension 0 → Z(L) → L → L/Z(L) → 0 implies that Z(L/Z(L)) = 0 (see Corollary 3.8 in

[5]). Hence for a perfect Leibniz n-algebra L, L/Z(L) is perfect, so it is unicentral and by

Proposition 12 we have that L
Z(L)

∼=
uce(L)

Z(uce(L))
are centerless, that is its center is trivial.
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Corollary 7. Let L and L′ be two perfect Leibniz n-algebras. Then uce(L) ∼= uce(L′) if and

only if L/Z(L) ∼= L′/Z(L′).

Proof. If uce(L) ∼= uce(L′), then, by Proposition 12, L/Z(L) ∼= uce(L)/Z(uce(L)) ∼=

uce(L′)/Z(uce(L′)) ∼= L′/Z(L′).

Conversely, if L/Z(L) ∼= L′/Z(L′) then uce(L/Z(L)) ∼= uce(L′/Z(L′)). Corollary 6 applied

to the central extensions uce(L) ։ L and L ։ L/Z(L) yields the isomorphism uce(L/Z(L)) ∼=

uce(L), from which the result is derived. ⋄

Definition 5. We say that the perfect Leibniz n-algebras L and L′ are isogenous if uce(L) ∼=

uce(L′).

Remarks:

i) Isogeny classes are in an obvious bijection with centerless perfect Leibniz n-algebras: by

Corollary 7 two different centerless perfect Leibniz n-algebras have different universal

central extensions and they are non-isogenous, and in each isogeny class, namely the

class of a perfect Leibniz n-algebra L there is always an isogenous centerless perfect

Leibniz n-algebra L/Z(L).

ii) Isogeny classes are also in bijection with superperfect Leibniz n-algebras: in each isogeny

class, namely the class of a perfect Leibniz n-algebra L there is always an isogenous

superperfect Leibniz n-algebra uce(L), and two different superperfect Leibniz n-algebras

have different universal central extensions and are non-isogenous since a superperfect

Leibniz n-algebra L is centrally closed.

iii) Remark the fact that each isogeny class C is the set of central factors of its superperfect

representant K, and then C is an ordered set. In this ordered set there is a maximal

element, which is the superperfect representant, and a minimal element, which is the

centerless representant.

iv) A Leibniz n-algebra L is called capable if there exists a Leibniz n-algebra K such that

L ∼= K/Z(K). Capable Leibniz n-algebras are characterized in [5]. From Proposition 12

and Corollaries 3.2 and 3.8 in [5] we derive that centerless perfect Leibniz n-algebras

are equivalent to capable perfect Leibniz n-algebras.

The following holds for the centerless representant L and the superperfect representant

uce(L) of each isogeny class:

Corollary 8. Let L be a centerless perfect Leibniz n-algebra. Then Z(uce(L)) = nHL1(L)

and the universal central extension of L is 0 → Z(uce(L)) → uce(L) → L → 0

Proof. Since L is centerless then Proposition 12 implies that 0 → Z(uce(L)) → uce(L) →

L → 0 is isomorphic to the universal central extension of L. ⋄
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7 Lifting automorphisms and derivations

Lifting automorphisms: Let f : L′ ։ L be a covering (that means a central extension

with L′ a perfect Leibniz n-algebra). Consequently, L also is a perfect Leibniz n-algebra by

Lemma 3, so diagram (9) becomes into

nHL1(L
′)

��

��

nHL1(L)
��

��
uce(L′)

uce(f)
//

d′

����

uce(L)

d
����

L′
f

// // L

(10)

By Corollary 6, the central extension f.d′ : uce(L′) ։ L is universal. Moreover uce(f)

is a homomorphism from this universal central extension to the universal central extension

d̄ : uce(L) → L. Consequently uce(f) is an isomorphism (two universal central extensions of

L are isomorphic). So we obtain a covering d′.uce(f)−1 : uce(L) ։ L′ with kernel

C := Ker (d′.uce(f)−1) = uce(f)(Ker d′) = uce(f)(nHL1(L
′))

Theorem 2. (lifting of automorphisms) Let f : L′ ։ L be a covering.

a) Let be h ∈ Aut(L). Then there exists h′ ∈ Aut(L′) such that the following diagram

commutes

L′
��

h
′

����

f
// // L��

h

����
L′

f
// // L

(11)

if and only if the automorphism uce(h) of uce(L) satisfies uce(h)(C) = C.

In this case, h′ is uniquely determined by (11) and h′(Ker f) = Ker f .

b) With the notation in statement a), the map h 7→ h′ is a group isomorphism

{h ∈ Aut(L) : uce(h)(C) = C} → {g ∈ Aut(L′) : g(Ker f) = Ker(f)}

Proof. a) If h′ exists, then it is a homomorphism from the covering h.f to the covering f ,

so h′ is unique by Lemma 1. By applying the functor uce(−) to the diagram (11) we obtain

the following commutative diagram:

uce(L′)
��

uce(h′
)

����

uce(f)
// uce(L)

��

uce(h)

����
uce(L′)

uce(f)
// // uce(L)
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Hence

uce(h)(C) = uce(h).uce(f)(nHL1(L
′)) =

uce(f).uce(h′)(nHL1(L
′)) = uce(f)(nHL1(L

′)) = C

Conversely, from diagram (10) one derives that d = f.d′.uce(f)−1, and hence one obtains

the following diagram:

C // //

��

uce(L)
��

uce(h)

����

d′.uce(f)
−1

// L′

h
′

��

f
// // L��

h

����
C // // uce(L)

d′.uce(f)
−1

// L′
f

// // L

If uce(h)(C) = C, then d′.uce(f)−1.uce(h)(C) = d′.uce(f)−1(C) = 0, then there exists a

unique h′ : L′ → L′ such that h′.d′.uce(f)−1 = d′.uce(f)−1.uce(h). On the other hand,

h.f.d′.uce(f)−1 = f.d′.uce(f)−1.uce(h) = f.h′.d′.uce(f)−1, so h.f = f.h′.

Commutativity of (10) implies that h′(Kerf) = Kerf .

b) By a), the map is well-defined. It is a monomorphism by uniqueness in (a) and it is

an epimorphism, since every g ∈ Aut(L′) with g(Kerf) = Kerf induces an automorphism

h : L → L such that h.f = f.g. Hence, by a), g = h′ and uce(h)(C) = C. ⋄

Corollary 9. If L is a perfect Leibniz n-algebra, then the map

Aut(L) → {g ∈ Aut(uce(L)) : g(nHL1(L)) = nHL1(L)} : f 7→ uce(f)

is a group isomorphism. In particular, Aut(L) ∼= Aut(uce(L)) if L is centerless.

Proof. We apply statement b) in Theorem 2 to the covering d : uce(L) ։ L. In this case

C = 0 and uce(f)(0) = 0.

If A is centerless, then nHL1(L) = Z(uce(L)) by Corollary 8. Since any automorphism

leaves the center invariant, then the second claim is a consequence of the first one. ⋄

Lifting derivations: Let L be a Leibniz n-algebra and d ∈ Der(L). The linear map

ϕ : L⊗n → L⊗n, ϕ(x1⊗· · ·⊗xn) =
∑

n

i=1
x1⊗· · ·⊗xi−1⊗d(xi)⊗xi+1⊗· · ·⊗xn, leaves invariant

the submodule I and hence it induces a linear map uce(d) : uce(L) −→ uce(L), {X1, . . . ,Xn} 7→

{d(X1),X2, . . . ,Xn}+ {X1, d(X2), . . . ,Xn}+ · · ·+ {X1,X2, . . . , d(Xn)} which commutes the

following diagram:

uce(L)

d
����

uce(d)
// uce(L)

d
����

L
d

// L

In particular, uce(d) leaves Ker (d) invariant. Moreover, a tedious but straightforward

verification stands that uce(d) is a derivations of uce(L). On the other hand,

uce : Der(L) → {δ ∈ Der(uce(L)) : δ(nHL1(L)) ⊆ nHL1(L)} : d 7→ uce(d)
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is a homomorphism of Lie algebras (Der(L) is a Lie algebra, see p. 193 in [8]). Its kernel is

contained in the subalgebra of those derivations vanishing on [Ln]. It is also verified that

uce(ad[x11,...,xn1]⊗···⊗[x1,n−1,...,xn,n−1]
) = ad{x11,...,xn1}⊗···⊗{x1,n−1,...,xn,n−1}

where adX1⊗···⊗Xn−1
: L → L,X 7→ [X,X1, . . . ,Xn−1] and

ad{x11,...,xn1}⊗···⊗{x1,n−1,...,xn,n−1} : uce(L) → uce(L)

{z1, . . . , zn} 7→ [{z1, . . . , zn}, {x11, . . . , xn1}, . . . ,

{x1,n−1, . . . , xn,n−1}].

.

Hence uce(ad
d(X1)⊗···⊗d(Xn−1)

) = adX1⊗···⊗Xn−1
, being Xi = {xi1, . . . , xin}, i = 1, . . . , n − 1,

and uce(ad
[Ln]⊗n−1

... ⊗[Ln]
) = IDer(uce(L)), where IDer(uce(L)) are the inner derivations

dX1⊗···⊗Xn−1
: uce(L) → uce(L), {z1, . . . , zn} 7→ [{z1, . . . , zn},X1, . . . ,Xn−1],

with Xi = {xi1, . . . , xin} ∈ uce(L), i = 1, . . . , n − 1.

The functorial properties of the functor uce(−) concerning derivations are described in the

following

Lemma 5. Let f : L′ → L be a homomorphism of Leibniz n-algebras, let d ∈ Der(L) and

d′ ∈ Der(L′) be such that f.d′ = d.f , then uce(f).uce(d′) = uce(d).uce(f)

Proof. A straightforward computation on the typical elements {x1, . . . , xn} of uce(L)

shows the commutativity. ⋄

Theorem 3. (lifting of derivations) Let f : L′ ։ L be a covering. We denote C =

uce(f)(nHL1(L
′)) j nHL1(L).

a) A derivation d of L lifts to a derivation d′ of L′ satisfying d.f = f.d′ if and only if the

derivation uce(d) of uce(L) satisfies uce(d)(C) j C. In this case, d′ is uniquely determined

and leaves Ker f invariant.

b) The map

{d ∈ Der(L) : uce(d)(C) j C} → {δ ∈ Der(L′) : δ(Ker(f)) j Ker(f)}

d 7−→ d′

is an isomorphism of Lie algebras mapping IDer(L) onto IDer(L′).

c) For the covering d : uce(L) ։ L, the map

uce : Der(L) → {δ ∈ Der(uce(L)) : δ(nHL1(L)) j nHL1(L)}

is an isomorphism preserving inner derivations. If L is centerless, then Der(L) ∼= Der(uce(L)).
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Proof. a) Assume the existence of a derivation d′ such that f.d′ = d.f , then by Lemma 5

we have that

uce(d)(C) = uce(d).uce(f)(nHL1(L
′)) =

uce(f).uce(d′)(nHL1(L
′)) j uce(f)(nHL1(L

′)) = C

The converse is parallel to the proof of Theorem 2 a) having in mind that d is a derivation if

and only if Id+ d is an automorphism.

b) The K-vector space Der(L) is endowed with a structure of Lie algebra by means of the

bracket [d1, d2] = d1.d2 − d2.d1. Now the proof easily follows from a).

c) Apply b) to the covering d : uce(L) ։ L. Observe that C = 0 in this situation.

If L is centerless, then by Corollary 8 we have that nHL1(L) = Z(uce(L)) and a derivation

of L leaves the center invariant, so the isomorphism follows from b). ⋄
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Fine gradings on some exceptional algebras

Cristina Draper∗ Cándido Mart́ın†

Abstract

We describe the fine gradings, up to equivalence, on the exceptional Lie algebras of

least dimensions, g2 and f4.

1 Introduction

The research activity around gradings on Lie algebras has grown in the last years. Many

works on the subject could be mentioned but, for briefness, we shall cite [2] and [5]. The

most known fine grading on a simple Lie algebra, that is, the decomposition in root spaces,

has shown to have many applications to the Lie algebras theory and to representation theory.

So, it seems that other fine gradings could give light about different aspects of these algebras.

This paper is based in [3] and [4]. In the first one we classify up to equivalence all

the gradings on g2, and, in the second one all the nontoral gradings on f4. In this last

algebra we rule out the study of the toral gradings because they provide essentially the

same perspective of the algebra than the root space decomposition. The gradings which

summarize the information about all the ways in which an algebra can be divided are the fine

gradings, because any grading is obtained by joining homogeneous spaces of a fine grading.

Our purpose in these pages is provide a complete description of them, in the cases of g2 and

f4. This objective does not need so technical tools as those used in the above works. These

technicalities are only needed to show that, effectively, the described gradings will cover all

the possible cases.

Besides we will describe the fine gradings on the Cayley algebra and on the Albert algebra,

motivated by their close relationship to g2 and f4 respectively.

2 About gradings and automorphisms

Let F be an algebraically closed field of characteristic zero, which will be used all through this

work. If V is an F -algebra and G an abelian group, we shall say that the decomposition V =

∗Departamento de Matemática Aplicada, Campus de El Ejido, S/N, 29071 Málaga, Spain.
†Departamento de Álgebra, Geometŕıa y Topoloǵıa, Campus de Teatinos, S/N. Facultad de Ciencias, Ap.

59, 29080 Málaga, Spain. Supported by the Spanish MCYT projects MTM2004-06580-C02-02 and MTM2004-

08115-C04-04, and by the Junta de Andalućıa PAI projects FQM-336 and FQM-1215
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⊕g∈GVg is a G-grading on V whenever for all g, h ∈ G, VgVh ⊂ Vgh. The set {g ∈ G | Vg 6= 0}

is called the support of the grading and denoted by Supp(G). We shall always suppose that G

is generated by Supp(G). We say that two gradings V = ⊕g∈GXg = ⊕h∈HYh are equivalent

if the sets of homogeneous subspaces are the same up to isomorphism, that is, there are an

automorphism f ∈ aut(V ) and a bijection between the supports α : Supp(G) → Supp(H)

such that f(Xg) = Yα(g) for any g ∈ Supp(G). A convenient invariant for equivalence is

that of type. Suppose we have a grading on a finite-dimensional algebra, then for each

positive integer i we will denote by hi the number of homogeneous components of dimension

i. Besides we shall say that the grading is of type (h1, h2, . . . , hl), for l the greatest index

such that hl 6= 0. Of course the number
∑

i
ihi agrees with the dimension of the algebra.

There is a close relationship between group gradings and automorphisms. More precisely,

if {f1, . . . , fn} ⊂ aut(V ) is a set of commuting semisimple automorphisms, the simultaneous

diagonalization becomes a group grading, and conversely, given V = ⊕g∈GVg a G-grading, the

set of automorphisms of V such that every Vg is contained in some eigenspace is an abelian

group formed by semisimple automorphisms.

Consider an F -algebra V , a G-grading V = ⊕g∈GXg and an H-grading V = ⊕h∈HYh.

We shall say that the H-grading is a coarsening of the G-grading if and only if each nonzero

homogeneous component Yh with h ∈ H is a direct sum of some homogeneous components

Xg. In this case we shall also say that the G-grading is a refinement of the H-grading. A

group grading is fine if its unique refinement is the given grading. In such a case the group

of automorphisms above mentioned is a maximal abelian subgroup of semisimple elements,

usually called a MAD (”maximal abelian diagonalizable”). It is convenient to observe that

the number of conjugacy classes of MADs groups of aut(V ) agrees with the number of equiv-

alence classes of fine gradings on V . Our objective is to describe the fine gradings, up to

equivalence, on the exceptional Lie algebras g2 and f4.

3 Gradings on C and Der(C)

Under the hypotesis about the ground field there is only one isomorphy class of Cayley

algebras so that we take one and forever any representative C of the class. Consider also

g2 := Der(C). The Lie algebra g2 is generated by the set of derivations {Dx,y | x, y ∈ C},

where

Dx,y = [lx, ly] + [lx, ry] + [rx, ry] ∈ Der(C)

for lx and rx the left and right multiplication operators in C.

In our context a grading on an algebra is always induced by a set of commuting diagonal-

izable automorphisms of the algebra. Thus, an important tool for translating gradings on C
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to gradings on g2 (and conversely) is given by the isomorphism of algebraic groups

Ad: aut(C) → aut(g2)

f 7→ Ad(f); Ad(f)(d) := fdf−1.

Since Ad(f)(Dx,y) = Df(x),f(y), the grading induced on g2 by the grading C = ⊕g∈GCg

is given by g2 = L = ⊕g∈GLg with Lg =
∑

g1+g2=g
DCg1

,Cg2
. As pointed out in [3] this

translation procedure has the drawback that equivalent gradings on C are not necessarily

transformed into equivalent gradings on g2. But of course isomorphic gradings are indeed

transformed into isomorphic ones and reciprocally. Moreover two fine equivalent gradings on

C are transformed into fine equivalent gradings on g2 and reciprocally.

3.1 Gradings on the Cayley algebra

Next we fix a basis of C given by:

B = (e1, e2, u1, u2, u3, v1, v2, v3).

This is called the standard basis of the Cayley algebra C, and is defined for instance in [3,

Section 3] by the following relations

e1uj = uj = uje2,

e2vj = vj = vje1,

uiuj = vk = −ujui,

−vivj = uk = vjvi,

uivi = e1,

viui = e2,

where e1 and e2 are orthogonal idempotents, (i, j, k) is any cyclic permutation of (1, 2, 3), and

the remaining relations are null. This algebra is isomorphic to the Zorn matrices algebra. For

further reference we recall here that the standard involution x 7→ x̄ of C is the one permuting

e1 and e2 and making x̄ = −x for x = ui or vj (i, j = 1, 2, 3). This enable us to define the

norm n : C → F by n(x) := xx̄, the trace map tr : C → F by tr(x) := x+ x̄, and the subspace

C0 of all trace zero elements. This is f -invariant for any f ∈ aut(C).

The gradings on C are computed in [6] in a more general context. In particular, up to

equivalence, there are only two fine gradings on C. These are:

a) The Z
2-toral grading given by

C0,0 = 〈e1, e2〉

C0,1 = 〈u1〉 C1,1 = 〈u2〉 C−1,−2 = 〈u3〉

C0,−1 = 〈v1〉 C−1,−1 = 〈v2〉 C1,2 = 〈v3〉

whose homogeneous elements out of the zero component C0,0 have zero norm.

b) The Z
3

2
-nontoral grading given by

C000 = 〈e1 + e2〉 C001 = 〈e1 − e2〉

C100 = 〈u1 + v1〉 C010 = 〈u2 + v2〉

C101 = 〈u1 − v1〉 C011 = 〈u2 − v2〉
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C110 = 〈u3 + v3〉 C111 = 〈u3 − v3〉 (1)

This grading verifies that every homogeneous element is invertible.

Any other group grading on C is obtained by coarsening of these fine gradings.

3.2 Gradings on g2

Applying the previous procedure for translating gradings from C to g2 = L we can obtain the

fine gradings on this algebra. These are the following:

a) The Z
2-toral grading given by

L0,0 = 〈Du1,v1
,Du2,v2

,Du3,v3
〉

L1,0 = 〈Dv1,u2
〉 L0,1 = 〈Dv2,v3

〉 L1,1 = 〈Dv1,v3
〉

L1,2 = 〈Du1,u2
〉 L1,3 = 〈Du1,v3

〉 L2,3 = 〈Du2,v3
〉

L−1,0 = 〈Du1,v2
〉 L0,−1 = 〈Du2,u3

〉 L−1,−1 = 〈Du1,u3
〉

L−1,−2 = 〈Dv1,v2
〉 L−1,−3 = 〈Dv1,u3

〉 L−2,−3 = 〈Dv2,u3
〉

This is of course the root decomposition relative to the Cartan subalgebra h = L0,0. Moreover,

if Φ is the root system relative to h, and we take ∆ = {α1, α2} the roots related to Dv1,u2

and Dv2,v3
respectively, it is clear that ∆ is a basis of Φ such that Ln1,n2

= Ln1α1+n2α2
.

All the homogeneous elements, except the ones belonging to L0,0, are nilpotent.

b) The Z
3

2
-nontoral grading is given by

L0,0,0 = 0 L0,0,1 = h

L0,1,0 = 〈c + f,B + G〉 L0,1,1 = 〈−c + f,B − G〉

L1,1,0 = 〈A + D, b + g〉 L1,1,1 = 〈−A + D,−b + g〉

L1,0,0 = 〈a + d,C + F 〉 L1,0,1 = 〈−a + d,C − F 〉

if we denote by A := Dv1,u2
, a := Dv2,v3

, c := Dv1,v3
, b := Du1,u2

, G := Du1,v3
, F := Du2,v3

,

D := Du1,v2
, d := Du2,u3

, f := Du1,u3
, g := Dv1,v2

, B := Dv1,u3
and C := Dv2,u3

, that is, a

collection of root vectors corresponding to the picture



















1
1

1
1
1

1
1
1

1
1
1

1
1

1

1
1
1

1
1
1

1
1

1
1
1

1



















F

A

B

C

D

G

a

bc

d

g f

Notice that each of the nonzero homogeneous components is a Cartan subalgebra, that is,

every homogeneous element is semisimple.
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4 Gradings on J and Der(J)

The Albert algebra is the exceptional Jordan algebra of dimension 27, that is,

J = H3(C) = {x = (xij) ∈ M3(C) | xij = xji}

with product x · y := 1

2
(xy + yx), where juxtaposition stands for the usual matrix product.

Denote, if x ∈ C, by

x(1) =






0 0 0

0 0 x

0 x 0




 x(2) =






0 0 x̄

0 0 0

x 0 0




 x(3) =






0 x 0

x̄ 0 0

0 0 0






and denote by E1, E2 and E3 the three orthogonal idempotents given by the elementary

matrices e11, e22 and e33 respectively. The multiplication table of the commutative algebra J

may be summarized in the following relations:

E2

i
= Ei, Ei a(i) = 0, a(i)b(i) = 1

2
tr(ab̄)(Ej + Ek),

EiEj = 0, Ei a(j) = 1

2
a(j), a(i)b(j) = 1

2
(b̄ā)(k),

where (i, j, k) is any cyclic permutation of (1, 2, 3) and a, b ∈ C.

We fix for further reference our standard basis of the Albert algebra:

B = (E1, E2, E3, e
(3)

1
, e

(3)

2
, u

(3)

1
, u

(3)

2
, u

(3)

3
, v

(3)

1
, v

(3)

2
, v

(3)

3
, e

(2)

2
, e

(2)

1
,−u

(2)

1
,−u

(2)

2
,

−u
(2)

3
,−v

(2)

1
,−v

(2)

2
,−v

(2)

3
, e

(1)

1
, e

(1)

2
, u

(1)

1
, u

(1)

2
, u

(1)

3
, v

(1)

1
, v

(1)

2
, v

(1)

3
).

The Lie algebra f4 = Der(J) is generated by the set of derivations {[Rx, Ry] | x, y ∈ C},

where Rx is the multiplication operator. As in the case of C and g2 we also have an algebraic

group isomorphism relating automorphisms of the Albert algebra J and of f4. This is given

by

Ad: aut(J) → aut(f4)

f 7→ Ad(f); Ad(f)(d) := fdf−1.

This provides also a mechanism to translate gradings from J to f4 and conversely. Since

Ad(f)([Rx, Ry]) = [Rf(x), Rf(y)], the grading induced on f4 by J = ⊕g∈GJg is given by

f4 = L = ⊕g∈GLg with Lg =
∑

g1+g2=g
[RJg1

, RJg2
].

4.1 Gradings on the Albert algebra

There are four fine gradings on J , all of them quite natural if we look at them from a suitable

perspective.

a) The Z
4-toral grading on J.
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Define the maximal torus T0 of F4 whose elements are the automorphisms of J which are

diagonal relative to B. This is isomorphic to (F×)4 and it is not difficult to check that the

matrix of any such automorphism relative to B is

diag
(

1, 1, 1, α,
1

α
, β, γ,

δ2

αβ γ
,
1

β
,
1

γ
,
α β γ

δ2
, δ,

1

δ
,
α β

δ
,
α γ

δ
,

δ

β γ
,

δ

αβ
,

δ

α γ
,
β γ

δ
,
δ

α
,

α

δ
,
β

δ
,
γ

δ
,

δ

α β γ
,
δ

β
,
δ

γ
,
α β γ

δ

)

for some α, β, γ, δ ∈ F×. Define now tα,β,γ,δ as the automorphism in T0 whose matrix relative

to B is just the above one. Notice that we have a Z
4-grading on J such that tα,β,γ,δ acts in

J(n1,n2,n3,n4)
with eigenvalue αn1βn2γn3δn4 . This is just

J0,0,0,0 = 〈E1, E2, E3〉

J1,0,0,0 = 〈e
(3)

1
〉 J0,0,0,−1 = 〈e

(2)

1
〉 J−1,0,0,1 = 〈e

(1)

1
〉

J−1,0,0,0 = 〈e
(3)

2
〉 J0,0,0,1 = 〈e

(2)

2
〉 J1,0,0,−1 = 〈e

(1)

2
〉

J0,1,0,0 = 〈u
(3)

1
〉 J1,1,0,−1 = 〈u

(2)

1
〉 J0,1,0,−1 = 〈u

(1)

1
〉

J0,0,1,0 = 〈u
(3)

2
〉 J1,0,1,−1 = 〈u

(2)

2
〉 J0,0,1,−1 = 〈u

(1)

2
〉

J−1,−1,−1,2 = 〈u
(3)

3
〉 J0,−1,−1,1 = 〈u

(2)

3
〉 J−1,−1,−1,1 = 〈u

(1)

3
〉

J0,−1,0,0 = 〈v
(3)

1
〉 J−1,−1,0,1 = 〈v

(2)

1
〉, J0,−1,0,1 = 〈v

(1)

1
〉

J0,0,−1,0 = 〈v
(3)

2
〉 J−1,0,−1,1 = 〈v

(2)

2
〉 J0,0,−1,1 = 〈v

(1)

2
〉

J1,1,1,−2 = 〈v
(3)

3
〉 J0,1,1,−1 = 〈v

(2)

3
〉 J1,1,1,−1 = 〈v

(1)

3
〉.

Recall from Schafer ([9, (4.41), p. 109]) that any x ∈ J satisfies a cubic equation x3 −

Tr(x)x2 + Q(x)x−N(x)1 = 0 where Tr(x),Q(x),N(x) ∈ F . Notice that again in this grading

every homogeneous element b /∈ J0,0,0,0 verifies that N(b) = 0.

b) The Z
5

2
-nontoral grading on J.

Define H ≡ H3(F ) = {x ∈ M3(F ) | x = xt} and K ≡ K3(F ) = {x ∈ M3(F ) | x = −xt}.

There is a vector space isomorphism

J = H ⊕ K ⊗ C0 (2)

given by Ei 7→ Ei, 1(i) 7→ 1(i) ∈ H and for x ∈ C0, x(i) 7→ (ejk − ekj) ⊗ x ∈ K ⊗ C0, being

(i, j, k) any cyclic permutation of (1, 2, 3) and eij ∈ M3(F ) the elementary (i, j)-matrix. Thus

J is a Jordan subalgebra of M3(F )⊗C with the product (c⊗x) · (d⊗ y) = 1

2
((c⊗x)(d⊗ y)+

(d ⊗ y)(c ⊗ x)) for (c ⊗ x)(d ⊗ y) = cd ⊗ xy.

This way of looking at J allows us to observe that the gradings on the Cayley algebra C,

so as the gradings on the Jordan algebra H3(F ), induce gradings on J , because aut(C) and

aut(H3(F )) are subgroups of aut(J). Moreover, both kind of gradings are compatible. To be

more precise, consider a G1-grading on the Jordan algebra H = ⊕g∈G1
Hg. This grading will

come from a grading on M3(F ) such that the Lie algebra K has also an induced grading ([7,
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p. 184-185]). Taking a G2-grading on the Cayley algebra C = ⊕g∈G2
Cg, we get a G1 × G2-

grading on J given by

Jg1,e = Hg1
⊕ Kg1

⊗ (C0)e, Jg1,g2
= Kg1

⊗ (C0)g2
, (3)

for g1 ∈ G1, g2 ∈ G2 and e the zero element in any group.

Take now as G2-grading on g2 the Z
3

2
-nontoral grading (1). Note that (C0)e = 0, so that

Jg1,e = Hg1
. And take as G1-grading on H3(F ), the Z

2

2
-grading given by

He = 〈E1, E2, E3〉 H0,1 = 〈1(1)〉

H1,0 = 〈1(2)〉 H1,1 = 〈1(3)〉,

which induces in K the Z
2

2
-grading such that

Ke = 0 K0,1 = 〈e12 − e21〉 K1,1 = 〈e23 − e32〉 K1,0 = 〈e13 − e31〉.

Combining them as above, we find a Z
5

2
-grading on J with dimensions

dim Je,e = dim He = 3,

dim Je,g2
= 0,

dim Jg1,e = dim Hg1
= 1,

dim Jg1,g2
= dim Kg1

⊗ (C0)g2
= 1,

which is of type (24, 0, 1). The grading so obtained turns out to be, after using the isomor-

phism (2),

Je,e = 〈E1, E2, E3〉

Je,g = 0

J1,1,g = (Cg)
(1)

J1,0,g = (Cg)
(2)

J0,1,g = (Cg)
(3),

for g ∈ Z
3

2
and Cg again given by (1).

c) The Z
3

2
× Z-nontoral grading on J.

If p ∈ SO(3, F ), denote by In(p) the automorphism in aut(H3(F )) given by In(p)(x) =

pxp−1. It is well known that a maximal torus of SO(3) is given by the matrices of the form

pα,β :=






1 0 0

0 α β

0 −β α






with α, β ∈ F such that α2 +β2 = 1. Thus, the set of all τα,β = In(pα,β) is a maximal torus of

aut(H3(F )) and the set of eigenvalues of τα,β is Sα,β = {(α+iβ)n | n = 0,±1,±2}. Supposing
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|Sα,β| = 5, we find for τα,β the following eigenspaces

H2 = 〈−iE2 + iE3 + 1(1)〉

H1 = 〈−i(3) + 1(2)〉

H0 = 〈E1, E2 + E3〉

H−1 = 〈i(3) + 1(2)〉

H−2 = 〈iE2 − iE3 + 1(1)〉,

where the subindex n indicates that the eigenvalue of τα,β is (α+ iβ)n. This gives a Z-grading

on H3(F ), which induces the Cartan grading on K = Der(H3(F )), a Lie algebra of type a1.

An equivalent, but more comfortable, way of looking at these gradings, is:

H2 = 〈e23〉 K2 = 0

H1 = 〈e13 + e21〉 K1 = 〈e13 − e21〉

He = 〈E1, E2 + E3〉 Ke = 〈E2 − E3〉

H−1 = 〈e12 + e31〉 K−1 = 〈e12 − e31〉

H−2 = 〈e32〉 K−2 = 0

(4)

When mixing them with the Z
3

2
-grading on C as explained in (3), we obtain a Z×Z

3

2
-fine

grading on J , whose dimensions are

dimJ2,e = dimH2 = 1

dimJ1,e = dimH1 = 1

dimJe,e = dim He = 2

dimJ2,g = 0

dimJ1,g = dim K1 ⊗ (C0)g = 1

dimJe,g = dim Ke ⊗ (C0)g = 1,

for g ∈ Z
3

2
. It is obviously a grading of type (25, 1). A detailed description of the components

could be obtained directly by using (3).

d) The Z
3

3
-nontoral grading on J.

There is another way in which the Albert algebra can be constructed, the so called Tits

construction described in [8, p. 525]. Let us start with the F -algebra A = M3(F ) and denote

by TrA,QA,NA : A → F the coefficients of the generic minimal polynomial such that x3 −

TrA(x)x2 + QA(x)x − NA(x)1 = 0 for all x ∈ A. Define also the quadratic map ♯ : A → A

by x♯ := x2 − TrA(x)x + QA(x)1. For any x, y ∈ A denote x × y := (x + y)♯ − x♯ − y♯, and

x∗ := 1

2
x × 1 = 1

2
TrA(x)1 − 1

2
x. Finally consider the Jordan algebra A+ whose underlying

vector space agrees with that of A but whose product is x · y = 1

2
(xy + yx). Next, define in

A3 := A × A × A the product

(a1, b1, c1)(a2, b2, c2) :=
(
a1 · a2 + (b1c2)

∗ + (b2c1)
∗, a∗

1
b2 + a∗

2
b1 + 1

2
(c1 × c2), c2a

∗
1
+ c1a

∗
2
+ 1

2
(b1 × b2)

)
.
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Then A3 with this product is isomorphic to J = H3(C).

This construction allows us to extend any f automorphism of A to the automorphism

f• of J = A3 given by f•(x, y, z) := (f(x), f(y), f(z)). As a further consequence we will

be able to get gradings on J coming from gradings on the associative algebra A via this

monomorphism of algebraic groups. Thus, consider the Z
2

3
-grading on A produced by the

commuting automorphisms f := In(p) and g := In(q), for p = diag(1, ω, ω2), being ω a

primitive cubic root of the unit and

q =

(
0 1 0

0 0 1

1 0 0

)

.

The simultaneous diagonalization of A relative to {f, g} yields A = ⊕2

i,j=0
Ai,j where

A00 = 〈1A〉, A01 = 〈ω2e11 − ωe22 + e33〉, A02 = 〈−ωe11 + ω2e22 + e33〉,

A10 = 〈e13 + e21 + e32〉, A11 = 〈ω2e13 − ωe21 + e32〉, A12 = 〈−ωe13 + ω2e21 + e32〉,

A20 = 〈e12 + e23 + e31〉, A21 = 〈ω2e12 − ωe23 + e31〉, A22 = 〈−ωe12 + ω2e23 + e31〉.

If we make a simultaneous diagonalization of J relative to the automorphisms {f•, g•} we

get the toral Z
2

3
-grading J = ⊕2

i,j=0
A3

i,j
. Now consider a third order three automorphism

φ ∈ aut(J) given by φ(a0, a1, a2) = (a0, ωa1, ω
2a2). It is clear that {f•, g•, φ} is a com-

mutative set of semisimple automorphisms of J , producing the simultaneous diagonalization

J = ⊕2

i,j,k=0
Ji,j,k where

Ji,j,0 = Aij × 0 × 0

Ji,j,1 = 0 × Aij × 0

Ji,j,2 = 0 × 0 × Aij ,

so that we have 27 one-dimensional homogeneous components. In particular this Z
3

3
-grading

on J is fine and nontoral (otherwise J0,0,0 would contain three orthogonal idempotents).

Observe also that the homogeneous elements are invertible.

4.2 Gradings on f4

Recall that the isomorphism Ad: aut(J) ∼= aut(f4), introduced at the beginning of Section 4,

provides a mechanism for translating gradings from J to f4 and conversely. Therefore, there

will be four fine gradings on f4 too, over Z
4, Z

5

2
, Z

3

2
× Z and Z

3

3
.

a) The Z
4-toral grading on f4.

Denote by ωi the i-th element in the basis B. The Z
4-toral grading on J = ⊕g∈Z4Jg
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induces a grading on f4 = L = ⊕g∈Z4Lg by Lg =
∑

g1+g2=g
[RJg1

, RJg2
]:

L0,0,0,0 = 〈[Rω4 , Rω5 ], [Rω6 , Rω9 ], [Rω7 , Rω10 ], [Rω12 , Rω13 ]〉

L1,0,0,0 = 〈[Rω1 , Rω4 ]〉 L0,0,0,1 = 〈[Rω1 , Rω13 ]〉 L0,1,1,0 = 〈[Rω6 , Rω7 ]〉

L−1,−2,−1,2 = 〈[Rω8 , Rω9 ]〉 L1,0,0,−1 = 〈[Rω2 , Rω21 ]〉 L0,1,1,−1 = 〈[Rω1 , Rω19 ]〉

L−1,−1,0,2 = 〈[Rω7 , Rω8 ]〉 L−1,−1,0,1 = 〈[Rω1 , Rω17 ]〉 L1,1,1,−1 = 〈[Rω2 , Rω27 ]〉

L0,1,1,−2 = 〈[Rω5 , Rω11 ]〉 L0,−1,0,1 = 〈[Rω2 , Rω25 ]〉 L1,1,1,−2 = 〈[Rω1 , Rω11 ]〉

L−1,−1,0,0 = 〈[Rω5 , Rω9 ]〉 L0,−1,0,0 = 〈[Rω1 , Rω9 ]〉 L2,1,1,−2 = 〈[Rω4 , Rω11 ]〉

L−1,0,1,0 = 〈[Rω5 , Rω7 ]〉 L0,0,1,0 = 〈[Rω1 , Rω7 ]〉 L1,−1,0,0 = 〈[Rω4 , Rω9 ]〉

L0,0,1,−1 = 〈[Rω2 , Rω23 ]〉 L1,0,1,0 = 〈[Rω4 , Rω7 ]〉 L1,0,1,−1 = 〈[Rω1 , Rω15 ]〉

L1,0,1,−2 = 〈[Rω9 , Rω11 ]〉 L1,1,2,−2 = 〈[Rω7 , Rω11 ]〉 L0,−1,1,0 = 〈[Rω7 , Rω9 ]〉

L−1,0,0,0 = 〈[Rω1 , Rω5 ]〉 L0,0,0,−1 = 〈[Rω1 , Rω12 ]〉 L0,−1,−1,0 = 〈[Rω9 , Rω10 ]〉

L1,2,1,−2 = 〈[Rω6 , Rω11 ]〉 L−1,0,0,1 = 〈[Rω2 , Rω20 ]〉 L0,−1,−1,1 = 〈[Rω1 , Rω16 ]〉

L1,1,0,−2 = 〈[Rω10 , Rω11 ]〉 L1,1,0,−1 = 〈[Rω1 , Rω14 ]〉 L−1,−1,−1,1 = 〈[Rω2 , Rω24 ]〉

L0,−1,−1,2 = 〈[Rω4 , Rω8 ]〉 L0,1,0,−1 = 〈[Rω2 , Rω22 ]〉 L−1,−1,−1,2 = 〈[Rω1 , Rω8 ]〉

L1,1,0,0 = 〈[Rω4 , Rω6 ]〉 L0,1,0,0 = 〈[Rω1 , Rω6 ]〉 L−2,−1,−1,2 = 〈[Rω5 , Rω8 ]〉

L1,0,−1,0 = 〈[Rω4 , Rω10 ]〉 L0,0,−1,0 = 〈[Rω1 , Rω10 ]〉 L−1,1,0,0 = 〈[Rω5 , Rω6 ]〉

L0,0,1,−1 = 〈[Rω2 , Rω26 ]〉 L−1,0,−1,0 = 〈[Rω5 , Rω10 ]〉 L−1,0,−1,1 = 〈[Rω1 , Rω18 ]〉

L−1,0,−1,2 = 〈[Rω6 , Rω8 ]〉 L−1,−1,−2,2 = 〈[Rω8 , Rω10 ]〉 L0,1,−1,0 = 〈[Rω6 , Rω10 ]〉.

