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Moriwaki Divisors and the Augmented Base Loci of
Divisors on the Moduli Space of Curves

Salvatore Cacciola, Angelo
Felice Lopez, & Filippo Viviani

Abstract. We study the cone of Moriwaki divisors on Mg by means
of augmented base loci. Using a result of Moriwaki, we prove that
an R-divisor D satisfies the strict Moriwaki inequalities if and only
if B+(D) ⊆ ∂Mg . Then we draw some interesting consequences on

the Zariski decomposition of divisors on Mg , on the minimal model
program of Mg , and on the log canonical models Mg(α).

1. Introduction

Let g ≥ 3, and let Mg be the moduli space of stable curves of genus g. A striking
result of Gibney, Keel and Morrison [GKM, Thm. 0.9] asserts that any nef divisor
on Mg , not linearly equivalent to zero, must be big. In terms of cones of divisors in
the Néron–Severi space N1(Mg)R, this implies that the nef cone does not meet the
boundary of the big cone along rational nonzero classes. As a matter of fact, as we
shall see, the same is true for real classes: Nef(Mg)−{0} ⊂ Big(Mg). One way to
see this is to consider the Moriwaki cone Mor(Mg), that is, the cone of R-divisors
D on Mg that are nef away from the boundary. The cone Mor(Mg) was explicitly
described by Moriwaki [M, Cor. 4.3] in terms of the generators λ, δ0, . . . , δ�g/2�:
an R-divisor D ∼ aλ− b0δ0 − · · ·− b�g/2�δ�g/2� belongs to Mor(Mg) if and only
if it is an M-divisor, that is, it satisfies the Moriwaki inequalities

a ≥ 0, a ≥ 8g + 4

g
b0, a ≥ 2g + 1

i(g − i)
bi for all i = 1, . . . , �g/2�. (1)

The starting idea of this paper is that both the Moriwaki cone and its interior,
that is, the cone of those R-divisors that satisfy the strict Moriwaki inequalities
and that we call strict M-divisors, can be interpreted in terms of restricted and
augmented base loci.
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Recall that the stable base locus B(D) of an R-Cartier R-divisor D on a normal
projective variety X is defined as

B(D) =
⋂

E≥0:E∼RD

Supp(E)

with the convention that B(D) = X if the intersection runs over the empty set.
The augmented base locus and the restricted base locus of D are, respectively,

B+(D) =
⋂

A ample

B(D − A) and B−(D) =
⋃

A ample

B(D + A),

where A runs among all ample R-Cartier R-divisors. We have the inclusions
B−(D) ⊆ B(D) ⊆ B+(D), and D is big if and only if B+(D) � X.

Returning to Mg , the main result of this article, where the assertion on B−(D)

is just a rewriting of [M, Thm. C], is the following:

Theorem 1. Let g ≥ 3, and let D be an R-divisor on Mg . Then

(i) B−(D) ⊆ ∂Mg if and only if D is an M-divisor;
(ii) B+(D) ⊆ ∂Mg if and only if D is a strict M-divisor.

Now nef nonzero divisors are strict M-divisors (see Lemma 3.2); therefore, the
first simple consequence of Theorem 1 is that

Nef(Mg) − {0} ⊂ Int(Mor(Mg)) ⊂ Big(Mg).

Note that this gives another proof on Mg , but for R-divisors, of [GKM, Thm. 0.9].
In Figure 1 we made a schematic picture of the Moriwaki cone and its rela-

tive position with respect to the nef cone Nef(Mg) and the pseudoeffective cone
Eff(Mg) of Mg .

We point out that from (1) it follows that Mor(Mg) is a simplicial polyhedral
cone whose extremal rays are generated by the boundary divisors {δ0, . . . , δ�g/2�}
and by the Moriwaki divisor

M = (8g + 4)λ − gδ0 −
�g/2�∑
i=1

4i(g − i)δi . (2)

Although we do not use the following facts, M is known to be a big divisor (see
[Lo]), and consequently the boundary of Mor(Mg) intersects the boundary of the
pseudoeffective cone Eff(Mg) only in the common codimension-one face formed
by effective boundary divisors. The Moriwaki divisor also appears in the works
of Hain–Reed [HR] and Hain [H].

