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1 INTRODUCTION

The moduli stack Bun𝐺(𝐶) of (principal) 𝐺-bundles, where 𝐺 is a complex reductive group, over
a connected, smooth and projective complex curve 𝐶 has been deeply studied because of its rela-
tion to theWess–Zumino–Witten (WZW)model associated to𝐺. Suchmodels form a special class
of rational conformal field theories, see [7, 8, 64] for nice surveys. In the WZW-model associated
to a simply connected group 𝐺, the spaces of conformal blocks can be interpreted as spaces of
generalized theta functions, that is spaces of global sections of suitable line bundles (for example,
powers of determinant line bundles) on Bun𝐺(𝐶), see [10, 30, 43, 45, 55]. This interpretation lead
to a rigorous mathematical proof of the Verlinde formula and the factorization rules [72] for the
WZW-model of a simply connected group 𝐺, see [30, 67, 71]. For some (partial, as far as we under-
stand) results on the Verlinde formula for the WZW-model of a non-simply connected group 𝐺,
see [1, 9, 37, 41, 53, 54].
The above application to conformal field theory leads naturally to the study of the Picard group

of Bun𝐺(𝐶) (and of the, closely related, good moduli space of semistable 𝐺-bundles), a question
which makes sense over an arbitrary (say algebraically closed) field 𝑘. Due to the effort of many
mathematicians, we have by now a complete understanding of the Picard group of every con-
nected component Bun𝛿

𝐺
(𝐶) of Bun𝐺(𝐶) (where 𝛿 ∈ 𝜋1(𝐺)) over an arbitrary field 𝑘 = 𝑘: the case

of SL𝑟 dates back to Drezet–Narasimhan in the late eighties [25], where they generalize earlier
work of Seshadri [58]; the case of a simply connected, almost-simple 𝐺 is dealt with in [18, 31, 42,
45, 65] using the uniformization of 𝐺-bundles on a curve 𝐶 in terms of the affine Grassmannian
Gr𝐺 of 𝐺; the case of a semisimple almost-simple 𝐺 is dealt with in [11, 44, 68]; the case of an
arbitrary reductive group was finally established by Biswas–Hoffmann [14].
The aim of this paper is to determine, for an arbitrary connected and smooth linear algebraic

group 𝐺 (not necessarily reductive) over an algebraically closed field 𝑘 (of arbitrary characteris-
tics), the Picard group of the universal moduli stack of 𝐺-bundles Bun𝐺,g ,𝑛 over 𝑛-pointed curves
of genus g , which parameterizes𝐺-bundles over families of (connected, smooth and projective) 𝑘-
curves of genus g ⩾ 0 endowed with 𝑛 ⩾ 0 pairwise disjoint ordered sections. The stack Bun𝐺,g ,𝑛
comes equipped with a forgetful morphism Φ𝐺 ∶ Bun𝐺,g ,𝑛 →g ,𝑛 onto the algebraic stack †
g ,𝑛 of 𝑛-pointed curves of genus g .
The stack Bun𝐺,g ,𝑛 is an algebraic stack, locally of finite type and smooth overg ,𝑛 (see The-

orem 3.1) and its connected components (which are integral and smooth over 𝑘) are in functorial
bijection with the fundamental group 𝜋1(𝐺) (see Theorem 3.1.1 and Corollary 3.1.2). We will

†Note thatg ,𝑛 is aDeligne–Mumford stack if and only if 2g − 2 + 𝑛 > 0, which, however,we donot assume in this paper.
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denote the connected components and the restriction of the forgetful morphism by

Φ𝛿𝐺 ∶ Bun
𝛿
𝐺,g ,𝑛 →g ,𝑛, for any 𝛿 ∈ 𝜋1(𝐺).