This is of course the root decomposition relative to the Cartan subalgebra h = L0,0,0,0. If Φ

is the root system relative to h, and we take ∆ = {α1, α2, α3, α4} the set of roots related to

[Rω8
, Rω9

], [Rω6
, Rω7

], [Rω1
, Rω13

] and [Rω1
, Rω4

] respectively, it is straightforward to check

that ∆ is a basis of Φ such that the root space Ln1α1+n2α2+n3α3+n4α4
and the homogeneous

component Ln4−n1,n2−n1,n2−n1,n3+2n1
coincide.

b) The Z
5

2
-nontoral grading on f4.

We got the Z
5

2
-grading on J by looking at J as H ⊕ K ⊗ C0. But f4 is its algebra of

derivations, hence there should exist some model of f4 in terms of H, K and C. In fact we

can see f4 as

L = Der(C) ⊕ K ⊕ H0 ⊗ C0

identifying Der(H3(F )) in a natural way with K in the known Tits unified construction for

the Lie exceptional algebras (for instance, see [9, p. 122]).

Consider a G1-grading on the Jordan algebra H = ⊕g∈G1
Hg. This grading will come from

a grading on M3(F ) so that the Lie algebra K has also an induced grading. Take now the Z
3

2
-

grading on the Cayley algebra C = ⊕
g∈G2=Z3

2

Cg and the induced grading Der(C) = ⊕g∈G2
Ng.

All this material induces a G1 × G2-grading on L by means of

Lg1,e = Kg1
, Le,g2

= Ng2
⊕ (H0)e ⊗ (C0)g2

, Lg1,g2
= (H0)g1

⊗ (C0)g2
, (5)

which is just the grading induced by the G1 × G2-grading on J described by (3).

In the case of the Z
5

2
-grading recall that G1 = Z

2

2
,

He = 〈E1, E2, E3〉 H0,1 = 〈e12 + e21〉 H1,1 = 〈e23 + e32〉 H1,0 = 〈e13 + e31〉

Ke = 0 K0,1 = 〈e12 − e21〉 K1,1 = 〈e23 − e32〉 K1,0 = 〈e13 − e31〉

88



and dim(C0)g = 1, dimNg = 2 for all g ∈ Z
3

2
\ {(0, 0, 0)}. Therefore

dim Le,e = 0,

dim Le,g2
= dim Ng2

+ dim(H0)e ⊗ (C0)g2
= 4,

dim Lg1,e = dim Kg1
= 1,

dim Lg1,g2
= dim(H0)g1

⊗ (C0)g2
= 1,

and so the grading is of type (24, 0, 0, 7), with all the homogeneous elements semisimple.

c) The Z
3

2
× Z-nontoral grading on f4.

We obtain the grading by the method just explained, with the G1 = Z-grading on H and

K described in (4), and by crossing it with the Z
3

2
-grading on C. In such a way we get a

Z
3

2
× Z-grading of type (31, 0, 7), since

dimL2,e = 0,

dimL1,e = dim K1 = 1,

dimLe,e = dimKe = 1,

dimL2,g = dim H2 ⊗ (C0)g = 1,

dimL1,g = dim H1 ⊗ (C0)g = 1,

dimLe,g = dim Ng + dim(H0)e ⊗ (C0)g = 3,

and Lg is dual to L−g, so they have the same dimensions.

The detailed description of the components of the last two gradings can be made by using

(5), but it is not worth to be developed here.

d) The Z
3

3
-nontoral grading on f4.

The easiest way to visualize this grading intrinsically, that is, with no reference to a

particular basis or computer methods, is probably looking at the automorphisms inducing

the grading. Adams gave a construction of the Lie algebra e6 from three copies of a2 ([1,

p. 85]). Once the automorphisms have been given in e6 we will restrict them to f4.

Given a 3-dimensional F -vector space X in which a nonzero alternate trilinear map

det: X × X × X → F has been fixed, we can identify the exterior product with the dual

space by X∧X
≈
→ X∗ such that x∧y 7→ det(x, y,−) ∈ hom(X,F ). And in a dual way we can

identify X∗ ∧ X∗ with X through det∗, the dual map of det. Consider three 3-dimensional

vector spaces Xi (i = 1, 2, 3), and define:

L = sl(X1) ⊕ sl(X2) ⊕ sl(X3) ⊕ X1 ⊗ X2 ⊗ X3 ⊕ X∗
1 ⊗ X∗

2 ⊗ X∗
3 ,

endowed with a Lie algebra structure with the product

[⊗fi,⊗xi] =
∑

k=1,2,3

i6=j 6=k

fi(xi)fj(xj)
(
fk(−)xk − 1

3
fk(xk)idXk

)

[⊗xi,⊗yi] = ⊗(xi ∧ yi)

[⊗fi,⊗gi] = ⊗(fi ∧ gi)
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for any xi, yi ∈ Xi, fi, gi ∈ X∗
i
, with the wedge products as above, and where the actions of

the Lie subalgebra
∑

sl(Xi) on X1⊗X2⊗X3 and X∗
1
⊗X∗

2
⊗X∗

3
are the natural ones (the i-th

simple ideal acts on the i-th slot). The Lie algebra L is isomorphic to e6. The decomposition

L = L0̄ ⊕ L1̄ ⊕ L2̄ is a Z3-grading for L0̄ = sl(X1) ⊕ sl(X2) ⊕ sl(X3), L1̄ = X1 ⊗ X2 ⊗ X3

and L2̄ = X∗
1
⊗ X∗

2
⊗ X∗

3
. Take φ1 the automorphism which induces the grading, that is,

φ1|Lī
= ωiidLī

for ω a primitive cubic root of the unit. We are giving two automorphisms

commuting with φ1.

A family of automorphisms of the Lie algebra commuting with φ1 is the following. If

ρi : Xi → Xi, i = 1, 2, 3, are linear maps preserving det: X3

i
→ F , the linear map ρ1 ⊗ ρ2 ⊗

ρ3 : L1̄ → L1̄ can be uniquely extended to an automorphism of L such that its restriction to

sl(Vi) ⊂ L0̄ is the conjugation map g 7→ ρigρ−1

i
.

Fix now basis {u0, u1, u2} of X1, {v0, v1, v2} of X2, and {w0, w1, w2} of X3 with det(u0, u1, u2) =

det(v0, v1, v2) = det(w0, w1, w2) = 1. Consider φ2 the unique automorphism of e6 extending

the map

ui ⊗ vj ⊗ wk 7→ ui+1 ⊗ vj+1 ⊗ wk+1

(indices module 3). Finally let φ3 be the unique automorphism of e6 extending the map

ui ⊗ vj ⊗ wk 7→ ωiui ⊗ ωjvj ⊗ ωkwk = ωi+j+kui ⊗ vj ⊗ wk.

The set {φi}
3

i=1
is a commutative set of semisimple automorphisms, and it induces a Z

3

3
-

grading on e6. The grading is nontoral since its zero homogeneous component is null.

Some computations prove that the rest of the homogeneous components are all of them

3-dimensional.

The nice 3-symmetry described in e6 is inherited by f4. Indeed graphically speaking,

f4 arises by folding e6. More precisely, taking X2 = X3 we can consider on e6 the unique

automorphism τ : e6 → e6 extension of u ⊗ v ⊗ w 7→ u ⊗ w ⊗ v. This is an order two

automorphism commuting with the previous φi for i = 1, 2, 3. The subalgebra of elements

fixed by τ is

sl(X1) ⊕ sl(X2) ⊕ X1 ⊗ Sym2(X2) ⊕ X∗
1 ⊗ Sym2(X∗

2 ),

where SymnXi denotes the symmetric powers. This is a simple Lie algebra of dimension 52,

hence f4. Furthermore, denoting also by φi : f4 → f4 the restriction of the corresponding auto-

morphisms of e6, the set {φi}
3

i=1
is a set of commuting semisimple order three automorphisms

of f4 with no fixed points other than 0. So it induces a nontoral Z
3

3
-grading on f4 of type

(0, 26), with all the homogeneous elements semisimple.
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Notes on a general compactification of symmetric

spaces

Vadim Kaimanovich∗ Pedro J. Freitas†

Abstract

In this paper we outline the results regarding a construction of a general K-equivariant

compactification of the symmetric space G/K, from a compactification of the Weyl cham-

ber. A more detailed paper on this subject is expected soon. 1

Symmetric spaces are a classical object of the Riemannian geometry and serve as a testing

ground for numerous concepts and notions. The simplest symmetric space is the hyperbolic

plane which can be naturally compactfied by the circle at infinity, which is essentailly the

only reasonable compactifictaion of the hyperbolic plane. However, for higher rank sym-

metric spaces the situation is more complicated, and there one can define several different

comapctifications—the visibility, the Furstenberg, the Martin, the Karpelevich—to name just

the most popular ones. The present report is a part of an ongoing project aimed at under-

standing the nature and structure of general compactifications of symmetric spaces.

1 General Concepts

We start by defining the notation (either well known or taken from [GJT], with minor ad-

justments) and the concepts necessary. The results that follow can be found in [GJT] and

[He].

We take G, a semisimple connected Lie group with finite center, and let K be a maximal

compact subgroup. Denote by g and k the Lie algebras of G and K respectively.

Let g = k ⊕ p be the Cartan decomposition of g, p being the orthogonal complement of

k in g, with respect to the Killing form B. The space p can be identified with the tangent

space to G/K at the coset K, which we’ll denote by o. The restriction of the Killing form to

this space is positive definite, and thus provides an inner product in p.
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We take a to be a fixed Cartan subalgebra of p, a
+ a fixed Weyl chamber, Σ the set of all

the roots of g with respect to a (the so-called restricted roots), Σ+ the set of positive roots,

∆ the set of the simple roots. We denote by d be the rank of G (the dimension of a).

The action of G on G/K is by left multiplication. Every element of G can be written as

k. exp(X) with k ∈ K and X ∈ p—this is an easy consequence of the Cartan decomposition,

which states that every element of G can be expressed as k1 exp(X)k2, k1, k2 ∈ K, X ∈ a+

— as the closed Weyl chamber will be a very important object, we’ll denote w := a+. From

this we can easily conclude that every point in G/K can be presented as k exp(X).o, k ∈ K,

X ∈ w, which means that the K-orbit of exp(w), is whole symmetric space. Moreover, the

element X ∈ w is uniquely defined, and is called the generalized radius. The element k is

unique modulo the stabilizer of X for the adjoint action of K over w.

Given a topological group H, we’ll say that a topological space A is an H-space if there

is an action of H on A (which we’ll denote by a dot) and the map

H × A → A

(h, a) 7→ h.a

is continuous. If B is another H-space, and φ : A → B is a continuous map, we say that φ is

H-equivariant if, for any h ∈ H,a ∈ A, φ(h.a) = h.φ(a).

If B is compact, φ is an embedding, and φ(A) is dense in B, we’ll say that (φ,B) (or

simply B if there is no confusion about the map involved) is a compactification of A. If φ is

H-equivariant, we’ll say that B is an H-compactification.

2 Building the compactification

We are now concerned with the definition of a compactification of the space G/K via com-

pactifications of the closed Weyl chamber. There are a few compactifications of G/K that

can be presented this way, as we will see later.

Now suppose we have a compactification of w, w̃, that is Hausdoff and satisfies the fol-

lowing condition:

(⋆) For sequences xn, x′
n
∈ w, If xn → x ∈ ∂w̃ and d(xn, x′

n
) → 0, then x′

n
→ x.

Notice that if x ∈ w, we always have this property, since the topology in w is given by

the metric d.

Now, we are looking for a K-invariant compactification of G/K that restricted to w will

be w̃. We present a process of doing this.

94



Consider the space K × w, and the map π1 : K × w → G/K defined naturally by

π1(k, x) := k. exp(x).o. Consider also the compact space K × w̃ and its quotient by the

equivalence relation ∼ defined by the following rules:

(i) for x, y ∈ w, (k, x) ∼ (r, y) ⇔ x = y and r exp(x).o = s exp(y).o;

(ii) for x, y ∈ ∂w̃, (k, x) ∼ (r, y) ⇔ there exist convergent sequences (k, xn) and (r, yn) in

K × w with lim xn = x, lim yn = y, such that d(k exp(xn), r exp(yn)) → 0.

The relation ∼ is clearly an equivalence relation. Denote by K the quotient space.

Notation. Condition (i) assures that there is a bijection between G/K and (K ×w)/ ∼,

name it ι. We will therefore use the notation kE(x) to denote (k, x)/ ∼, for k ∈ K and x ∈ w.

Thus, ι(k exp(x).o) = kE(x) in K.

Now take the inclusion and projection maps

ι1 : K × w → K × w̃ π2 : K × w̃ → K.

We have that following diagram commutes.

K × w
π1−→ G/K


yι1


yι

K × w̃
π2−→ K

It can be proved that the image of K ×w is dense in K, and that ι is an embedding. This

makes K into a compactification of G/K, since K is clearly compact. The following result is

a parallel to the polar decomposition on G/K.

Proposition 2.1. For x, y ∈ w̃, and k, r ∈ K, we have that kE(x) = rE(y) if and only if

x = y and k−1r ∈ StabK(E(x)). In particular, the “generalized radius” x is well defined,

even when kE(x) ∈ ∂K.

This furthers the analogy with elements in G/K. The compactification has the following

properties.

Proposition 2.2. 1. The space K is Hausdorff.

2. The projection π2 : K × w̃ → K is a closed map.

3. The space K is a K-space, and ι is K-equivariant.

Moreover, one can prove, using certain classes of converging sequences (just as it is done

in [GJT]) that this compactification has some uniqueness properties.

Theorem 2.3. The compactification K has the following properties.
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1. It is a K-compactification.

2. When restricted to w is w̃.

3. It respects intersections of Weyl chambers.

4. It is metrizable if w̃ is metrizable.

5. Being metrizable, it dominates any other compactification satisfying conditions 1–3.

Examples. There are a few known compactifications that are particular cases of our

compactification K, originating from different compactifications of w. Among these are the

compactifications of Furstenberg, Martin, Satake and Karpelevich.

3 An action of G and independence of the base point.

In the case G = SL(n, R) and K = SO(n), it is possible to define an action of G on K. So, in

this section, we take G = SL(n, R), plus the following assumptions on the compactification

w̃.

1. We’ll assume that, in the compactification of the Cartan subalgebra a, if a sequence an

converges, then for any a ∈ a, a + an also converges.

2. The compactification w̃ is a refinement of the Furstenberg compactification.

For g ∈ G, denote by Kg the compactification obtained by apllying the above process to

G/K, but using g.o as a reference point, instead of o.

Under these conditions, it is possible to identify a point of K with a point of Kg, comparing

the behaviour of sequences in both compactifications, and the rules of convergence for both—

and prove they are the same. The proof available so far is quite technical, and the authors

are working on a better version. We thus can prove the following result.

Proposition 3.1. With the notation above, K and Kg are the same compactification.

This allows us to define an action of G on K, as follows: given a point x ∈ G/K, and

g ∈ G, we take g.x to be the point in K corresponding to the point g.x ∈ Kg.
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Tridiagonal pairs, the q-tetrahedron algebra, Uq(sl2),

and Uq(ŝl2)

Darren Funk-Neubauer∗

Abstract

Let V denote a finite dimensional vector space over an algebraically closed field. A

tridiagonal pair is an ordered pair A, A∗ of diagonalizable linear transformatons on V such

that (i) the eigenspaces of A can be ordered as {Vi}
d
i=0 with A∗Vi ⊆ Vi−1+Vi+Vi+1 for 0 ≤

i ≤ d; (ii) the eigenspaces of A∗ can be ordered as {V ∗

i }
d
i=0 with AV ∗

i ⊆ V ∗

i−1 + V ∗

i + V ∗

i+1

for 0 ≤ i ≤ d; (iii) there are no nonzero proper subspaces of V which are invariant

under both A and A∗. Tridiagonal pairs arise in the representation theory of various Lie

algebras, associative algebras, and quantum groups. We recall the definition of one such

algebra called the q-tetrahedron algebra and discuss its relation to the quantum groups

Uq(sl2) and Uq(ŝl2). We discuss the role the q-tetrahedron algebra plays in the attempt to

classify tridiagonal pairs. In particular, we state a theorem which connects the actions of

a certain type of tridiagonal pair A, A∗ on V to an irreducible action of the q-tetrahedron

algebra on V .

1 Tridiagonal Pairs

In this paper we discuss the connection between tridiagonal pairs and representation theory.

However, tridiagonal pairs originally arose in algebraic combinatorics through the study of

a combinatorial object called a P- and Q-polynomial association scheme [4]. In addition,

tridiagonal pairs are related to many other areas of mathematics. For example, they appear

in the study of orthogonal polynomials and special functions [12], the theory of partially

ordered sets [11], and statistical mechanics [13]. We now define a tridiagonal pair.

Definition 1.1. [4] Let V denote a finite dimensional vector space over an algebraically closed

field K. A tridiagonal pair on V is an ordered pair A,A∗ where A : V → V and A∗ : V → V

are linear transformatons that satisfy the following conditions:

(i) Each of A,A∗ is diagonalizable.

∗Department of Mathematics, University of Wisconsin-Madison, Van Vleck Hall, 480 Lincoln Drive, Madi-
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(ii) The eigenspaces of A can be ordered as {Vi}
d

i=0
with A∗Vi ⊆ Vi−1+Vi+Vi+1 (0 ≤ i ≤ d),

where V−1 = 0, Vd+1 = 0.

(iii) The eigenspaces of A∗ can be ordered as {V ∗
i
}δ

i=0
with AV ∗

i
⊆ V ∗

i−1
+ V ∗

i
+ V ∗

i+1
(0 ≤

i ≤ δ), where V ∗
−1

= 0, V ∗
δ+1

= 0.

(iv) There does not exist a subspace W ⊆ V such that AW ⊆ W , A∗W ⊆ W , W 6= 0,

W 6= V .

According to a common notational convention A∗ denotes the conjugate-transpose of A. We

am not using this convention; the linear transformations A,A∗ are arbitrary subject to (i)–

(iv) above.

Referring to Definition 1.1, it turns out d = δ [4]; we call this common value the diameter of

the tridiagonal pair. We call an ordering of the eigenspaces of A (resp. A∗) standard when-

ever it satisfies (ii) (resp. (iii)) above. We call an ordering of the eigenvalues of A (resp. A∗)

standard whenever the corresponding ordering of the eigenspaces of A (resp. A∗) is standard.

The tridiagonal pairs for which the Vi, V
∗
i

all have dimension 1 are called Leonard pairs. The

Leonard pairs are classified and correspond to a family of orthogonal polynomials consisting of

the q-Racah polynomials and related polynomials in the Askey scheme [12]. Currently there

is no classification of tridiagonal pairs. We will discuss the connection between tridiagonal

pairs, the q-tetrahedron algebra, and the quantum groups Uq(sl2) and Uq(ŝl2). The hope is

that this connection will eventually lead to a classification of tridiagonal pairs.

2 The eigenvalues of a tridiagonal pair

In this section we describe how the standard orderings of the eigenvalues of a tridiagonal pair

satisfy a certain three term recurrance relation.

Let A,A∗ denote a tridiagonal pair on V . Let {θi}
d

i=0
denote a standard ordering of the

eigenvalues of A. Let {θ∗
i
}d

i=0
denote a standard ordering of the eigenvalues of A∗.

Theorem 2.1. [4, Theorem 11.1] The expressions

θi−2 − θi+1

θi−1 − θi

,
θ∗
i−2

− θ∗
i+1

θ∗
i−1

− θ∗
i

are equal and independent of i for 2 ≤ i ≤ d − 1.

We now describe the solutions to the recurrance from Theorem 2.1.
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Theorem 2.2. [4, Theorem 11.2] Solving the recurrence in Theorem 2.1 we have the following.

For some scalars q, a, b, c, a∗, b∗, c∗ ∈ K the sequences {θi}
d

i=0
and {θ∗

i
}d

i=0
have one of the

following forms:

Case I: For 0 ≤ i ≤ d

θi = a + bqi + cq−i,

θ∗
i

= a∗ + b∗qi + c∗q−i.

Case II: For 0 ≤ i ≤ d

θi = a + bi + ci(i − 1)/2,

θ∗
i

= a∗ + b∗i + c∗i(i − 1)/2.

Case III: The characteristic of K is not 2, and for 0 ≤ i ≤ d

θi = a + b(−1)i + ci(−1)i,

θ∗
i

= a∗ + b∗(−1)i + c∗i(−1)i.

For the remainder of this paper we will be concerned with the tridiagonal pairs whose eigen-

values are as in Case I from Theorem 2.2. Such tridiagonal pairs are closely connected to

representations of the quantum groups Uq(sl2) and Uq(ŝl2). The study of this connection

inspired the definition of the q-tetrahedron algebra.

3 The q-tetrahedron algebra, Uq(sl2), and Uq(ŝl2)

In this section we define the q-tetrahedron algebra and discuss its connection to the quantum

groups Uq(sl2) and Uq(ŝl2).

For the remainder of the paper we will assume q ∈ K is nonzero and not a root of unity.

We will use the following notation. For an integer i ≥ 0 we define

[i] =
qi − q−i

q − q−1
and [i]! = [i][i − 1] · · · [2][1].

We interpret [0]! = 1.

Let Z4 = Z/4Z denote the cyclic group of order 4.

Definition 3.1. [7, Definition 6.1] Let ⊠q denote the unital associative K-algebra that has

generators

{xij | i, j ∈ Z4, j − i = 1 or j − i = 2}

and the following relations:
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(i) For i, j ∈ Z4 such that j − i = 2,

xijxji = 1.

(ii) For h, i, j ∈ Z4 such that the pair (i − h, j − i) is one of (1, 1), (1, 2), (2, 1),

qxhixij − q−1xijxhi

q − q−1
= 1.

(iii) For h, i, j, k ∈ Z4 such that i − h = j − i = k − j = 1,

x3

hi
xjk − [3]qx

2

hi
xjkxhi + [3]qxhixjkx

2

hi
− xjkx

3

hi
= 0. (1)

We call ⊠q the q-tetrahedron algebra.

We now recall the definition of Uq(sl2).

Definition 3.2. [9, p. 9] Let Uq(sl2) denote the unital associative K-algebra with generators

K±1, e± and the following relations:

KK−1 = K−1K = 1,

Ke±K−1 = q±2e±,

e+e− − e−e+ =
K − K−1

q − q−1
.

We now recall an alternate presentation for Uq(sl2).

Lemma 3.3. [8, Theorem 2.1] The algebra Uq(sl2) is isomorphic to the unital associative

K-algebra with generators x±1, y, z and the following relations:

xx−1 = x−1x = 1,

qxy − q−1yx

q − q−1
= 1,

qyz − q−1zy

q − q−1
= 1,

qzx − q−1xz

q − q−1
= 1.

We now present a lemma which relates Uq(sl2) and ⊠q.

Lemma 3.4. [7, Proposition 7.4] For i ∈ Z4 there exists a K-algebra homomorphism from

Uq(sl2) to ⊠q that sends

x → xi,i+2, x−1 → xi+2,i, y → xi+2,i+3, z → xi+3,i.

We now recall the definition of Uq(ŝl2).
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Definition 3.5. [1, Definition 2.2] Let Uq(ŝl2) denote the unital associative K-algebra gen-

erated by K±1

i
, e±

i
, i ∈ {0, 1} subject to the relations

KiK
−1

i
= K−1

i
Ki = 1, (2)

K0K1 = K1K0, (3)

Kie
±
i
K−1

i
= q±2e±

i
, (4)

Kie
±
j
K−1

i
= q∓2e±

j
, i 6= j, (5)

e+

i
e−
i
− e−

i
e+

i
=

Ki − K−1

i

q − q−1
, (6)

e±
0
e∓
1

= e∓
1
e±
0
, (7)

(e±
i
)3e±

j
− [3](e±

i
)2e±

j
e±
i

+ [3]e±
i
e±
j
(e±

i
)2 − e±

j
(e±

i
)3 = 0, i 6= j. (8)

We now recall an alternate presentation for Uq(ŝl2).

Theorem 3.6. [5, Theorem 2.1], [10] The algebra Uq(ŝl2) is isomorphic to the unital asso-

ciative K-algebra with generators xi, yi, zi, i ∈ {0, 1} and the following relations:

x0x1 = x1x0 = 1,

qxiyi − q−1yixi

q − q−1
= 1,

qyizi − q−1ziyi

q − q−1
= 1,

qzixi − q−1xizi

q − q−1
= 1,

qziyj − q−1yjzi

q − q−1
= 1, i 6= j,

y3

i
yj − [3]qy

2

i
yjyi + [3]qyiyjy

2

i
− yjy

3

i
= 0, i 6= j,

z3

i
zj − [3]qz

2

i
zjzi + [3]qzizjz

2

i
− zjz

3

i
= 0, i 6= j.

We now present a lemma which relates Uq(ŝl2) and ⊠q.

Lemma 3.7. [7, Proposition 8.3] For i ∈ Z4 there exists a K-algebra homomorphism from

Uq(ŝl2) to ⊠q that sends

x1 → xi,i+2, y1 → xi+2,i+3, z1 → xi+3,i,

x0 → xi+2,i, y0 → xi,i+1, z0 → xi+1,i+2.
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4 The connection between tridiagonal pairs and ⊠q

We now recall a theorem which connects ⊠q to the tridiagonal pairs whose eigenvalues are as

in Case I of Theorem 2.2 (with a = a∗ = c = b∗ = 0 and b, c∗ 6= 0).

Theorem 4.1. [6, Theorem 2.7], [7, Theorem 10.4] Let A,A∗ denote a tridiagonal pair on

V . Let {θi}
d

i=0
(resp. {θ∗

i
}d

i=0
) denote a standard ordering of the eigenvalues of A (resp.

A∗). Assume there exist nonzero scalars b, c∗ ∈ K such that θi = bq2i−d and θ∗
i

= c∗qd−2i for

0 ≤ i ≤ d. Then there exists a unique irreducible representation of ⊠q on V such that bx0

acts as A and c∗x2 acts as A∗.

Since the finite dimensional irreducible representations of ⊠q are completely understood [7]

Theorem 4.1 classifies tridiagonal pairs where the eigenvalues of A (resp. A∗) are θi = bq2i−d

(resp. θ∗
i

= c∗qd−2i).

Given Theorem 4.1 it is natural to ask the following question. If the eigenvalues of A and

A∗ are more general can we still construct a representation of ⊠q on V ? More specifically,

if the eigenvalues of A are θi = bq2i−d for 0 ≤ i ≤ d and the eigenvalues of A∗ are θ∗
i

=

b∗q2i−d + c∗qd−2i for 0 ≤ i ≤ d can we construct a representation of ⊠q on V that generalizes

the construction in Theorem 4.1? We answer this question in the next section.

5 A generalization of Theorem 4.1

In this section we present a theorem which connects ⊠q to the tridiagonal pairs whose eigen-

values are as in Case I of Theorem 2.2 (with a = a∗ = c = 0 and b, b∗, c∗ 6= 0).

Before we state this theorem we have a number of prelimanary definitions.

Let A,A∗ denote a tridiagonal pair on V and let {Vi}
d

i=0
(resp. {V ∗

i
}d

i=0
) denote a standard

ordering of the eigenspace of A (resp. A∗). For 0 ≤ i ≤ d define Ui = (V ∗
0

+· · ·+V ∗
i
)∩(Vi+· · ·+

Vd). It turns out each of {Ui}
d

i=0
is nonzero and V is their direct sum [4]. The sequence {Ui}

d

i=0

is called the split decomposition of A,A∗. There exist linear transformations R : V → V and

L : V → V such that (i) U0, . . . , Ud are the common eigenspaces for A − R,A∗ − L and (ii)

RUi ⊆ Ui+1 and LUi ⊆ Ui−1 for 0 ≤ i ≤ d [4]. R (resp. L) is called the raising (resp.

lowering) map associated to A,A∗.

Definition 5.1. [3] Let V denote a finite dimensional vector space over K. Let A,A∗ denote

a tridiagonal pair on V and let {θi}
d

i=0
(resp. {θ∗

i
}d

i=0
) denote a standard ordering of the

eigenvalues of A (resp. A∗). Assume for nonzero b ∈ K that θi = bq2i−d for 0 ≤ i ≤ d.

Furthermore, assume for nonzero b∗, c∗ ∈ K that θ∗
i

= b∗q2i−d + c∗qd−2i for 0 ≤ i ≤ d. Let

{Ui}
d

i=0
denote the split decomposition of A,A∗. Let R (resp. L) denote the raising (resp.

104



lowering) map associated to A,A∗. It is known that dim(U0) = 1. Thus for 0 ≤ i ≤ d the

space U0 is an eigenspace of LiRi; let σi denote the coresponding eigenvalue.

The following polynomial will be used to state our theorem. It is a slight modification of the

Drinfeld polynomial which is well known in representation theory [1, 2].

Definition 5.2. [3] With reference to Definition 5.1 define the polynomial P ∈ K[λ] by

P (λ) =

d∑

i=0

qi(1−i) σi λ
i

[i]! 2
,

The following theorem uses P to explain the connection between finite dimensional irreducible

representations of ⊠q and the tridiagonal pairs whose eigenvalues are as in Case I of Theorem

2.2 (with a = a∗ = c = 0 and b, b∗, c∗ 6= 0).

Theorem 5.3. [3] With reference to Definition 5.1 and Definition 5.2, the following are

equivalent:

(i) There exists a representation of ⊠q on V such that bx01 acts as A and b∗x30 + c∗x23

acts as A∗.

(ii) P (q2d−2(q − q−1)−2) 6= 0.

Suppose (i),(ii) hold. Then the ⊠q representation on V is unique and irreducible.

References

[1] V. Chari, A. Pressley, Quantum affine algebras, Commun. Math. Phys. 142 (1991) 261–

283.

[2] V.G. Drinfeld, A new realization of Yangians and quantized affine algebras, Soviet Math.

Dokl. 36 (1988) 212–216.

[3] D. Funk-Neubauer, Tridiagonal pairs and the q-tetrahedron algebra, in preparation.

[4] T. Ito, K. Tanabe, P. Terwilliger, Some algebra related to P- and Q-polynomial association

schemes, in: Codes and Association Schemes (Piscataway NJ, 1999), Amer. Math. Soc.,

Providence, RI, 2001, pp. 167–192.

[5] T. Ito, P. Terwilliger, Tridiagonal pairs and the quantum affine algebra Uq(ŝl2), Ramanu-
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Quantum Lie algebras via modified reflection

equation algebra

Dimitri Gurevich∗ Pavel Saponov†

1 Introduction

A Lie super-algebra was historically the first generalization of the notion of a Lie algebra. Lie

super-algebras were introduced by physicists in studying dynamical models with fermions.

In contrast with the usual Lie algebras defined via the classical flip P interchanging any two

elements P (X ⊗ Y ) = Y ⊗ X, the definition of a Lie super-algebra is essentially based on a

super-analog of the permutation P . This super-analog is defined on a Z2-graded vector space

V = V
0
⊕ V

1
where 0, 1 ∈ Z2 is a ”parity”. On homogeneous elements (i.e. those belonging

to either V
0

or V
1
) its action is P (X ⊗ Y ) = (−1)XY Y ⊗X, where X stands for the parity of

a homogeneous element X ∈ V .

Then a Lie super-algebra is the following data

(g = g
0
⊕ g

1
, P : g ⊗ g → g ⊗ g, [ , ] : g ⊗ g → g) ,

where g is a super-space, P is a super-flip, and [ , ] is a Lie super-bracket, i.e. a linear operator

which is subject to three axioms:

1. [X,Y ] = −(−1)XY [Y,X];

2. [X, [Y,Z]] + (−1)X(Y +Z)[Y, [Z,X]] + (−1)Z(X+Y )[Z, [X,Y ]] = 0;

3. [X,Y ] = X + Y .

Here X,Y,Z are assumed to be arbitrary homogenous elements of g. Note that all axioms

can be rewritten via the corresponding super-flip. For instance the axiom 3 takes the form

P (X ⊗ [Y,Z]) = [ , ]12P23P12(X ⊗ Y ⊗ Z).

(As usual, the indices indicate the space(s) where a given operator is applied.)

In this paper we discuss the problem what is a possible generalization of the notion of a

Lie super-algebra related to ”flips” of more general type.

∗USTV, Université de Valenciennes, 59304 Valenciennes, France. E-mail: gurevich@univ-valenciennes.fr
†Division of Theoretical Physics, IHEP, 142284 Protvino, Russia. E-mail: Pavel.Saponov@ihep.ru
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The first generalization of the notion of a Lie super-algebra was related to gradings dif-

ferent from Z2. The corresponding Lie type algebras were called Γ-graded ones (cf. [Sh]).

The next step was done in [G1] where there was introduced a new generalization of the

Lie algebra notion related to an involutive symmetry defined as follows. Let V be a vector

space over a ground field K (usually C or R) and R : V ⊗2 → V ⊗2 be a linear operator. It is

called a braiding if it satisfies the quantum Yang-Baxter equation

R12R23R12 = R23R12R23 ,

where R12 = R ⊗ I, R23 = I ⊗ R are operators in the space V ⊗3. If such a braiding satisfies

the condition R2 = I (resp., (R−q I)(R+q−1 I) = 0, q ∈ K) we call it an involutive symmetry

(resp., a Hecke symmetry). In the latter case q is assumed to be generic1.

Two basic examples of generalized Lie algebras are analogs of the Lie algebras gl(n) and

sl(n) (or of their super-analogs gl(m|n) and sl(m|n)). They can be associated to any ”skew-

invertible” (see Section 2) involutive symmetry R : V ⊗2 → V ⊗2. We denote them gl(VR)

and sl(VR) respectively. The generalized Lie algebras gl(VR) and sl(VR) are defined in the

space End (V ) of endomorphisms of the space V . Their enveloping algebras U(gl(VR)) and

U(sl(VR)) (which can be defined in a natural way) are equipped with a braided Hopf structure

such that the coproduct coming in its definition acts on the generators X ∈ gl(VR) or sl(VR)

in the classical manner: ∆ : X → X ⊗ 1 + 1 ⊗ X.

Moreover, if an involutive symmetry R is a deformation of the usual flip (or super-flip) the

enveloping algebras U(gl(VR)) and U(sl(VR)) are deformations of their classical (or super-)

counterparts.

There are known numerous attempts to define a quantum (braided) Lie algebra similar

to generalized ones but without assuming R to be involutive. Let us mention some of them:

[W], [LS], [DGG], [GM]. In this note we compare the objects defined there with gl type Lie

algebras-like objects introduced recently in [GPS]. Note that the latter objects can be associ-

ated with any skew-invertible Hecke symmetry, in particular, that related to Quantum Groups

(QG) of An series. Their enveloping algebras are treated in terms of the modified reflection

equation algebra (mREA) defined bellow. These enveloping algebras have good deformation

properties and the categories of their finite dimensional equivariant representations look like

those of the Lie algebras gl(m|n). Moreover, these algebras can be equipped with a structure

of braided bi-algebras. Though the corresponding coproduct acts on the generators of the

algebras in a non-classical way it is in a sense intrinsic (it has nothing in common with the

coproduct in the QGs). Moreover, it allows to define braided analogs of (co)adjoint vectors

fields.