Another consequence of Theorem 1 is that it gives many compactifications of
Mg , generalizing [GKM, Cor. 0.11].

Corollary 1. Let g ≥ 3, let D be a Q-divisor on Mg such that κ(Mg,D) ≥
0, and for m ∈ N, consider the map ϕmD : Mg ��� PH 0(Mg,mD). If D is a
strict M-divisor, then there exists m0 ∈ N such that ϕmm0D is an isomorphism
over Mg for any m ∈ N. Vice versa, if there exists m1 ∈ N such that ϕmm1D is an
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Figure 1 A section of the three cones Nef(Mg) ⊆ Mor(Mg) ⊆
Eff(Mg) and their intersection with the plane 〈λ, δ〉. Here sg is the
slope of Mg (see [HMo]), which, for the sake of the picture, is as-

sumed to be ≤ 13
2 (this is known to be true for g ≥ 22)

isomorphism over Mg for any m ∈ N, then B+(D) ⊆ ∂Mg ∪ B(D), and D is a
strict M-divisor when B(D) ⊆ ∂Mg .

It would be interesting to know whether some of the compactifications obtained
in Corollary 1 arise from (stable) modular compactifications in the sense of [S,
Defs. 1.1 and 1.2] or if, conversely, all the (stable) modular compactifications of
[S] arise from strict M-divisors.

In another direction, it would be desirable to extend Theorem 1 and Corollary 1
to Mg,n. A first partial result in this direction has been established in [CL, Cor.
2], where it is proved, as a consequence of [GKM, Thm. 0.9], that big and nef
divisors on Mg,n have their augmented base loci contained in the boundary of
Mg,n.

We can also apply Theorem 1 to get some information on the log canonical
models introduced by Hassett and Hyeon [HH1; HH2],

fα : Mg ���Mg(α) = Proj

(⊕
m≥0

H 0(Mg, �m(13λ − (2 − α)δ)�)
)

for α ∈ [0,1] ∩ Q, where fα is the standard rational map associated to the con-
struction of Proj (see [ST, Tag 01NK]), or equivalently, the map associated to the
linear system |m(13λ − (2 − α)δ)| for m � 0 (see Corollary 2.2).

http://stacks.math.columbia.edu/tag/01NK
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In Figure 1, we have depicted the intersection of the segment { 13
2−α

λ − δ : α ∈
[0,1]} with the cones Nef(Mg) ⊆ Mor(Mg) ⊆ Eff(Mg).

It has been asked by Hassett1 whether the map fα is an isomorphism over Mg

when α >
3g+8
8g+4 . We give an affirmative answer in the following:

Corollary 2. Let g ≥ 3. Then

(i) fα is an isomorphism over Mg if and only if α >
3g+8
8g+4 ;

(ii) If α = 3g+8
8g+4 , then fα is defined over Mg , and it contracts the hyperelliptic

locus Hg ⊂ Mg ;
(iii) If α <

3g+8
8g+4 , then the hyperelliptic locus Hg is contained in B−(13λ − (2 −

α)δ).

Note that part (iii) implies that fα is not defined over Hg whenever Hg is not
contained in a divisorial component of B(13λ − (2 − α)δ) (which of course can
occur only for g ≥ 4). We also remark that, whenever 13λ − (2 − α)δ is big, we
have that B−(13λ − (2 − α)δ) = B(13λ − (2 − α)δ) (see Remark 3.3).

Our next goal is deduce, from Theorem 1, some interesting consequences on
the Zariski decomposition of divisors and on the minimal models of Mg .

Recall that, given a pseudoeffective R-Cartier R-divisor D on a normal projec-
tive variety X, we say that D has an R-CKM Zariski decomposition (CKM stands
for Cutkoski–Kawamata–Moriwaki) if we can write

D = P + N,

where P , N are R-Cartier R-divisors such that P is nef, N is effective, and
h0(�mD�) = h0(�mP �) for all m ∈ N, where �mD� (and �mP �) is the round-
down.