Note that the algebraic stack Bun𝛿
𝐺,g ,𝑛

is not, in general, of finite type overg ,𝑛 (or, equivalently,
over 𝑘): in Proposition 3.1.7, we prove that this happens if and only if the reductive quotient
𝐺red of 𝐺, that is, the quotient of 𝐺 by its unipotent radical, is an algebraic torus. On the other
hand, if 𝐺 is reductive but not a torus, Bun𝛿

𝐺,g ,𝑛
admits an exhaustive chain of 𝑘-finite type open

substacks {Bun[𝑑],⩽𝑚
𝐺,g ,𝑛

}𝑚⩾0 (called the instability exhaustion) of increasing codimension (see Propo-
sition 3.2.3). We also prove that every 𝑘-finite type open substack of Bun𝐺,g ,𝑛 is a quotient stack
with the notable exception of (g , 𝑛) = (1, 0) (see Proposition 3.2.5).
Our first main result says that we can reduce the computation of Pic(Bun𝛿

𝐺,g ,𝑛
) to the case of a

reductive group.More precisely, let𝐺 be a connected and smooth linear algebraic group over 𝑘 = 𝑘
and let red ∶ 𝐺 ↠ 𝐺red be its reductive quotient, that is, the quotient of 𝐺 by its unipotent radi-
cal. Since red induces an isomorphism 𝜋1(red) ∶ 𝜋1(𝐺)

≅
�→ 𝜋1(𝐺

red) at the level of fundamental
groups, we get a morphism

red# ∶ Bun
𝛿
𝐺,g ,𝑛 → Bun

𝛿
𝐺red,g ,𝑛

for any 𝛿 ∈ 𝜋1(𝐺) ≅ 𝜋1(𝐺red)

which is smooth, surjective and of finite type (see Corollary 3.1.6).

Theorem A (see Theorem 6.1). For any 𝛿 ∈ 𝜋1(𝐺) ≅ 𝜋1(𝐺red), the pullback homomorphism

red∗# ∶ Pic(Bun
𝛿
𝐺red,g ,𝑛

)
≅
�→ Pic(Bun𝛿𝐺,g ,𝑛)

is an isomorphism.

The above theorem also holds true for the stack Bun𝐺(𝐶∕𝑆), parameterizing 𝐺-bundles on a
family of curves 𝐶 → 𝑆 over an integral regular quotient stack (for example, algebraic space or
scheme) over 𝑘. In particular, if 𝐶 is a (connected smooth and projective) curve over 𝑘, then we
have an isomorphism

red∗# ∶ Pic(Bun
𝛿
𝐺red
(𝐶∕𝑘))

≅
�→ Pic(Bun𝛿𝐺(𝐶∕𝑘)) for any 𝛿 ∈ 𝜋1(𝐺) ≅ 𝜋1(𝐺red).

Combining this with the computation of Pic(Bun𝛿
𝐺red
(𝐶∕𝑘)) by Biswas–Hoffmann [14], we get a

description of the Picard group of the moduli stack of 𝐺-bundles over a fixed 𝑘-curve 𝐶, for any
connected smooth linear algebraic group 𝐺.
Hence, fromnowon,wewill focus on the Picard group ofBun𝛿

𝐺,g ,𝑛
for a reductive group𝐺. Note

that the Picard group ofg ,𝑛 is well-known up to torsion. If char(𝑘) ≠ 2 is completely known (see
[35], and references therein). The pullback morphism

(Φ𝛿𝐺)
∗ ∶ Pic(g ,𝑛) → Pic(Bun

𝛿
𝐺,g ,𝑛)
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is injective since Φ𝛿
𝐺
is fpqc and cohomologically flat in degree 0 (that we baptize Stein) by

Proposition 3.3.2. Therefore, we can focus our attention onto the relative Picard group

RPic(Bun𝛿𝐺,g ,𝑛) ∶= Pic(Bun
𝛿
𝐺,g ,𝑛)∕(Φ

𝛿
𝐺)
∗(Pic(g ,𝑛)).