1Note that there exists a big family of Hecke and involutive symmetries which are not deformations of the

usual flip (cf. [G2]). Even the Poincaré-Hilbert (PH) series corresponding to the ”symmetric” Sym(V ) =

T (V )/〈Im (qI −R)〉 and ”skew-symmetric”
∧

(V ) = T (V )/〈Im (q−1I + R)〉 algebras can drastically differ from

the classical ones, whereas the PH series are stable under a deformation.

108



We think that apart from generalized Lie algebras related to involutive symmetries (de-

scribed in Section 2) there is no general definition of a quantum (braided) Lie algebra. More-

over, reasonable quantum Lie algebras exist only for the An series (or more generally, for

any skew-invertible Hecke symmetry). As for the quantum Lie algebras of the Bn, Cn, Dn

series introduced in [DGG], their enveloping algebras are not deformations of their classical

counterparts and for this reason they are somewhat pointless objects.

2 Generalized Lie algebras

Let R : V ⊗2 → V ⊗2 be an involutive symmetry. Then the data

(V,R, [ , ] : V ⊗2 → V )

is called a generalized Lie algebra if the following holds

1. [ , ]R(X ⊗ Y ) = −[X,Y ];

2. [ , ] [ , ]12(I + R12R23 + R23R12)(X ⊗ Y ⊗ Z) = 0;

3. R[ , ]12(X ⊗ Y ⊗ Z) = [ , ]12R23R12(X ⊗ Y ⊗ Z).

Such a generalized Lie algebra is denoted g.

Note that the generalized Jacobi identity (the axiom 2) can be rewritten in one of the

following equivalent forms

[ , ] [ , ]23(I + R12R23 + R23R12)(X ⊗ Y ⊗ Z) = 0;

[ , ] [ , ]12(X(Y ⊗ Z − R(Y ⊗ Z))) = [X, [Y,Z]];

[ , ] [ , ]23((X ⊗ Y − R(X ⊗ Y ))Z) = [[X,Y ], Z].

Example 1. If R is the the usual flip then the third axiom is fulfilled automatically and we

get a usual Lie algebra. If R is a super-flip then we get a Lie super-algebra. In the both cases

R is involutive.

The enveloping algebras of the generalized Lie algebra g can be defined in a natural way:

U(g) = T (V )/〈X ⊗ Y − R(X ⊗ Y ) − [X,Y ]〉 .

(Hereafter 〈I〉 stands for the ideal generated by a set I.) Let us introduce the symmetric

algebra Sym (g) of the generalized Lie algebra g by the same formula but with 0 instead of

the bracket in the denominator of the above formula.

For this algebra there exists a version of the Poincaré-Birhoff-Witt theorem.

Theorem 2. The algebra U(g) is canonically isomorphic to Sym(g).
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A proof can be obtained via the Koszul property established in [G2] and the results of

[PP]. Also, note that similarly to the classical case this isomorphism can be realized via a

symmetric (w.r.t. the symmetry R) basis.

Definition 3. We say that a given braiding R : V ⊗2 → V ⊗2 is skew-invertible if there exists

a morphism Ψ : V ⊗2 → V ⊗2 such that

Tr2Ψ12R23 = P13 = Tr2Ψ23R12

where P is the usual flip.

If R is a skew-invertible braiding, a ”categorical significance” can be given to the dual

space of V . Let V ∗ be the vector space dual to V . This means that there exist a non-

degenerated pairing 〈 , 〉 : V ∗ ⊗ V → K and an extension of the symmetry R to the space

(V ∗⊕V )⊗2 → (V ∗⊕V )⊗2 (we keep the same notation for the extended braiding) such that the

above pairing is R-invariant. This means that on the space V ∗⊗ V ⊗W (resp., W ⊗V ∗ ⊗V )

where either W = V or W = V ∗ the following relations hold

R 〈 , 〉12 = 〈 , 〉23 R12 R23 (resp., R 〈 , 〉23 = 〈 , 〉12 R23 R12) .

(Here as usual, we identify X ∈ W with X ⊗ 1 and 1 ⊗ X.)

Note that if such an extension exists it is unique. By fixing bases xi ∈ V and xi⊗xj ∈ V ⊗2

we can identify the operators R and Ψ with matrices ‖Rkl

ij
‖ and ‖Ψkl

ij
‖ respectively. For

example,

R(xi ⊗ xj) = Rkl

ij
xk ⊗ xl

(from now on we assume the summation over the repeated indices).

Then the above definition can be presented in the following matrix form

Rkl

ij
Ψ jn

lm
= δk

m
δn

i
.

If ix is the left dual basis of the space V ∗, i.e. such that 〈 jx, xi〉 = δ
j

i
then we put

〈xi,
jx〉 = 〈 , 〉Ψjl

ik

kx ⊗ xl = C
j

i
, where C

j

i
= Ψjk

ik
.

(Note that the operator Ψ is a part of the braiding R extended to the space (V ∗⊕V )⊗2.) By

doing so, we ensure R-invariance of the pairing V ⊗ V ∗ → K.

As shown in [GPS] for any skew-invertible Hecke symmetry R the following holds

C
j

i
Bk

j
= q−2aδk

i
, where B

j

i
= Ψkj

ki

with an integer a depending on the the HP series of the algebra Sym(V ) (see footnote 1).

So, if q 6= 0 the operators C and B (represented by the matrices ‖Cj

i
‖ and ‖Bk

j
‖ respectively)

are invertible. Therefore, we get a non-trivial pairing

〈 , 〉 : (V ⊕ V ∗)⊗2 → K
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which is R-invariant.

Note that these operators B and C can be introduced without fixing any basis in the

space V as follows

B2 = Tr(1)(Ψ12), C1 = Tr(2)(Ψ12). (1)

Let us exhibit an evident but very important property of these operators

Tr(1)(B1 R12) = I, T r(2)(C2 R12) = I. (2)

By fixing the basis h
j

i
= xi ⊗

jx in the space End (V ) ∼= V ⊗ V ∗ equipped with the usual

product

◦ : End (V )⊗2 → End (V )

we get the following multiplication table h
j

i
◦ hl

k
= δ

j

k
hl

i
.

Below we use another basis in this algebra, namely that l
j

i
= xi ⊗ xj where xj is the right

dual basis in the space V ∗, i.e. such that 〈xi, x
j〉 = δ

j

i
. Note that the multiplication table for

the the product ◦ in this basis is l
j

i
◦ lm

k
= B

j

k
lm
i

(also see formula (6)).

Let R be the above extension of a skew-invertible braiding to the space (V ∗⊕V )⊗2. Then

a braiding REnd (V ) : End (V )⊗2 → End (V )⊗2 can be defined in a natural way:

REnd (V ) = R23 R34R12 R23 ,

where we used the isomorphism End (V ) ∼= V ⊗ V ∗.

Observe that the product ◦ in the space End (V ) is R-invariant and therefore REnd (V )-

invariant. Namely, we have

REnd (V )(X ◦ Y,Z) = ◦23(REnd (V ))12(REnd (V ))23(X ⊗ Y ⊗ Z) ,

REnd (V )(X,Y ◦ Z) = ◦12(REnd (V ))23(REnd (V ))12(X ⊗ Y ⊗ Z) .

Example 4. Let R : V ⊗2 → V ⊗2 be a skew-invertible involutive symmetry. Define a gener-

alized Lie bracket by the rule

[X,Y ] = X ◦ Y − ◦REnd (V )(X ⊗ Y ) .

Then the data (End (V ), REnd (V ), [ , ]) is a generalized Lie algebra (denoted gl(VR)).

Besides, define the R-trace TrR : End (V ) → K as follows

TrR(hj

i
) = Bi

j
h

j

i
, X ∈ End (V ) .

The R-trace possesses the following properties :� The pairing

End (V ) ⊗ End (V ) → K : X ⊗ Y 7→ 〈X,Y 〉 = TrR(X ◦ Y )

is non-degenerated;
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� It is REnd (V )-invariant in the following sense

REnd (V )((TrRX) ⊗ Y ) = (I ⊗ TrR)REnd (V )(X ⊗ Y ) ,

REnd (V )(X ⊗ (TrRY )) = (TrR ⊗ I)REnd (V )(X ⊗ Y ) ;� TrR [ , ] = 0.

Therefore the set {X ∈ gl(VR)|TrR X = 0} is closed w.r.t. the above bracket. Moreover,

this subspace squared is invariant w.r.t the symmetry REnd (V ). Therefore this subspace

(denoted sl(VR)) is a generalized Lie subalgebra.

Observe that the enveloping algebra of any generalized Lie algebra possesses a braided

Hopf algebra structure such that the coproduct ∆ and antipode S are defined on the generators

in the classical way

∆(X) = X ⊗ 1 + 1 ⊗ X, S(X) = −X .

For details the reader is referred to [G2].

Also, observe that while R is a super-flip the generalized Lie algebra gl(VR) (resp., sl(VR))

is nothing but the Lie super-algebras gl(m|n) (resp., sl(m|n)).

3 Quantum Lie algebras for Bn, Cn, Dn series

In this Section we restrict ourselves to the braidings coming from the QG Uq(g) where g is a

Lie algebra of one of the series Bn, Cn, Dn. By the Jacobi identity, the usual Lie bracket

[ , ] : g ⊗ g → g

is a g-morphism.

Let us equip the space g with a Uq(g) action which is a deformation of the usual adjoint

one. The space g equipped with such an action is denoted gq. Our immediate goal is to define

an operator

[ , ]q : gq ⊗ gq → gq

which would be a Uq(g)-covariant deformation of the initial Lie bracket. This means that the

q-bracket satisfies the relation

[ , ]q(a1(X) ⊗ a2(Y )) = a([X ⊗ Y ]q) ,

where a is an arbitrary element of the QG Uq(g), a1 ⊗ a2 = ∆(a) is the Sweedler notation for

the QG coproduct ∆, and a(X) stands for the result of applying the element a ∈ Uq(g) to an

element X ∈ gq.
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Let us show that Uq(g)-covariance of the bracket entails its R-invariance where R =

P πg⊗g(R) is the image of the universal quantum R-matrix R composed with the flip P .

Indeed, due to the relation

∆12(R) = R13R23 ,

we have (by omitting πg⊗g)

R[ , ]1(X ⊗ Y ⊗ Z) = PR([X,Y ] ⊗ Z) = P [ , ]12∆12R(X ⊗ Y ⊗ Z) =

P [ , ]12R13R23(X ⊗ Y ⊗ Z) = P [ , ]12P13R13P23R23(X ⊗ Y ⊗ Z) =

P [ , ]12P13P23R12R23(X ⊗ Y ⊗ Z) = [ , ]23R12R23(X ⊗ Y ⊗ Z) .

Finally, we have

R[ , ]12 = [ , ]23R12R23, R[ , ]23 = [ , ]12R23R12

(the second relation can be obtained in a similar way).

Thus, the Uq(g)-covariance of the bracket [ , ]q can be considered as an analog of the axiom

3 from the above list. In fact, if g belongs to one of the series Bn, Cn or Dn, this property

suffices for unique (up to a factor) definition of the bracket [ , ]q. Indeed, in this case it is

known that if one extends the adjoint action of g to the space g⊗ g (via the coproduct in the

enveloping algebra), then the latter space is multiplicity free with respect to this action. This

means that there is no isomorphic irreducible g-modules in the space g⊗ g. In particular, the

component isomorphic to g itself appears only in the skew-symmetric subspace of g ⊗ g. A

similar property is valid for decomposition of the space gq⊗gq into a direct sum of irreducible

Uq(g)-modules (recall that q is assumed to be generic).

Thus, the map [ , ]q, being a Uq(g)-morphism, must kill all components in the decom-

position of gq ⊗ gq into a direct sum of irreducible gq-submodules except for the component

isomorphic to gq. Being restricted to this component, the map [ , ]q is an isomorphism. This

property uniquely defines the map [ , ]q (up to a non-zero factor). For an explicit computation

of the structure constants of the q-bracket [ , ]q the reader is referred to the paper [DGG].

Note that the authors of that paper embedded the space gq in the QG Uq(g). Nevertheless,

it is possible to do all the calculations without such an embedding but using the QG just as

a substitute of the corresponding symmetry group.

Now, we want to define the enveloping algebra of a quantum Lie algebra gq. Since the

space gq ⊗ gq is multiplicity free, we conclude that there exists a unique Uq(g)-morphism

Pq : gq ⊗ gq → gq ⊗ gq which is a deformation of the usual flip and such that P 2

q
= I. Indeed,

in order to introduce such an operator it suffices to define q-analogs of symmetric and skew-

symmetric components in gq ⊗ gq. Each of them can be defined as a direct sum of irreducible

Uq(g)-submodules of gq ⊗gq which are q-counterparts of the Uq(g)-modules entering the usual

symmetric and skew-symmetric subspaces respectively.
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Now, the enveloping algebra can be defined as a quotient

U(gq) = T (gq)/〈X ⊗ Y − Pq(X ⊗ Y ) − [ , ]q〉 .

Thus, we have defined the quantum Lie algebra gq and its enveloping algebra related

to the QG of Bn, Cn, Dn series. However, the question what properties of these quantum

Lie algebras are similar to those of generalized Lie algebras is somewhat pointless since the

algebra U(gq) is not a deformation of its classical counterpart. Moreover, its ”q-commutative”

analog (which is defined similarly to the above quotient but without the q-bracket [ , ]q in the

denominator) is not a deformation of the algebra Sym(g). For the proof, it suffices to verify

that the corresponding semiclassical term is not a Poisson bracket. (However, it becomes

Poisson bracket upon restriction to the corresponding algebraic group.)

Remark 5. A similar construction of a quantum Lie algebra is valid for any skew-inver-

tible braiding of the Birman-Murakami-Wenzl type. But for the same reason it is out of our

interest.

Also, note that the Lie algebra sl(2) possesses a property similar to that above: the

space sl(2) ⊗ sl(2) being equipped with the extended adjoint action is a multiplicity free

sl(2)-module. So, the corresponding quantum Lie algebra and its enveloping algebra can be

constructed via the same scheme. However, the latter algebra is a deformation of its classical

counterpart. This case is consider in the next Sections as a part of our general construction

related to Hecke symmetries.

4 Modified reflection equation algebra and its representation

theory

In this section we shortly describe the modified reflection equation algebra (mREA) and the

quasitensor Schur-Weyl category of its finite dimensional equivariant representations. Our

presentation is based on the work [GPS], where these objects were considered in full detail.

The starting point of all constructions is a Hecke symmetry R. As was mentioned in

Introduction, the Hecke symmetry is a linear operator R : V ⊗2 → V ⊗2, satisfying the quantum

Yang-Baxter equation and the additional Hecke condition

(R − q I)(R + q−1I) = 0 ,

where a nonzero q ∈ K is generic, in particular, is not a primitive root of unity. Besides, we

assume R to be skew-invertible (see Definition 3).

Fixing bases xi ∈ V and xi ⊗ xj ∈ V ⊗2, 1 ≤ i, j ≤ N = dimV , we identify R with a

N2 × N2 matrix ‖Rkl

ij
‖. Namely, we have

R(xi ⊗ xj) = Rkl

ij
xk ⊗ xl , (3)
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where the lower indices label the rows of the matrix, the upper ones — the columns.

As is known, the Hecke symmetry R allows to define a representations ρR of the Ak−1

series Hecke algebras Hk(q), k ≥ 2, in tensor powers V ⊗k:

ρR : Hk(q) → End(V ⊗k) ρR(σi) = Ri := I⊗(i−1) ⊗ R ⊗ I⊗(k−i−1) ,

where elements σi, 1 ≤ i ≤ k − 1 form the set of the standard generators of Hk(q).

The Hecke algebra Hk(q) possesses the primitive idempotents eλ

a
∈ Hk(q), which are in

one-to-one correspondence with the set of all standard Young tableaux (λ, a), corresponding

to all possible partitions λ ⊢ k. The index a labels the tableaux of a given partition λ in

accordance with some ordering.

Under the representation ρR, the primitive idempotents eλ

a
are mapped into the projection

operators

Eλ

a
(R) = ρR(eλ

a
) ∈ End (V ⊗k) , (4)

these projectors being some polynomials in Ri, 1 ≤ i ≤ k − 1.

Under the action of these projectors the spaces V ⊗k, k ≥ 2, are expanded into the direct

sum

V ⊗k =
⊕

λ⊢k

dλ⊕

a=1

V(λ,a), V(λ,a) = Im(Eλ

a
) , (5)

where the number dλ stands for the total number of the standard Young tableaux, which can

be constructed for a given partition λ.

Since the projectors Eλ

a
with different a are connected by invertible transformations, all

spaces V(λ,a) with fixed λ and different a are isomorphic. Note, that the isomorphic spaces

V(λ,a) (at a fixed λ) in decomposition (5) are treated as particular embeddings of the space

Vλ into the tensor product V ⊗k. Hereafter we use the notation Vλ for the class of the spaces

V(λ,a) equipped with one or another embedding in V ⊗k.

In a similar way we define classes V ∗
µ
. First, note that the Hecke symmetry being extended

to the space (V ∗)⊗2 is given in the basis xi ⊗ xj as follows

R(xi ⊗ xj) = R
ji

lk
xk ⊗ xl

(and similarly in the basis ix⊗ jx). It is not difficult to see that the operator R so defined in

the space (V ∗)⊗2 is a Hecke symmetry. Thus, by using the above method we can introduce

spaces V ∗
(µ,a)

looking like those from (5) and define the classes V ∗
µ
.

Now, let us define a rigid quasitensor Schur-Weyl category SW(V ) whose objects are spaces

Vλ and V ∗
µ

labelled by partitions of nonnegative integers, as well as their tensor products

Vλ ⊗ V ∗
µ

and all finite sums of these spaces.

Among the morphisms of the category SW(V ) are the above left and right pairings and

the set of braidings RU,W : U⊗W → W ⊗U for any pair of objects U and W . These braidings

can be defined in a natural way. In order to define them on a couple of objects of the form
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Vλ ⊗ V ∗
µ

we embed them into appropriate products V ⊗k ⊗ (V ∗)⊗l and define the braiding

RU,W as an appropriate restriction. Note, that all these braidings are R-invariant maps (cf.

[GPS] for detail). Note that the category SW(V ) is monoidal quasitensor rigid according to

the standard terminology (cf. [CP]).

Now we are aiming at introducing modified reflection equation algebra and equipping

objects of the category SW(V ) with a structure of its modules.

Again, consider the space End (V ) equipped with the basis l
j

i
(see Section 2). Note that

the element l
j

i
acts on the elements of the space V as follows

l
j

i
(xk) := xi 〈x

j , xk〉 = xiB
j

k
. (6)

Introduce the N × N matrix L = ‖l j

i
‖. Also, define its ”copies” by the iterative rule

L
1

:= L1 := L ⊗ I, L
k+1

:= RkLk
R−1

k
. (7)

Observe that the isolated spaces L
k

have no meaning (except for that L
1
). They can be only

correctly understood in the products L
1
L

2
, L

1
L

2
L

3
and so on, but this notation is useful in

what follows.

Definition 6. The associative algebra generated by the unit element eL and the indetermi-

nates l
j

i
1 ≤ i, j ≤ N subject to the following matrix relation

R12L1R12L1 − L1R12L1R12 − ~ (R12 L1 − L1 R12) = 0 , (8)

is called the modified reflection equation algebra (mREA) and denoted L(Rq, ~).

Note, that at ~ = 0 the above algebra is known as the reflection equation algebra L(Rq).

Actually, at q 6= ±1 one has L(Rq, ~) ∼= L(Rq). Since at ~ 6= 0 it is always possible to

renormalize generators L 7→ ~ L. So, below we consider the case ~ = 1.

Thus, the mREA is the quotient algebra of the free tensor algebra T (End (V )) over the

two-sided ideal, generated by the matrix elements of the left hand side of (8). It can be

shown, that the relations (8) are R-invariant, that is the above two-sided ideal is invariant

when commuting with any object U under the action of the braidings RU,End (V ) or REnd (V ),U

of the category SW(V).

Taking into account (2) one can easily prove, that the action (6) gives a basic (vector)

representation of the mREA L(Rq, 1) in the space V

ρ1(l
j

i
) ⊲ xk = xiB

j

k
, (9)

where the symbol ⊲ stands for the (left) action of a linear operator onto an element. Since B

is non-degenerated, the representation is irreducible.

Another basic (covector) representation ρ∗
1

: L(Rq, 1) → End (V ∗) is given by

ρ∗
1
(lj

i
) ⊲ xk = −xr R

kj

ri
. (10)
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one can prove, that the maps End (V ) → End (V ) and End (V ) → End (V ∗) generated by

l
j

i
7→ ρ1(l

j

i
) and l

j

i
7→ ρ∗

1
(l j

i
)

are the morphisms of the category SW(V ).

Definition 7. A representation ρ : L(Rq, 1) → End (U) where U is an object of the category

SW(V ) is called equivariant if its restriction to End (V ) is a categorical morphism.

Thus, the above representations ρ1 and ρ∗
1

are equivariant.

Note that there are known representations of the mREA which are nor equivariant. How-

ever, the class of equivariant representations of the mREA is very important. In particular,

because the tensor product of two equivariant L(Rq, 1)-modules can be also equipped with a

structure of an equivariant L(Rq, 1)-module via a ”braided bialgebra structure” of the mREA.

Let us briefly describe this structure. It consists of two maps: the braided coproduct ∆

and counit ε.

The coproduct ∆ is an algebra homomorphism of L(Rq, 1) into the associative algebra

L(Rq) which is defined as follows.� As a vector space over the field K the algebra L(Rq) is isomorphic to the tensor product

of two copies of mREA

L(Rq) = L(Rq, 1) ⊗L(Rq, 1) .� The product ⋆ : (L(Rq))
⊗2 → L(Rq) is defined by the rule

(a1 ⊗ b1) ⋆ (a2 ⊗ b2) := a1a
′
2
⊗ b′

1
b2 , ai ⊗ bi ∈ L(Rq) , (11)

where a1a
′
2

and b1b
′
2

are the usual product of mREA elements, while a′
1

and b′
1

result

from the action of the braiding REnd(V ) (see Section 2) on the tensor product b1 ⊗ a2

a′2 ⊗ b′1 := REnd(V )(b1 ⊗ a2) . (12)

The braided coproduct ∆ is now defined as a linear map ∆ : L(Rq, 1) → L(Rq) with the

following properties:

∆(eL) := eL ⊗ eL

∆(lj
i
) := l

j

i
⊗ eL + eL ⊗ l

j

i
− (q − q−1)

∑

k
lk
i
⊗ l

j

k

∆(ab) := ∆(a) ⋆ ∆(b) ∀ a, b ∈ L(Rq, 1) .

(13)

In addition to (13), we introduce a linear map ε : L(Rq, 1) → K

ε(eL) := 1

ε(lj
i
) := 0

ε(ab) := ε(a)ε(b) ∀ a, b ∈ L(Rq, 1) .

(14)
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One can show (cf. [GPS]) that the maps ∆ and ε are indeed algebra homomorphisms and

that they satisfy the relation

(id ⊗ ε)∆ = id = (ε ⊗ id)∆ .

Let now U and W be two equivariant mREA-modules with representations ρU : L(Rq, 1) →

End (U) and ρW : L(Rq, 1) → End (W ) respectively. Consider the map ρU⊗W : L(Rq) →

End (U ⊗ W ) defined as follows

ρU⊗W (a ⊗ b) ⊲ (u ⊗ w) = (ρU (a) ⊲ u′) ⊗ (ρW (b′) ⊲ w) , a ⊗ b ∈ L(Rq) , (15)

where

u′ ⊗ b′ := REnd (V ),U (b ⊗ u) .

Definition (15) is self-consistent since the map b 7→ ρW (b′) is also a representation of the

mREA L(Rq, 1).

The following proposition holds true.

Proposition 8. ([GPS]) The action (15) defines a representation of the algebra L(Rq).

Note again, that the equivariance of the representations in question plays a decisive role

in the proof of the above proposition.

As an immediate corollary of the proposition 8 we get the rule of tensor multiplication of

equivariant L(Rq, 1)-modules.

Corollary 9. Let U and W be two L(Rq, 1)-modules with equivariant representations ρU and

ρW . Then the map L(Rq, 1) → End (U ⊗ W ) given by the rule

a 7→ ρU⊗W (∆(a)) , ∀ a ∈ L(Rq, 1) (16)

is an equivariant representation. Here the coproduct ∆ and the map ρU⊗W are given respec-

tively by formulae (13) and (15).

Thus, by using (16) we can extend the basic representations ρ1 and ρ∗
1

to the represen-

tations ρk and ρ∗
l

in tensor products V ⊗k and (V ∗⊗l) respectively. These representations are

reducible, and their restrictions on the representations ρλ,a in the invariant subspaces V(λ,a)

(see (5)) are given by the projections

ρλ,a = Eλ

a
◦ ρk (17)

and similarly for the subspaces V ∗
(µ,a)

. By using (16) once more we can equip each object of

the category SW(V ) with the structure of an equivariant L(Rq, 1)-module.
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5 Quantum Lie algebras related to Hecke symmetries

In this section we consider the question to which extent one can use the scheme of section 2 in

the case of non-involutive Hecke symmetry R for definition of the corresponding Lie algebra-

like object. For such an object related to a Hecke symmetry R we use the term quantum or

braided Lie algebra. Besides, we require the mREA, connected with the same symmetry R,

to be an analog of the enveloping algebra of the quantum Lie algebra. Finally, we compare

the properties of the above generalized Lie algebras and quantum ones.

Let us recall the interrelation of a usual Lie algebra g and its universal enveloping algebra

U(g). As is known, the universal enveloping algebra for a Lie algebra g is a unital associative

algebra U(g) possessing the following properties:� There exists a linear map τ : g → U(g) such that 1 and Im τ generate the whole U(g).� The Lie bracket [x, y] of any two elements of g has the image

τ([x, y]) = τ(x)τ(y) − τ(y)τ(x).

Let us rewrite these formulae in an equivalent form. Note that the tensor square g ⊗ g

splits into the direct sum of symmetric and skew symmetric components

g ⊗ g = gs ⊕ ga, gs = ImS, ga = ImA ,

where S and A are the standard (skew)symmetrizing operators

S(x ⊗ y) = x ⊗ y + y ⊗ x, A(x ⊗ y) = x ⊗ y − y ⊗ x ,

where we neglect the usual normalizing factor 1/2. Then the skew-symmetry property of the

classical Lie bracket is equivalent to the requirement

[ , ]S(x ⊗ y) = 0 . (18)

The image of the bracket in U(g) is presented as follows

τ([x, y]) = ◦A (τ(x) ⊗ τ(y)) , (19)

where ◦ stands for the product in the associative algebra U(g).� The Jacobi identity for the Lie bracket [ , ] translates into the requirement that the

correspondence x 7→ [x, ] generate the (adjoint) representation of U(g) in the linear

subspace τ(g) ⊂ U(g).

So, we define a braided Lie algebra as a linear subspace L1 = End (V ) of the mREA

L(Rq, 1), which generates the whole algebra and is equipped with the quantum Lie bracket.

We want the bracket to satisfy some skew-symmetry condition, generalizing (18), and define
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a representation of the mREA in the same linear subspace L1 via an analog of the Jacobi

identity.

As L1, let us take the linear span of mREA generators

L1 = End (V ) ∼= V ⊗ V ∗ .

Together with the unit element this subspace generate the whole L(Rq, 1) by definition.

In order to find the quantum Lie bracket, consider a particular representation of L(Rq, 1)

in the space End (V ). In this case the general formula (16) reads

l
j

i
7→ ρV ⊗V ∗(∆(l j

i
)) ,

where we should take the basic representations (9) and (10) as ρV (lj
i
) and ρV ∗(lj

i
) respectively.

Omitting straightforward calculations, we write the final result in the compact matrix form

ρV ⊗V ∗(L
1
) ⊲ L

2
= L1R12 − R12L1 , (20)

where the matrix L
k

is defined in (7).

Let us define

[L
1
, L

2
] = L1R12 − R12L1 . (21)

The generalized skew-symmetry (the axiom 1 from Section 2) of this bracket is now modified

as follows. In the space L1 ⊗L1 one can construct two projection operators Sq and Aq which

are interpreted as q-symmetrizer and q-skew-symmetrizer respectively (cf. [GPS]). Then

straightforward calculations show that the above bracket satisfies the relation

[ , ]Sq(L1
⊗ L

2
) = 0 , (22)

which is the generalized skew-symmetry condition, analogous to (18).

Moreover, if we rewrite the defining commutation relations of the mREA (8) in the equiv-

alent form

L
1
L

2
− R−1

12
L

1
L

2
R12 = L1R12 − R12L1 , (23)

we come to a generalization of the formula (19).

By introducing an operator

Q : L⊗2

1
→ L⊗2

1
, Q(L

1
L

2
) = R−1

12
L

1
L

2
R12

we can present the relation (23) as follows

L
1
L

2
− Q(L

1
L

2
) = [L

1
, L

2
]. (24)

It looks like the defining relation of the enveloping algebra of a generalized Lie algebra.

(Though we prefer to use the notations L
k

it is possible to exhibit the maps Q and [ , ] in
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the basis l
j

i
⊗ lm

k
.) Observe that the map Q is a braiding. Also, note that the operators Sq

and Aq can be expressed in terms of Q and its inverse (cf. [GPS]).

We call the data (g = L1, Q, [ , ]) the gl type quantum (braided) Lie algebra. Note that

if q = 1 (i.e. the symmetry R is involutive) then Q = REnd (V ) and this quantum Lie algebra

is nothing but the generalized Lie algebra gl(VR) and the corresponding mREA becomes

isomorphic to its enveloping algebra.

Let us list the properties of the the quantum Lie algebra in question.� The bracket [ , ] is skew-symmetric in the sense of (22).� The q-Jacobi identity is valid in the following form

[ , ][ , ]12 = [ , ][ , ]23(I − Q12) . (25)� The bracket [ , ] is R-invariant. Essentially, this means that the following relations hold

REnd (V )[ , ]23 = [ , ]12(REnd (V ))23(REnd (V ))12,

REnd (V )[ , ]12 = [ , ]23(REnd (V ))12(REnd (V ))23 . (26)

So, the adjoint action

L
1
⊲ L

2
= [L

1
, L

2
]

is indeed a representation. By chance (!) the representation ρV ⊗V ∗ coincides with this adjoint

action.

Turn now to the question of the ”sl-reduction”, that is, the passing from the mREA

L(Rq, 1) to the quotient algebra

SL(Rq) := L(Rq, 1)/〈TrRL〉 , TrRL := Tr(CL) , (27)

(see Section 2 for the operator C). The element ℓ := TrRL is central in the mREA, which

can be easily proved by calculating the R-trace in the second space of the matrix relation (8).

To describe the quotient algebra SL(Rq) explicitly, we pass to a new set of generators

{f j

i
, ℓ}, connected with the initial one by a linear transformation:

l
j

i
= f

j

i
+ (Tr(C))−1δ

j

i
ℓ or L = F + (Tr(C))−1I ℓ , (28)

where F = ‖f j

i
‖. Hereafter we assume that TrC = ℓi

i
6= 0. (So, the Lie super-algebras

gl(m|m) and their q-deformations are forbidden.) Obviously, TrRF = 0, i.e. the generators

f
j

i
are dependent.

In terms of the new generators, the commutation relations of the mREA read






R12F1R12F1 − F1R12F1R12 = (eL −
ω

Tr(C)
ℓ)(R12F1 − F1R12)

ℓ F = F ℓ ,
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where ω = q − q−1. Now, it is easy to describe the quotient (27) . The matrix F = ‖f j

i
‖ of

SL(Rq) generators satisfy the same commutation relations (8) as the matrix L

R12F1R12F1 − F1R12F1R12 = R12F1 − F1R12 , (29)

but the generators f
j

i
are linearly dependent.

Rewriting this relation in the form similar to (24) we can introduce an sl-type bracket.

However for such a bracket the q-Jacobi identity fails. This is due to the fact the element ℓ

comes in the relations for f
j

i
(at q = 1 this effect disappears ). Nevertheless, we can construct

a representation

ρV ⊗V ∗ : SL(Rq) → End (V ⊗ V ∗)

which is an analog of the adjoint representation. In order to do so, we rewrite the represen-

tation (20) in terms of the generators f
j

i
and ℓ. Taking relation (28) into account, we find,

after a short calculation

ρV ⊗V ∗(ℓ) ⊲ ℓ = 0, ρV ⊗V ∗(F1) ⊲ ℓ = 0 ,

ρV ⊗V ∗(ℓ) ⊲ F1 = −ω Tr(C)F1

ρV ⊗V ∗(F
1
) ⊲ F

2
= F1R12 − R12F1 + ωR12F1R

−1

12
. (30)

Namely, the last formula from this list defines the representation ρV ⊗V ∗ . However, in

contrast with the mREA L(Rq, 1), this map is different from that defined by the bracket [ , ]

reduced to the space span (f j

i
). This is reason why the ”q-adjoint” representation cannot be

presented in the form (25). (Also, note that though ℓ is central it acts in a non-trivial way

on the elements f
j

i
.)

Moreover, any object U of the category SW(V) above such that

ρU(ℓ) = χ IU , χ ∈ K

is a scalar operator, can be equipped with an SL(Rq)-module structure. First, let us observe

that for any representation ρU : L(Rq, 1) → End (U) and for any z ∈ K the map

ρz

U
: L(Rq, 1) → End (U), ρz

U
(lj

i
) = zρU (lj

i
) + δ

j

i
(1 − z)(q − q−1)−1 IU

is a representation of this algebra as well.

By using this freedom we can convert a given representation ρU : L(Rq, 1) → End (U)

with the above property into that ρz

U
such that ρz

U
(ℓ) = 0. Thus we get a representation of

the algebra SL(Rq). Explicitly, this representation is given by the formula

ρ̃(f j

i
) =

1

ξ

(

ρ(lj
i
) − (Tr(C))−1ρ(ℓ) δ

j

i

)

, ξ = 1 − (q − q−1)(Tr(C))−1χ . (31)

The data (span (f j

i
), Q, [ , ]) where the bracket stands for the l.h.s. of (24) restricted to

span (f j

i
) is called the sl-type quantum (braided) Lie algebra.
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Note that in the particular case related to the QG Uq(sl(n)) this quantum algebra can

be treated in terms of [LS] where an axiomatic approach to the corresponding Lie algebra-

like object is given. However, we think that any general axiomatic definition of such objects

is somewhat useless (unless the corresponding symmetry is involutive). Our viewpoint is

motivated by the fact that for Bn, Cn, Dn series there do not exist ”quantum Lie algebras”

such that their enveloping algebras have good deformation properties. As for the An series

(or more generally, for any skew-invertible Hecke symmetry) such objects exist and can be

explicitly exhibited via the mREA. Their properties differ from those listed in [W, GM] in

the framework of an axiomatic approach to Lie algebra-like objects.

Completing the paper, we want to emphasize that the above coproduct can be useful for

definition of a ”braided (co)adjoint vector field”. In the L(Rq, 1) case these fields are naturally

introduced through the above adjoint action extended to the symmetric algebra of the space

L1 by means of this coproduct. The symmetric algebra can be defined via the above operators

Sq and Aq. In the SL(Rq) case a similar treatment is possible if Tr C 6= 0.
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On the automorphism groups of q-enveloping

algebras of nilpotent Lie algebras

Stéphane Launois∗

Abstract

We investigate the automorphism group of the quantised enveloping algebra U+
q (g)

of the positive nilpotent part of certain simple complex Lie algebras g in the case where

the deformation parameter q ∈ C
∗ is not a root of unity. Studying its action on the

set of minimal primitive ideals of U+
q (g) we compute this group in the cases where g =

sl3 and g = so5 confirming a Conjecture of Andruskiewitsch and Dumas regarding the

automorphism group of U+
q (g). In the case where g = sl3, we retrieve the description of the

automorphism group of the quantum Heisenberg algebra that was obtained independently

by Alev and Dumas, and Caldero. In the case where g = so5, the automorphism group of

U+
q (g) was computed in [16] by using previous results of Andruskiewitsch and Dumas. In

this paper, we give a new (simpler) proof of the Conjecture of Andruskiewitsch and Dumas

in the case where g = so5 based both on the original proof and on graded arguments

developed in [17] and [18].

Introduction

In the classical situation, there are few results about the automorphism group of the envelop-

ing algebra U(L) of a Lie algebra L over C; except when dimL ≤ 2, these groups are known

to possess “wild” automorphisms and are far from being understood. For instance, this is the

case when L is the three-dimensional abelian Lie algebra [22], when L = sl2 [14] and when L

is the three-dimensional Heisenberg Lie algebra [1].

In this paper we study the quantum situation. More precisely, we study the automorphism

group of the quantised enveloping algebra U+
q

(g) of the positive nilpotent part of a finite

dimensional simple complex Lie algebra g in the case where the deformation parameter q ∈ C
∗

is not a root of unity. Although it is a common belief that quantum algebras are ”rigid” and

so should possess few symmetries, little is known about the automorphism group of U+

q
(g).
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Indeed, until recently, this group was known only in the case where g = sl3 whereas the

structure of the automorphism group of the augmented form Ǔq(b
+), where b

+ is the positive

Borel subalgebra of g, has been described in [9] in the general case.