Whereas on a smooth surface a Zariski decomposition always exists, by the
celebrated result of Zariski, in general, on higher-dimensional varieties, divisors
may or may not have an R-CKM Zariski decomposition, even if we allow to
pass to a birational model [N, Thm. IV.2.10]. On the other hand, on a variety of
nonnegative Kodaira dimension, the canonical bundle is expected to admit an R-
CKM Zariski decomposition, after passing to a birational model, as a consequence
of the conjectured existence of minimal models.

On Mg we obtain the following:

Corollary 3. Let g ≥ 3, and let D be an R-divisor on Mg such that κ(D) ≥ 1.
If D has an R-CKM Zariski decomposition, then D is a strict M-divisor. In partic-
ular, when κ(Mg) ≥ 1 (currently known for g ≥ 22), the canonical divisor KMg

does not have an R-CKM Zariski decomposition.

1In the open problem session of the AIM workshop “The log minimal model program for the moduli
space of curves”, Palo Alto (California, USA), 10–14 December 2012. During the same problem
session, M. Fedorchuk said that he could answer to the question away from the hyperelliptic
locus.
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We stress that, for g ≥ 24 or g = 22, since KMg
is known to be big by [HMu;

EH; F], the minimal model of Mg exists by [BCHM, Lemma 10.1 and Thm. 1.2],
whence the pull-back of KMg

does have an R-CKM Zariski decomposition on

some birational model of Mg . On the other hand, Mg is an interesting example
of a normal projective variety whose canonical bundle does not have an R-CKM
Zariski decomposition.

Corollary 4. Let g be such that κ(Mg) ≥ 1 (currently known for g ≥ 22). Then
there is no KMg

-nonpositive projective birational morphism f : Mg → X onto a
normal Q-Gorenstein variety X with KX nef. In particular, if KMg

is big (cur-

rently known for g ≥ 24 or g = 22), consider a rational map f : Mg ��� (Mg)min
to a minimal model obtained via contractions and flips of K-negative extremal
rays. Then f cannot be a morphism, that is, it is not possible to reach a minimal
model of Mg only via contractions of extremal rays: at some step, one must flip.

Note that, whenever KMg
is big, we have that B−(KMg

) = B(KMg
) (see Re-

mark 3.3).
Unless otherwise specified, we work throughout the paper over an alge-

braically closed field k of characteristic 0, although we expect that our results
should hold in arbitrary characteristic (see Section 3.1).

2. Generalities on Proj and Zariski Decomposition

We collect in this section some general facts that will be used in the proofs. They
are all most likely well known, but we include them for the lack of a reference
(even though a similar version of Lemma 2.1 can be found in [HK, Lemma 1.6]).

Recall that, given a Q-Cartier Q-divisor D on a normal projective variety X,
its ring of sections is

R(X,D) =
⊕
m≥0

H 0(X, �mD�),

and if mD is Cartier and H 0(X,mD) �= {0}, then we denote by

ϕmD : X ��� Ym ⊆ PH 0(X,mD)

the map associated to |mD|, where Ym is the closure of its image (endowed with
its reduced scheme structure).

Lemma 2.1. Let X be a normal projective variety defined over an algebraically
closed field k of arbitrary characteristic, and let D be a Q-Cartier Q-divisor on X

such that κ(X,D) ≥ 0 and R(X,D) is a finitely generated k-algebra. Then there
is m0 ∈N such that Yam0

∼= Proj(R(X,D)) is normal for all a ∈ N. Moreover, with
this identification, the standard rational map associated with the construction of
Proj (see [ST, Tag 01NK]), fD : X ��� Proj(R(X,D)) coincides with ϕam0D :
X ��� Yam0 for all a ∈N.

http://stacks.math.columbia.edu/tag/01NK
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Proof. By [EGA2, Prop. 2.4.7(i)] we can assume that D is Cartier. By [EGA2,
Lemma 2.1.6(v)] there exists s ∈N such that