It turns out that the structure of RPic(Bun𝛿
𝐺,g ,𝑛

) in genus g ⩾ 1 is completely different from the
one in genus g = 0. Let us first consider the case g ⩾ 1.
A first source of line bundles on Bun𝐺,g ,𝑛 comes from the determinant of cohomology 𝑑𝜋(−)

and the Deligne pairing ⟨−,−⟩𝜋 of line bundles on the universal curve 𝜋 ∶ 𝐺,g ,𝑛 → Bun𝐺,g ,𝑛. To
bemore precise, any character 𝜒 ∶ 𝐺 → 𝔾m ∈ Λ

∗(𝐺) ∶= Hom(𝐺, 𝔾m) gives rise to a morphism of
stacks

𝜒# ∶ Bun𝐺,g ,𝑛 → Bun𝔾m,g ,𝑛

and, by pulling back via 𝜒# the universal 𝔾m-bundle (that is, line bundle) on the universal curve
over Bun𝔾m,g ,𝑛, we get a line bundle 𝜒 on 𝐺,g ,𝑛. Then, using these line bundles 𝜒 and the
sections 𝜎1, … , 𝜎𝑛 of 𝜋, we define the following line bundles, that we call tautological line bundles,
on Bun𝐺,g ,𝑛 (and hence, by restriction, also on Bun𝛿𝐺,g ,𝑛)

ℒ(𝜒, 𝜁) ∶= 𝑑𝜋
(
𝜒(𝜁1 ⋅ 𝜎1 +⋯ + 𝜁𝑛 ⋅ 𝜎𝑛)

)
,

⟨(𝜒, 𝜁), (𝜒′, 𝜁′)⟩ ∶= ⟨𝜒(𝜁1 ⋅ 𝜎1 +⋯ + 𝜁𝑛 ⋅ 𝜎𝑛),𝜒′(𝜁
′
1 ⋅ 𝜎1 +⋯ + 𝜁′𝑛 ⋅ 𝜎𝑛)⟩𝜋,

for 𝜒, 𝜒′ ∈ Hom(𝐺, 𝔾m) and 𝜁 = (𝜁1, … , 𝜁𝑛), 𝜁
′ = (𝜁′

1
, … , 𝜁′𝑛) ∈ ℤ

𝑛. See Subsection 3.5 for
more details.
Our next main result says that if 𝐺 = 𝑇 is a torus, then RPic(Bun𝛿

𝑇,g ,𝑛
) is generated by tauto-

logical line bundles and the following theorem also clarifies the dependence relations among the
tautological line bundles.

Theorem B (see Theorem 4.1). Assume that g ⩾ 1. Let 𝑇 be an algebraic torus and let 𝑑 ∈ 𝜋1(𝑇).
The relative Picard group RPic(Bun𝑑

𝑇,g ,𝑛
) is a free abelian group of finite rank generated by the

tautological line bundles and sitting in the following functorial exact sequence

0 → Sym2 Λ∗(𝑇) ⊕ (Λ∗(𝑇) ⊗ ℤ𝑛)
𝜏𝑇+𝜎𝑇
������→ RPic

(
Bun𝑑𝑇,g ,𝑛

) 𝜌𝑇
��→ Λ∗(𝑇) → 0 if g ⩾ 2,

0 → Sym2 Λ∗(𝑇) ⊕ (Λ∗(𝑇) ⊗ ℤ𝑛)
𝜏𝑇+𝜎𝑇
������→ RPic

(
Bun𝑑𝑇,1,𝑛

) 𝜌𝑇
��→

Λ∗(𝑇)

2Λ∗(𝑇)
→ 0 if g = 1,

where 𝜏𝑇(= 𝜏𝑇,g ,𝑛) (called transgression map) and 𝜎𝑇(= 𝜎𝑇,g ,𝑛) are defined by

𝜏𝑇(𝜒 ⋅ 𝜒′) = ⟨(𝜒, 0), (𝜒′, 0)⟩, for any 𝜒, 𝜒′ ∈ Λ∗(𝑇),
𝜎𝑇(𝜒 ⊗ 𝜁) = ⟨(𝜒, 0), (0, 𝜁)⟩, for any 𝜒 ∈ Λ∗(𝑇) and 𝜁 ∈ ℤ𝑛,

and 𝜌𝑇(= 𝜌𝑇,g ,𝑛) is the unique homomorphism such that

𝜌𝑇(ℒ(𝜒, 𝜁)) =

{
𝜒 ∈ Λ∗(𝑇) if g ⩾ 2,
[𝜒] ∈ Λ∗(𝑇)