The automorphism group of U+
q

(sl3) was computed independently by Alev-Dumas, [2],

and Caldero, [8], who showed that

Aut(U+

q
(sl3)) ≃ (C∗)2 ⋊ S2.

Recently, Andruskiewitsch and Dumas, [4] have obtained partial results on the automorphism

group of U+
q

(so5). In view of their results and the description of Aut(U+
q

(sl3)), they have

proposed the following conjecture.

Conjecture (Andruskiewitsch-Dumas, [4, Problem 1]):

Aut(U+

q
(g)) ≃ (C∗)rk(g)

⋊ autdiagr(g),

where autdiagr(g) denotes the group of automorphisms of the Dynkin diagram of g.

Recently we proved this conjecture in the case where g = so5, [16], and, in collaboration

with Samuel Lopes, in the case where g = sl4, [18]. The techniques in these two cases are

very different. Our aim in this paper is to show how one can prove the Andruskiewitsch-

Dumas Conjecture in the cases where g = sl3 and g = so5 by first studying the action of

Aut(U+

q
(g)) on the set of minimal primitive ideals of U+

q
(g) - this was the main idea in [16]

-, and then using graded arguments as developed in [17] and [18]. This strategy leads us to

a new (simpler) proof of the Andruskiewitsch-Dumas Conjecture in the case where g = so5.

Throughout this paper, N denotes the set of nonnegative integers, C
∗ := C \ {0} and q is

a nonzero complex number that is not a root of unity.

1 Preliminaries

In this section, we present the H-stratification theory of Goodearl and Letzter for the positive

part U+
q

(g) of the quantised enveloping algebra of a simple finite-dimensional complex Lie

algebra g. In particular, we present a criterion (due to Goodearl and Letzter) that charac-

terises the primitive ideals of U+
q

(g) among its prime ideals. In the next section, we will use

this criterion in order to describe the primitive spectrum of U+

q
(g) in the cases where g = sl3

and g = so5.

1.1 Quantised enveloping algebras and their positive parts.

Let g be a simple Lie C-algebra of rank n. We denote by π = {α1, . . . , αn} the set of simple

roots associated to a triangular decomposition g = n
− ⊕ h ⊕ n

+. Recall that π is a basis of
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an euclidean vector space E over R, whose inner product is denoted by ( , ) (E is usually

denoted by h
∗
R

in Bourbaki). We denote by W the Weyl group of g, that is, the subgroup

of the orthogonal group of E generated by the reflections si := sαi
, for i ∈ {1, . . . , n}, with

reflecting hyperplanes Hi := {β ∈ E | (β, αi) = 0}, i ∈ {1, . . . , n}. The length of w ∈ W

is denoted by l(w). Further, we denote by w0 the longest element of W . We denote by

R+ the set of positive roots and by R the set of roots. Set Q+ := Nα1 ⊕ · · · ⊕ Nαn and

Q := Zα1⊕· · ·⊕Zαn. Finally, we denote by A = (aij) ∈ Mn(Z) the Cartan matrix associated

to these data. As g is simple, aij ∈ {0,−1,−2,−3} for all i 6= j.

Recall that the scalar product of two roots (α, β) is always an integer. As in [5], we assume

that the short roots have length
√

2.

For all i ∈ {1, . . . , n}, set qi := q
(αi,αi)

2 and

[

m

k

]

i

:=
(qi − q−1

i
) . . . (qm−1

i
− q1−m

i
)(qm

i
− q−m

i
)

(qi − q−1

i
) . . . (qk

i
− q−k

i
)(qi − q−1

i
) . . . (qm−k

i
− qk−m

i
)

for all integers 0 ≤ k ≤ m. By convention,

[

m

0

]

i

:= 1.

The quantised enveloping algebra Uq(g) of g over C associated to the previous data is the

C-algebra generated by the indeterminates E1, . . . , En, F1, . . . , Fn,K±1

1
, . . . ,K±1

n
subject to

the following relations:

KiKj = KjKi

KiEjK
−1

i
= q

aij

i
Ej and KiFjK

−1

i
= q

−aij

i
Fj

EiFj − FjEi = δij

Ki − K−1

i

qi − q−1

i

and the quantum Serre relations:

1−aij∑

k=0

(−1)k

[

1 − aij

k

]

i

E
1−aij−k

i
EjE

k

i
= 0 (i 6= j) (1)

and
1−aij∑

k=0

(−1)k

[

1 − aij

k

]

i

F
1−aij−k

i
FjF

k

i
= 0 (i 6= j).

We refer the reader to [5, 13, 15] for more details on this (Hopf) algebra. Further, as

usual, we denote by U+
q

(g) (resp. U−
q

(g)) the subalgebra of Uq(g) generated by E1, . . . , En

(resp. F1, . . . , Fn) and by U0 the subalgebra of Uq(g) generated by K±1

1
, . . . ,K±1

n
. Moreover,

for all α = a1α1 + · · · + anαn ∈ Q, we set

Kα := Ka1

1
· · ·Kan

n
.
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As in the classical case, there is a triangular decomposition as vector spaces:

U−
q

(g) ⊗ U0 ⊗ U+

q
(g) ≃ Uq(g).

In this paper we are concerned with the algebra U+
q

(g) that admits the following presentation,

see [13, Theorem 4.21]. The algebra U+

q
(g) is (isomorphic to) the C-algebra generated by n

indeterminates E1, . . . , En subject to the quantum Serre relations (1).

1.2 PBW-basis of U+

q
(g).

To each reduced decomposition of the longest element w0 of the Weyl group W of g, Lusztig

has associated a PBW basis of U+
q

(g), see for instance [19, Chapter 37], [13, Chapter 8] or [5,

I.6.7]. The construction relates to a braid group action by automorphisms on U+

q
(g). Let us

first recall this action. For all s ∈ N and i ∈ {1, . . . , n}, we set

[s]i :=
qs

i
− q−s

i

qi − q−1

i

and [s]i! := [1]i . . . [s − 1]i[s]i.

As in [5, I.6.7], we denote by Ti, for 1 ≤ i ≤ n, the automorphism of U+
q

(g) defined by:

Ti(Ei) = −FiKi,

Ti(Ej) =

−aij∑

s=0

(−1)s−aijq−s

i
E

(−aij−s)

i
EjE

(s)

i
, i 6= j

Ti(Fi) = −K−1

i
Ei,

Ti(Fj) =

−aij∑

s=0

(−1)s−aij qs

i
F

(s)

i
FjF

(−aij−s)

i
, i 6= j

Ti(Kα) = Ksi(α), α ∈ Q,

where E
(s)

i
:=

E
s
i

[s]i!
and F

(s)

i
:=

F
s
i

[s]i!
for all s ∈ N. It was proved by Lusztig that the automor-

phisms Ti satisfy the braid relations, that is, if sisj has order m in W , then

TiTjTi · · · = TjTiTj . . . ,

where there are exactly m factors on each side of this equality.

The automorphisms Ti can be used in order to describe PBW bases of U+
q

(g) as fol-

lows. It is well-known that the length of w0 is equal to the number N of positive roots

of g. Let si1
· · · siN

be a reduced decomposition of w0. For k ∈ {1, . . . , N}, we set βk :=

si1
· · · sik−1

(αik
). Then {β1, . . . , βN} is exactly the set of positive roots of g. Similarly, we

define elements Eβk
of Uq(g) by

Eβk
:= Ti1

· · ·Tik−1
(Eik

).

Note that the elements Eβk
depend on the reduced decomposition of w0. The following

well-known results were proved by Lusztig and Levendorskii-Soibelman.
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Theorem 1.1 (Lusztig and Levendorskii-Soibelman).

1. For all k ∈ {1, . . . , N}, the element Eβk
belongs to U+

q
(g).

2. If βk = αi, then Eβk
= Ei.

3. The monomials Ek1

β1
· · ·EkN

βN
, with k1, . . . , kN ∈ N, form a linear basis of U+

q
(g).

4. For all 1 ≤ i < j ≤ N , we have

Eβj
Eβi

− q−(βi,βj)Eβi
Eβj

=
∑

aki+1,...,kj−1
E

ki+1

βi+1
· · ·E

kj−1

βj−1
,

where each aki+1,...,kj−1
belongs to C.

As a consequence of this result, U+

q
(g) can be presented as a skew-polynomial algebra:

U+

q
(g) = C[Eβ1

][Eβ2
;σ2, δ2] · · · [EβN

;σN , δN ],

where each σi is a linear automorphism and each δi is a σi-derivation of the appropriate

subalgebra. In particular, U+

q
(g) is a noetherian domain and its group of invertible elements

is reduced to nonzero complex numbers.

1.3 Prime and primitive spectra of U+

q
(g).

We denote by Spec(U+
q

(g)) the set of prime ideals of U+
q

(g). First, as q is not a root of unity,

it was proved by Ringel [21] (see also [10, Theorem 2.3]) that, as in the classical situation,

every prime ideal of U+
q

(g) is completely prime.

In order to study the prime and primitive spectra of U+

q
(g), we will use the stratification

theory developed by Goodearl and Letzter. This theory allows the construction of a partition

of these two sets by using the action of a suitable torus on U+

q
(g). More precisely, the torus

H := (C∗)n acts naturally by automorphisms on U+
q

(g) via:

(h1, . . . , hn).Ei = hiEi for all i ∈ {1, . . . , n}.

(It is easy to check that the quantum Serre relations are preserved by the group H.) Recall

(see [4, 3.4.1]) that this action is rational. (We refer the reader to [5, II.2.] for the defintion of

a rational action.) A non-zero element x of U+

q
(g) is an H-eigenvector of U+

q
(g) if h.x ∈ C

∗x

for all h ∈ H. An ideal I of U+
q

(g) is H-invariant if h.I = I for all h ∈ H. We denote by H-

Spec(U+

q
(g)) the set of all H-invariant prime ideals of U+

q
(g). It turns out that this is a finite

set by a theorem of Goodearl and Letzter about iterated Ore extensions, see [11, Proposition

4.2]. In fact, one can be even more precise in our situation. Indeed, in [12], Gorelik has

also constructed a stratification of the prime spectrum of U+
q

(g) using tools coming from

representation theory. It turns out that her stratification coincides with the H-stratification,

so that we deduce from [12, Corollary 7.1.2] that
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Proposition 1.2 (Gorelik). U+
q

(g) has exactly |W | H-invariant prime ideals.

The action of H on U+

q
(g) allows via the H-stratification theory of Goodearl and Letzter

(see [5, II.2]) the construction of a partition of Spec(U+
q

(g)) as follows. If J is an H-invariant

prime ideal of U+

q
(g), we denote by Spec

J
(U+

q
(g)) the H-stratum of Spec(U+

q
(g)) associated

to J . Recall that SpecJ(U+
q

(g)) := {P ∈ Spec(U+
q

(g)) |
⋂

h∈H h.P = J}. Then the H-strata

Spec
J
(U+

q
(g)) (J ∈ H-Spec(U+

q
(g))) form a partition of Spec(U+

q
(g)) (see [5, II.2]):

Spec(U+

q
(g)) =

⊔

J∈H-Spec(U
+
q (g))

Spec
J
(U+

q
(g)).

Naturally, this partition induces a partition of the set Prim(U+

q
(g)) of all (left) primitive ideals

of U+
q

(g) as follows. For all J ∈ H-Spec(U+
q

(g)), we set PrimJ(U+
q

(g)) := SpecJ(U+
q

(g)) ∩

Prim(U+

q
(g)). Then it is obvious that the H-strata PrimJ(U+

q
(g)) (J ∈ H-Spec(U+

q
(g))) form

a partition of Prim(U+
q

(g)):

Prim(U+

q
(g)) =

⊔

J∈H-Spec(U
+
q (g))

PrimJ(U+

q
(g)).

More interestingly, because of the finiteness of the set of H-invariant prime ideals of U+
q

(g), the

H-stratification theory provides a useful tool to recognise primitive ideals without having to

find all its irreductible representations! Indeed, following previous works of Hodges-Levasseur,

Joseph, and Brown-Goodearl, Goodearl and Letzter have characterised the primitive ideals

of U+
q

(g) as follows, see [11, Corollary 2.7] or [5, Theorem II.8.4].

Theorem 1.3 (Goodearl-Letzter). PrimJ(U+

q
(g)) (J ∈ H-Spec(U+

q
(g))) coincides with those

primes in SpecJ(U+
q

(g)) that are maximal in SpecJ(U+
q

(g)).

2 Automorphism group of U+
q (g)

In this section, we investigate the automorphism group of U+

q
(g) viewed as the algebra gen-

erated by n indeterminates E1, . . . , En subject to the quantum Serre relations. This algebra

has some well-identified automorphisms. First, there are the so-called torus automorphisms;

let H = (C∗)n, where n still denotes the rank of g. As U+
q

(g) is the C-algebra generated

by n indeterminates subject to the quantum Serre relations, it is easy to check that each

λ̄ = (λ1, . . . , , λn) ∈ H determines an algebra automorphism φ
λ̄

of U+
q

(g) with φ
λ̄
(Ei) = λiEi

for i ∈ {1, . . . , n}, with inverse φ−1

λ̄
= φ

λ̄−1 . Next, there are the so-called diagram auto-

morphisms coming from the symmetries of the Dynkin diagram of g. Namely, let w be an

automorphism of the Dynkin diagram of g, that is, w is an element of the symmetric group Sn

such that (αi, αj) = (αw(i), αw(j)) for all i, j ∈ {1, . . . , n}. Then one defines an automorphism,

also denoted w, of U+

q
(g) by: w(Ei) = Ew(i). Observe that

φ
λ̄
◦ w = w ◦ φ(λw(1) ,...,,λw(n))

.
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We denote by G the subgroup of Aut(U+
q

(g)) generated by the torus automorphisms and

the diagram automorphisms. Observe that

G ≃ H ⋊ autdiagr(g),

where autdiagr(g) denotes the set of diagram automorphisms of g.

The group Aut(U+

q
(sl3)) was computed independently by Alev and Dumas, see [2, Propo-

sition 2.3] , and Caldero, see [8, Proposition 4.4]; their results show that, in the case where

g = sl3, we have

Aut(U+

q
(sl3)) = G.

About ten years later, Andruskiewitsch and Dumas investigated the case where g = so5, see

[4]. In this case, they obtained partial results that lead them to the following conjecture.

Conjecture (Andruskiewitsch-Dumas, [4, Problem 1]):

Aut(U+

q
(g)) = G.

This conjecture was recently confirmed in two new cases: g = so5, [16], and g = sl4, [18].

Our aim in this section is to show how one can use the action of the automorphism group of

U+
q

(g) on the primitive spectrum of this algebra in order to prove the Andruskiewitsch-Dumas

Conjecture in the cases where g = sl3 and g = so5.

2.1 Normal elements of U+

q
(g)

Recall that an element a of U+

q
(g) is normal provided the left and right ideals generated by

a in U+
q

(g) coincide, that is, if

aU+

q
(g) = U+

q
(g)a.

In the sequel, we will use several times the following well-known result concerning normal

elements of U+

q
(g).

Lemma 2.1. Let u and v be two nonzero normal elements of U+
q

(g) such that 〈u〉 = 〈v〉.

Then there exist λ, µ ∈ C
∗ such that u = λv and v = µu.

Proof. It is obvious that units λ, µ exist with these properties. However, the set of units of

U+

q
(g) is precisely C

∗.

2.2 N-grading on U+

q
(g) and automorphisms

As the quantum Serre relations are homogeneous in the given generators, there is an N-grading

on U+

q
(g) obtained by assigning to Ei degree 1. Let

U+

q
(g) =

⊕

i∈N

U+

q
(g)i (2)
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be the corresponding decomposition, with U+
q

(g)i the subspace of homogeneous elements of

degree i. In particular, U+
q

(g)0 = C and U+
q

(g)1 is the n-dimensional space spanned by the

generators E1, . . . , En. For t ∈ N set U+

q
(g)≥t =

⊕

i≥t
U+

q
(g)i and define U+

q
(g)≤t similarly.

We say that the nonzero element u ∈ U+
q

(g) has degree t, and write deg(u) = t, if

u ∈ U+

q
(g)≤t \ U+

q
(g)≤t−1 (using the convention that U+

q
(g)≤−1 = {0}). As U+

q
(g) is a

domain, deg(uv) = deg(u) + deg(v) for u, v 6= 0.

Definition 2.2. Let A =
⊕

i∈N
Ai be an N-graded C-algebra with A0 = C which is generated

as an algebra by A1 = Cx1 ⊕ · · · ⊕Cxn. If for each i ∈ {1, . . . , n} there exist 0 6= a ∈ A and a

scalar qi,a 6= 1 such that xia = qi,aaxi, then we say that A is an N-graded algebra with enough

q-commutation relations.

The algebra U+
q

(g), endowed with the grading just defined, is a connected N-graded al-

gebra with enough q-commutation relations. Indeed, if i ∈ {1, . . . , n}, then there exists

u ∈ U+
q

(g) such that Eiu = q•uEi where • is a nonzero integer. This can be proved as

follows. As g is simple, there exists an index j ∈ {1, . . . , n} such that j 6= i and aij 6= 0,

that is, aij ∈ {−1,−2,−3}. Then sisj is a reduced expression in W , so that one can find a

reduced expression of w0 starting with sisj, that is, one can write

w0 = sisjsi3
. . . siN

.

With respect to this reduced expression of w0, we have with the notation of Section 1.2:

β1 = αi and β2 = si(αj) = αj − aijαi

Then it follows from Theorem 1.1 that Eβ1
= Ei, Eβ2

= Eαj−aijαi
and

EiEβ2
= q(αi,αj−aijαi)Eβ2

Ei,

that is,

EiEβ2
= q−(αi,αj)Eβ2

Ei.

As aij 6= 0, we have (αi, αj) 6= 0 and so q−(αi,αj) 6= 1 since q is not a root of unity. So we

have just proved:

Proposition 2.3. U+
q

(g) is a connected N-graded algebra with enough q-commutation rela-

tions.

One of the advantages of N-graded algebras with enough q-commutation relations is

that any automorphism of such an algebra must conserve the valuation associated to the

N-graduation. More precisely, as U+
q

(g) is a connected N-graded algebra with enough q-

commutation relations, we deduce from [18] (see also [17, Proposition 3.2]) the following

result.

Corollary 2.4. Let σ ∈ Aut(U+

q
(g)) and x ∈ U+

q
(g)d \ {0}. Then σ(x) = yd + y>d, for some

yd ∈ U+
q

(g)d \ {0} and y>d ∈ U+
q

(g)≥d+1.
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2.3 The case where g = sl3

In this section, we investigate the automorphism group of U+
q

(g) in the case where g = sl3. In

this case the Cartan matrix is A =

(

2 −1

−1 2

)

, so that U+
q

(sl3) is the C-algebra generated

by two indeterminates E1 and E2 subject to the following relations:

E2

1E2 − (q + q−1)E1E2E1 + E2E
2

1 = 0 (3)

E2

2
E1 − (q + q−1)E2E1E2 + E1E

2

2
= 0 (4)

We often refer to this algebra as the quantum Heisenberg algebra, and sometimes we denote

it by H, as in the classical situation the enveloping algebra of sl
+

3
is the so-called Heisenberg

algebra.

We now make explicit a PBW basis of H. The Weyl group of sl3 is isomorphic to the

symmetric group S3, where s1 is identified with the transposition (1 2) and s2 is identified

with (2 3). Its longest element is then w0 = (13); it has two reduced decompositions: w0 =

s1s2s1 = s2s1s2. Let us choose the reduced decomposition s1s2s1 of w0 in order to construct

a PBW basis of U+

q
(sl3). According to Section 1.2, this reduced decomposition leads to the

following root vectors:

Eα1
= E1, Eα1+α2

= T1(E2) = −E1E2 + q−1E2E1 and Eα2
= T1T2(E1) = E2.

In order to simplify the notation, we set E3 := −E1E2 + q−1E2E1. Then, it follows from

Theorem 1.1 that� The monomials E
k1

1
E

k3

3
E

k2

2
, with k1, k2, k3 nonnegative integers, form a PBW-basis of

U+

q
(sl3).� H is the iterated Ore extension over C generated by the indeterminates E1, E3, E2

subject to the following relations:

E3E1 = q−1E1E3, E2E3 = q−1E3E2, E2E1 = qE1E2 + qE3.

In particular, H is a Noetherian domain, and its group of invertible elements is reduced

to C
∗.� It follows from the previous commutation relations between the root vectors that E3 is

a normal element in H, that is, E3H = HE3.

In order to describe the prime and primitive spectra of H, we need to introduce two other

elements. The first one is the root vector E′
3

:= T2(E1) = −E2E1 + q−1E1E2. This root

vector would have appeared if we have choosen the reduced decomposition s2s1s2 of w0 in

order to construct a PBW basis of H. It follows from Theorem 1.1 that E′
3

q-commutes with

E1 and E2, so that E′
3

is also a normal element of H. Moreover, one can describe the centre
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of H using the two normal elements E3 and E′
3
. Indeed, in [3, Corollaire 2.16], Alev and

Dumas have described the centre of U+
q

(sln); independently Caldero has described the centre

of U+

q
(g) for arbitrary g, see [7]. In our particular situation, their results show that the centre

Z(H) of H is a polynomial ring in one variable Z(H) = C[Ω], where Ω = E3E
′
3
.

We are now in position to describe the prime and primitive spectra of H = U+

q
(sl(3));

this was first achieved by Malliavin who obtained the following picture for the poset of prime

ideals of H, see [20, Théorème 2.4]:
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〈0〉

where α, β, γ ∈ C
∗.

Recall from Section 1.3 that the torus H = (C∗)2 acts on U+

q
(sl3) by automorphisms and

that the H-stratification theory of Goodearl and Letzter constructs a partition of the prime

spectrum of U+

q
(sl3) into so-called H-strata, this partition being indexed by the H-invariant

prime ideals of U+
q

(sl3). Using this description of Spec(U+
q

(sl3)), it is easy to identify the

6 = |W | H-invariant prime ideals of H and their corresponding H-strata. As E1, E2, E3 and

E′
3

are H-eigenvectors, the 6 H-invariant primes are:

〈0〉, 〈E3〉, 〈E′
3
〉, 〈E1〉, 〈E2〉 and 〈E1, E2〉.

Moreover the corresponding H-strata are:

Spec〈0〉(H) = {〈0〉} ∪ {〈Ω − γ〉 | γ ∈ C
∗},

Spec〈E3〉
(H) = {〈E3〉},

Spec〈E′
3
〉(H) = {〈E′

3
〉},

Spec〈E1〉
(H) = {〈E1〉} ∪ {〈E1, E2 − β〉 | β ∈ C

∗},

Spec〈E2〉
(H) = {〈E2〉} ∪ {〈E1 − α,E2〉 | α ∈ C

∗}

and Spec〈E1,E2〉
(H) = {〈E1, E2〉}.
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We deduce from this description of the H-strata and the the fact that primitive ideals

are exactly those primes that are maximal within their H-strata, see Theorem 1.3, that the

primitive ideals of U+

q
(sl3) are exactly those primes that appear in double brackets in the

previous picture.

We now investigate the group of automorphisms of H = U+

q
(sl3). In that case, the torus

acting naturally on U+
q

(sl3) is H = (C∗)2, there is only one non-trivial diagram automorphism

w that exchanges E1 and E2, and so the subgroup G of Aut(U+

q
(sl3)) generated by the torus

and diagram automorphisms is isomorphic to the semi-direct product (C∗)2 ⋊ S2. We want

to prove that Aut(U+

q
(sl3)) = G.

In order to do this, we study the action of Aut(U+
q

(sl3)) on the set of primitive ideals that

are not maximal. As there are only two of them, 〈E3〉 and 〈E′
3
〉, an automorphism of H will

either fix them or permute them.

Let σ be an automorphism of U+

q
(sl3). It follows from the previous observation that

either σ(〈E3〉) = 〈E3〉 and σ(〈E′
3
〉) = 〈E′

3
〉,

or σ(〈E3〉) = 〈E′
3
〉 and σ(〈E′

3
〉) = 〈E3〉.

As it is clear that the diagram automorphism w permutes the ideals 〈E3〉 and 〈E′
3
〉, we get

that there exists an automorphism g ∈ G such that

g ◦ σ(〈E3〉) = 〈E3〉 and g ◦ σ(〈E′
3〉) = 〈E′

3〉.

Then, as E3 and E′
3

are normal, we deduce from Lemma 2.1 that there exist λ, λ′ ∈ C
∗ such

that

g ◦ σ(E3) = λE3 and g ◦ σ(E′
3) = λ′E′

3.

In order to prove that g ◦ σ is an element of G, we now use the N-graduation of U+

q
(sl3)

introduced in Section 2.2. With respect to this graduation, E1 and E2 are homogeneous of

degree 1, and so E3 and E′
3

are homogeneous of degree 2. Moreover, as (q−2 − 1)E1E2 =

E3 + q−1E′
3
, we deduce from the above discussion that

g ◦ σ(E1E2) =
1

q−2 − 1

(
λE3 + q−1λ′E′

3

)

has degree two. On the other hand, as U+

q
(sl3) is a connected N-graded algebra with enough

q-commutation relations by Proposition 2.3, it follows from Corollary 2.4 that σ(E1) = a1E1+

a2E2 + u and σ(E2) = b1E1 + b2E2 + v, where (a1, a2), (b1, b2) ∈ C
2 \ {(0, 0)}, and u, v ∈

U+
q

(sl3) are linear combinations of homogeneous elements of degree greater than one. As

g ◦ σ(E1).g ◦ σ(E2) has degree two, it is clear that u = v = 0. To conclude that g ◦ σ ∈ G,

it just remains to prove that a2 = 0 = b1. This can be easily shown by using the fact that

g◦σ(−E1E2 +q−1E2E1) = g◦σ(E3) = λE3; replacing g◦σ(E1) and g◦σ(E2) by a1E1 +a2E2

and b1E1 + b2E2 respectively, and then identifying the coefficients in the PBW basis, leads to
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a2 = 0 = b1, as required. Hence we have just proved that g ◦σ ∈ G, so that σ itself belongs to

G the subgroup of Aut(U+
q

(sl3)) generated by the torus and diagram automorphisms. Hence

one can state the following result that confirms the Andruskiewitsch-Dumas Conjecture.

Proposition 2.5. Aut(U+
q

(sl3)) ≃ (C∗)2 ⋊ autdiagr(sl3)

This result was first obtained independently by Alev and Dumas, [2, Proposition 2.3],

and Caldero, [8, Proposition 4.4], but using somehow different methods; they studied this

automorphism group by looking at its action on the set of normal elements of U+
q

(sl3).

2.4 The case where g = so5

In this section we investigate the automorphism group of U+
q

(g) in the case where g =

so5. In this case there are no diagram automorphisms, so that the Andruskiewitsch-Dumas

Conjecture asks whether every automorphism of U+
q

(so5) is a torus automorphism. In [16]

we have proved their conjecture when g = so5. The aim of this section is to present a slightly

different proof based both on the original proof and on the recent proof by S.A. Lopes and

the author of the Andruskiewitsch-Dumas Conjecture in the case where g is of type A3.

In the case where g = so5, the Cartan matrix is A =

(

2 −2

−1 2

)

, so that U+

q
(so5) is

the C-algebra generated by two indeterminates E1 and E2 subject to the following relations:

E3

1
E2 − (q2 + 1 + q−2)E2

1
E2E1 + (q2 + 1 + q−2)E1E2E

2

1
+ E2E

3

1
= 0 (5)

E2

2E1 − (q2 + q−2)E2E1E2 + E1E
2

2 = 0 (6)

We now make explicit a PBW basis of U+

q
(so5). The Weyl group of so5 is isomorphic to

the dihedral group D(4). Its longest element is w0 = −id; it has two reduced decompositions:

w0 = s1s2s1s2 = s2s1s2s1. Let us choose the reduced decomposition s1s2s1s2 of w0 in order

to construct a PBW basis of U+
q

(so5). According to Section 1.2, this reduced decomposition

leads to the following root vectors:

Eα1
= E1, E2α1+α2

= T1(E2) =
1

(q + q−1)

(
E2

1E2 − q−1(q + q−1)E1E2E1 + q−2E2E
2

1

)
,

Eα1+α2
= T1T2(E1) = −E1E2 + q−2E2E1 and Eα2

= T1T2T1(E2) = E2.

In order to simplify the notation, we set E3 := −Eα1+α2
and E4 := E2α1+α2

. Then, it

follows from Theorem 1.1 that� The monomials E
k1

1
E

k4

4
E

k3

3
E

k2

2
, with k1, k2, k3, k4 nonnegative integers, form a PBW-

basis of U+

q
(so5).
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� U+
q

(so5) is the iterated Ore extension over C generated by the indeterminates E1, E4,

E3, E2 subject to the following relations:

E4E1 = q−2E1E4

E3E1 = E1E3 − (q + q−1)E4, E3E4 = q−2E4E3,

E2E1 = q2E1E2 − q2E3, E2E4 = E4E2 −
q
2−1

q+q−1 E2

3
, E2E3 = q−2E3E2.

In particular, U+
q

(so5) is a Noetherian domain, and its group of invertible elements is

reduced to C
∗.

Before describing the automorphism group of U+

q
(so5), we first describe the centre and the

primitive ideals of U+
q

(so5). The centre of U+
q

(g) has been described in general by Caldero,

[7]. In the case where g = so5, his result shows that Z(U+

q
(so5)) is a polynomial algebra in

two indeterminates

Z(U+

q
(so5)) = C[z, z′],

where

z = (1 − q2)E1E3 + q2(q + q−1)E4

and

z′ = −(q2 − q−2)(q + q−1)E4E2 + q2(q2 − 1)E2

3
.

Recall from Section 1.3 that the torus H = (C∗)2 acts on U+
q

(so5) by automorphisms and

that the H-stratification theory of Goodearl and Letzter constructs a partition of the prime

spectrum of U+
q

(so5) into so-called H-strata, this partition being indexed by the 8 = |W |

H-invariant prime ideals of U+

q
(so5). In [16], we have described these eight H-strata. More

precisely, we have obtained the following picture for the poset Spec(U+
q

(so5)),
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where α, β, γ, δ ∈ C
∗, E′

3
:= E1E2 − q2E2E1 and

I = {〈P (z, z′)〉 | P is a unitary irreductible polynomial of C[z, z′], P 6= z, z′}.

As the primitive ideals are those primes that are maximal in their H-strata, see Theorem

1.3, we deduced from this description of the prime spectrum that the primitive ideals of

U+

q
(so5) are the following:

• 〈z − α, z′ − β〉 with (α, β) ∈ C
2 \ {(0, 0)}.

• 〈E3〉 and 〈E′
3
〉.

• 〈E1 − α,E2 − β〉 with (α, β) ∈ C
2 such that αβ = 0.

(They correspond to the “double brackets” prime ideals in the above picture.)

Among them, two only are not maximal, 〈E3〉 and 〈E′
3
〉. Unfortunately, as E3 and E′

3
are

not normal in U+

q
(so5), one cannot easily obtain information using the fact that any automor-

phism of U+
q

(so5) will either preserve or exchange these two prime ideals. Rather than using

this observation, we will use the action of Aut(U+

q
(so5)) on the set of maximal ideals of height

two. Because of the previous description of the primitive spectrum of U+
q

(so5), the height two

maximal ideals in U+

q
(so5) are those 〈z − α, z′ − β〉 with (α, β) ∈ C

2\{(0, 0)}. In [16, Proposi-

tion 3.6], we have proved that the group of units of the factor algebra U+
q

(so5)/〈z − α, z′ − β〉

is reduced to C
∗ if and only if both α and β are nonzero. Consequently, if σ is an automor-
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phism of U+
q

(so5) and α ∈ C
∗, we get that:

σ(〈z − α, z′〉) = 〈z − α′, z′〉 or 〈z, z′ − β′〉,

where α′, β′ ∈ C
∗. Similarly, if σ is an automorphism of U+

q
(so5) and β ∈ C

∗, we get that:

σ(〈z, z′ − β〉) = 〈z − α′, z′〉 or 〈z, z′ − β′〉, (7)

where α′, β′ ∈ C
∗.

We now use this information to prove that the action of Aut(U+

q
(so5)) on the centre of

U+
q

(so5) is trivial. More precisely, we are now in position to prove the following result.

Proposition 2.6. Let σ ∈ Aut(U+
q

(so5)). There exist λ, λ′ ∈ C
∗ such that

σ(z) = λz and σ(z′) = λ′z′.

Proof. We only prove the result for z. First, using the fact that U+
q

(so5) is noetherian, it is

easy to show that, for any family {βi}i∈N of pairwise distinct nonzero complex numbers, we

have:

〈z〉 =
⋂

i∈N

P0,βi
and 〈z′〉 =

⋂

i∈N

Pβi,0
,

where Pα,β := 〈z − α, z′ − β〉. Indeed, if the inclusion

〈z〉 ⊆ I :=
⋂

i∈N

P0,βi

is not an equality, then any P0,βi
is a minimal prime over I for height reasons. As the P0,βi

are

pairwise distinct, I is a two-sided ideal of U+

q
(so5) with infinitely many prime ideals minimal

over it. This contradicts the noetherianity of U+
q

(so5). Hence

〈z〉 =
⋂

i∈N

P0,βi
and 〈z′〉 =

⋂

i∈N

Pβi,0
,

and so

σ (〈z〉) =
⋂

i∈N

σ(P0,βi
).

It follows from (7) that, for all i ∈ N, there exists (γi, δi) 6= (0, 0) with γi = 0 or δi = 0

such that

σ(P0,βi
) = Pγi,δi

.

Naturally, we can choose the family {βi}i∈N such that either γi = 0 for all i ∈ N, or δi = 0

for all i ∈ N. Moreover, observe that, as the βi are pairwise distinct, so are the γi or the δi.
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Hence, either

σ (〈z〉) =
⋂

i∈N

Pγi,0
,

or

σ (〈z〉) =
⋂

i∈N

P0,δi
,

that is,

either 〈σ(z)〉 = σ (〈z〉) = 〈z′〉 or 〈σ(z)〉 = σ (〈z〉) = 〈z〉.

As z, σ(z) and z′ are all central, it follows from Lemma 2.1 that there exists λ ∈ C
∗ such

that either σ(z) = λz or σ(z) = λz′.

To conclude, it just remains to show that the second case cannot happen. In order to do

this, we use a graded argument. Observe that, with respect to the N-graduation of U+

q
(so5)

defined in Section 2.2, z and z′ are homogeneous of degree 3 and 4 respectively. Thus, if

σ(z) = λz′, then we would obtain a contradiction with the fact that every automorphism

of U+
q

(so5) preserves the valuation, see Corollary 2.4. Hence σ(z) = λz, as desired. The

corresponding result for z′ can be proved in a similar way, so we omit it.

Andruskiewitsch and Dumas, [4, Proposition 3.3], have proved that the subgroup of those

automorphisms of U+
q

(so5) that stabilize 〈z〉 is isomorphic to (C∗)2. Thus, as we have just

shown that every automorphism of U+

q
(so5) fixes 〈z〉, we get that Aut(U+

q
(so5)) itself is

isomorphic to (C∗)2. This is the route that we have followed in [16] in order to prove the

Andruskiewitsch-Dumas Conjecture in the case where g = so5. Recently, with Samuel Lopes,

we proved this Conjecture in the case where g = sl4 using different methods and in particular

graded arguments. We are now using (similar) graded arguments to prove that every auto-

morphism of U+
q

(so5) is a torus automorphism (witout using results of Andruskiewitsch and

Dumas).

In the proof, we will need the following relation that is easily obtained by straightforward

computations.

Lemma 2.7. (q2 − 1)E3E
′
3

= (q4 − 1)zE2 + q2z′.

Proposition 2.8. Let σ be an automorphism of U+
q

(so5). Then there exist a1, b2 ∈ C
∗ such

that

σ(E1) = a1E1 and σ(E2) = b2E2.

Proof. For all i ∈ {1, . . . , 4}, we set di := deg(σ(Ei)). We also set d′
3

:= deg(σ(E′
3
)). It follows

from Corollary 2.4 that d1, d2 ≥ 1, d3, d
′
3
≥ 2 and d4 ≥ 3. First we prove that d1 = d2 = 1.

Assume first that d1 + d3 > 3. As z = (1 − q2)E1E3 + q2(q + q−1)E4 and σ(z) = λz with

λ ∈ C
∗ by Proposition 2.6, we get:

λz = (1 − q2)σ(E1)σ(E3) + q2(q + q−1)σ(E4). (8)
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Recall that deg(uv) = deg(u) + deg(v) for u, v 6= 0, as U+
q

(g) is a domain. Thus, as deg(z) =

3 < deg(σ(E1)σ(E3)) = d1+d3, we deduce from (8) that d1+d3 = d4. As z′ = −(q2−q−2)(q+

q−1)E4E2 + q2(q2 − 1)E2

3
and deg(z′) = 4 < d1 + d3 + d2 = d4 + d2 = deg(σ(E4)σ(E2)), we

get in a similar manner that d2 + d4 = 2d3. Thus d1 + d2 = d3. As d1 + d3 > 3, this forces

d3 > 2 and so d3 + d′
3

> 4. Thus we deduce from Lemma 2.7 that d3 + d′
3

= 3 + d2. Hence

d1 + d′
3

= 3. As d1 ≥ 1 and d′
3
≥ 2, this implies d1 = 1 and d′

3
= 2.