ShH 0(X, sD) → H 0(X,hsD) is surjective for all h ∈ N. (3)

Since κ(X,D) ≥ 0, we get that H 0(X, sD) �= {0} and that B(D) = Bs(|hsD|) for
all h ∈N. Let p : X̃ → X be the normalized blow-up of X along the base ideal of
|sD|, so that we have the diagram

X̃

p
q

X
ϕsD

Ys

with X̃ normal and p birational. We can write

p∗(sD) = M + F (4)

with |M| base-point free, F base component of |p∗(sD)|, and p(Supp(F )) =
B(D). Since X is normal and p is birational, we have, by Zariski’s main theorem,
that p is an algebraic fiber space [La, Def. 2.1.11], and therefore, for all h ∈N,

H 0(X,hsD) ∼= H 0(X̃,p∗(hsD)). (5)

It follows by finite generation that, for all h ∈ N, hF is the base component of
|p∗(hsD)|, whence

H 0(X̃,p∗(hsD)) ∼= H 0(X̃, hM). (6)

But then Yhs = Im{ϕhM : X̃ → PH 0(X̃, hM)} for all h ∈ N. On the other hand, by
[La, Thm. 2.1.27] there are h0 ∈ N and an algebraic fiber space φ : X̃ → Z such
that ϕhM = φ and ImϕhM = Z for all h ≥ h0. Now Z is normal by [La, Thm.
2.1.15], whence setting m0 = h0s, we get that Yam0 = Z is normal for all a ∈ N.

Let A be an ample divisor on Z such that h0M = φ∗(A). Since φ is an alge-
braic fiber space, we get

H 0(X̃, sh0M) = H 0(X̃,φ∗(sA)) ∼= H 0(Z, sA). (7)

Since the product in a ring of sections is given by multiplication of sec-
tions, we deduce by (5), (6), and (7) that R(X,m0D) ∼= R(X̃,p∗(m0D)) ∼=
R(X̃,h0M) ∼= R(X̃,φ∗(A)) ∼= R(Z,A). Finally, by [EGA2, Prop. 2.4.7(i)] we
get Proj(R(X,D)) ∼= Proj(R(X,m0D)) ∼= Proj(R(Z,A)) ∼= Z since A is ample.

By [ST, Tag 01NK], given a graded ring S, a scheme T with a line bundle L,
and a homomorphism of graded rings ψ : S → R(T ,L), there is a morphism

fD : U(ψ) → Proj(R(X,D)),

where U(ψ) is the union of the open subsets Tψ(f ) with f ∈ Sd , d > 0. In our
case, setting T = X, L = OX(D), S = R(X,D), and ψ = IdR(X,D), we have that
U(ψ) = X − B(D), and we get a rational map fD : X ��� Proj(R(X,D)) defined
on X − B(D). On the other hand, for any d ∈ N such that B(D) = Bs(|dD|),
by [ST, Tag 01NK] we have that fD coincides on X − B(D) with the morphism

http://stacks.math.columbia.edu/tag/01NK
http://stacks.math.columbia.edu/tag/01NK
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X − B(D) → Proj(R(X,D)) defined on [ST, Tag01N8], which, given the immer-
sion Proj(R(X,D)) ⊂ Pr , r = h0(X,dD), is just the morphism ϕdD . �

We draw a consequence on the spaces Mg(α).

Corollary 2.2. For every α ∈ [0,1] ∩ Q, we have that Mg(α) is normal and
the rational map fα : Mg ���Mg(α) is given by ϕm(13λ−(2−α)δ) for m sufficiently
divisible.