2Λ∗(𝑇)
if g = 1,

for any 𝜒 ∈ Λ∗(𝑇) and 𝜁 ∈ ℤ𝑛.
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The above theorem was proved in [47, Theorem A] (see also [47, Notation 1.5]) for 𝑇 = 𝔾m,
g ⩾ 2 and 𝑛 = 0, under the assumption that char(𝑘) = 0, and in [57, Theorem 2.9] for 𝑇 = 𝔾m,
g = 1, 𝑛 = 0 and 𝑑 > 0, under the assumption that char(𝑘) does not divide 𝑑.
The crucial ingredients in proving Theorem B are the study of the restriction homomorphism

from RPic(Bun𝑑
𝑇,g ,𝑛

) to the Picard group of the geometric fibers of Φ𝑑
𝑇
computed in [14] (which

we determine in Propositions 4.1.2 and 4.3.3) and the computation of the Picard group of the
rigidificationBun0

𝑇,g ,𝑛
� 𝑇 ofBun𝑑

𝑇,g ,𝑛
by the torus𝑇 (which is an abelian stack overg ,𝑛 if 𝑛 ⩾ 1,

see Subsection 4.2), which uses the weak Franchetta conjecture for the universal family g ,𝑛 →

g ,𝑛 (see § 2.5). Note that the extra relations in genus one come from the relative Serre duality
applied to the Deligne pairing (see Remark 3.5.1) and the fact that the relative dualizing sheaf is
trivial in genus one.
Now consider the case of an arbitrary reductive group 𝐺. Note that any character of 𝐺 factors

through its maximal abelian quotient ab ∶ 𝐺 ↠ 𝐺ab, that is, the quotient of 𝐺 by its derived sub-
group. Hence, the tautological line bundles on Bun𝛿

𝐺,g ,𝑛
are all pullbacks of line bundles via the

morphism (induced by ab)

ab# ∶ Bun
𝛿
𝐺,g ,𝑛 → Bun

𝛿ab

𝐺ab,g ,𝑛
,

where 𝛿ab ∶= 𝜋1(ab)(𝛿) ∈ 𝜋1(𝐺ab). Moreover, Theorem B implies that the subgroup of
RPic(Bun𝛿

𝐺,g ,𝑛
) generated by the tautological line bundles coincides with the pullback of

RPic(Bun𝛿
ab

𝐺ab,g ,𝑛
) via ab#.

Thenext result says that, for an arbitrary reductive group𝐺, the relative Picard group ofBun𝛿
𝐺,g ,𝑛

is generated by the image of the pullback ab∗# together with the image of a functorial transgression
map 𝜏𝐺 (which coincides with the transgression map 𝜏𝑇 in Theorem B if 𝐺 = 𝑇 is a torus).

TheoremC (see Theorem 5.1). Assume that g ⩾ 1. Let𝐺 be a reductive group and let ab ∶ 𝐺 → 𝐺ab
be its maximal abelian quotient. Choose a maximal torus 𝜄 ∶ 𝑇𝐺 ↪ 𝐺 and let𝒲𝐺 be the Weyl group
of 𝐺. Fix 𝛿 ∈ 𝜋1(𝐺) and denote by 𝛿ab its image in 𝜋1(𝐺ab).

(1) There exists a unique injective homomorphism (called transgression map†)

𝜏𝐺(= 𝜏𝐺,g ,𝑛) ∶ (Sym
2 Λ∗(𝑇𝐺))

𝒲𝐺 ↪ RPic
(
Bun𝛿𝐺,g ,𝑛

)
, (1.1)

such that, for any lift 𝑑 ∈ 𝜋1(𝑇𝐺) of 𝛿 ∈ 𝜋1(𝐺), the composition of 𝜏𝐺 with

𝜄∗# ∶ RPic(Bun
𝛿
𝐺,g ,𝑛) → RPic(Bun

𝑑
𝑇𝐺,g ,𝑛

)

is equal to the𝒲𝐺-invariant part of the homomorphism 𝜏𝑇𝐺 ∶ Sym
2 Λ∗(𝑇𝐺) → RPic(Bun

𝑑
𝑇𝐺,g ,𝑛

)

defined in Theorem B.