Thus we have just proved that d1 = deg(σ(E1)) = 1 and either d3 = 2 or d′
3

= 2. To prove

that d2 = 1, we distinguish between these two cases.

If d3 = 2, then as previously we deduce from the relation z′ = −(q2−q−2)(q+q−1)E4E2 +

q2(q2 − 1)E2

3
that d2 + d4 = 4, so that d2 = 1, as desired.

If d′
3

= 2, then one can use the definition of E′
3

and the previous expression of z′ in order to

prove that z′ = q−2(q2 − 1)E
′
2

3
+ E2u, where u is a nonzero homogeneous element of U+

q
(so5)

of degree 3. (u is nonzero since 〈z′〉 is a completely prime ideal and E′
3

/∈ 〈z′〉 for degree

reasons.) As d′
3

= 2 and deg(σ(z′)) = 4, we get as previously that d2 = 1.

To summarise, we have just proved that deg(σ(E1)) = 1 = deg(σ(E2)), so that σ(E1) =

a1E1 + a2E2 and σ(E2) = b1E1 + b2E2, where (a1, a2), (b1, b2) ∈ C
2 \ {(0, 0)}. To conclude

that a2 = b1 = 0, one can for instance use the fact that σ(E1) and σ(E2) must satisfy the

quantum Serre relations.

We have just confirmed the Andruskiewitsch-Dumas Conjecture in the case where g = so5.

Theorem 2.9. Every automorphism of U+
q

(so5) is a torus automorphism, so that

Aut(U+

q
(so5)) ≃ (C∗)2.

2.5 Beyond these two cases

To finish this overview paper, let us mention that recently the Andruskiewitsch-Dumas Con-

jecture was confirmed by Samuel Lopes and the author, [18], in the case where g = sl4. The

crucial step of the proof is to prove that, up to an element of G, every normal element of

U+
q

(sl4) is fixed by every automorphism. This step was dealt with by first computing the Lie

algebra of derivations of U+

q
(sl4), and this already requires a lot of computations!
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An Artinian theory for Lie algebras

Antonio Fernández López∗ Esther Garćıa† Miguel Gómez Lozano‡

Abstract

We summarize in this contribution the main results of our paper [5]. Only those

definitions which are necessary to understand the statements are provided, but no proofs,

which can be found in [5].

1 Lie algebras and Jordan pairs

1. Throughout this paper, and at least otherwise specified, we will be dealing with Lie al-

gebras L [7], [11], and Jordan pairs V = (V +, V −) [8], over a ring of scalars Φ containing
1

30.

2. Let V = (V +, V −) be a Jordan pair. An element x ∈ V σ, σ = ±, is called an absolute

zero divisor if Qx = 0, and V is said to be nondegenerate if it has no nonzero absolute

zero divisors. Similarly, given a Lie algebra L, x ∈ L is an absolute zero divisor if

ad2

x
= 0, L is nondegenerate if it has no nonzero absolute zero divisors.

3. Given a Jordan pair V = (V +, V −), an inner ideal of V is any Φ-submodule B of

V σ such that {B,V −σ, B} ⊂ B. Similarly, an inner ideal of a Lie algebra L is a Φ-

submodule B of L such that [B, [B,L]] ⊂ B. An abelian inner ideal is an inner ideal B

which is also an abelian subalgebra, i.e., [B,B] = 0.

4. (a) Recall that the socle of a nondegenerate Jordan pair V is SocV = (Soc V +,SocV −)

where SocV σ is the sum of all minimal inner ideals of V contained in V σ [9]. The

socle of a nondegenerate Lie algebra L is SocL, defined as the sum of all minimal

inner ideals of L [3].
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(b) By [9, Theorem 2] (for the Jordan pair case) and [3, Theorem 2.5] (for the Lie

case), the socle of a nondegenerate Jordan pair or Lie algebra is the direct sum of

its simple ideals. Moreover, each simple component of Soc L is either inner simple

or contains an abelian minimal inner ideal [2, Theorem 1.12].

(c) A Lie algebra L or Jordan pair V is said to be Artinian if it satisfies the descending

chain condition on all inner ideals.

(d) By definition, a properly ascending chain 0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mn of inner ideals

of a Lie algebra L has length n. The length of an inner ideal M is the supremum

of the lengths of chains of inner ideals of L contained in M .

2 Complemented Lie algebras

The module-theoretic characterization of semiprime Artinian rings (R is unital and completely

reducible as a left R-module) cannot be translated to Jordan systems by merely replacing

left ideals by inner ideals: if we take, for instance, the Jordan algebra M2(F )(+) of 2 × 2-

matrices over a field F , any nontrivial inner ideal of M2(F )(+) has dimension 1, so it cannot be

complemented as a F -subspace by any other inner ideal. Nevertheless, O. Loos and E. Neher

succeeded in getting the appropriate characterization by introducing the notion of kernel of

an inner ideal [10]:

A Jordan pair V = (V +, V −) (over an arbitrary ring of scalars) is a direct sum of simple

Artinian nondegenerate Jordan pairs if and only if it is complemented in the following sense:

for any inner ideal B of V σ there exists an inner ideal C of V −σ such that each of them

is complemented as a submodule by the kernel of the other. In particular, a simple Jordan

pair is complemented if and only if is nondegenerate and Artinian. A similar characterization

works for Lie algebras.

1.

Let M be an inner ideal of a Lie algebra L. The kernel of M

Ker M = {x ∈ L : [M, [M,x]] = 0}

is a Φ-submodule of L. An inner complement of M is an inner ideal N of L such that

L = M ⊕ KerN = N ⊕ KerM.

A Lie algebra L will be called complemented if any inner ideal of L has an inner comple-

ment, and abelian complemented if any abelian inner ideal has an inner complement which is

abelian. Our main result, which can be regarded as a Lie analogue of the module-theoretic

characterization of semiprime Artinian rings, proves.

Theorem 2. For a Lie algebra L, the following notions are equivalent:
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(i) L is complemented.

(ii) L is a direct sum of ideals each of which is a simple nondegenerate Artinian Lie algebra.

Moreover,

(iii) Complemented Lie algebras are abelian complemented.

A key tool used in the proof of (i) ⇒ (ii) is the notion of subquotient of a Lie algebra with

respect to an abelian inner ideal:

3.

For any abelian inner ideal M of L, the pair of Φ-modules

V = (M,L/KerL M)

with the triple products given by

{m,a, n} := [[m,a], n] for every m,n ∈ M and a ∈ L

{a,m, b} := [[a,m], b] for every m ∈ M and a, b ∈ L,

where x denotes the coset of x relative to the submodule KerL M , is a Jordan pair called the

subquotient of L with respect to M .

Subquotients inherit, on the one hand, regularity conditions from the Lie algebra, and,

on the other hand, keep the inner ideal structure of L within them. This fact turns out to

be crucial for using results of Jordan theory. For instance, it is used to prove that any prime

abelian complemented Lie algebra satisfies the ascending and descending chain conditions on

abelian inner ideals. Moreover, as proved in [6], an abelian inner ideal B of finite length in

a nondegenerate Lie algebra L is not just complemented by abelian inner ideals, but there

exists a short grading L = L−n ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Ln such that B = Ln, and hence B is

complemented by L−n.

It must be noted that, while any nondegenerate Artinian Jordan pair is a direct sum

of finitely many simple nondegenerate Artinian Jordan pairs, a nondegenerate Artinian Lie

algebra does only have essential socle [3, Corollary 2.6]. In fact, there exist strongly prime

finite dimensional Lie algebras (over a field of characteristic p > 5) with nontrivial ideals

[12, p. 152]. Therefore, unlike the Jordan case, nondegenerate Artinian Lie algebras are not

necessarily complemented: they are only abelian complemented.

3 Simple nondegenerate Artinian Lie algebras

Let L be a simple nondegenerate Lie algebra containing an abelian minimal inner ideal. Then

L has a 5-grading. Hence, by [13, Theorem 1], L is one of the following: (i) a simple Lie algebra
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of type G2, F4, E6, E7 or E8, (ii) L = R
′
= [R,R]/Z(R)∩[R,R], where R is a simple associative

algebra such that [R,R] is not contained in Z(R), or (iii) L = K
′
= [K,K]/Z(R) ∩ [K,K],

where K = Skew(R, ∗) and R is a simple associative algebra, ∗ is an involution of R, and either

Z(R) = 0 or the dimension of R over Z(R) is greater than 16. (Actually, the list of simple

Lie algebras with gradings given in [13, Theorem 1], contains two additional algebras: the

Tits-Kantor-Koecher algebra of a nondegenerate symmetric bilinear form and D4. However,

because of we are not interested in describing the gradings, both algebras can be included

in case (iii): K
′

= K ′ = K = Skew(R, ∗), where R is a simple algebra with orthogonal

involution.)

By using the inner ideal structure of Lie algebras of traceless operators of finite rank which

are continuous with respect to an infinite dimensional pair of dual vector spaces over a division

algebra, and that of the Lie algebras of finite rank skew operators on an infinite dimensional

self dual vector space (extending the work of G. Benkart [1] for the finite dimensional case,

and a previous one of the authors [4] for finitary Lie algebras), we can refine the above list in

the case of a simple nondegenerate Artinian Lie algebra.

4.

A Lie algebra L will be called a division Lie algebra if it is nonzero, nondegenerate and

has no nontrivial inner ideals. Two examples are given below:

1. Let ∆ be a division associative algebra such that [[∆,∆],∆] 6= 0. Then [∆,∆]/[∆,∆]∩

Z(∆) is a division Lie algebra, [1, Corollary 3.15].

2. Let R be a simple associative algebra with involution ∗ and nonzero socle. Suppose that

Z(R) = 0 or the dimension of R over Z(R) is greater than 16, and set K := Skew(R, ∗).

Then L = [K,K]/[K,K] ∩ Z(R) is a division Lie algebra if and only if (R, ∗) has no

nonzero isotropic right ideals, i.e., those right ideals I such that I∗I = 0. This is a direct

consequence of the inner ideal structure of L: [1, Theorem 5.5] when R is Artinian, and

[4] when R is not Artinian.

Theorem 5. Let L be a simple Lie algebra over a field F of characteristic 0 or greater than

7. Then L is Artinian and nondegenerate if and only if it is one of the following:

1. A division Lie algebra.

2. A simple Lie algebra of type G2, F4, E6, E7 or E8 containing abelian minimal inner

ideals.

3. [R,R]/[R,R]∩Z(R), where R is a simple Artinian (but not division) associative algebra.

4. [K,K]/[K,K]∩Z(R), where K = Skew(R, ∗) and R is a simple associative algebra with

involution ∗ which coincides with its socle, such that Z(R) = 0 or the dimension of
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R over Z(R) is greater than 16, and (R, ∗) satisfies the descending chain condition on

isotropic right ideals.

Summarizing, we can say that, as conjectured by G. Benkart in the introduction of [2],

inner ideals in Lie algebras play a role analogous to Jordan inner ideals in the development

of an Artinian theory for Lie algebras.
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Quantum groupoids with projection

J.N. Alonso Álvarez∗ J.M. Fernández Vilaboa† R. González Rodŕıguez‡

Abstract

In this survey we explain in detail how Radford’s ideas and results about Hopf algebras

with projection can be generalized to quantum groupoids in a strict symmetric monoidal

category with split idempotents.

Introduction

Let H be a Hopf algebra over a field K and let A be a K-algebra. A well-known result of

Radford [23] gives equivalent conditions for an object A ⊗H equipped with smash product

algebra and coalgebra to be a Hopf algebra and characterizes such objects via bialgebra

projections. Majid in [16] interpreted this result in the modern context of Yetter-Drinfeld

modules and stated that there is a correspondence between Hopf algebras in this category,

denoted by H

H
YD, and Hopf algebras B with morphisms of Hopf algebras f : H → B,

g : B → H such that g ◦ f = idH . Later, Bespalov proved the same result for braided

categories with split idempotents in [5]. The key point in Radford-Majid-Bespalov’s theorem

is to define an object BH , called the algebra of coinvariants, as the equalizer of (B ⊗ g) ◦ δB

and B ⊗ ηH . This object is a Hopf algebra in the category H

H
YD and there exists a Hopf

algebra isomorphism between B and BH ⊲⊳ H (the smash (co)product of BH and H). It is

important to point out that in the construction of BH ⊲⊳ H they use that BH is the image of

the idempotent morphism qB

H
= µB ◦ (B ⊗ (f ◦ λH ◦ g)) ◦ δB .

In [11], Bulacu and Nauwelaerts generalize Radford’s theorem about Hopf algebras with

projection to the quasi-Hopf algebra setting. Namely, if H and B are quasi-Hopf algebras

with bijective antipode and with morphisms of quasi-Hopf algebras f : H → B, g : B → H

such that g ◦ f = idH , then they define a subalgebra Bi (the generalization of BH to this

setting) and with some additional structures Bi becomes, a Hopf algebra in the category

of left-left Yetter-Drinfeld modules H

H
YD defined by Majid in [17]. Moreover, as the main
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result in [11], Bulacu and Nauwelaerts state that Bi × H is isomorphic to B as quasi-Hopf

algebras where the algebra structure of Bi ×H is the smash product defined in [10] and the

quasi-coalgebra structure is the one introduced in [11].

The basic motivation of this survey is to explain in detail how the above ideas and results

can be generalized to quantum groupoids in a strict symmetric monoidal category with split

idempotents. Quantum groupoids or weak Hopf algebras have been introduced by Böhm, Nill

and Szlachányi [7] as a new generalization of Hopf algebras and groupoid algebras. Roughly

speaking, a weak Hopf algebra H in a symmetric monoidal category is an object that has

both algebra and coalgebra structures with some relations between them and that possesses

an antipode λH which does not necessarily verify λH ∧ idH = idH ∧ λH = εH ⊗ ηH where εH ,

ηH are the counity and unity morphisms respectively and ∧ denotes the usual convolution

product. The main differences with other Hopf algebraic constructions, such as quasi-Hopf

algebras and rational Hopf algebras, are the following: weak Hopf algebras are coassociative

but the coproduct is not required to preserve the unity ηH or, equivalently, the counity is

not an algebra morphism. Some motivations to study weak Hopf algebras come from their

connection with the theory of algebra extensions, the important applications in the study of

dynamical twists of Hopf algebras and their link with quantum field theories and operator

algebras (see [20]).

The survey is organized as follows.

In Section 1 we give basis definitions and examples of quantum groupoids without finite-

ness conditions. Also we introduce the category of left-left Yetter-Drinfeld modules defined

by Böhm for a quantum groupoid with invertible antipode. As in the case of Hopf algebras

this category is braided monoidal but in this case is not strict.

The exposition of the theory of crossed products associated to projections of quantum

groupoids in Section 2 follows [2] and is the good generalization of the classical theory devel-

oped by Blattner, Cohen and Montgomery in [6]. The main theorem in this section generalizes

a well know result, due to Blattner, Cohen and Montgomery, which shows that if B
π
→ H → 0

is an exact sequence of Hopf algebras with coalgebra splitting then B ≈ A♯σH, where A is the

left Hopf kernel of π and σ is a suitable cocycle (see Theorem (4.14) of [6]). In this section we

show that if g : B → H is a morphism of quantum groupoids and there exists a morphism of

coalgebras f : H → B such that g◦f = idH and f ◦ηH = ηB , using the idempotent morphism

qB

H
= µB ◦ (B ⊗ (λB ◦ f ◦ g)) ◦ δB : B → B it is possible to construct an equalizer diagram

and an algebra BH , i.e, the algebra of coinvariants or the Hopf kernel of g, and morphisms

ϕBH
: H ⊗ BH → BH (the weak measuring), σBH

: H ⊗ H → BH (the weak cocycle) such

that there exists an idempotent endomorphism of BH ⊗H which image, denoted by BH ×H,

is isomorphic with B as algebras being the algebra structure (crossed product algebra)

ηBH×H = rB ◦ (ηBH
⊗ ηH),

µBH×H = rB ◦ (µBH
⊗H) ◦ (µBH

⊗ σBH
⊗ µH) ◦ (BH ⊗ ϕBH

⊗ δH⊗H)◦
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(BH ⊗H ⊗ cH,BH
⊗H) ◦ (BH ⊗ δH ⊗BH ⊗H) ◦ (sB ⊗ sB),

where sB is the inclusion of BH × H in BH ⊗ H and rB the projection of BH ⊗ H on

BH ×H. Of course, when H, B are Hopf algebras we recover the result of Blattner, Cohen

and Montgomery. For this reason, we denote the algebra BH×H by BH♯σBH
H. If moreover f

is an algebra morphism, the cocycle is trivial in a weak sense and then we obtain that µBH×H

is the weak version of the smash product used by Radford in the Hopf algebra setting. Also,

we prove the dual results using similar arguments but passing to the opposite category, for a

morphism of quantum groupoids h : H → B and an algebra morphism t : B → H such that

t ◦ h = idH and εH ◦ t = εB .

Finally, in Section 3, linking the information of section 2 with the results of [1], [2], [3] and

[4], we obtain our version of Radford’s Theorem for quantum groupoids with projection. In

this section we prove that the algebra of coinvariants BH associated to a quantum groupoid

projection (i.e. a pair of morphisms of quantum groupoids f : H → B, g : B → H such that

g ◦ f = idH) can be obtained as an equalizer or, by duality, as a coequalizer (in this case the

classical theory developed in Section 2 and the dual one provide the same object BH with dual

algebraic structures, algebra-coalgebra, module-comodule, etc...). Therefore, it is possible to

find an algebra coalgebra structure for BH and morphisms ϕBH
= pB

H
◦ µB ◦ (f ⊗ iB

H
) :

H ⊗BH → BH and ̺BH
= (g ⊗ pB

H
) ◦ δB ◦ iB

H
: BH → H ⊗BH such that (BH , ϕBH

) is a left

H-module and (BH , ̺BH
) is a left H-comodule. We show that BH is a Hopf algebra in the

category of left-left Yetter-Drinfeld modules H

H
YD and, using the the the weak smash product

and the weak smash coproduct of BH and H we give a good weak Hopf algebra interpretation

of the theorems proved by Radford [23] and Majid [16] in the Hopf algebra setting, obtaining

an isomorphism of quantum groupoids between BH ×H and B.

1 Quantum groupoids in monoidal categories

In this section we give definitions and discuss basic properties of quantum groupoids in

monoidal categories.

Let C be a category. We denote the class of objects of C by |C| and for each object X ∈ |C|,

the identity morphism by idX : X → X.

A monoidal category (C,⊗,K, a, l, r) is a category C which is equipped with a tensor

product ⊗ : C × C → C, with an object K, called the unit of the monoidal category, with a

natural isomorphism a : ⊗(id×⊗) → ⊗(⊗× id), called the associativity constrain, and with

natural isomorphisms l : ⊗(K × id) → id, r : ⊗(id×K) → id, called left unit constraint and

right unit constraint respectively, such that the Pentagon Axiom

(aU,V,W ⊗ idX) ◦ aU,V ⊗W,X ◦ (idU ⊗ aV,W,X) = aU⊗V,W,X ◦ aU,V,W⊗X

and the Triangle Axiom

idV ⊗ lW = (rV ⊗ idW ) ◦ aV,K,W
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are satisfied.

The monoidal category is said to be strict if the associativity and the unit constraints a,

l, r are all identities of the category.

Let Ψ : C×C → C×C be the flip functor defined by Ψ(V,W ) = (W,V ) on any pair of objects

of C. A commutativity constrain is a natural isomorphism c : ⊗ → ⊗Ψ. If (C,⊗,K, a, l, r)

is a monoidal category, a braiding in C is a commutativity constraint satisfying the Hexagon

Axiom

aW,U,V ◦ cU⊗V,W ◦ aU,V,W = (cU,W ⊗ idV ) ◦ aU,W,V ◦ (idU ⊗ cV,W ),

a−1

V,W,U
◦ cU,V ⊗W ◦ a−1

U,V,W
= (idV ⊗ cU,W ) ◦ a−1

V,U,W
◦ (cU,V ⊗ idW ).

A braided monoidal category is a monoidal category with a braiding c. These categories

generalizes the classical notion of symmetric monoidal category introduced earlier by category

theorists. A braided monoidal category is symmetric if the braiding satisfies cW,V ◦ cV,W =

idV ⊗W for all V,W ∈ |C|.

From now on we assume that C is strict symmetric and admits split idempotents, i.e.,

for every morphism ∇Y : Y → Y such that ∇Y = ∇Y ◦ ∇Y there exist an object Z and

morphisms iY : Z → Y and pY : Y → Z such that ∇Y = iY ◦ pY and pY ◦ iY = idZ . There

is not loss of generality in assuming the strict character for C because it is well know that

given a monoidal category we can construct a strict monoidal category Cst which is tensor

equivalent to C (see [15] for the details). For simplicity of notation, given objects M , N , P

in C and a morphism f : M → N , we write P ⊗ f for idP ⊗ f and f ⊗ P for f ⊗ idP .

Definition 1.1. An algebra in C is a triple A = (A, ηA, µA) where A is an object in C and

ηA : K → A (unit), µA : A⊗A→ A (product) are morphisms in C such that µA ◦ (A⊗ ηA) =

idA = µA ◦ (ηA ⊗A), µA ◦ (A⊗µA) = µA ◦ (µA ⊗A). Given two algebras A = (A, ηA, µA) and

B = (B, ηB , µB), f : A → B is an algebra morphism if µB ◦ (f ⊗ f) = f ◦ µA, f ◦ ηA = ηB .

Also, if A, B are algebras in C, the object A ⊗ B is an algebra in C where ηA⊗B = ηA ⊗ ηB

and µA⊗B = (µA ⊗ µB) ◦ (A⊗ cB,A ⊗B).

A coalgebra in C is a triple D = (D, εD, δD) where D is an object in C and εD : D → K

(counit), δD : D → D⊗D (coproduct) are morphisms in C such that (εD ⊗D) ◦ δD = idD =

(D ⊗ εD) ◦ δD, (δD ⊗ D) ◦ δD = (D ⊗ δD) ◦ δD. If D = (D, εD, δD) and E = (E, εE , δE)

are coalgebras, f : D → E is a coalgebra morphism if (f ⊗ f) ◦ δD = δE ◦ f , εE ◦ f = εD.

When D, E are coalgebras in C, D ⊗ E is a coalgebra in C where εD⊗E = εD ⊗ εE and

δD⊗E = (D ⊗ cD,E ⊗ E) ◦ (δD ⊗ δE).

If A is an algebra, B is a coalgebra and α : B → A, β : B → A are morphisms, we define

the convolution product by α ∧ β = µA ◦ (α⊗ β) ◦ δB .

By quantum groupoids or weak Hopf algebras we understand the objects introduced in

[7], as a generalization of ordinary Hopf algebras. Here, for the convenience of the reader, we

recall the definition of these objects and some relevant results from [7] without proof, thus

making our exposition self-contained.
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Definition 1.2. A quantum groupoidH is an object in C with an algebra structure (H, ηH , µH)

and a coalgebra structure (H, εH , δH) such that the following axioms hold:

(a1) δH ◦ µH = (µH ⊗ µH) ◦ δH⊗H ,

(a2) εH ◦ µH ◦ (µH ⊗H) = (εH ⊗ εH) ◦ (µH ⊗ µH) ◦ (H ⊗ δH ⊗H)

= (εH ⊗ εH) ◦ (µH ⊗ µH) ◦ (H ⊗ (cH,H ◦ δH) ⊗H),

(a3) (δH ⊗H) ◦ δH ◦ ηH = (H ⊗ µH ⊗H) ◦ (δH ⊗ δH) ◦ (ηH ⊗ ηH)

= (H ⊗ (µH ◦ cH,H) ⊗H) ◦ (δH ⊗ δH) ◦ (ηH ⊗ ηH).

(a4) There exists a morphism λH : H → H in C (called the antipode of H) verifiying:

(a4-1) idH ∧ λH = ((εH ◦ µH) ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH) ⊗H),

(a4-2) λH ∧ idH = (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)),

(a4-3) λH ∧ idH ∧ λH = λH .

Note that, in this definition, the conditions (a2), (a3) weaken the conditions of multiplica-

tivity of the counit, and comultiplicativity of the unit that we can find in the Hopf algebra

definition. On the other hand, axioms (a4-1), (a4-2) and (a4-3) weaken the properties of

the antipode in a Hopf algebra. Therefore, a quantum groupoid is a Hopf algebra if an only

if the morphism δH (comultiplication) is unit-preserving and if and only if the counit is a

homomorphism of algebras.

1.3. If H is a quantum groupoid in C, the antipode λH is unique, antimultiplicative, antico-

multiplicative and leaves the unit ηH and the counit εH invariant:

λH ◦ µH = µH ◦ (λH ⊗ λH) ◦ cH,H , δH ◦ λH = cH,H ◦ (λH ⊗ λH) ◦ δH ,

λH ◦ ηH = ηH , εH ◦ λH = εH .

If we define the morphisms ΠL

H
(target morphism), ΠR

H
(source morphism), Π

L

H
and Π

R

H

by

ΠL

H
= ((εH ◦ µH) ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH) ⊗H),

ΠR

H
= (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)),

Π
L

H
= (H ⊗ (εH ◦ µH)) ◦ ((δH ◦ ηH) ⊗H),

Π
R

H
= ((εH ◦ µH) ⊗H) ◦ (H ⊗ (δH ◦ ηH)).
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it is straightforward to show that they are idempotent and ΠL

H
, ΠR

H
satisfy the equalities

ΠL

H
= idH ∧ λH , ΠR

H
= λH ∧ idH .

Moreover, we have that

ΠL

H
◦ Π

L

H
= ΠL

H
, ΠL

H
◦ Π

R

H
= Π

R

H
, ΠR

H
◦ Π

L

H
= Π

L

H
, ΠR

H
◦ Π

R

H
= ΠR

H
,

Π
L

H
◦ ΠL

H
= Π

L

H
, Π

L

H
◦ ΠR

H
= ΠR

H
, Π

R

H
◦ ΠL

H
= ΠL

H
, Π

R

H
◦ ΠR

H
= Π

R

H
.

Also it is easy to show the formulas

ΠL

H
= Π

R

H
◦ λH = λH ◦ Π

L

H
, ΠR

H
= Π

L

H
◦ λH = λH ◦ Π

R

H
,

ΠL

H
◦ λH = ΠL

H
◦ ΠR

H
= λH ◦ ΠR

H
, ΠR

H
◦ λH = ΠR

H
◦ ΠL

H
= λH ◦ ΠL

H
.

If λH is an isomorphism (for example, when H is finite), we have the equalities:

Π
L

H
= µH ◦ (H ⊗ λ−1

H
) ◦ cH,H ◦ δH , Π

R

H
= µH ◦ (λ−1

H
⊗H) ◦ cH,H ◦ δH .

If the antipode of H is an isomorphism, the opposite operator and the coopposite operator

produce quantum groupoids from quantum groupoids. In the first one the product µH is

replaced by the opposite product µHop = µH ◦ cH,H while in the second the coproduct δH is

replaced by δHcoop = cH,H ◦ δH . In both cases the antipode λH is replaced by λ−1

H
.

A morphism between quantum groupoids H and B is a morphism f : H → B which is

both algebra and coalgebra morphism. If f : H → B is a weak Hopf algebra morphism, then

λB ◦ f = f ◦ λH (see Proposition 1.4 of [1]).

Examples 1.4. (i) As group algebras and their duals are the natural examples of Hopf

algebras, groupoid algebras and their duals provide examples of quantum groupoids. Recall

that a groupoid G is simply a category in which every morphism is an isomorphism. In this

example, we consider finite groupoids, i.e. groupoids with a finite number of objects. The

set of objects of G will be denoted by G0 and the set of morphisms by G1. The identity

morphism on x ∈ G0 will also be denoted by idx and for a morphism σ : x → y in G1, we

write s(σ) and t(σ), respectively for the source and the target of σ.

Let G be a groupoid, and R a commutative ring. The groupoid algebra is the direct

product

RG =
⊕

σ∈G1

Rσ

with the product of two morphisms being equal to their composition if the latter is defined

and 0 in otherwise, i.e. στ = σ ◦ τ if s(σ) = t(τ) and στ = 0 if s(σ) 6= t(τ). The unit element

is 1RG =
∑

x∈G0
idx. The algebra RG is a cocommutative quantum groupoid, with coproduct

δRG, counit εRG and antipode λRG given by the formulas:

δRG(σ) = σ ⊗ σ, εRG(σ) = 1, λRG(σ) = σ−̇1.
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For the quantum groupoid RG the morphisms target and source are respectively,

ΠL

RG
(σ) = idt(σ), ΠR

RG
(σ) = ids(σ)

and λRG ◦ λRG = idRG, i.e. the antipode is involutive.

If G1 is finite, then RG is free of a finite rank as a R-module, hence GR = (RG)∗ =

HomR(RG,R) is a commutative quantum groupoid with involutory antipode. As R-module

GR =
⊕

σ∈G1

Rfσ

with 〈fσ, τ〉 = δσ,τ . The algebra structure is given by the formulas fσfτ = δσ,τfσ and 1GR =
∑

σ∈G1
fσ. The coalgebra structure is

δGR(fσ) =
∑

τρ=σ

fτ ⊗ fρ =
∑

ρ∈G1

fσρ−1 ⊗ fρ, εGR(fσ) = δσ,idt(σ)
.

The antipode is given by λGR(fσ) = fσ−1 .

(ii) It is known that any group action on a set gives rise to a groupoid (see [24]). In [20]

Nikshych and Vainerman extend this construction associating a quantum groupoid with any

action of a Hopf algebra on a separable algebra.

(iii) It was shown in [19] that any inclusion of type Π1 factors with finite index and depth

give rise to a quantum groupoid describing the symmetry of this inclusion. In [20] can be

found an example of this construction applied to the case of Temperley-Lieb algebras (see

[13]).

(iv) In [22] Nill proved that Hayashi’s face algebras [14] are examples of quantum groupoids

whose counital subalgebras, i.e., the images of ΠL

H
and ΠR

H
, are commutative. Also, in [22]

we can find that Yamanouchi’s generalized Kac algebras (see [25]) are exactly C∗-quantum

groupoids with involutive antipode.

1.5. Let H be a quantum groupoid. We say that (M,ϕM ) is a left H-module if M is an

object in C and ϕM : H ⊗M → M is a morphism in C satisfying ϕM ◦ (ηH ⊗M) = idM ,

ϕM ◦(H⊗ϕM ) = ϕM ◦(µH⊗M). Given two leftH-modules (M,ϕM ) and (N,ϕN ), f : M → N

is a morphism of left H-modules if ϕN ◦ (H ⊗ f) = f ◦ ϕM . We denote the category of right

H-modules by HC. In an analogous way we define the category of right H-modules and we

denote it by CH .

If (M,ϕM ) and (N,ϕN ) are left H-modules we denote by ϕM⊗N the morphism ϕM⊗N :

H ⊗M ⊗N →M ⊗N defined by

ϕM⊗N = (ϕM ⊗ ϕN ) ◦ (H ⊗ cH,M ⊗N) ◦ (δH ⊗M ⊗N).

We say that (M,̺M ) is a left H-comodule if M is an object in C and ̺M : M → H ⊗M

is a morphism in C satisfying (εH ⊗M) ◦ ̺M = idM , (H ⊗ ̺M ) ◦ ̺M = (δH ⊗M) ◦ ̺M . Given
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two left H-comodules (M,̺M ) and (N, ̺N ), f : M → N is a morphism of left H-comodules

if ̺N ◦ f = (H ⊗ f) ◦ ̺M . We denote the category of left H-comodules by HC. Analogously,

CH denotes the category of right H-comodules.

For two leftH-comodules (M,̺M ) and (N, ̺N ), we denote by ̺M⊗N the morphism ̺M⊗N :

M ⊗N → H ⊗M ⊗N defined by

̺M⊗N = (µH ⊗M ⊗N) ◦ (H ⊗ cM,H ⊗N) ◦ (̺M ⊗ ̺N ).

Let (M,ϕM ), (N,ϕN ) be left H-modules. Then the morphism

∇M⊗N = ϕM⊗N ◦ (ηH ⊗M ⊗N) : M ⊗N →M ⊗N

is idempotent. In this setting we denote by M × N the image of ∇M⊗N and by pM,N :

M ⊗N →M ×N , iM,N : M ×N →M ⊗N the morphisms such that iM,N ◦ pM,N = ∇M⊗N

and pM,N ◦ iM,N = idM×N . Using the definition of × we obtain that the object M ×N is a

left H-module with action ϕM×N = pM,N ◦ ϕM⊗N ◦ (H ⊗ iM,N ) : H ⊗ (M × N) → M × N

(see [20]). Note that, if f : M →M ′ and g : N → N ′ are morphisms of left H-modules then

(f ⊗ g) ◦ ∇M⊗N = ∇M ′⊗N ′ ◦ (f ⊗ g).

In a similar way, if (M,̺M ) and (N, ̺N ) are left H-comodules the morphism

∇′
M⊗N

= (εH ⊗M ⊗N) ◦ ̺M⊗M : M ⊗N →M ⊗N

is idempotent. We denote by M ⊙N the image of ∇′
M⊗N

and by p′
M,N

: M ⊗N →M ⊙N ,

i′
M,N

: M ⊙N →M ⊗N the morphisms such that i′
M,N

◦ p′
M,N

= ∇′
M⊗N

and p′
M,N

◦ i′
M,N

=

idM⊙N . Using the definition of ⊙ we obtain that the object M ⊙N is a left H-comodule with

coaction ̺M⊙N = (H ⊗ p′
M,N

) ◦ ̺M⊗N ◦ i′
M,N

: M ⊙N → H ⊗ (M ⊙N). If f : M →M ′ and

g : N → N ′ are morphisms of left H-comodules then (f ⊗ g) ◦ ∇′
M⊗N

= ∇′
M ′⊗N ′ ◦ (f ⊗ g).

Let (M,ϕM ), (N,ϕN ), (P,ϕP ) be left H-modules. Then the following equalities hold

(Lemma 1.7 of [3]):

ϕM⊗N ◦ (H ⊗∇M⊗N ) = ϕM⊗N ,

∇M⊗N ◦ ϕM⊗N = ϕM⊗N = ϕM⊗N ◦ ∇M⊗N ,

(iM,N ⊗ P ) ◦ ∇(M×N)⊗P ◦ (pM,N ⊗ P ) = (M ⊗ iN,P ) ◦ ∇M⊗(N×P ) ◦ (M ⊗ pN,P ),

(M⊗iN,P )◦∇M⊗(N×P )◦(M⊗pN,P ) = (∇M⊗N⊗P )◦(M⊗∇N⊗P ) = (M⊗∇N⊗P )◦(∇M⊗N⊗P ).

Furthermore, by a similar calculus, if (M,̺M ), (N, ̺N ), (P, ̺P ) be left H-comodules we

have

(H ⊗∇′
M⊗N

) ◦ ̺M⊗N = ̺M⊗N ,

̺M⊗N ◦ ∇′
M⊗N

= ̺M⊗N = ∇′
M⊗N

◦ ̺M⊗N ,
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(i′
M,N

⊗ P ) ◦ ∇′
(M⊙N)⊗P

◦ (p′
M,N

⊗ P ) = (M ⊗ i′
N,P

) ◦ ∇′
M⊗(N⊙P )

◦ (M ⊗ p′
N,P

),

(M⊗i′
N,P

)◦∇′
M⊗(N⊙P )

◦(M⊗p′
N,P

) = (∇′
M⊗N

⊗P )◦(M⊗∇′
N⊗P

) = (M⊗∇′
N⊗P

)◦(∇′
M⊗N

⊗P ).

Yetter-Drinfeld modules over finite dimensional weak Hopf algebras over fields have been

introduced by Böhm in [9]. It is shown in [9] that the category of finite dimensional Yetter-

Drinfeld modules is monoidal and in [18] it is proved that this category is isomorphic to the

category of finite dimensional modules over the Drinfeld double. In [12], the results of [18] are

generalized, using duality results between entwining structures and smash product structures,

and more properties are given.

Definition 1.6. Let H be a weak Hopf algebra. We shall denote by H

H
YD the category of

left-left Yetter-Drinfeld modules over H. That is, M = (M,ϕM , ̺M ) is an object in H

H
YD if

(M,ϕM ) is a left H-module, (M,̺M ) is a left H-comodule and

(b1) (µH ⊗M) ◦ (H ⊗ cM,H) ◦ ((̺M ◦ ϕM ) ⊗H) ◦ (H ⊗ cH,M ) ◦ (δH ⊗M)

= (µH ⊗ ϕM ) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗ ̺M ).

(b2) (µH ⊗ ϕM ) ◦ (H ⊗ cH,H ⊗M) ◦ ((δH ◦ ηH) ⊗ ̺M ) = ̺M .