Proof. Set Kα = 13λ − (2 − α)δ. We can assume that κ(Kα) ≥ 0. If α = 1, then
the assertion follows by [Mu, Cor. 5.18] (see also [CH, Thm. 1.3]) since 13λ−δ is
ample. Now assume that α < 1 and set Bα = α(
0 +
2 +· · ·+
�g/2�)+ α+1

2 
1,
so that Kα = KMg

+ Bα , and (Mg,Bα) is klt [KM, Def. 2.34] by [HH1, Proof

of Prop. A.13] or [BCHM, Proof of Cor. 1.2.1]. Then R(Mg,Kα) is a finitely
generated k-algebra by [BCHM, Cor. 1.1.2], and we just apply Lemma 2.1. �

We also need a result about Zariski decompositions.

Lemma 2.3. Let X be a normal Q-factorial projective variety defined over an
algebraically closed field k of arbitrary characteristic, and let D be an R-divisor
on X having an R-CKM Zariski decomposition D = P + N .

Then B+(D) = B+(P ) and Supp(N) ⊆ B+(D).

Proof. We will use some results in [N; BBP; ELMNP], and [P]. We point out
that, even though in these references, the results mentioned further are proved for
smooth varieties over the complex numbers, the results hold with minor modifi-
cations on a normal Q-factorial projective variety defined over an algebraically
closed field.

If D is not big, then P is also not big, so that B+(D) = B+(P ) = X.
Suppose now that D is big, so that P is also big by [N, Thm. II.3.7 and Lemma

II.3.16]. Given any prime divisor � on X, we can define, as in [N, Def. III.1.1],

σ�(D) = inf{ord�(E),E effective R-divisor on X such that E ≡ D}
and, for any pseudoeffective R-divisor F on X, as in [N, Def. III.1.6],

σ�(F ) = lim
ε→0+ σ�(F + εA),

where A is an ample divisor (the definition does not depend on the choice of A).
Now set

Nσ (D) =
∑
�

σ�(D)�, Pσ (D) = D − Nσ (D).

Note that Nσ (D) is an R-divisor by [N, Cor. III.1.11]. The decomposition D =
Pσ (D) + Nσ (D) is called the σ -decomposition of D (see [N, Def. III.1.12]).
By [N, Rmk. III.1.17(3)] or [P, Rmk. 7.2 and Prop. 4.18] it follows that P =
Pσ (D) and N = Nσ (D). We also recall that Supp(Nσ (D)) ⊆ B(D) (see [BBP,
Lemma 2.6]).

http://stacks.math.columbia.edu/tag/01N8
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Given any ample R-divisor A on X such that A ≤ D, we find, by [N, Lemma
III.1.4], that σ�(D) ≤ σ�(D−A)+σ�(A) = σ�(D−A) ≤ ord�(D−A), whence
D − A ≥ N . Therefore,

B+(D) =
⋂

A≤D

Supp(D − A) =
⋂

A≤D

(Supp(D − A − N) ∪ Supp(N))

= Supp(N) ∪
⋂
A≤P

Supp(P − A) = Supp(N) ∪ B+(P ).

Now let � be a prime divisor in the support of N , so that σ�(D) > 0. We will
prove that � ⊆ B+(P ). Let H be an ample Cartier divisor such that H − � is
ample. Then there exists ε > 0 sufficiently small such that ε ≤ σ�(D), B+(P ) =
B(P − ε(H − �)) by [ELMNP, Prop. 1.5] (note that it is not needed that P −
ε(H − �) is a Q-divisor), and P − εH is big. By [N, Lemmas III.1.8 and III.1.4]
we get

0 < ε = σ�(P + ε�) ≤ σ�(P − ε(H − �)) + σ�(εH) = σ�(P − ε(H − �)),

so that � ⊆ B(P − ε(H − �)) = B+(P ). �

3. Proofs of the Main Results

Proof of Theorem 1. We begin by recalling some results of Moriwaki [M]. In [M,
Lemma 4.1],2 Moriwaki showed that there exist integral curves C,C0, . . . ,C�g/2�
inside Mg , not entirely contained in the boundary ∂Mg , with the following prop-
erties:

• C is contained inside Mg ;
• C0 is contained in Hg and intersects ∂Mg in points corresponding to isomor-

phism classes of irreducible curves with a single node;
• For every i = 1, . . . , �g/2�, Ci is contained in Hg and intersects ∂Mg in points

corresponding to isomorphism classes of stable curves formed by two irre-
ducible components of genus i and g − i meeting in a single node.

It follows from the proof of [M, Prop. 4.2]3 that the cone spanned by C,C0, . . . ,C�g/2�
inside N1(Mg)R is the dual of the cone of M-divisors.

Consider now an R-divisor D on Mg such that B−(D) ⊆ ∂Mg (respectively
B+(D) ⊆ ∂Mg) and let γ be one of the curves C,C0, . . . ,C�g/2�. Since γ �
∂Mg , we get that γ � B−(D) (respectively γ � B+(D)), and therefore D · γ ≥ 0
(respectively D|γ is big, that is, D · γ > 0). This shows that D is an M-divisor
(respectively a strict M-divisor).

Vice versa, suppose first that D is an M-divisor. As observed in the Introduc-
tion, it follows from (1) that every M-divisor is an effective linear combination of

2Which works over an algebraically closed field of characteristic different from two (due to the use of
double covers).

3Which works over an algebraically closed field of arbitrary characteristic using the extension of the
result of Cornalba and Harris [CH, Prop. 4.7] to arbitrary characteristic obtained by Yamaki [Y,
Thm. 1.7].
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the Moriwaki divisor M and the boundary divisors. Hence, there exist β ≥ 0 and
an effective R-divisor E on Mg such that D = βM + E and Supp(E) ⊆ ∂Mg ,
where M is the Moriwaki divisor as in (2).

We recall that the content of [M, Thm. B] is exactly that B−(M) ⊆ ∂Mg ;
hence,

B−(D) ⊆ B−(M) ∪ Supp(E) ⊆ ∂Mg.

Moreover, if D is a strict M-divisor, we can choose a sufficiently small ample R-
divisor A on Mg such that D′ := D − 2A is still a strict M-divisor and B+(D) =
B(D − A) by [ELMNP, Prop. 1.5] (note that it is not needed that D − A is a
Q-divisor). Then there exist β ′ > 0 and an effective R-divisor E′ on Mg such that
D′ = β ′M + E′ and Supp(E′) ⊆ ∂Mg . Hence,

B−(D′) ⊆ B−(M) ∪ Supp(E′) ⊆ ∂Mg;
therefore, also

B+(D) = B(D − A) = B(D′ + A) ⊆ B−(D′) ⊆ ∂Mg. �

We note that, for some divisors, we can compute exactly the augmented base
locus.

Proposition 3.1. Let g ≥ 3, and let D ∼ aλ − b0δ0 − · · · − b�g/2�δ�g/2� be a
big R-divisor on Mg with bi ≤ 0 for all i = 0, . . . , �g/2�. Then B+(D) = ∂Mg .
Moreover, if D is a Q-divisor, then, for m � 0 sufficiently divisible, ϕmD is the

Torelli morphism to the Satake compactification M
S

g := Proj(R(Mg,λ)) of Mg ,
which is a normal variety.

Proof. Recall that λ is semiample, whence, by [La, Thm. 2.1.15 and 2.1.27], we

get an algebraic fiber space π = ϕmλ : Mg → Imϕmλ
∼= M

S

g for m � 0 suffi-
ciently divisible (this is the Torelli morphism to the Satake compactification) and

that M
S

g is normal. Moreover, it is well known that Exc(π) = ∂Mg (see, e.g.,
[ACG, Chap. XIV, §5]).

Notice that the restriction of D to Mg is linearly equivalent to aλ. Since D is
big and λ is semiample, this implies that a > 0. Let A be an ample Q-divisor such
that λ = π∗A and set F = −b0δ0 − · · · − b�g/2�δ�g/2�, so that F is effective and

π -exceptional. Since Mg and M
S

g are normal and π is birational, we can apply
[BBP, Prop. 2.3]:

B+(D) = B+(π∗(aA) + F) = π−1(B+(aA)) ∪ Exc(π) = Exc(π) = ∂Mg.