Let M , N in H

H
YD. The morphism f : M → N is a morphism of left-left Yetter-Drinfeld

modules if f ◦ ϕM = ϕN ◦ (H ⊗ f) and (H ⊗ f) ◦ ̺M = ̺N ◦ f .

Note that if (M,ϕM , ̺M ) is a left-left Yetter-Drinfeld module then (b2) is equivalent to

(b3) ((εH ◦ µH) ⊗ ϕM ) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗ ̺M ) = ϕM .

and we have the identity ϕM ◦ (ΠL

H
⊗M) ◦ ̺M = idM .

The conditions (b1) and (b2) of the last definition can also be restated (see Proposition

2.2 of [12]) in the following way: suppose that (M,ϕM ) ∈ | HC| and (M,̺M ) ∈ | HC|, then

M is a left-left Yetter-Drinfeld module if and only if

̺M ◦ ϕM = (µH ⊗M) ◦ (H ⊗ cM,H)◦

(((µH ⊗ ϕM ) ◦ (H ⊗ cH,H ⊗M) ◦ (δH ⊗ ̺M )) ⊗ λH) ◦ (H ⊗ cH,M ) ◦ (δH ⊗M).

Moreover, the following Proposition, proved in [4], guaranties the equality between the

morphisms ∇M⊗N and ∇′
M⊗N

defined in 1.5 for all M,N ∈ | H

H
YD|.

Proposition 1.7. Let H be a weak Hopf algebra. Let (M,ϕM , ̺M ) and (N,ϕN , ̺N ) be left-left

Yetter-Drinfeld modules over H. Then we have the following assertions.

(i) ∇M⊗N = ((ϕM ◦ (Π
L

H
⊗M) ◦ cM,H) ⊗N) ◦ (M ⊗ ̺N ).

(ii) ∇′
M⊗N

= (M ⊗ ϕN ) ◦ (((M ⊗ Π
R

H
) ◦ cH,M ◦ ̺M ) ⊗N).
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(iii) ∇M⊗N = ∇′
M⊗N

.

(iv) ∇M⊗H = ((ϕM ◦ (Π
L

H
⊗M) ◦ cM,H) ⊗H) ◦ (M ⊗ δH).

(v) ∇′
M⊗H

= (M ⊗ µH) ◦ (((M ⊗ Π
R

H
) ◦ cH,M ◦ ̺M ) ⊗H).

(vi) ∇M⊗H = ∇′
M⊗H

.

1.8. It is a well know fact that, if the antipode of a weak Hopf algebra H is invertible, H

H
YD

is a non-strict braided monoidal category. In the following lines we give a brief resume of the

braided monoidal structure that we can construct in the category H

H
YD (see Proposition 2.7

of [18] for modules over a field K or Theorem 2.6 of [12] for modules over a commutative

ring).

For two left-left Yetter-Drinfeld modules (M,ϕM , ̺M ), (N,ϕN , ̺N ) the tensor product is

defined as object as the image of ∇M⊗N (see 1.5). As a consequence, by (iii) of Proposition

1.7, M ×N = M ⊙N and this object is a left-left Yetter-Drinfeld module with the following

action and coaction:

ϕM×N = pM,N ◦ ϕM⊗N ◦ (H ⊗ iM,N ), ̺M×N = (H ⊗ pM,N) ◦ ̺M⊗N ◦ iM,N .

The base object is HL = Im(ΠL

H
) or, equivalently, the equalizer of δH and ζ1

H
= (H ⊗

ΠL

H
) ◦ δH (see (9)) or the equalizer of δH and ζ2

H
= (H ⊗ Π

R

H
) ◦ δH . The structure of left-left

Yetter-Drinfeld module for HL is the one derived of the following morphisms

ϕHL
= pL ◦ µH ◦ (H ⊗ iL), ̺HL

= (H ⊗ pL) ◦ δH ◦ iL.

where pL : H → HL and iL : HL → H are the morphism such that ΠL

H
= iL ◦ pL and

pL ◦ iL = idHL
.

The unit constrains are:

lM = ϕM ◦ (iL ⊗M) ◦ iHL,M : HL ×M →M,

rM = ϕM ◦ cM,H ◦ (M ⊗ (Π
L

H
◦ iL)) ◦ iM,HL

: M ×HL →M.

These morphisms are isomorphisms with inverses:

l−1

M
= pHL,M ◦ (pL ⊗ ϕM ) ◦ ((δH ◦ ηH) ⊗M) : M → HL ×M,

r−1

M
= pM,HL

◦ (ϕM ⊗ pL) ◦ (H ⊗ cH,M ) ◦ ((δH ◦ ηH) ⊗M) : M →M ×HL.

If M , N , P are objects in the category H

H
YD, the associativity constrains are defined by

aM,N,P = p(M×N),P ◦ (pM,N ⊗ P ) ◦ (M ⊗ iN,P ) ◦ iM,(N×P ) : M × (N × P ) → (M ×N) × P

where the inverse is the morphism

a−1

M,N,P
= aM,N,P = pM,(N×P )◦(M⊗pN,P )◦(iM,N⊗P )◦i(M×N),P : (M×N)×P →M×(N×P ).
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If γ : M →M ′ and φ : N → N ′ are morphisms in the category, then

γ × φ = pM ′×N ′ ◦ (γ ⊗ φ) ◦ iM,N : M ×N →M ′ ×N ′

is a morphism in H

H
YD and (γ′ × φ′) ◦ (γ × φ) = (γ′ ◦ γ)× (φ′ ◦ φ), where γ′ : M ′ →M ′′ and

φ′ : N ′ → N ′′ are morphisms in H

H
YD.

Finally, the braiding is

τM,N = pN,M ◦ tM,N ◦ iM,N : M ×N → N ×M

where tM,N = (ϕN ⊗M) ◦ (H ⊗ cM,N ) ◦ (̺M ⊗N) : M ⊗N → N ⊗M . The morphism τM,N

is a natural isomorphism with inverse:

τ−1

M,N
= pM,N ◦ t′

M,N
◦ iN,M : N ×M →M ×N

where t′
M,N

= cN,M ◦ (ϕN ⊗M) ◦ (cN,H ⊗M) ◦ (N ⊗ λ−1

H
⊗M) ◦ (N ⊗ ̺M ).

2 Projections, quantum groupoids and crossed products

In this section we give basic properties of quantum groupoids with projection. The material

presented here can be found in [1] and [2]. For example, in Theorem 2.2 we will show that if

H, B are quantum groupoids in C and g : B → H is a quantum groupoid morphism such that

there exist a coalgebra morphism f : H → B verifiying g ◦ f = idH and f ◦ ηH = ηB then,

it is possible to find an object BH , defined by an equalizer diagram an called the algebra of

coinvariants, morphisms ϕBH
: H ⊗BH → BH , σBH

: H ⊗H → BH and an isomorphism of

algebras and comodules bH : B → BH × H being BH ×H a subobject of BH ⊗ H with its

algebra structure twisted by the morphism σBH
. Of course, the multiplication in BH ×H is

a generalization of the crossed product and in the Hopf algebra case the Theorem 2.2 is the

classical and well know result obtained by Blattner, Cohen and Montgomery in [6].

The following Proposition is a generalization to the quantum groupoid setting of classic

result obtained by Radford in [23].

Proposition 2.1. Let H, B be quantum groupoids in C. Let g : B → H be a morphism of

quantum groupoids and f : H → B be a morphism of coalgebras such that g ◦ f = idH . Then

the following morphism is an idempotent in C:

qB

H
= µB ◦ (B ⊗ (λB ◦ f ◦ g)) ◦ δB : B → B.

Proof. See Proposition 2.1 of [2].

As a consequence of this proposition, we obtain that there exist an epimorphism pB

H
, a

monomorphism iB
H

and an object BH such that the diagram

-

HHHHj �
��>

B B

BH

qB

H

pB

H
iB
H
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commutes and pB

H
◦ iB

H
= idBH

. Moreover, we have that

- -
-BH B ⊗H

iB
H

(B ⊗ g) ◦ δB

(B ⊗ (ΠL

H
◦ g)) ◦ δB

B

is an equalizer diagram.

Now, let ηBH
and µBH

be the factorizations, through the equalizer iB
H

, of the morphisms

ηB and µB ◦ (iB
H
⊗ iB

H
). Then (BH , ηBH

= pB

H
◦ ηB , µBH

= pB

H
◦ µB ◦ (iB

H
⊗ iB

H
)) is an algebra

in C.

On the other hand, by Proposition 2.4 of [2] we have that there exists an unique morphism

ϕBH
: H ⊗ BH → BH such that iB

H
◦ ϕBH

= yB where yB : H ⊗ BH → B is the morphism

defined by yB = µB ◦ (B ⊗ (µB ◦ cB,B)) ◦ (f ⊗ (λB ◦ f)⊗B) ◦ (δH ⊗ iB
H

). The morphism ϕBH

satisfies:

ϕBH
= pB

H
◦ µB ◦ (f ⊗ iB

H
),

ϕBH
◦ (ηH ⊗BH) = idBH

,

ϕBH
◦ (H ⊗ ηBH

) = ϕBH
◦ (ΠL

H
⊗ ηBH

),

µBH
◦ (ϕBH

⊗BH) ◦ (H ⊗ ηBH
⊗BH) = ϕBH

◦ (ΠL

H
⊗BH),

ϕBH
◦ (H ⊗ µBH

) = µBH
◦ (ϕBH

⊗ ϕBH
) ◦ (H ⊗ cH,BH

⊗BH) ◦ (δH ⊗BH ⊗BH),

µBH
◦ cBH ,BH

◦ ((ϕBH
◦ (H ⊗ ηBH

)) ⊗BH) = ϕBH
◦ (Π

L

H
⊗BH).

and, if f is an algebra morphism, (BH , ϕBH
) is a left H-module (Proposition 2.5 of [1]).

Moreover, in this setting, there exists an unique morphism σBH
: H ⊗H → BH such that

iB
H
◦ σBH

= σB where σB : H ⊗H → B is the morphism defined by:

σB = µB ◦ ((µB ◦ (f ⊗ f)) ⊗ (λB ◦ f ◦ µH)) ◦ δH⊗H .

Then, as a consequence, we have the equality σBH
= pB

H
◦ σB (Proposition 2.6, [2]).

Now let ωB : BH ⊗H → B be the morphism defined by ωB = µB ◦ (iB
H
⊗ f). If we define

ω′
B

: B → BH ⊗ H by ω′
B

= (pB

H
⊗ g) ◦ δB we have ωB ◦ ω′

B
= idB . Then, the morphism

ΩB = ω′
B
◦ ωB : BH ⊗H → BH ⊗H is idempotent and there exists a diagram

-
Z

Z
Z

ZZ~ �
�

���

�
�

�
��3 Z

Z
ZZ~

?

BH ⊗H BH ⊗H

B

BH ×H

ωB
ω′

B

rB sB

ΩB

bB

where sB ◦ rB = ΩB, rB ◦ sB = idBH×H , bB = rB ◦ ω′
B
.

162



It is easy to prove that the morphism bB is an isomorphism with inverse b−1

B
= ωB ◦ sB .

Therefore, the object BH×H is an algebra with unit and product defined by ηBH×H = bB◦ηB ,

µBH×H = bB ◦ µB ◦ (b−1

B
⊗ b−1

B
) respectively. Also, BH × H is a right H-comodule where

ρBH×H = (bB ⊗H)◦ (B⊗ g)◦ δB ◦ b−1

B
. Of course, with these structures bB is an isomorphism

of algebras and right H-comodules being ρB = (B ⊗ g) ◦ δB .

On the other hand, we can define the following morphisms:

ηBH♯σBH
H : K → BH×H, µBH♯σBH

H : BH×H⊗BH×H → BH×H, ρBH♯σBH
H : BH → BH×H⊗H

where

ηBH♯σBH
H = rB ◦ (ηBH

⊗ ηH),

µBH♯σBH
H = rB ◦ (µBH

⊗H) ◦ (µBH
⊗ σBH

⊗ µH) ◦ (BH ⊗ ϕBH
⊗ δH⊗H)◦

(BH ⊗H ⊗ cH,BH
⊗H) ◦ (BH ⊗ δH ⊗BH ⊗H) ◦ (sB ⊗ sB),

ρBH♯σBH
H = (rB ⊗H) ◦ (BH ⊗ δH) ◦ sB.

Finally, if we denote by BH♯σBH
H (the crossed product of BH and H) the triple

(BH ×H, ηBH ♯σBH
H , µBH♯σBH

H)

we have the following theorem.

Theorem 2.2. Let H, B be quantum groupoids in C. Let g : B → H be a morphism of

quantum groupoids and f : H → B be a morphism of coalgebras such that g ◦ f = idH and

f ◦ ηH = ηB. Then, BH♯σBH
H is an algebra, (BH ×H, ρBH♯σBH

H) is a right H-comodule and

bB : B → BH♯σBH
H is an isomorphism of algebras and right H-comodules.

Proof: The proof of this Theorem is a consequence of the following identities (see Theorem

2.8 of [2] for the complete details)

ηBH♯σBH
H = ηBH×H , µBH♯σBH

H = µBH×H , ρBH♯σBH
H = ρBH×H .

Remark 2.3. We point out that if H and B are Hopf algebras, Theorem 2.2 is the result

obtained by Blattner, Cohen and Montgomery in [6]. Moreover, if f is an algebra morphism,

we have σBH
= εH ⊗ εH ⊗ ηBH

and then BH♯σBH
H is the smash product of BH and H,

denoted by BH♯H. Observe that the product of BH♯H is

µBH♯H = (µBH
⊗ µH) ◦ (BH ⊗ ((ϕBH

⊗H) ◦ (H ⊗ cH,BH
) ◦ (δH ⊗BH)) ⊗H)

Let H, B be quantum groupoids in C. Let g : B → H, f : H → B be morphisms of

quantum groupoids such that g ◦ f = idH . In this case σB = ΠB

L
◦ f ◦ µH and then, using

µB ◦ (ΠL

B
⊗B) ◦ δB = idB , we obtain

µBH♯σBH
H = rB ◦ (µBH

⊗µH)◦ (BH ⊗ ((ϕBH
⊗H)◦ (H ⊗ cH,BH

)◦ (δH ⊗BH))⊗H)◦ (sB ⊗sB)
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As a consequence, for analogy with the Hopf algebra case, when σB = ΠB

L
◦ f ◦ µH , we

will denote the triple BH♯σBH
H by BH♯H (the smash product of BH and H).

Therefore, if f and g are morphisms of quantum groupoids, we have the following partic-

ular case of 2.2.

Corollary 2.4. Let H, B be quantum groupoids in C. Let g : B → H, f : H → B be

morphisms of quantum groupoids such that g ◦ f = idH . Then BH♯H is an algebra, (BH ×

H, ρBH♯H) is a right H-comodule and bB : B → BH♯H is an isomorphism of algebras and

right H-comodules.

In a similar way we can obtain a dual theory. The arguments are similar to the ones

used previously in this section, but passing to the opposite category. Let H, B be quantum

groupoids in C. Let h : H → B be a morphism of quantum groupoids and t : B → H be a

morphism of algebras such that t ◦ h = idH and εH ◦ t = εB . The morphism kB

H
: B → B

defined by

kB

H
= µB ◦ (B ⊗ (h ◦ t ◦ λB)) ◦ δB

is idempotent in C and, as a consequence, we obtain that there exist an epimorphism lB
H

, a

monomorphism nB

H
and an object BH such that the diagram

-

HHHHj �
��>

B B

BH

kB

H

lB
H

nB

H

commutes and lB
H
◦ nB

H
= idBH . Moreover, using the next coequalizer diagram in C

-
- -

µB ◦ (B ⊗ h)

µB ◦ (B ⊗ (h ◦ ΠL

H
))

lB
H

B ⊗H B BH

it is possible to obtain a coalgebra structure for BH . This structure is given by

(BH , ε
BH = εB ◦ nB

H
, δ

BH = (lB
H
⊗ lB

H
) ◦ δB ◦ nB

H
)).

Let yB : B → H ⊗BH be the morphism defined by:

yB = (µH ⊗ lB
H

) ◦ (t⊗ (t ◦ λB) ⊗B) ◦ (B ⊗ (cB,B ◦ δB)) ◦ δB .

The morphism yB verifies that yB ◦ µB ◦ (B ⊗ h) = yB ◦ µB ◦ (B ⊗ (ΠL

B
◦ h)) and then,

there exists an unique morphism r
BH : BH → H ⊗BH such that r

BH ◦ lB
H

= yB.

Moreover the morphism ̺BH satisfies:

̺
BH = (t⊗ lB

H
) ◦ δB ◦ nB

H
,
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(εH ⊗BH) ◦ ̺BH = idBH ,

(H ⊗ εBH ) ◦ ̺BH = (ΠL

H
⊗ εBH ) ◦ ̺BH ,

(H ⊗ ε
BH ⊗BH) ◦ (̺

BH ⊗BH) ◦ δBH
= (ΠL

H
⊗BH) ◦ ̺

BH

(H ⊗ δ
BH ) ◦ ̺

BH = (µH ⊗BH ⊗BH) ◦ (H ⊗ c
BH ,H

⊗BH) ◦ (̺
BH ⊗ ̺

BH ) ◦ δ
BH ,

(((H ⊗ εBH ) ◦ ̺BH ) ⊗BH) ◦ cBH ,BH ◦ δBH = (Π
L

H
⊗BH) ◦ ̺BH ,

and, if t is a morphism of quantum groupoids, (BH , ̺BH ) is a left H-comodule. Let γB : B →

H ⊗H be the morphism defined by

γB = µH⊗H ◦ (((t⊗ t) ◦ δB) ⊗ (δH ◦ t ◦ λB)) ◦ δB .

The morphism γB verifies that γB ◦ µB ◦ (B ⊗ h) = γB ◦ µB ◦ (B ⊗ (ΠL

B
◦ h)) and then,

there exists an unique morphism γBH : BH → H ⊗H such that γBH ◦ lB
H

= γB .

It is not difficult to see that the morphism ΥB : BH ⊗H → BH ⊗H defined by

ΥB = ̟′
B
◦̟B ,

being ̟B = µB ◦ (nB

H
⊗ h) and ̟′

B
= (lB

H
⊗ t) ◦ δB , is idempotent and there exists a diagram

-
Z

Z
Z

ZZ~ �
�

���

�
�

�
��3 Z

Z
ZZ~

?

BH ⊗H BH ⊗H

B

BH ⊡H

̟B
̟′

B

uB vB

ΥB

dB

where vB ◦ uB = ΥB, uB ◦ vB = idBH⊡H , dB = uB ◦ ̟′
B
. Moreover, dB is an isomorphism

with inverse d−1

B
= ̟B ◦ vB and the object BH ⊡H is a coalgebra with counit and coproduct

defined by

ε
BH⊡H

= εB ◦ d−1

B
, δ

BH⊡H
= (dB ⊗ dB) ◦ δB ◦ d−1

B

respectively.

Also, BH ⊡H is a right H-module where

ψ
BH⊡H

= dB ◦ µB ◦ (d−1

B
⊗ h).

With these structures dB is an isomorphism of coalgebras and right H-modules being

ψB = µB ◦ (B ⊗ h). Finally, we define the morphisms:

εBH⊖γ
BH

H : BH ⊡H → K, δBH⊖γ
BH

H : BH ⊡H → BH ⊡H ⊗BH ⊡H,

ψ
BH⊖γ

BH
H

: BH ⊡H ⊗H → BH ⊡H

where
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εBH⊖γ
BH

H = (εBH ⊗ εH) ◦ vB ,

δ
BH⊖γ

BH
H

= (uB ⊗ uB) ◦ (BH ⊗ µH ⊗BH ⊗H) ◦ (BH ⊗H ⊗ c
BH ,H

⊗H)◦

(BH ⊗ ̺BH ⊗ µH⊗H) ◦ (δBH ⊗ γBH ⊗ δH) ◦ (δBH ⊗H) ◦ vB ,

ψBH⊖γ
BH

H = uB ◦ (BH ⊗ µH) ◦ (vB ⊗H).

If we denote by BH ⊖γ
BH

H (the crossed coproduct of BH and H) the triple

(BH ⊡H, ε
BH⊖γ

BH
H
, δ

BH⊖γ
BH

H
),

we have the following theorem:

Theorem 2.5. Let H, B be quantum groupoids in C. Let h : H → B be a morphism of

quantum groupoids and t : B → H be a morphism of algebras such that t ◦ h = idH and

εH ◦ t = εB. Then, BH ⊖γ
BH

H is a coalgebra, (BH ⊡ H,ψ
BH⊖γ

BH
H

) is a right H-module

and dB : B → BH ⊖γ
BH

H is an isomorphism of coalgebras and right H-modules.

Remark 2.6. In the Hopf algebra case (H and B Hopf algebras) Theorem 2.5 is the dual

of the result obtained by Blattner, Cohen and Montgomery. In this case, if t is an algebra-

coalgebra morphism, we have γ
BH = ε

BH ⊗ ηH ⊗ ηH and then BH ⊖γ
BH

H is the smash

coproduct of BH and H, denoted by BH ⊖H. In BH ⊖H the coproduct is

δ
BH⊖H

= (BH ⊗ ((µH ⊗BH) ◦ (H ⊗ c
BH ,H

) ◦ (̺
BH ⊗H)) ⊗H) ◦ (δ

BH ⊗ δH).

If t is a morphism of quantum groupoids we have γB = δH ◦ΠL

H
◦t and then the expression

of δBH⊖γ
BH

H is:

δ
BH⊖γ

BH
H

= (uB ⊗uB)◦(BH ⊗((µH ⊗BH)◦(H⊗c
BH ,H

)◦(̺
BH ⊗H))⊗H)◦(δ

BH ⊗δH)◦vB .

As a consequence, for analogy with the Hopf algebra case, when γB = δH ◦ΠH

L
◦ t, we will

denote the triple BH ⊖γ
BH

H by BH ⊖H (the smash coproduct of BH and H).

Therefore, if h and t are morphisms of quantum groupoids, we have:

Corollary 2.7. Let H, B be quantum groupoids in C. Let t : B → H, h : H → B be

morphisms of quantum groupoids such that t ◦ h = idH . Then, BH ⊖ H is a coalgebra,

(BH ⊡H,ψ
BH⊖H

) is a right H-module and dB : B → BH ⊖H is an isomorphism of coalgebras

and right H-modules.
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3 Quantum groupoids, projections and Hopf algebras in
H
HYD

In this section we give the connection between projection of quantum groupoids an Hopf

algebras in the category H

H
YD. The results presented here can be found in [3].

Suppose that g : B → H and f : H → B are morphisms of weak Hopf algebras such that

g ◦ f = idH . Then qB

H
= kB

H
and therefore BH = BH , pB

H
= lB

H
and iB

H
= nB

H
. Thus

- -
-BH B B ⊗H

iB
H

(B ⊗ g) ◦ δB

(B ⊗ (ΠL

H
◦ g)) ◦ δB

is an equalizer diagram and

-
- -

µB ◦ (B ⊗ f)

µB ◦ (B ⊗ (f ◦ ΠL

H
))

pH

B
B ⊗H B BH

is a coequalizer diagram.

Then (BH , ηBH
= pB

H
◦ ηB , µBH

= pB

H
◦ µB ◦ (iB

H
⊗ iB

H
)) is an algebra in C, (BH , εBH

=

εB ◦ iB
H
, δBH

= (pB

H
⊗ pB

H
) ◦ δB ◦ iB

H
)) is a coalgebra in C, (BH , ϕBH

) is a left H-module and

(BH , ̺BH
) is a left H-comodule.

Also, ωB = ̟B , ω′
B

= ̟′
B

and then BH × H = BH ⊡ H. Moreover, the morphism

ΩB = ω′
B
◦ ωB admits a new formulation. Note that by the usual arguments in the quantum

groupoid calculus, we have

ΩB = (pB

H
⊗ µH) ◦ (µB ⊗H ⊗ g) ◦ (B ⊗ cH,B ⊗B) ◦ (((B ⊗ g) ◦ δB ◦ iB

H
) ⊗ (δB ◦ f))

= (pB

H
⊗µH)◦(µB⊗H⊗H)◦(B⊗cH,B⊗H)◦(((B⊗(Π

R

H
◦g))◦δB◦iB

H
)⊗((f⊗H)◦δH )))

= (pB

H
⊗ εH ⊗H) ◦ (µB⊗H ⊗H) ◦ (((B ⊗ g) ◦ δB ◦ iB

H
) ⊗ ((f ⊗ δH) ◦ δH)))

= (pB

H
⊗ (εH ◦ g) ⊗H) ◦ (µB⊗B ⊗H) ◦ (δB ⊗ δB ⊗H) ◦ (iB

H
⊗ ((f ⊗H) ◦ δH))

= ((pB

H
◦ µB) ⊗H) ◦ (iB

H
⊗ ((f ⊗H) ◦ δH))

= ((pB

H
◦ µB ◦ (B ⊗ qB

H
)) ⊗H) ◦ (iB

H
⊗ ((f ⊗H) ◦ δH))

= (pB

H
⊗H) ◦ ((µB ◦ (B ⊗ (ΠL

B
◦ f)) ⊗H) ◦ (iB

H
⊗ δH)

= (pB

H
⊗H) ◦ ((µB ◦ cB,B ◦ ((ΠL

B
◦ f) ⊗ iB

H
)) ⊗H) ◦ (cBH ,H ⊗H) ◦ (BH ⊗ δH)

= ((pB

H
◦ iB

H
◦ ϕBH

◦ (Π
L

H
⊗BH)) ⊗H) ◦ (cBH ,H ⊗H) ◦ (BH ⊗ δH)

= (ϕBH
⊗H) ◦ (cBH ,H ⊗H) ◦ (BH ⊗ Π

L

H
⊗H) ◦ (BH ⊗ δH)

= (ϕBH
⊗ µH) ◦ (H ⊗ cH,BH

⊗H) ◦ ((δH ◦ ηH) ⊗BH ⊗H).

= ∇BH⊗H .
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Therefore, the object BH × H is the tensor product of BH and H in the representation

category of H, i.e. the category of left H-modules, studied in [8] and [21].

Proposition 3.1. Let g : B → H and f : H → B be morphisms of quantum groupoids such

that g ◦ f = idH . Then, if the antipode of H is an isomorphism, (BH , ϕBH
, ̺BH

) belongs to
H

H
YD.

Proof: In Proposition 2.8 of [1] we prove that (BH , ϕBH
, ̺BH

) satisfy

(µH ⊗BH) ◦ (H ⊗ cBH ,H) ◦ ((̺BH
◦ ϕBH

) ⊗H) ◦ (H ⊗ cH,BH
) ◦ (δH ⊗BH)

= (µH ⊗BH)◦(H⊗cBH ,H)◦(µH ⊗ϕBH
⊗H)◦(H⊗cH,H ⊗BH ⊗H)◦(δH ⊗̺BH

⊗ΠR

H
)◦

(H ⊗ cH,BH
) ◦ (δH ⊗BH).

Moreover, the following identity

(µH ⊗BH) ◦ (H ⊗ cBH ,H) ◦ (µH ⊗ ϕBH
⊗H) ◦ (H ⊗ cH,H ⊗BH ⊗H) ◦ (δH ⊗ ̺BH

⊗ ΠR

H
)◦

(H ⊗ cH,BH
) ◦ (δH ⊗BH)

= (µH ⊗ ϕBH
) ◦ (H ⊗ cH,H ⊗ (ϕBH

◦ ((Π
L

H
◦ Π

R

H
) ⊗BH) ◦ ̺BH

)) ◦ (δH ⊗ ̺BH
).

is true because BH is a left H-module and a left H-comodule. Then, using the identity

ϕBH
◦ ((Π

L

H
◦ Π

R

H
) ⊗BH) ◦ ̺BH

= idBH

we prove (b1). The prove for (b2) is easy and we leave the details to the reader.

3.2. As a consequence of the previous proposition we obtain ∇BH⊗BH
= ∇′

BH⊗BH
and

∇BH⊗H = ∇′
BH⊗H

= ΩB.

3.3. Let g : B → H and f : H → B be morphisms of quantum groupoids such that g◦f = idH .

Put uBH
= pB

H
◦ f ◦ iL : HL → BH and eBH

= pL ◦ g ◦ iB
H

: BH → HL. This morphisms belong

to H

H
YD and we have the same for mBH×BH

: BH ×BH → BH defined by

mBH×BH
= µBH

◦ iBH ,BH

and ∆BH
: BH → BH ×BH defined by ∆BH

= pBH ,BH
◦ δBH

.

Then, we have the following result.

Proposition 3.4. Let g : B → H and f : H → B be morphisms of quantum groupoids such

that g ◦ f = idH . Then, if the antipode of H is an isomorphism, we have the following:

(i) (BH , uBH
,mBH

) is an algebra in H

H
YD.

(ii) (BH , eBH
,∆BH

) is a coalgebra in H

H
YD.
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Proof: See Proposition 2.6 in [3].

3.5. Let g : B → H and f : H → B be morphisms of weak Hopf algebras such that g◦f = idH .

Let ΘB

H
be the morphism ΘB

H
= ((f ◦ g)∧λB)◦ iB

H
: BH → B. Following Proposition 2.9 of [1]

we have that (B⊗ g)◦ δB ◦ΘB

H
= (B⊗ (ΠL

H
◦ g))◦ δB ◦ΘB

H
and, as a consequence, there exists

an unique morphism λBH
: BH → BH such that iB

H
◦ λBH

= ΘB

H
. Therefore, λBH

= pB

H
◦ ΘB

H

and λBH
belongs to the category of left-left Yetter-Drinfeld modules.

The remainder of this section will be devoted to the proof of the main Theorem of this

paper.

Theorem 3.6. Let g : B → H and f : H → B be morphisms of weak Hopf algebras

satisfying the equality g ◦ f = idH and suppose that the antipode of H is an isomorphism.

Let uBH
, mBH

, eBH
, ∆BH

, λBH
be the morphisms defined in 3.3 and 3.5 respectively. Then

(BH , uBH
,mBH

, eBH
,∆BH

, λBH
) is a Hopf algebra in the category of left-left Yetter-Drinfeld

modules.

Proof: By Proposition 3.4 we know that (BH , uBH
,mBH

) is an algebra and (BH , eBH
,∆BH

)

is a coalgebra in H

H
YD.

First we prove that mBH
is a coalgebra morphism. That is:

(c1) ∆BH
◦mBH

= (mBH
×mBH

) ◦ aBH ,BH ,BH×BH
◦ (BH × a−1

BH ,BH ,BH
)◦

(BH×(τBH ,BH
×BH))◦(BH×aBH ,BH ,BH

)◦a−1

BH ,BH ,BH×BH
◦(∆BH

×∆BH
),

(c2) eBH
◦mBH

= lHL
◦ (eBH

× eBH
).

Indeed:

(mBH
×mBH

) ◦ aBH ,BH ,BH×BH
◦ (BH × a−1

BH ,BH ,BH
) ◦ (BH × (τBH ,BH

×BH))◦

(BH × aBH ,BH ,BH
) ◦ a−1

BH ,BH ,BH×BH
◦ (∆BH

× ∆BH
)

= pBH ,BH
◦ (µBH

⊗ µBH
) ◦ (BH ⊗ iBH ,BH

⊗BH) ◦ (∇BH⊗(BH×BH) ⊗BH)◦

(BH⊗∇(BH×BH)⊗BH
)◦(BH⊗(pBH ,BH

◦tBH ,BH
◦iBH ,BH

)⊗BH)◦(BH⊗∇(BH×BH)⊗BH
)

(∇BH⊗(BH×BH) ⊗BH) ◦ (BH ⊗ pBH ,BH
⊗BH) ◦ (δBH

⊗ δBH
) ◦ iBH ,BH

= pBH ,BH
◦ (µBH

⊗ µBH
) ◦ (BH ⊗ (∇BH⊗BH

◦ tBH ,BH
◦∇BH⊗BH

)⊗BH) ◦ (δBH
⊗ δBH

)◦

iBH ,BH

= pBH ,BH
◦ (µBH

⊗ µBH
) ◦ (BH ⊗ tBH ,BH

⊗BH) ◦ (δBH
⊗ δBH

) ◦ iBH ,BH

= pBH ,BH
◦ δBH

◦ µBH
◦ iBH ,BH
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= ∆BH
◦mBH

.

In the last computations, the first and the second equalities follow from Lemma 1.7 of

[3] and by µBH
◦ ∇BH⊗BH

= µBH
, ∇BH⊗BH

◦ δBH
= δBH

. In the third one we use the

following result: if M is a left-left Yetter-Drinfeld module then tM,M ◦ ∇M⊗M = tM,M ,

∇M⊗M ◦ tM,M = tM,M . The fourth equality follows from Proposition 2.9 of [1] and, finally,

the fifth one follows by definition.

On the other hand,

lHL
◦ (eBH

× eBH
)

= pL ◦ µH ◦ (iL ⊗ iL) ◦ ∇HL⊗HL
◦ (pL ⊗ pL) ◦ ((g ◦ iB

H
) ⊗ (g ◦ iB

H
)) ◦ iBH ,BH

= pL ◦ µH ◦ ((ΠL

H
◦ g ◦ iB

H
) ⊗ (ΠL

H
◦ g ◦ iB

H
)) ◦ iBH ,BH

= pL ◦ µH ◦ ((g ◦ qB

H
◦ iB

H
) ⊗ (g ◦ qB

H
◦ iB

H
)) ◦ iBH ,BH

= pL ◦ µH ◦ ((g ◦ iB
H

) ⊗ (g ◦ iB
H

)) ◦ iBH ,BH

= pL ◦ g ◦ iB
H
◦ µBH

◦ iBH ,BH

= eBH
◦mBH

.

The first equality follows from definition, the second one from

pL ◦ µH ◦ (iL ⊗ iL) ◦ ∇HL⊗HL
◦ (pL ⊗ pL) = pL ◦ µH ◦ (ΠL

H
⊗ ΠL

H
)

and the third one from ΠL

H
◦ g = g ◦ qB

H
. Finally, the fourth one follows from the idempotent

character of qB

H
, the fifth one from the properties of g and the definition of µBH

and the sixth

one from definition.

To finish the proof we only need to show

mBH
◦ (λBH

×BH) ◦ ∆BH
= lBH

◦ (eBH
× uBH

) ◦ r−1

BH
= mBH

◦ (BH × λBH
) ◦ ∆BH

.

We begin by proving lBH
◦ (eBH

× uBH
) ◦ r−1

BH
= uBH

◦ eBH
. Indeed:

lBH
◦ (eBH

× uBH
) ◦ r−1

BH

= pB

H
◦µB◦(f⊗B)◦(iL⊗i

B

H
)◦∇HL⊗BH

◦(pL⊗p
B

H
)◦(g⊗f)◦(iB

H
⊗iL)◦∇BH⊗HL

◦(pB

H
⊗pL)◦

((µB ◦ (f ⊗ iB
H

)) ⊗H) ◦ (H ⊗ cH,BH
) ◦ ((δH ◦ ηH) ⊗BH)

= pB

H
◦ µB ◦ ((ΠL

B
∧ΠL

B
)⊗ΠL

B
) ◦ ((f ◦ g ◦ qB

H
)⊗ (µB ◦ (ΠL

B
⊗ (f ◦ g ◦ΠL

B
)))) ◦ (δB ⊗B)◦

δB ◦ iB
H

= pB

H
◦ µB ◦ ((ΠL

B
◦ f ◦ g ◦ qB

H
) ⊗ (f ◦ ΠL

H
◦ g ◦ ΠL

B
)) ◦ δB ◦ iB

H
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= pB

H
◦ f ◦ µH ◦ (ΠL

H
⊗ ΠL

H
) ◦ δH ◦ g ◦ iB

H

= pB

H
◦ f ◦ ΠL

H
◦ g ◦ iB

H

= uBH
◦ eBH

.

The first equality follows from definition, the second one from

((µB ◦ (f ⊗ iB
H

)) ⊗H) ◦ (H ⊗ cH,BH
) ◦ ((δH ◦ ηH) ⊗BH) = (B ⊗ (g ◦ ΠL

B
)) ◦ δB ◦ iB

H
,

(iB
H
⊗ iL) ◦ ∇BH⊗HL

◦ (pB

H
⊗ pL) = (qB

H
⊗ (ΠL

H
◦ g ◦ µB)) ◦ (B ⊗ ΠL

B
⊗ f) ◦ (δB ⊗H)

and

(iL ⊗ iB
H

) ◦ ∇HL⊗BH
◦ (pL ⊗ pB

H
) = (ΠL

H
◦ g) ⊗ (qB

H
◦ µB)) ◦ (B ⊗ ΠL

B
⊗B) ◦ ((δB ◦ f) ⊗B).

In the third one we use ΠL

B
∧ΠL

B
= ΠL

B
. The fourth one follows from ΠL

H
◦g = g ◦qB

H
and from

the idempotent character of ΠL

H
. Finally, in the fifth one we apply (75) for ΠL

H
∧ ΠL

H
= ΠL

H
.