Now if D is a Q-divisor and m � 0 is such that mD and maλ are Cartier, then

H 0(Mg,maλ) ∼= H 0(Mg,m(aλ + F)) ∼= H 0(Mg,mD),

and the last assertion of the proposition follows. �

Proof of Corollary 1. By [BCL, Thm. A], given a big Q-divisor D on Mg , we
have that there exists m0 ∈ N such that Mg − B+(D) is the largest open subset
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of Mg − B(D) where the maps ϕmm0D are isomorphisms for every m ∈N. Using
this, Corollary 1 follows from Theorem 1. �

Proof of Corollary 2. Note that Kα := 13λ − (2 − α)δ is a strict M-divisor if and
only if α >

3g+8
8g+4 . Then (i) follows from Corollaries 1 and 2.2.

Assume now that α = 3g+8
8g+4 . Then, Kα is a (nonstrict) M-divisor, and, more-

over, it is big since its slope s(Kα) = 8 + 4
g

is larger than the one of a Brill–
Noether divisor if g + 1 is composite (see [EH, Thm. 1]) or of the Petri divi-
sor if g is even (see [EH, Thm. 2]). Also, we claim that B(Kα) = B−(Kα). Let
x ∈ B(Kα), and let v be any divisorial valuation with center {x}. By the finite
generation of R(Mg,Kα), as in [ELMNP, Prop. 2.8] or [BBP, §2.2], we have
that v(‖Kα‖) > 0, whence x ∈ B−(Kα), and the claim is proved (see also Re-
mark 3.3). By Theorem 1 we get B(Kα) = B−(Kα) ⊆ ∂Mg , whence fα is defined
over Mg .

In order to prove the second statement of (ii), observe that Kα is proportional
to the Cornalba–Harris divisor (8g + 4)λ− gδ of [CH, Prop. 4.3]. It follows from
[CH, Prop. 4.3, Thm. 4.12] (see also [Y, Cor. 1.8] in positive characteristic) that
Kα intersects in zero the curves constructed by Cornalba and Harris [CH, p. 469]:4

these are curves in Hg given by a family π : X → T of stable hyperelliptic curves
over a smooth projective curve T obtained as a double cover η : X → T × P1

branched over a general curve B ⊂ T ×P1 of class (2g + 2,2m) for some m ≥ 1.
Since the image of T → Hg passes through the general point of Hg , it follows
that the map fα contracts the hyperelliptic locus Hg ⊂ Mg . This finishes the proof
of (ii).

Assume finally that α <
3g+8
8g+4 . Then Kα intersects negatively the Cornalba–

Harris curves considered, which therefore must belong to B−(Kα). By what we
said before, we deduce that Hg ⊂ B−(Kα), which proves (iii). �

In order to prove Corollary 3, we need the following:

Lemma 3.2. Let g ≥ 3, and let D be a nonzero R-divisor on Mg . If D is nef, then
D is a strict M-divisor.

Proof. If D ∼ aλ − b0δ0 − · · · − b�g/2�δ�g/2� is nef, then by intersecting D with
F -curves we find that its coefficients must satisfy the following relations (and
many others; see [GKM, Thm. 2.1]):

a ≥ 12b0 − b1 and 2b0 ≥ bi ≥ 0 for any 1 ≤ i ≤ g/2.

From these relations we get the chain of inequalities (for any 1 ≤ i ≤ g/2)

a ≥ 12b0 − b1 ≥ 10b0 ≥ 5bi.