On the other hand,

mBH
◦ (λBH

×BH) ◦ ∆BH

= µBH
◦ ∇BH⊗BH

◦ (λBH
⊗BH) ◦ ∇BH⊗BH

◦ δBH

= µBH
◦ (λBH

⊗BH) ◦ δBH

= ((εBH
◦ µBH

) ⊗BH) ◦ (BH ⊗ tBH ,BH
) ◦ ((δBH

◦ ηBH
) ⊗BH)

= ((εB ◦ qB

H
◦ µB) ⊗ pB

H
) ◦ ((µB ◦ (qB

H
⊗ (f ◦ g)) ◦ δB) ⊗ cB,B) ◦ ((δB ◦ qB

H
◦ ηB) ⊗ iB

H
)

= pB

H
◦ ΠL

B
◦ iB

H

= pB

H
◦ f ◦ ΠL

H
◦ g ◦ iB

H

= uBH
◦ eBH

.

In these computations, the first equality follows from definition, the second one from

µBH
◦ ∇BH⊗BH

= µBH
and ∇BH⊗BH

◦ δBH
= δBH

, the third one from (4-1) of Proposition

2.9 of [1] and the fourth one is a consequence of the coassociativity of δB . The fifth equality

follows from µB ◦ (qB

H
⊗ (f ◦ g)) ◦ δB = idB and qB

H
◦ ηB = ηB , εB ◦ qB

H
= εB . In the sixth one

we use f ◦ ΠL

H
◦ g = ΠL

B
and the last one follows from definition.

Finally, using similar arguments and (4-2) of Proposition 2.9 of [1] we obtain:

mBH
◦ (BH × λBH

) ◦ ∆BH

= µBH
◦ ∇BH⊗BH

◦ (BH ⊗ λBH
) ◦ ∇BH⊗BH

◦ δBH

= µBH
◦ (λBH

⊗BH) ◦ δBH
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= (BH ⊗ (εBH
◦ µBH

)) ◦ (tBH ,BH
⊗BH) ◦ (BH ⊗ (δBH

◦ ηBH
))

= pB

H
◦ µB ◦ ((f ◦ g) ⊗ ΠR

B
) ◦ δB ◦ iB

H

= pB

H
◦ µB ◦ ((f ◦ g) ⊗ (f ◦ ΠR

H
◦ g) ◦ δB ◦ iB

H

= pB

H
◦ f ◦ (idH ∧ ΠR

H
) ◦ g ◦ iB

H

= pB

H
◦ f ◦ g ◦ iB

H

= pB

H
◦ f ◦ ΠL

H
◦ g ◦ iB

H

= uBH
◦ eBH

.

Finally, using the last theorem and Theorem 4.1 of [2] we obtain the complete version

of Radford’s Theorem linking weak Hopf algebras with projection and Hopf algebras in the

category of Yetter-Drinfeld modules over H.

Theorem 3.7. Let H, B be weak Hopf algebras in C. Let g : B → H and f : H → B be

morphisms of weak Hopf algebras such that g ◦ f = idH and suppose that the antipode of H is

an isomorphism. Then there exists a Hopf algebra BH living in the braided monoidal category
H

H
YD such that B is isomorphic to BH × H as weak Hopf algebras, being the (co)algebra

structure in BH ×H the smash (co)product, that is the (co)product defined in 2.3, 2.6. The

expression for the antipode of BH ×H is

λBH×H := pBH ,H ◦ (ϕBH
⊗H)◦

(H ⊗ cH,BH
) ◦ ((δH ◦ λH ◦ µH) ⊗ λBH

) ◦ (H ⊗ cBH ,H)◦

(̺BH
⊗H) ◦ iBH ,H .
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[9] G. Böhm, Doi-Hopf modules over weak Hopf algebras, Comm. in Algebra, 28 (2000),

4687-4698.

[10] D. Bulacu, F. Panaite, F.V. Oystaeyen, Quasi-Hopf algebra actions and smash product,

Comm. in Algebra, 28 (2000), 631-651.

[11] D. Bulacu, E. Nauwelaerts, Radford’s biproduct for quasi-Hopf algebras and bosoniza-

tion, J. Pure Appl. Algebra, 174 (2002), 1-42.

[12] S. Caenepeel, D. Wang, Y. Yin, Yetter-Drinfeld modules over weak Hopf algebras and

the center construction, Ann. Univ. Ferrara - Sez. VII - Sc. Mat. 51 (2005), 69-98.

[13] F. Goodman, P. de la Harpe, V.F.R. Jones, Coxeter graphs and towers of algebras,

M.S.R.I. Publ. 14, Springer, Heilderberg, (1989).

[14] T. Hayashi, Face algebras I. A generalization of quantum group theory. J. Math. Soc.

Japan, 50, (1998), 293-315.

[15] K. Kassel, Quantum groups, G.T.M. 155, Spinger Verlag, 1995.

[16] S. Majid, Cross products by braided groups and bosonization, J. of Algebra, 163 (1994),

165-190.

[17] S. Majid, Quantum double for quasi-Hopf algebras, Lett. Math. Phys., 45 (19948), 1-9.

[18] A. Nenciu, The center construction for weak Hopf algebras, Tsukuba J. of Math. 26

(2002), 189-204.

173



[19] D. Nikshych, L. Vainerman, A Galois Correspondence for Π1 factors, math.QA/0001020

(2000).

[20] D. Nikshych, L. Vainerman, Finite Quantum Groupoids and their applications, New

Directions in Hopf Algebras, MSRI Publications, 43 (2002), 211-262.

[21] D. Nikshych, V. Turaev and L. de Vainerman, Invariants of knots and 3-manifolds from

quantum groupoids, Topology Appl., 127 (2003), 91-123.

[22] F. Nill, Axioms of weak bialgebras, math.QA/9805104 (1998).

[23] D.E. Radford, The structure of Hopf algebras with a projection, J. of Algebra, 92 (1985),

322-347.

[24] J. Renault, A groupoid approach to C∗-algebras, Lecture Notes in Math. 793, Springer-

Verlag, 1980.

[25] T. Yamanouchi, Duality for generalized Kac algebras and characterization of finite

groupoid algebras, J. of Algebra, 163 (1994), 9-50.

174



Shifted determinants over universal enveloping

algebra

Natasha Rozhkovskaya∗

Abstract

We present a family of polynomials with coefficients in the universal enveloping algebra.

These polynomials are shifted analogues of a determinant of a certain non-commutative

matrix, labeled by irreducible representations of gln(C). We show plethysm relation with

Capelli polynomials and compute the polynomials explicitly for gl2(C).

Keywords: Casimir element, universal enveloping algebra, irreducible representation, deter-

minant, characteristic polynomial, Capelli polynomial, shifted symmetric functions.

1 Introduction

Let g = gl
n
(C) with the standard basis {Eij}, let Vλ be an irreducible representation of g.

The matrix Ωλ, defined by

Ωλ =
∑

i,j=1, ..., n

Eij ⊗ πλ(Eji),

naturally appears in many problems of representation theory. We will call it braided Casimir

element.

Consider the symmetric algebra S(g) of g. The algebra S(g) is commutative. So if we

think of Ωλ as an element of S(g) ⊗ EndVλ, the determinant pλ(u) = det(Ωλ − u) is a well-

defined polynomial. The coefficients of Dλ(u) are invariant under the ajoint action of g on

S(g). The determinant also serves as a characteristic polynomial for Ωλ (namely, pλ(Ωλ) = 0).

Now let us consider Ωλ as a matrix with coefficients in the universal enveloping algebra

U(g). This is non-commutative algebra, and it can be viewed as a deformation of S(g).

Due to B. Kostant’s theorem [6], the matrix Ωλ (now as a matrix with coefficients in U(g)),

satisfies a characteristics equation with coefficients in the center of the universal enveloping

algebra. We also define in Section 2 a (shifted) analogue of determinant Ω(λ). Thus, we

have two deformations of the polynomial Dλ(u): a shifted determinant and a characteristic

polynomial. It is well-known, that in case of Vλ - vector representation of gl(n, C), both

deformations coincide: the shifted determinant is a characteristic polynomial of Ωλ. But
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it turns out, that in general, these two deformations are different, which follows from the

results of Section 3. There we prove the centrality of shifted determinant and find the explicit

formula in the case of gl2(C).

With every new nice example of central elements it is natural to ask, how it is related

to the known ones. One of the most well-studied families of central polynomials is the set

of Capelli polynomials. These polynomials are parametrized by dominant weights of gln(C).

Their theory is developed in the series of works [5], [8],[11],[12],[13], etc. Again, the shifted

determinant coincides with a Capelli polynomial only in the case of vector representations,

when λ = (1). In Section 5 we prove that there is a plethysm-like relation between Capelli

polynomials and shifted determinants.

In Section 2 we define shifted determinant for a non-commutative matrix. In Section 3

we study the case of gl2(C). In Section 4 we discuss relations with characteristic polynomials

and state two conjectures about centrality of shifted determinants in general. In Section 5 we

give a formula for relation with Capelli polynomials.

Acknowledgements. It is my pleasure to express my gratitude to A. Molev and A. Ram for

interesting and valuable discussions. I would like to thank also IHES and IHP for their

hospitality, and L. V. Zharkova for special support.

2 Definitions

Let g = gln(C) with the universal enveloping algebra U(g). Denote by Z(g) the center of

U(g). Fix the basis {Eij} of gln(C), which consists of standard unit matrices.

Let λ = (λ1, . . . , λn) with λi − λi+1 ∈ Z+, for i = 1, . . . , n − 1, be a dominant weight

of gln(C). Denote by πλ be the corresponding irreducible rational gln(C)-representation, and

by Vλ the space of this representation. We assume that dim Vλ = m + 1. Then we define an

element Ωλ of U(g) ⊗ End(Vλ), which we call braided Casimir element.

Definition.

Ωλ = Eij ⊗
∑

i,j=1, ..., n

πλ(Eji).

We will think of Ωλ as a matrix of size (m + 1) × (m + 1) with coefficients in U(gln(C)).

Next we define a shifted determinant of Ωλ.

Let A be an element of A ⊗ End (Cm+1), where A is a non-commutative algebra. We

again think of A as a non-commutative matrix of size (m + 1) × (m + 1) with coefficients

Aij ∈ A.

Definition. The (column)-determinant of A is the following element of A:

det(A) =
∑

σ∈Sm+1

(−1)σAσ(1)1Aσ(2)2...Aσ(m+1)(m+1) . (1)

176



Here the sum is taken over all elements σ of the symmetric group Sm+1, and (−1)σ is the

sign of the permutation σ.

Put Ωλ(u) = Ωλ + u ⊗ id. Define L as a diagonal matrix of the size (m + 1) × (m + 1) of

the form:

L = diag(m,m − 1, . . . , 0).

Definition. The shifted determinant of Ωλ(u) is the column-determinant det(Ωλ(u) − L).

We will use notation Dλ(u) for this polynomial with coefficients in U(gln(C)):

Dλ(u) = det(Ωλ(u) − L).

There is another way to define the same determinant. Let A1, . . . , As be a set of matrices

of size (m + 1) × (m + 1) with coefficients in some associative (non-commutative) algebra A.

Let µ be the multiplication in A. Consider an element of A⊗ End(Cm+1)

Λs(A1 ⊗ · · · ⊗ As) = (µ(s) ⊗ Asyms)(A1 ⊗ · · · ⊗ As),

where Asyms = 1

s!

∑

σ∈Ss
(−1)σσ. By Young’s construction, the antisymmetrizer can be

realized as an element of End ((Cm+1)⊗s).

Lemma 2.1. For s = m + 1

Λm+1(A1 ⊗ · · · ⊗ Am+1) = α(A1, . . . , Am+1) ⊗ Asymm+1, (2)

where α(A1, . . . , Am+1) ∈ A,

α(A1, . . . , Am+1) =
∑

σ∈Sm+1

(−1)σ [A1]σ(1),1 . . . [Am+1]σ(m+1),m+1,

and [Ak]i,j are matrix elements of Ak.

Proof. (cf [9].) Let {ei}, (i = 1, . . . , m+1), be a basis of V = C
m+1. Observe that Asym (m+1)

is a one-dimensional projector to

v =
1

(m + 1)!

∑

σ∈Sm+1

(−1)σeσ(1) ⊗ · · · ⊗ eσ(m+1).

We apply Λm+1(A1 ⊗ · · · ⊗ Am+1) to e1 ⊗ · · · ⊗ em+1 ∈ V ⊗m+1:

Λm+1(A1 ⊗ · · · ⊗ Am+1)(e1 ⊗ · · · ⊗ em)

=
∑

i1,...ik

(A1) i1, 1 . . . (Am+1) im+1, m+1 Asym (m+1) (ei1
⊗ · · · ⊗ eim+1

). (3)

The vector Asym (m+1) (ei1
⊗ · · · ⊗ eim+1

) 6= 0 only if all indices {i1, . . . , im+1} are pairwise

distinct. In this case denote by σ be a permutation defined by σ(k) = ik. Then

Asym (m+1) (ei1
⊗ · · · ⊗ eim+1

) = (−1)σ v,
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and (3) gives

Λm+1(A1 ⊗ · · · ⊗ Am+1) (e1 ⊗ · · · ⊗ em+1) = α(A1, . . . , Am+1) v

= α(A1, . . . , Am+1)Asym (m+1) (e1 ⊗ · · · ⊗ em+1).

Corollary 2.2.

α (A, . . . , A) = det(A),

α (Ωλ(u − m), . . . , Ωλ(u)) = Dλ(u).

3 Case of gl2(C)

In this section we prove the centrality of polynomials Dλ(u) for g = gl2(C) an write them

explicitly.

The center Z(gl2(C)) of the universal enveloping algebra U(gl2(C)) is generated by two

elements:

∆1 = E11 + E22, ∆2 = (E11 − 1)E22 − E12E21.

Let λ = (λ1 ≥ λ2) be a dominant weight. Put m = λ1−λ2, d = λ1+λ2. Then dimVλ = m+1

and Ωλ is a ”tridiagonal” matrix: all entries [Ωλ]ij of the matrix Ωλ are zeros, except

[Ωλ]k,k = (λ1 − k + 1)E11 + (λ2 + k − 1)E22, k = 1, . . . , m + 1,

[Ωλ]k,k+1 = (m + 1 − k)E21, k = 1, . . . , m,

[Ωλ]k+1,k = kE12, k = 1, . . . , m.

Proposition 3.1. a) Polynomial Dλ(u) is central.

b) Let µ = (µ1 ≥ µ2) be another dominant weight of gln(C). The image of Dλ(u) under

Harish - Chandra isomorphism χ is the following function of µ:

χ(Dλ(u)) =
m∏

k=0

(u + (λ1 − k)µ1 + (λ2 + k)µ2 − k). (4)

Proof. a) Let X = X(a, b, c) be a matrix of size (m + 1) × (m + 1) of the form











am bm 0 . . . 0 0 0

cm am−1 bm−1 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . c2 a1 b1

0 0 0 . . . 0 c1 a0











,

where ai, bj , ck are elements of some (noncommutative) algebra. Define detX as in Section

2. Using the principle k-minors of X, the determinant of X can be computed by recursion
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formula. Denote by Xk the matrix obtained from X by deleting the first (m − k + 1) rows

and the first (m− k + 1) columns, and by I(k) the determinant of Xk. Then detX = I(m+1),

and we have the following recursion:

Lemma 3.2. The determinants I(k) satisfy the recursion realtion

I(k+1) = akI
(k) − ckbk I(k−1), (k = 2, ..., n − 1) (5)

with initial conditions I(1) = a0, I(2) = a1a0 − c1b1.

Lemma 3.3. If X(a, b, c) is a tri-diagonal matrix with coefficients {ai, bj , ck} and X(a′, b′, c′)

is another tri-diagonal matrix with coefficients {a′
i
, b′

j
, c′

k
} with the property

ai = a′
i
, cj bj = c′

j
b′
j

for all i = 0, ..., n j = 1, ..., n, then det X(a, b, c) = det X(a′, b′, c′).

Proof. Follows from the recursion relation.

We apply these observations to compute the determinant of the matrix X(a, b, c) =

Ωλ(u) − L.

The following obvious lemma allows to reduce the determinant of non-commutative matrix

(Ωλ(u) − L) to a determinant of a matrix with commutative coefficients.

Lemma 3.4. The subalgebra of U(gl2(C)) generated by {E11, E22, (E12 E21)} is commutative.

Put h = E11 − E22, a = E12E21. Due to Lemma 3.3 the tridiagonal matrix X(a′, b′, c′)

with coefficients

a′
k

= ak = λ1E11 + λ2E22 + u − m + (k − m)(h − 1), k = 0, . . . , m,

b′
k

= k a, c′
k

= (m − k + 1), k = 1, . . . , m,

has the same determinant as (Ωλ(u) − L). By Lemma 3.4, X(a′, b′, c′) has commutative

coefficients. Hence det (Ωλ(u)−L) equals det (λ1E11 +λ2E22 +u−m+Am) where Am is the

following matrix:

Am =











0 ma 0 . . . 0 0

1 −(h − 1) (m − 1)a . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . (1 − m)(h − 1) a

0 0 0 . . . m −m(h − 1)











with h and a as above.

Lemma 3.5.

det Am =

m∏

k=0

(
−m(h − 1)

2
+

(m − 2k)

2

√

(h − 1)2 + 4a

)

.

179



Proof. By Lemma 3.3 det Am = (h − 1)m+1det A′
m

with

A′
m

=











0 ms 0 . . . 0 0

1(s − 1) −1 (m − 1)s . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 − m s

0 0 0 . . . m(s − 1) −m











,

and s is such that s(s − 1) = a/(h − 1)2. This reduces to

s =
1 ±

√

1 + 4a/(h − 1)2

2
. (6)

The determinant of A′
m

is a variant of Sylvester determinant ([1], [4]). It equals

det A′
m

=

m∏

k=0

((m − 2k)s − m + k).

With s as in (6) we have:

(h − 1)((m − 2k)s − m + k) =
−m(h − 1)

2
±

(m − 2k)

2

√

((h − 1)2 + 4a)

and lemma follows. Note that both values of s give the same value of det Am.

We obtain from calculations above

det (Ωλ(u)−L) =

m∏

k=0

(

u +
d

2
(E11 + E22) −

m

2
+

(m − 2k)

2

(
(E11 − E22 − 1)2 + 4E12E21

) 1

2

)

.

(7)

Observe that
(
(E11 − E22 − 1)2 + 4E12E21

) 1

2 =
(
(∆1 − 1)2 − 4∆2

) 1

2 , and finally we get

Dλ(u) =

m∏

k=0

(

u +
d∆1

2
−

m

2
+

(m − 2k)

2

(
(∆1 − 1)2 − 4∆2

) 1

2

)

. (8)

The quantity in (8) has coefficients in Wτ -extension of Z(gl2(C)), where Wτ is the translated

Weyl group. But it is easy to see that after expanding the product, we get a polynomial in u

with coefficients in Z(gln(C). We proved the first part of the proposition.

b) The images of the generators of Z(gl
n
(C)) under Harish-Chandra homomorphism χ

are

χ(∆1) = µ1 + µ2, χ(∆2) = µ1(µ2 − 1).

This together with (8) implies (4).
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4 Characteristic polynomial

Proposition 4.1. For any dominant weight λ of gln(C) there exists a polynomial

Pλ(u) =
m∑

k=0

zku
k

with coefficients zk ∈ Z(gln(C)), such that Pλ(−Ωλ) = 0.

This proposition follows from the similar statements for central elements of semisimple

Lie algebras, proved in [6],[2]. In [2] the Harish-Chandra-image of the polynomial Pλ(u) is

also obtained:

χ(Pλ(u)) =
∏

(u + (µ, λi) +
1

2
(2ρ + λi, λi) −

1

2
(2ρ + λ, λ)),

where ρ is the half-sum of positive roots, and the product is taken over all weights {λi} of Vλ.

Corollary 4.2. In case of gl2(C) the image of the polynomial Pλ(u) under Harish-Chandra

homomorphism is

χ(Pλ(u)) =
m∏

k=0

(u + (λ1 − k)µ1 + (λ2 + k)µ2 − k(m + 1 − k)) , (9)

where m = λ1 − λ2.

Comparing (9) with (4), we can see that the polynomials Pλ(u) and Dλ(u) are different.

Recall that for a semi-simple Lie algebra g, the algebra U(g) is a deformation of the sym-

metric algebra S(g). Hence, the central polynomials Pλ(u) and Dλ(u) are the deformations

of a polynomial pλ(u), which has coefficients in the ring of invariants I(g) of the adjoint

action of g on S(g). Since I(g) ≃ C[h∗]W , where W is a Weyl group, and h
∗ is a dual to

the Cartan subalgebra h, the polynomial pλ(u) can be represented as a polynomial of u with

coefficients in the ring C[h∗]W . We can extend these observations for the case of gln(C). Let

{λ1, . . . , λm+1} be the set of weights of Vλ. Then we can write that

pλ(u) =
∏

λi

(u + (µ, λi)),

as a (symmetric) function of µ ∈ h
∗.

Let us summarize the facts about Dλ(u) and Pλ(u):

a) Dλ(u) and Pλ(u) are deformations of pλ(u), and the case of gl2(C) shows that in general

these are different deformations.

b) In case of vector representation λ = (1), D(1)(u) = P(1)(u) for any gl
n
(C). This is

proved, for example, in [7].

c) Pλ(u) is known to be a central polynomial for all λ for any gl
n
(C).

d) The centrality of Dλ(u) is proved in two cases: for all λ for gl2(C), and for λ = (1) for

gl
n
(C). However, we state the following two conjectures.
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Conjecture 4.3. For any dominant weight λ there exists a basis of the vector space Vλ such

that the polynomial Dλ(u) has coefficients in the center Z(gln(C)).

Conjecture 4.4. The Harish-Chandra image of Dλ(u) is given by polynomial

∏

(u + (µ + ρ, λi) −
m

2
),

where the product is taken over all weights {λi} of the representation Vλ, and dimVλ = m+1.

5 Capelli elements

In this section we show that the shifted determinant can be viewed as some sort of plethysm

applied to Capelli elements.

Consider an element S of U(g) ⊗ EndV , defined by S =
∑

ij
Eij ⊗ Eij. Using the abbre-

viated notation S = S(1) ⊗ S(2), put

S1j = S(1) ⊗ 1⊗(j−1) ⊗ S(2) ⊗ 1⊗(m−j)

(viewed as an element of U(g) ⊗ End(Cn)⊗m).

Let {c1, . . . , cM} be the set of contents of the standard Young tableau of shape λ, and

let Fλ be a Young symmetrizer that corresponds to the diagram λ:

Fλ : (Cn)⊗M → Vλ, Vλ ⊂ (Cn)⊗M .

Following [11], define an element Sλ(u) of U(gl
n
(C)) ⊗ EndVλ by

Sλ(u) = ((S12 − u − c1) . . . (S1 M+1 − u − cM )) (id ⊗ Fλ). (10)

Then

cλ(u) = tr (Sλ(u))

is the Capelli polynomial, associated to λ. It has coefficients in Z(gln(C)). The theory of

Capelli elements is developed in the papers, mentioned in the Introduction.

Now let π0 be a vector representation, let S̃λ(u) = (π0 ⊗ id)Sλ(u), and let Asyms be the

antisymmetrizer, defined as in Section 2.

Proposition 5.1. For λ ⊢ M , dimVλ = (m + 1),

Dλ(u) = f(u) tr

(

S̃λ(m − u)12S̃λ(m − 1 − u)13 . . . S̃λ(−u)1m+2 · Asymm+1

)

, (11)

where

f(u) =

m∏

s=0

M∏

k=1

(u − s)

u − s − ck

.
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Remark. The formula (11) tells that in order to obtain a shifted determinant for dominant

weight λ, one has to do the following:

1) Take (m + 1) copies of elements S̃λ(u).

2) Shift the variable u in each copy by (m − s), s = 0, ...,m.

3) Apply antisymmetrizer of order m + 1 to these shifted (m + 1) copies.

4) Multiply by certain rational function and take the trace.

The result is a shifted analogue of plethysm of two Schur functors: Fλ and F(1m+1) (com-

pare with the definition of Sλ (10)).

Proof. Let (π0, V0 = C
n) be the vector representation of gln(C). Using the Young symmetrizer

Fλ, we construct the element (1 ⊗ Fλ) of End (V M

0
), which is a projector from V ⊗M

0
to V0⊗Vλ.

We use Proposition 2.12 from [10]:

Proposition 5.2. Let P =
∑

Eij ⊗Eji be a permutation matrix on C
n⊗C

n. Let Pk,l denote

the action of this operator on the kth and lth components of the tensor product (Cn)⊗M . Then

M∏

k=1

(

1 −
P1, k+1

u − ck

)

(1 ⊗ Fλ) =

(

1 −
M∑

k=1

P1, k+1

u

)

(1 ⊗ Fλ), (12)

where Fλ is the Young symmertrizer, and {c1, . . . cn} are the contents of the standard tableau

of shape λ.

With the standard coproduct δ in U(gl
n
(C)) we obtain:

Ωλ =
∑

ij

π0(Eij) ⊗ πλ(Eji) =




∑

ij

Eij ⊗ δ(M)(Eji)



 (1 ⊗ Fλ) =




∑

l=1...M,

P1,l+1



 (1 ⊗ Fλ),

This implies

Ωλ(u) = u

M∏

k=1

(

1 +
P1, k+1

u + ck

)

(1 ⊗ Fλ) ∈ EndV0 ⊗ EndVλ. (13)

Let φ : gln(C) → gln(C) be an automorphism, defined by φ(X) = −X⊤. Put πλ⋆ = πλ ◦ φ.

Observe that (φ ⊗ πλ)Ω = id ⊗ (πλ ◦ φ)Ω, so

Ωλ⋆(u) = u

M∏

k=1

(

1 −
S1, k+1

u + ck

)

(1 ⊗ Fλ) = u

M∏

k=1

(−1)

(u + ck)
(π0 ⊗ Id)Sλ(u). (14)

In other words, Ωλ⋆(u) is proportional to the image of Sλ(u) under the map (π0 ⊗ Id) :

U(gl
n
(C)) ⊗ End Vλ → EndV0 ⊗ EndVλ.

The representation X → −(πλ⋆(X))⊤, X ∈ gln(C) is isomorphic to πλ. Thus we can write

in some basis

Ω⊤
λ
(u) = −Ωλ⋆(−u). (15)

183



Recall from Section 2 that

Dλ(u) = α (Ωλ(u − m), . . . , Ωλ(u)) = tr(Asymm+1 Ωλ(u − m)12 . . . Ωλ(u)1m+2).

It is easy to see that

tr(AsymsA1 ⊗ · · · ⊗ As) = tr(A⊤
1 ⊗ · · · ⊗ A⊤

s
Asyms)

Hence,

Dλ = tr

(

Ω⊤
λ
(u − m)1 2 . . . Ω⊤

λ
(u)1 m+2 Asymm+1

)

= (−1)m+1 tr ( (Ωλ⋆(−u + m)12 . . . Ωλ⋆(−u)1 m+2)Asymm+1 )

= tr

(
m∏

s=0

(u − s)

M∏

k=1

(
S1,sM+k+1(u + s − m − ck)

u − s − ck

)

(π0 ⊗ Fλ)⊗(m+1) · Asymm+1

)

Comparing the last formula with the definition of S̃λ(u), we obtain (11)
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Graded-simple Lie algebras of type B2 and Jordan

systems covered by a triangle

Erhard Neher∗ Maribel Tocón†

Abstract

We announce a classification of graded-simple Jordan systems covered by a compat-

ible triangle, under some natural assumptions on the abelian group, in order to get the

corresponding classification of graded-simple Lie algebras of type B2.

Keywords: Root-graded Lie algebra, Jordan system, idempotent.

1 Introduction

Graded-simple Lie algebras which also have second compatible grading by a root system

appear in the structure theory of extended affine Lie algebras, which generalize affine Lie

algebras and toroidal Lie algebras. If the root system in question is 3-graded, these Lie

algebras are Tits-Kantor-Koecher algebras of Jordan pairs covered by a grid.

In this note we will consider the case of the root system B2. A centreless B2-graded Lie

algebra is the Tits-Kantor-Koecher algebra of a Jordan pair covered by a triangle. Such a Lie

algebra is graded-simple with respect to a compatible Λ-grading if and only if the Jordan pair

is graded-simple with respect to a Λ-grading which is compatible with the covering triangle

[8]. In [10] we give a classification of graded-simple Jordan systems covered by a triangle that

is compatible with the grading, under some natural assumptions on the abelian group, as

well as the corresponding classification of graded-simple Lie algebras of type B2. Our work

generalizes earlier results of Allison-Gao [1] and Benkart-Yoshii [2], and is an extension of the

structure theory of simple Jordan pairs and Jordan triple systems covered by a triangle due

to McCrimmon-Neher [7].
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The aim of this note is to provide an outline of our results for Jordan systems. The details

of proofs will appear in [10]. For unexplained notation we refer the reader to [3] and [4].

2 Graded-simple Lie algebras of type B2

The motivation for our research is two-fold. On the one hand, we would like to advance the

theory of graded Jordan structures, and on the other hand we are interested in certain types

of root-graded Lie algebras. In this section we will describe the second part of our motivation

and how it is related to the first.

Let R be a reduced root system. In the following only the case R = B2 will be of interest,

but the definition below works for any finite, even locally finite reduced root system. We will

assume that 0 ∈ R and denote by Q(R) = Z[R] the root lattice of R. We will consider Lie

algebras defined over a ring of scalars k containing 1

2
and 1

3
. Let Λ be an arbitrary abelian

group.

Definition 2.1. ([9]) A Lie algebra L over k is called (R,Λ)-graded if

(1) L has a compatible Q(R)- and Λ-gradings,

L = ⊕λ∈ΛLλ and L = ⊕α∈Q(R)Lα,

i.e., using the notation Lλ

α
= Lλ ∩ Lα we have

Lα = ⊕λ∈ΛLλ

α
, Lλ = ⊕α∈Q(R)L

λ

α
, and [Lλ

α
, Lκ

β
] ⊆ Lλ+κ

α+β
,

for λ, κ ∈ Λ, α, β ∈ Q(R),

(2) {α ∈ Q(R) : Lα 6= 0} ⊆ R,

(3) L0 =
∑

06=α∈R
[Lα, L−α], and

(4) for every 0 6= α ∈ R the homogeneous space L0
α

contains an element eα that is invertible,

i.e., there exists f−α ∈ L0

−α
such that hα := [eα, f−α] acts on Lβ, β ∈ R, by

[hα, xβ ] = 〈β, α∨〉xβ, xβ ∈ Lβ.

In particular, (eα, hα, fα) is an sl2-triple.

An (R,Λ)-graded Lie algebra is said to be graded-simple if it does not contain proper

nontrivial Λ-graded ideals and graded-division if every nonzero element in Lλ

α
, α 6= 0, is

invertible.

Let now L be a centerless (B2, {0})-graded Lie algebra. It then follows from [8] that L is

the Tits-Kantor-Koecher algebra of a Jordan pair V covered by a triangle: i.e.,

V = V1 ⊕ M ⊕ V2,
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where Vi = V2(ei), i = 1, 2, and M = V1(e1) ∩ V1(e2), for a triangle (u; e1, e2). Recall that a

triple (u; e1, e2) of nonzero idempotents of V is a triangle if

ei ∈ V0(ej), i 6= j, ei ∈ V2(u), i = 1, 2, and u ∈ V1(e1) ∩ V1(e2),

and the following multiplication rules hold for σ = ±:

Q(uσ)e−σ

i
= eσ

j
, i 6= j, and Q(eσ

1 , eσ

2 )u−σ = uσ.

If moreover, L is (B2,Λ)-graded, then V is also Λ-graded, i.e., as k-module V σ =
⊕

λ∈Λ
V σ[λ], σ =

±, with

Q(V σ[λ])V −σ[µ] ⊆ V σ[2λ + µ] and {V σ[λ], V −σ[µ], V σ[ν]} ⊆ V σ[λ + µ + ν]

for all λ, µ, ν ∈ Λ, σ = ±. A Jordan pair that is Λ-graded and covered by a triangle which

lies in the homogeneous 0-space V [0] is called Λ-triangulated. It therefore follows from the

above that if L is a centerless (B2,Λ)-graded Lie algebra, then L is the Tits-Kantor-Koecher

algebra of a Λ-triangulated Jordan pair V . Moreover, L is graded-simple if and only if V is

graded-simple.

Therefore, one can get a description of graded-simple (B2,Λ)-graded Lie algebras from

the corresponding classification of graded-simple Λ-triangulated Jordan pairs. However, the

classification of graded-simple Λ-triangulated Jordan pairs is only known for Λ = {0} [7].

In what follows, we extend this classification to more general Λ. In doing so, we work with

Jordan structures over arbitrary rings of scalars k. This generality is of independent interest

from the point of view of Jordan theory. Moreover, the simplifications that would arise from

assuming 1

2
and 1

3
∈ k are minimal, e.g., we could avoid working with ample subspaces in our

two basic examples 3.1 and 3.2.

3 Graded-simple triangulated Jordan triple systems

Let k be an arbitrary ring of scalars and let J be a Jordan triple system over k. Recall that

a triple of nonzero tripotents (u; e1, e2) is called a triangle if ei ∈ J0(ej), i 6= j, ei ∈ J2(u),

i = 1, 2, u ∈ J1(e1) ∩ J1(e2), and the following multiplication rules hold: P (u)ei = ej , i 6= j,

and P (e1, e2)u = u. In this case, e := e1 + e2 is a tripotent such that e and u have the same

Peirce spaces. A Jordan triple system with a triangle (u; e1, e2) is said to be triangulated if

J = J2(e1)⊕
(
J1(e1)∩ J1(e2)

)
⊕ J2(e2) which is equivalent to J = J2(e). In this case, we will

use the notation Ji = J2(ei) and M = J1(e1) ∩ J1(e2). Hence

J = J1 ⊕ M ⊕ J2.

Note that ∗ := P (e)P (u) = P (u)P (e) is an automorphism of J of period 2 such that u∗ = u,

e∗
i

= ej , and so J∗
i

= Jj.
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Let Λ be an abelian group. We say that J is Λ-graded if the underlying module is Λ-graded,

say J =
⊕

λ∈Λ
Jλ, and the family (Jλ : λ ∈ Λ) of k-submodules satisfies P (Jλ)Jµ ⊆ J2λ+µ

and {Jλ, Jµ, Jν} ⊆ Jλ+µ+ν for all λ, µ, ν ∈ Λ. We call J Λ-triangulated if it is Λ-graded and

triangulated by (u; e1, e2) ⊆ J0 and faithfully Λ-triangulated if any x1 ∈ J1 with x1 · u = 0

vanishes, where the product · is defined as follows:

Ji × M → M : (xi,m) 7→ xi · m = L(xi)m := {xi, ei,m}.

There are two basic models for Λ-triangulated Jordan triple systems:

Example 3.1. Λ-triangulated hermitian matrix systems H2(A,A0, π,−). A Λ-graded (as-

sociative) coordinate system (A,A0, π,−) consists of a unital associative Λ-graded k-algebra

A =
⊕

λ∈Λ
Aλ, a graded submodule A0 =

⊕

λ∈Λ
Aλ

0
for Aλ

0
= A0 ∩ Aλ, an involution π and

an automorphism − of period 2 of A. These data satisfy the following conditions: π and −

commute and are both of degree 0, i.e., (Aλ)π = Aλ = Aλ for all λ ∈ Λ, A0 is −-stable and

π-ample in the sense that A0 = A0 ⊆ H(A,π), 1 ∈ A0 and aa0a
π ⊆ A0 for all a ∈ A and

a0 ∈ A0.

To a Λ-graded coordinate system (A,A0, π,− ) we associate the Λ-triangulated hermitian

matrix system H = H2(A,A0, π,− ) which, by definition, is the Jordan triple system of 2× 2-

matrices over A which are hermitian (X = Xπt) and have diagonal entries in A0, with triple

product P (X)Y = XY
πt

X = XY X. This system is clearly Λ-graded: H =
⊕

λ∈Λ
Hλ, where

Hλ = span{aλ

0
Eii, a

λE12 + (aλ)πE21 : aλ

0
∈ Aλ

0
, aλ ∈ Aλ, i = 1, 2}, and Λ-triangulated by

(u = E12 + E21; e1 = E11, e2 = E22) ⊆ H0.

One can prove that H2(A,A0, π,− ) is graded-simple if and only if (A,π,− ) is graded-

simple. In this case, H2(A,A0, π,− ) is graded isomorphic to one of the following:

(I) H2(A,A0, π,− ) for a graded-simple associative unital A;

(II) Mat2(B) for a graded-simple associative unital B with graded automorphism −, where

(bij) = (bij) for (bij) ∈ Mat2(B) and P (x)y = xyx;

(III) Mat2(B) for a graded-simple associative unital B with graded involution ι, where (bij) =

(bι

ij
) for (bij) ∈ Mat2(B) and P (x)y = xytx;

(IV) polarized H2(B,B0, π) ⊕ H2(B,B0, π) for a graded-simple B with graded involution π;

(V) polarized Mat2(B)⊕Mat2(B) for a graded-simple associative unital B and P (x)y = xyx.