4Indeed, it is easily checked, by [CH, Prop. 4.7] (see also [Y, Thm. 1.7] in positive characteristic), that
these curves are all numerically proportional to the curve C0 constructed in [M, Lemma 4.1].
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Now we conclude that the strict Moriwaki inequalities (1) hold for D since (for
any 1 ≤ i ≤ g/2 and g ≥ 3) we have that

a ≥ 10b0 ≥ 0 with equalities if and only if a = b0 = 0,

10b0 ≥ 8g + 4

g
b0 with equality if and only if b0 = 0,

5bi ≥ 2g + 1

i(g − i)
bi with equality if and only if bi = 0. �

Proof of Corollary 3. Suppose that D = P + N is an R-CKM Zariski decom-
position. Then P is nef and nontrivial because κ(P ) = κ(D) ≥ 1, whence it is a
strict M-divisor by Lemma 3.2. Therefore, by Lemma 2.3 and Theorem 1 we have
B+(D) = B+(P ) ⊆ ∂Mg , so that D is a strict M-divisor again by Theorem 1. To
conclude we just note that

KMg
= 13λ − 2δ0 − 3δ1 − 2δ2 − · · · − 2δ�g/2�

is not an M-divisor. �

Proof of Corollary 4. Let a ∈ N be such that aKMg
and aKX are Cartier. Now

the nonpositivity of f means that we have

aKMg
= f ∗(aKX) + E (8)

with E ≥ 0 and f -exceptional. Setting P = f ∗(aKX) and N = E, we see imme-
diately that (8) is an R-CKM Zariski decomposition of aKMg

, thus contradicting
Corollary 3. To conclude the proof, recall that, as discussed in the Introduction
(after Corollary 3), if KMg

is big, then Mg has a minimal model (Mg)min. Hence,

(Mg)min has normal Q-factorial dlt [KM, Def. 2.37] singularities, K(Mg)min
is nef,

and there is a projective birational map f : Mg ��� (Mg)min that is KMg
-negative

(in fact, f is obtained via contractions and flips of KMg
-negative extremal rays).

Then f cannot be a morphism by what we proved before. �

Remark 3.3. It follows from [BBP, Thm. A] that, whenever Kα = 13λ− (2−α)δ

or KMg
is big, then B−(Kα) = B(Kα), B−(KMg

) = B(KMg
), and every irre-

ducible component of them and of B+(Kα), B+(KMg
) is uniruled.

3.1. Characteristic Zero versus Positive Characteristic

Even though we worked, throughout the paper, over an algebraically closed field
of characteristic zero, we believe that all our results can be extended to a field of
arbitrary characteristic. For the benefit of the reader, let us specify what is missing
in positive characteristic.

(i) The proof of Theorem 1 uses in a crucial way [M, Thm. B], which is currently
known only in characteristic zero. The missing ingredient in positive charac-
teristic is, given a smooth projective curve C of genus g ≥ 3, the validity of
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[M, Claim 2.5.1] for the vector bundle MωC
:= ker(H 0(C,ωC) ⊗ OC

ev−→
ωC), namely that there exists an ample line bundle A such that

H 0(C,Symm(End(MωC
)) ⊗ A) = 0 for every m � 0. (9)

The semistability of the vector bundles Symm(End(ωC)), which would im-
ply the vanishing in (9), is not known in positive characteristic. Note that
MωC

is semistable (of slope −2) in every characteristic (see [PR] or also
[EL, Prop. 3.2], whose proof works verbatim for MωC

), but this implies the
semistability of Symm(End(ωC)) only in characteristic zero. On the other
hand, the stronger condition of being strongly semistable (which is preserved
by tensor products and symmetric products even in positive characteristic by
[M, Thm. 7.2, Cor. 7.3]) fails in positive characteristic for MωC

for some
smooth plane quartics C, as it follows by combining [T, Cor. 4.16] and the
several examples worked out in [Mo].

(ii) Once the vanishing in (9) has been established, our Theorem 1 would fol-
low in any characteristic different from two (in characteristic two, we would
also need to extend the construction of the curves C0, . . . ,C[g/2] in [M,
Lemma 4.1]). From this, Corollaries 3 and 4, and Proposition 3.1 it would
also follow in any characteristic different from two. On the other hand, in
order to extend Corollaries 1, 2, and 2.2 and Remark 3.3 to positive charac-
teristic, we would also need to establish the finite generation of the section
ring of the divisor 13λ − (2 − α)δ (for α ∈ [0,1] ∩Q) on Mg , which is cur-
rently known only in characteristic zero due to [BCHM].
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