The examples (IV) and (V) are special cases of polarized Jordan triple systems. Recall

that a Jordan triple system T is called polarized if there exist submodules T± such that

T = T+ ⊕ T− and for σ = ± we have P (T σ)T σ = 0 = {T σ, T σ, T−σ} and P (T σ)T−σ ⊆ T σ.

In this case, V = (T+, T−) is a Jordan pair. Conversely, to any Jordan pair V = (V +, V −)
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we can associate a polarized Jordan triple system T (V ) = V + ⊕ V − with quadratic map P

defined by P (x)y = Q(x+)y− ⊕ Q(x−)y+ for x = x+ ⊕ x− and y = y+ ⊕ y−. In particular,

for any Jordan triple system T the pair (T, T ) is a Jordan pair and hence it has an associated

polarized Jordan triple system which we denote T ⊕T . It is clear that if T is a Λ-triangulated

Jordan triple system then so is T ⊕ T .

Example 3.2. Λ-triangulated ample Clifford systems AC(q, S,D0). This example is a sub-

triple of a full Clifford system which we will define first. It is given in terms of

(i) a Λ-graded unital commutative associative k-algebra D =
⊕

λ∈Λ
Dλ endowed with an

involution − of degree 0,

(ii) a Λ-graded D-module M =
⊕

λ∈Λ
Mλ,

(iii) a Λ-graded D-quadratic form q : M → D, hence q(Mλ) ⊂ D2λ and q(Mλ,Mµ) ⊂ Mλ+µ,

(iv) a hermitian isometry S : M → M of q of order 2 and degree 0, i.e., S(dx) = dS(x) for

d ∈ D, q
(
S(x)

)
= q(x), S2 = Id and S(Mλ) = Mλ, and

(v) u ∈ M0 with q(u) = 1 and S(u) = u.

Given these data, we define

V := De1 ⊕ M ⊕ De2,

where De1 ⊕ De2 is a free Λ-graded D-module with basis (e1, e2) of degree 0. Then V is a

Jordan triple system, called a full Clifford system and denoted by FC(q, S), with respect to

the product

P (c1e1 ⊕ m ⊕ c2e2) (b1e1 ⊕ n ⊕ b2e2) = d1e1 ⊕ p ⊕ d2e2, where

di = c2

i
bi + ci q

(
m,S(n)

)
+ bj q(m)

p = [c1b1 + c2b2 + q
(
m,S(n)

)
]m + [c1c2 − q(m)]S(n).

It is easily seen that FC(q, S) is Λ-triangulated by (u; e1, e2).

But in general we need not take the full Peirce spaces Dei in order to get a Λ-triangulated

Jordan triple system. Indeed, let us define a Clifford-ample subspace of (D, ¯, q) as above as a

Λ-graded k-submodule D0 =
⊕

λ∈Λ
(D0∩Dλ) such that D0 = D0, 1 ∈ D0 and D0q(M) ⊆ D0.

Then

AC(q, S,D0) := D0 e1 ⊕ M ⊕ D0 e2,

also denoted AC(q,M,S,D,−,D0) if more precision is helpful, is a Λ-graded subsystem of the

full Clifford system FC(q, S) which is triangulated by (u; e1, e2). It is called a Λ-triangulated

ample Clifford system.
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One can prove that AC(q, S,D0) is graded-simple if and only if q is graded-nondegenerate

(in the obvious sense) and (D,−) is graded-simple. In this case, either D = F is a graded-

division algebra or D is graded isomorphic to F ⊞ F for a graded-division algebra F with −

the exchange automorphism. In the latter case AC(q, S,D0) = AC(q, S, F0)⊕AC(q, S, F0) is

polarized with a Clifford ample subspace F0 ⊆ F .

It is an important fact that one can find the above two examples of Λ-triangulated Jordan

triple systems inside any faithfully Λ-triangulated Jordan triple system. More precisely, let

J = J1 ⊕ M ⊕ J2 be faithfully Λ-triangulated by (u; e1, e2), put C0 = L(J1) and let C

be the subalgebra of Endk(M) generated by C0. Then C is naturally Λ-graded, c 7→ c =

P (e)◦c◦P (e) is an automorphism of C of degree 0 and L(x1) · · ·L(xn) 7→ (L(x1) · · ·L(xn))π =

L(xn) · · ·L(x1) induces a (well-defined) involution of C of degree 0. One can prove that the

Λ-graded subsystem

Jh = J1 ⊕ Cu ⊕ J2

is Λ-triangulated by (u; e1, e2) and graded isomorphic to H2(A,A0, π,− ) under the map

x1 ⊕ cu ⊕ y2 7→

(

L(x1) c

cπ L(y∗
2
)

)

for A = C|Cu, A0 = C0|Cu. Moreover, J has a Λ-graded subsystem

Jq = K1 ⊕ N ⊕ K2

for appropriately defined submodules Ki ⊂ Ji and N ⊂ M , which is Λ-triangulated by

(u; e1, e2) and graded isomorphic to AC(q, S,D0) under the map

x1 ⊕ n ⊕ x2 7→ L(x1) ⊕ n ⊕ L(x∗
2)

where D0 = L(K1), D is the subalgebra of Endk(N) generated by D0, q(n) = L(P (n)e2) and

S(n) = P (e)n. (Roughly speaking, Jq is the biggest graded subsystem of J where the identity

(x1 − x∗
1
) · N ≡ 0 holds). Moreover, the two isomorphisms above map the triangle (u; e1, e2)

of J onto the standard triangle of H2(A,A0, π,− ) or AC(q, S,D0), respectively. We note that

for Λ = {0} these two partial coordinatization theorems were proven in [7].

A question that arises naturally is the following: Let J be faithfully Λ-triangulated by

(u; e1, e2). When is Jh or Jq the whole J?

(i) If M = Cu, then J = Jh and thus J is graded isomorphic to a hermitian matrix system,

(ii) If u is C-faithful and (x1 − x∗
1
) · m = 0 for all x1 ∈ J1 and m ∈ M , then J = Jq and

thus J is graded isomorphic to an ample Clifford system.

One can show that (ii) holds whenever C is commutative and −-simple. In fact, (i) or (ii)

above holds if (C, π,−) is graded-simple.
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Proposition 3.3. Let J be a graded-simple Λ-triangulated Jordan triple system satisfying

one of the following conditions

(a) every m ∈ M is a linear combination of invertible homogeneous elements, or

(b) Λ is torsion-free.

Then (C, π,−) is graded-simple. In this case, u is C-faithful and M = Cu or C is commuta-

tive.

All together, we have the following result:

Theorem 3.4. A graded-simple Λ-triangulated Jordan triple system satisfying (a) or (b) of

Prop. 3.3 is graded isomorphic to one of the following:

a non polarized Jordan triple system

(I) H2(A,A0, π,− ) for a graded-simple A with graded involution π and automorphism −;

(II) Mat2(B) with P (x)y = xyx for a graded-simple associative unital B with graded auto-

morphism − and (yij) = (yij) for (yij) ∈ Mat2(B);

(III) Mat2(B) with P (x)y = xytx for a graded-simple associative unital B with graded invo-

lution ι and (yij) = (yι

ij
) for (yij) ∈ Mat2(B);

(IV) AC(q, S, F0) for a graded-nondegenerate q over a graded-division F with Clifford-ample

subspace F0;

or a polarized Jordan triple system

(V) H2(B,B0, π) ⊕ H2(B,B0, π) for a graded-simple B with graded involution π;

(VI) Mat2(B) ⊕ Mat2(B) for a graded-simple associative unital B with P (x)y = xyx;

(VII) AC(q, S, F0) ⊕ AC(q, S, F0) for AC(q, S, F0) as in (IV).

Conversely, all Jordan triple systems in (I)-(VII) are graded-simple Λ-triangulated.

Since Λ = {0} is a special case of our assumption (b), the theorem above generalizes [7,

Prop. 4.4].

4 Graded-simple triangulated Jordan pairs and algebras

We consider Jordan algebras and Jordan pairs over arbitrary rings of scalars. In order to apply

our results, we will view Jordan algebras as Jordan triple systems with identity elements.

Thus, to a Jordan algebra J we associate the Jordan triple system T (J) defined on the k-

module J with Jordan triple product Pxy = Uxy. The element 1J ∈ J satisfies P (1J ) = Id.
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Conversely, every Jordan triple system T containing an element 1 ∈ T with P (1) = Id is

a Jordan algebra with unit element 1 and multiplication Uxy = Pxy. A Λ-graded Jordan

algebra J is called Λ-triangulated by (u; e1, e2) if ei = e2

i
∈ J0, i = 1, 2, are supplementary

orthogonal idempotents and u ∈ J1(e1)
0 ∩ J1(e2)

0 with u2 = 1 and u3 = u. Thus, with

our definition of a triangle in a Jordan algebra, J is Λ-triangulated by (u; e1, e2) iff T (J) is

Λ-triangulated by (u; e1, e2).

This close relation to Λ-triangulated Jordan triple systems also indicates how to get exam-

ples of Λ-triangulated Jordan algebras: We take a Jordan triple system which is Λ-triangulated

by (u; e1, e2) and require P (e) = Id for e = e1 + e2. Doing this for our two basic examples 3.1

and 3.2, yields the following examples of Λ-triangulated Jordan algebras.

(A) Hermitian matrix algebra: This is the Jordan triple system H2(A,A0, π,− ) with − =

Id, which we will write as H2(A,A0, π). Note that this is a Jordan algebra with product

U(x)y = P (x)y = xyx and identity element E = E11 + E22. If, for example, A = B ⊞ Bop

with π the exchange involution, then H2(A,A0, π) is graded isomorphic to Mat2(B) where

Mat2(B) is the Jordan algebra with product Uxy = xyx.

(B) Quadratic form Jordan algebra: This is the ample Clifford system AC(q, S,D,−,D0)

with − = Id and S|M = Id. Since then P (e) = Id we get indeed a Λ-triangulated Jordan

algebra denoted ACalg(q,D,D0). Note that this Jordan algebra is defined on D0e1⊕M⊕D0e2

and has product Uxy = q(x, ỹ)x − q(x)ỹ where q(d1e1 ⊕ m ⊕ d2e2) = d1d2 − q(m) and

(d1e1 ⊕ m ⊕ d2e2)̃ = d2e1 ⊕ −m ⊕ d1e1. (If 1

2
∈ k it is therefore a reduced spin factor in the

sense of [6, II, §3.4].)
From the classification given in Th. 3.4 we get:

Theorem 4.1. A graded-simple Λ-triangulated Jordan algebra satisfying

(a) every m ∈ M is a linear combination of invertible homogeneous elements of M , or

(b) Λ is torsion-free,

is graded isomorphic to one of the following Jordan algebras:

(I) H2(A,A0, π) for a graded-simple A with graded involution π;

(II) Mat2(B) for a graded-simple associative unital B;

(III) ACalg(q, F, F0) for a graded-nondegenerate q : M → F over a commutative graded-

division algebra F and a Clifford-ample subspace F0.

Conversely, all Jordan algebras in (I)–(III) are graded-simple Λ-triangulated.

Note that for Λ = {0} this theorem generalizes the well known Capacity Two Theorem

for Jordan algebras.
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With the above algebra classification at hand and taking into account that a Λ-triangulated

Jordan pair can be viewed as a disguised Λ-triangulated Jordan algebra, we get the following

classification of Λ-triangulated Jordan pairs:

Theorem 4.2. A graded-simple Λ-triangulated Jordan pair satisfying

(a) every m ∈ Mσ is a linear combination of invertible homogeneous elements of Mσ, or

(b) Λ is torsion-free,

is graded isomorphic to a Jordan pair (J, J) where

(I) J = H2(A,A0, π) is the hermitian matrix algebra of a graded-simple A with graded

involution π;

(II) J = Mat2(B) for a graded-simple associative unital B;

(III) J = AC(q, Id, F0) for a graded-nondegenerate q over a graded-division algebra F with

Clifford-ample subspace F0.

Conversely, all Jordan pairs described above are graded-simple Λ-triangulated.

Note that a Jordan pair V satisfies assumption (a) if it is the Jordan pair associated to a

graded-division (B2,Λ)-graded Lie algebra for an arbitrary Λ (cf. §1).
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Restricted simple Lie algebras and their

infinitesimal deformations

Filippo Viviani∗

Abstract

In the first two sections, we review the Block-Wilson-Premet-Strade classification of

restricted simple Lie algebras. In the third section, we compute their infinitesimal de-

formations. In the last section, we indicate some possible generalizations by formulating

some open problems.

Keywords: Restricted simple Lie algebras, Deformations.

1 Restricted Lie algebras

We fix a field F of characteristic p > 0 and we denote with Fp the prime field with p elements.

All the Lie algebras that we will consider are of finite dimension over F . We are interested

in particular class of Lie algebras, called restricted (or p-Lie algebras).

Definition 1.1 (Jacobson [JAC37]). A Lie algebra L over F is said to be restricted (or a

p-Lie algebra) if there exits a map (called p-map), [p] : L → L, x 7→ x[p], which verifies the

following conditions:

1. ad(x[p]) = ad(x)[p] for every x ∈ L.

2. (αx)[p] = αpx[p] for every x ∈ L and every α ∈ F .

3. (x0 + x1)
[p] = x

[p]

0
+ x

[p]

1
+
∑

p−1

i=1
si(x0, x1) for every x, y ∈ L, where the element

si(x0, x1) ∈ L is defined by

si(x0, x1) = −
1

r

∑

u

adxu(1) ◦ adxu(2) ◦ · · · ◦ adxu(p−1)(x1),

the summation being over all the maps u : [1, · · · , p − 1] → {0, 1} taking r-times the

value 0.

∗Universitá degli studi di Roma Tor Vergata, Dipartimento di Matematica, via della Ricerca Scientifica 1,

00133 Rome. E-mail: viviani@mat.uniroma2.it. The author was supported by a grant from the Mittag-

Leffler Institute of Stockholm.

197



Example. 1. Let A an associative F -algebra. Then the Lie algebra DerF A of F -derivations

of A is a restricted Lie algebra with respect to the p-map D 7→ Dp := D ◦ · · · ◦D.

2. Let G a group scheme over F . Then the Lie algebra Lie(G) associated to G is a restricted

Lie algebra with respect to the p-map given by the differential of the homomorphism

G→ G, x 7→ xp := x ◦ · · · ◦ x.

One can naturally ask when a F -Lie algebra can acquire the structure of a restricted Lie

algebra and how many such structures there can be. The following criterion of Jacobson

answers to that question.

Proposition 1.2 (Jacobson). Let L be a Lie algebra over F . Then

1. It is possible to define a p-map on L if and only if, for every element x ∈ L, the p-th

iterate of ad(x) is still an inner derivation.

2. Two such p-maps differ by a semilinear map from L to the center Z(L) of L, that is a

map f : L→ Z(L) such that f(αx) = αpf(x) for every x ∈ L and α ∈ F .

Proof. See [JAC62, Chapter V.7].

Many of the modular Lie algebras that arise “in nature” are restricted. As an example of

this principle, we would like to recall the following two results from the theory of finite group

schemes and the theory of inseparable field extensions.

Theorem 1.3. There is a bijective correspondence

{Restricted Lie algebras/F} ←→ {Finite group schemes/F of height 1},

where a finite group scheme G has height 1 if the Frobenius F : G → G(p) is zero. Explicitly

to a finite group scheme G of height 1, one associates the restricted Lie algebra Lie(G) :=

T0G. Conversely, to a restricted Lie algebra (L, [p]), one associates the finite group scheme

corresponding to the dual of the restricted enveloping Hopf algebra U [p](L) := U(L)/(xp−x[p]).

Proof. See [DG70, Chapter 2.7].

Theorem 1.4. Suppose that [F : F p] <∞. There is a bijective correspondence

{Inseparable subextensions of exponent 1} ←→ {Restricted subalgebras of Der(F )}

where the inseparable subextensions of exponent 1 are the subfields E ⊂ F such that F p ⊂ E ⊂

F and Der(F ) := DerFp(F ) = DerF p(F ). Explicitly to any field F p ⊂ E ⊂ F one associates

the restricted subalgebra DerE(F ). Conversely, to any restricted subalgebra L ⊂ Der(F ), one

associates the subfield EL := {x ∈ F |D(x) = 0 for all D ∈ L}.

Proof. See [JAC80, Chapter 8.16].
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2 Classification of restricted simple Lie algebras

Simple Lie algebras over an algebraically closed field of characteristic zero were classified

at the beginning of the XIX century by Killing and Cartan. The classification proceeds

as follows: first the non-degeneracy of the Killing form is used to establish a correspondence

between simple Lie algebras and irreducible root systems and then the irreducible root systems

are classified by mean of their associated Dynkin diagrams. It turns out that there are four

infinite families of Dynkin diagrams, called An, Bn, Cn, Dn, and five exceptional Dynkin

diagram, called E6, E7, E8, F4 and G2. The four infinite families correspond, respectively, to

the the special linear algebra sl(n+1), the special orthogonal algebra of odd rank so(2n+1),

the symplectic algebra sp(2n) and the special orthogonal algebra of even rank so(2n). For the

simple Lie algebras corresponding to the exceptional Dynkin diagrams, see the book [JAC71]

or the nice account in [BAE02].

These simple Lie algebras admits a model over the integers via the (so-called) Chevalley

bases. Therefore, via reduction modulo a prime p, one obtains a restricted Lie algebra over

Fp, which is simple up to a quotient by a small ideal. For example sl(n) is not simple if p

divide n, but its quotient psl(n) = sl(n)/(In) by the unit matrix In becomes simple. There

are similar phenomena occuring only for p = 2, 3 for the other Lie algebras (see [STR04,

Page 209] or [SEL67]). The restricted simple algebras obtained in this way are called alge-

bras of classical type. Their Killing form is non-degenerate except at a finite number of

primes. Moreover, they can be characterized as those restricted simple Lie algebras admitting

a projective representation with nondegenerate trace form (see [BLO62], [KAP71]).

However, there are restricted simple Lie algebras which have no analogous in charac-

teristic zero and therefore are called nonclassical. The first example of a nonclassical re-

stricted simple Lie algebra is due to E. Witt, who in 1937 realized that the derivation algebra

W (1) := DerF (F [X]/(Xp)) over a field F of characteristic p > 3 is simple with a degener-

ate Killing form. In the succeeding three decades, many more nonclassical restricted simple

Lie algebras have been found (see [JAC43], [FRA54], [AF54], [FRA64]). The first compre-

hensive conceptual approach to constructing these nonclassical restricted simple Lie algebras

was proposed by Kostrikin and Shafarevich in 1966 (see [KS66]). They showed that all the

known examples can be constructed as finite-dimensional analogues of the four classes of

infinite-dimensional complex simple Lie algebras, which occurred in Cartan’s classification

of Lie pseudogroups (see [CAR09]). These restricted simple Lie algebras, called of Cartan-

type, are divided into four families, called Witt-Jacobson, Special, Hamiltonian and Contact

algebras.

Definition 2.1. Let A(n) := F [x1, · · · , xn]/(xp

1
, · · · , xp

n) the algebra of p-truncated polyno-

mials in n variables. Then the Witt-Jacobson Lie algebra W (n) is the derivation algebra of

A(n):

W (n) = DerF A(n).
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For every j ∈ {1, . . . , n}, we put Dj := ∂

∂xj
. The Witt-Jacobson algebra W (n) is a free

A(n)-module with basis {D1, . . . ,Dn}. Hence dimF W (n) = npn with a basis over F given by

{xaDj | 1 ≤ j ≤ n, xa ∈ A(n)}.

The other three families are defined as m-th derived algebras of the subalgebras of deriva-

tions fixing a volume form, a Hamiltonian form and a contact form, respectively. More

precisely, consider the natural action of W (n) on the exterior algebra of differential forms in

dx1, · · · ,dxn over A(n). Define the following three forms, called volume form, Hamiltonian

form and contact form:







ωS = dx1 ∧ · · · dxn,

ωH =

m∑

i=1

dxi ∧ dxi+m if n = 2m,

ωK = dx2m+1 +
m∑

i=1

(xi+mdxi − xidxi+m) if n = 2m + 1.

Definition 2.2. Consider the following three subalgebras of W (n):







S̃(n) = {D ∈W (n) |DωS = 0},

H̃(n) = {D ∈W (n) |DωH = 0},

K̃(n) = {D ∈W (n) |DωK ∈ A(n)ωK}.

Then the Special algebra S(n) (n ≥ 3) is the derived algebra of S̃(n), while the Hamiltonian

algebra H(n) (n = 2m ≥ 2) and the Contact algebra K(n) (n = 2m + 1 ≥ 3) are the second

derived algebras of H̃(n) and K̃(n), respectively.

We want to describe more explicitly the above algebras, starting from the Special algebra

S(n). For every 1 ≤ i, j ≤ n consider the following maps

Dij = −Dji :

{

A(n) −→W (n)

f 7→ Dj(f)Di −Di(f)Dj .

Proposition 2.3. The algebra S(n) has F -dimension equal to (n−1)(pn−1) and is generated

by the elements Dij(x
a) for xa ∈ A(n) and 1 ≤ i < j ≤ n.

Proof. See [FS88, Chapter 4.3].

Suppose now that n = 2m ≥ 2 and consider the map DH : A(n)→W (n) defined by

DH(f) =
m∑

i=1

[Di(f)Di+m −Di+m(f)Di] ,

where, as before, Di := ∂

∂xi
∈ W (n). Then the Hamiltonian algebra can be described as

follows:

200



Proposition 2.4. The above map DH induces an isomorphism

DH : A(n)6=1,xσ

∼=
−→ H(n),

where A(n)6=1,xσ = {xa ∈ A(n) | xa 6= 1, xa 6= xσ := x
p−1

1
· · · xp−1

n }. Therefore H(n) has

dimension pn − 2.

Proof. See [FS88, Chapter 4.4].

Suppose finally that n = 2m + 1 ≥ 3. Consider the map DK : A(n)→ K(n) defined by

DK(f) =

m∑

i=1

[Di(f)Di+m −Di+m(f)Di] +

2m∑

j=1

xj [Dn(f)Dj −Dj(f)Dn] + 2fDn.

Then the Contact algebra can be described as follows:

Proposition 2.5. The above map DK induces an isomorphism

K(n) ∼=

{

A(n) if p 6 | (m + 2),

A(n)6=xτ if p | (m + 2),

where A(n)6=xτ := {xa ∈ A(n) | xa 6= xτ := x
p−1

1
· · · xp−1

n }. Therefore K(n) has dimension pn

if p 6 | (m + 2) and pn − 1 if p | (m + 2).

Proof. See [FS88, Chapter 4.5].

Kostrikin and Shafarevich (in the above mentioned paper [KS66]) conjectured that a

restricted simple Lie algebras (that is a restricted algebras without proper ideals) over an

algebraically closed field of characteristic p > 5 is either of classical or Cartan type. The

Kostrikin-Shafarevich conjecture was proved by Block-Wilson (see [BW84] and [BW88])

for p > 7, building upon the work of Kostrikin-Shafarevich ([KS66] and [KS69]), Kac ([KAC70]

and [KAC74]), Wilson ([WIL76]) and Weisfailer ([WEI78]).

Recently, Premet and Strade (see [PS97], [PS99], [PS01], [PS04]) proved the Kostrikin-

Shafarevich conjecture for p = 7. Moreover they showed that for p = 5 there is only one

exception, the Melikian algebra ([MEL80]), whose definition is given below.

Definition 2.6. Let p = char(F ) = 5. Let W̃ (2) be a copy of W (2) and for an element

D ∈ W (2) we indicate with D̃ the corresponding element inside W̃ (2). The Melikian algebra

M is defined as

M = A(2)⊕W (2)⊕ W̃ (2),

with Lie bracket defined by the following rules (for all D,E ∈W (2) and f, g ∈ A(2)):






[D, Ẽ] := [̃D,E] + 2div(D)Ẽ,

[D, f ] := D(f)− 2 div(D)f,

[f1D̃1 + f2D̃2, g1D̃1 + g2D̃2] := f1g2 − f2g1,

[f, Ẽ] := fE,

[f, g] := 2 (gD2(f)− fD2(g))D̃1 + 2 (fD1(g) − gD1(f))D̃2,
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where div(f1D1 + f2D2) := D1(f1) + D2(f2) ∈ A(2).

In characteristic p = 2, 3, there are many exceptional restricted simple Lie algebras (see

[STR04, page 209]) and the classification seems still far away.

3 Infinitesimal Deformations

An infinitesimal deformation of a Lie algebra L over a field F is a Lie algebra L′ over F [ǫ]/(ǫ2)

such that L′ ×F [ǫ]/(ǫ2) F ∼= L. Explicitly, L′ = L + ǫL with Lie bracket [−,−]′ defined by (for

any two elements X,Y ∈ L ⊂ L′):

[X,Y ]′ = [X,Y ] + ǫf(X,Y ),

where [−.−] is the Lie bracket of L and f(−,−) is an 2-alternating function from L to L, con-

sidered a module over itself via adjoint representation. The Jacobi identity for [−,−]′ forces

f to be a cocycle and moreover one can check that two cocycles differing by a coboundary

define isomorphic Lie algebras. Therefore the infinitesimal deformations of a Lie algebra L

are parametrized by the second cohomology H2(L,L) of the Lie algebra with values in the

adjoint representation (see [GER64] for a rigorous treatment).

It is a classical result that simple Lie algebras in characteristic zero are rigid. We want to

give a sketch of the proof of the following Theorem (see [HS97] for details).

Theorem 3.1. Let L be a simple Lie algebra over a field F of characteristic 0. Then, for

every i ≥ 0, we have that

H i(L,L) = 0.

Sketch of the Proof. Since the Killing form β(x, y) = tr(ad(x)ad(y)) is non-degenerate (by

Cartan’s criterion), we can choose two bases {ei} and {e′
i
} of L such that β(ei, e

′
j
) = δij .

Consider the Casimir element C :=
∑

i
ei ⊗ e′

i
inside the enveloping algebra U(L). One can

check that:

1. C belongs to the center of the enveloping algebra and therefore it induces an L-

homomorphism C : L → L, where L is a consider a module over itself via adjoint

action. Moreover since trL(C) = dim(L) 6= 0, C is non-zero and hence is an isomor-

phism by the simplicity of L.

2. The map induced by C on the exact complex {U(L)⊗k

∧
n

L}n → F is homotopic to 0.

Therefore the induced map on cohomology C∗ : H∗(L,L) → H∗(L,L) is an isomorphism by

(1) and the zero map by (2), which implies that H∗(L,L) = 0.

The above proof uses the non-degeneracy of the Killing form and the non-vanishing of the

trace of the Casimir element, which is equal to the dimension of the Lie algebra. Therefore
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the same proof works also for the restricted simple Lie algebras of classical type over a field

of characteristic not dividing the determinant of the Killing form and the dimension of the

Lie algebra. Actually Rudakov (see [RUD71]) showed that such Lie algebras are rigid if the

characteristic of the base field is greater or equal to 5 while in characteristic 2 and 3 there

are non-rigid classical Lie algebras (see [CHE05], [CK00], [CKK00]).

It was already observed by Kostrikin and Džumadildaev ([DK78], [DZU80], [DZU81] and

[DZU89]) that Witt-Jacobson Lie algebras admit infinitesimal deformations. More precisely:

in [DK78] the authors compute the infinitesimal deformations of the Jacobson-Witt algebras

of rank 1, while in [DZU80, Theorem 4], [DZU81] and [DZU89] the author describes the

infinitesimal deformations of the Jacobson-Witt algebras of any rank but without a detailed

proof.

In the papers [VIV1], [VIV2] and [VIV3], we computed the infinitesimal deformations

of the restricted simple Lie algebras of Cartan type in characteristic p ≥ 5, showing in

particular that they are non-rigid. Before stating the results, we need to recall the definition

of the Squaring operators ([GER64]). The Squaring of a derivation D : L→ L is the 2-cochain

defined, for any x, y ∈ L as it follows

Sq(D)(x, y) =

p−1
∑

i=1

[Di(x),Dp−i(y)]

i!(p − i)!
, (3.1)

where Di is the i-iteration of D. Using the Jacobi identity, it is straightforward to check that

Sq(D) is a 2-cocycle and therefore it defines a class in the cohomology group H2(L,L), which

we will continue to call Sq(D) (by abuse of notation). Moreover for an element γ ∈ L, we

define Sq(γ) := Sq(ad(γ)).

Theorem 3.2. We have that

H2(W (n),W (n)) =

n⊕

i=1

〈Sq(Di)〉F .

Theorem 3.3. We have that

H2(S(n), S(n)) =
n⊕

i=1

〈Sq(Di)〉F
⊕

〈Θ〉F ,

where Θ is defined by Θ(Di,Dj) = Dij(x
τ ).

Theorem 3.4. Let n = 2m + 1 ≥ 3. Then we have that

H2(K(n),K(n)) =

2m⊕

i=1

〈Sq(DK(xi))〉F
⊕

〈Sq(DK(1))〉F .

Before stating the next theorem, we need some notations about n-tuples of natural num-

bers. We consider the order relation inside N
n given by a = (a1, · · · , an) ≤ b = (b1, · · · , bn)
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if ai ≤ bi for every i = 1, · · · , n. We define the degree of a ∈ N
n as |a| =

∑
n

i=1
ai and

the factorial as a! =
∏

n

i=1
ai!. For two multindex a, b ∈ N

n such that b ≤ a, we set
(
a

b

)
:=
∏

n

i=1

(
ai

bi

)
= a!

b!(a−b)!
. For every integer j ∈ {1, · · · , n} we call ǫj the n-tuple having

1 at the j-th entry and 0 outside. We denote with σ the multindex (p− 1, · · · , p− 1).

Assuming now that n = 2m, we define the sign σ(j) and the conjugate j′ of 1 ≤ j ≤ 2m

as follows:

σ(j) =

{

1 if 1 ≤ j ≤ m,

−1 if m < j ≤ 2m,
and j′ =

{

j + m if 1 ≤ j ≤ m,

j −m if m < j ≤ 2m.

Given a multindex a = (a1, · · · , a2m) ∈ N
2m, we define the sign of a as σ(a) =

∏
σ(i)ai and

the conjugate of a as the multindex â such that âi = ai′ for every 1 ≤ i ≤ 2m.

Theorem 3.5. Let n = 2m ≥ 2. Then if n ≥ 4 we have that

H2(H(n),H(n)) =
n⊕

i=1

〈Sq(DH(xi))〉F
⊕

i<j

j 6=i′

〈Πij〉F

m⊕

i=1

〈Πi〉F
⊕

〈Φ〉F ,

where the above cocycles are defined (and vanish outside) by







Πij(DH(xa),DH(xb)) = DH(xp−1

i′
x

p−1

j′
[Di(x

a)Dj(x
b)−Di(x

b)Dj(x
a)]),

Πi(DH(xix
a),DH(xi′x

b)) = DH(xa+b+(p−1)ǫi+(p−1)ǫi′ ),

Πi(DH(xk),DH(xσ−(p−1)ǫi−(p−1)ǫi′ )) = −σ(k)DH(xσ−ǫk′ ) for 1 ≤ k ≤ n,

Φ(DH(xa),DH(xb)) =
∑

δ≤a,b̂

|δ|=3

(
a

δ

)(
b

δ̂

)

σ(δ) δ! DH(xa+b̂−δ−δ̂).

If n = 2 then we have that

H2(H(2),H(2)) =
2⊕

i=1

〈Sq(DH(xi))〉F
⊕

〈Φ〉F .

Theorem 3.6. We have that

H2(M,M) = 〈Sq(1)〉F

2⊕

i=1

〈Sq(Di)〉F

2⊕

i=1

Sq(D̃i)〉F .

4 Open Problems

Simple Lie algebras (not necessarily restricted) over an algebraically closed field F of

characteristic p 6= 2, 3 have been classified by Strade and Wilson for p > 7 (see [SW91],

[STR89], [STR92], [STR91], [STR93], [STR94], [STR98]) and by Premet-Strade for p = 5, 7

(see [PS97], [PS99], [PS01], [PS04]). The classification says that for p ≥ 7 a simple Lie algebra
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is of classical type (and hence restricted) or of generalized Cartan type. Those latter are

generalizations of the Lie algebras of Cartan type, obtained by considering higher truncations

of divided power algebras (not just p-truncated polynomial algebras) and by considering only

the subalgebra of (the so called) special derivations (see [FS88] or [STR04] for the precise

definitions). Again in characteristic p = 5, the only exception is represented by the generalized

Melikian algebras. Therefore an interesting problem would be the following:

Problem 1. Compute the infinitesimal deformations of the simple Lie algebras.

Note that there is an important distinction between restricted simple Lie algebras and

simple restricted Lie algebras. The former algebras are the restricted Lie algebras which do

not have any nonzero proper ideal, while the second ones are the restricted Lie algebras which

do not have any nonzero proper restricted ideal (or p-ideal), that is an ideal closed under the

p-map. Clearly every restricted simple Lie algebra is a simple restricted Lie algebra, but a

simple restricted Lie algebra need not be a simple Lie algebras. Indeed we have the following

Proposition 4.1. There is a bijection

{Simple restricted Lie algebras} ←→ {Simple Lie algebras}.

Explicitly to a simple restricted Lie algebra (L, [p]) we associates its derived algebra [L,L].

Conversely to a simple Lie algebra M we associate the restricted subalgebra M [p] of DerF (M)

generated by ad(M) (which is called the universal p-envelope of M).

Proof. We have to prove that the above maps are well-defined and are inverse one of the

other.

• Consider a simple restricted Lie algebra (L, [p]). The derived subalgebra [L,L] ⊳ L is a

non-zero ideal (since L can not be abelian) and therefore [L,L]p = L, where [L,L]p denotes

the p-closure of [L,L] inside L.

Take a non-zero ideal 0 6= I ⊳ [L,L]. Since [L,L]p = L, we deduce from [FS88, Chapter 2,

Prop. 1.3] that I is also an ideal of L and therefore Ip = L by restricted simplicity of (L, [p]).

From loc. cit., it follows also that [L,L] = [Ip, Ip] = [I, I] ⊂ I from which we deduce that

I = L. Therefore [L,L] is simple.

Since ad : L → DerF (L) is injective and [L,L]p = L, it follows by loc. cit. that ad :

L → DerF ([L,L]) is injective. Therefore we have that [L,L] ⊂ L ⊂ DerF ([L,L]) and hence

[L,L][p] = [L,L]p = L.

• Conversely, start with a simple Lie algebra M and consider its universal p-envelop

M < M [p] < DerF (M).

Take any restricted ideal I ⊳p M [p]. By loc. cit., we deduce [I,M [p]] ⊂ I ∩ [M [p],M [p]] =

I ∩ [M,M ] = I ∩M ⊳M . Therefore, by the simplicity of M , either I ∩M = M or I ∩M = 0.

In the first case, we have that M ⊂ I and therefore M [p] = I. in the second case, we have
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that [I,M [p]] = 0 and therefore I = 0 because M [p] has trivial center. We conclude that M [p]

is simple restricted.

Moreover, by loc. cit., we have that [M [p],M [p]] = [M,M ] = M .

Therefore the preceding classifications of simple Lie algebras (for p 6= 2, 3) give a classifi-

cation of simple restricted Lie algebras.

Problem 2. Compute the infinitesimal deformations of the simple restricted Lie algebras.

There is an important connection between simple restricted Lie algebras and simple

finite group schemes.

Proposition 4.2. Over an algebraically closed field F of characteristic p > 0, a simple finite

group scheme is either the constant group scheme associated to a simple finite group or it is

the finite group scheme of height 1 associated to a simple restricted Lie algebra.

Proof. Let G be a simple finite group scheme. The kernel of the Frobenius map F : G→ G(p)

is a normal subgroup and therefore, by the simplicity of G, we have that either Ker(F ) = 0

or Ker(F ) = G. In the first case, the group G is constant (since F = F ), and therefore it

corresponds to an (abstract) simple finite group. In the second case, the group G is of height

1 and therefore the result follows from Proposition 1.3.

The following problem seems very interesting.

Problem 3. Compute the infinitesimal deformations of the simple finite group schemes.

Since constant finite group schemes (or more generally étale group schemes) are rigid,

one can restrict to the simple finite group schemes of height 1 associated to the simple re-

stricted Lie algebras. Moreover, if (L, [p]) is the simple restricted Lie algebra corresponding

to the simple finite group scheme G, then the infinitesimal deformations of G correspond to

restricted infinitesimal deformations of (L, [p]), that are infinitesimal deformations that admit

a restricted structure. These are parametrized by the second restricted cohomology group

H2
∗ (L,L) (defined in [HOC54]). Therefore the above Problem 3 is equivalent to the following:

Problem 4. Compute the restricted infinitesimal deformations of the simple restricted Lie

algebras.

The above Problem 4 is closely related to Problem 2 because of the following spectral

sequence relating the restricted cohomology to the ordinary one (see [FAR91]):

E
p,q

2
= HomFrob

(
q
∧

L,Hp

∗ (L,L)

)

⇒ Hp+q(L,L),

where HomFrob denote the homomorphisms that are semilinear with respect to the Frobenius.
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