† This is the algebraic analogue of the topological transgression map𝐻4(𝐵𝐺,ℤ) → 𝐻2(Bun𝛿
𝐺,g ,𝑛

, ℤ), see [70, Section 1].
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(2) There is a pushout diagram of injective homomorphisms of abelian groups

(1.2)

where Sym2 Λ∗
ab
is the homomorphism induced by the morphism of tori 𝑇𝐺

𝜄
�→ 𝐺

ab
��→ 𝐺ab.

Furthermore, the transgression homomorphism (1.1) and the diagram (1.2) are contravariant with
respect to homomorphisms of reductive groups 𝜙 ∶ 𝐻 → 𝐺 such that 𝜙(𝑇𝐻) ⊆ 𝑇𝐺 .

The above theorem was proved for 𝐺 simply connected almost-simple and 𝑛 > 0 in [31, Theo-
rem 17]† and for 𝐺 = 𝐺𝐿𝑟, g ⩾ 2 and 𝑛 = 0 in [32, Theorem A], under the assumption char(𝑘) =
0.
Let us comment on the strategy of the proof of TheoremC. The uniqueness of the transgression

map 𝜏𝐺 follows from the injectivity of the pullback homomorphism

𝜄∗# ∶ RPic(Bun
[𝑑]
𝐺,g ,𝑛

) ↪ RPic(Bun𝑑𝑇𝐺,g ,𝑛
)

induced by the morphism 𝜄# ∶ Bun𝑑𝑇𝐺,g ,𝑛 → Bun
[𝑑]
𝐺,g ,𝑛

for any 𝑑 ∈ 𝜋1(𝑇𝐺) (see Corollary 5.1.2). To
prove the existence of the transgression map 𝜏𝐺 , we proceed (roughly) as follows (see Subsection
5.2): we first define, using the known properties of Chow groups of flag bundles (see Subsection
2.4), a homomorphism

𝑐1(𝜏𝐺)
⩽𝑚
ℚ
∶ (Sym2 Λ∗(𝑇𝐺))

𝒲𝐺 → 𝐴1
(
Bun[𝑑],⩽𝑚

𝐺,g ,𝑛

)
ℚ

for any𝑚 ⩾ 0,

such that the composition with 𝜄∗
#
(for 𝑚 ≫ 0) is the 𝒲𝐺-invariant part of the rational first

Chern class of 𝜏𝑇𝐺 (see Proposition 5.2.1); then we show that 𝑐1(𝜏𝐺)
⩽𝑚
ℚ

(for𝑚 ≫ 0) is the rational
first Chern class of the restriction of a homomorphism 𝜏𝐺 as in (1.1) by using a descent argu-
ment applied to the finite type, smooth and with geometrically integral fibers morphism (see
Theorem 3.4.1)

𝑗# ∶ Bun
𝑑
𝐵𝐺,g ,𝑛

→ Bun[𝑑]
𝐺,g ,𝑛

,

where 𝑗 ∶ 𝐵𝐺 ↪ 𝐺 is the Borel subgroup of 𝐺 containing the torus 𝑇𝐺 . Finally, the proof of
Theorem C(2) is based on a canonical identification of the pushout of the diagram (1.2) with
the subgroup of invariants RPic(Bun𝑑

𝑇𝐺,g ,𝑛
)𝒲𝐺 , for a suitable action of the Weyl group 𝒲𝐺 on

RPic(Bun𝑑
𝑇𝐺,g ,𝑛

) (see Subsection 5.3).
Finally, we consider the genus zero case, which is very different from the positive genus case.

To state the result, let us introduce some notation. Let ss ∶ 𝐺 ↠ 𝐺ss be the semisimplification of

† Indeed Faltings shows in [31, Theorem 17] that the Picard group of Bun𝐺(𝐶∕𝑆) for any family of curves 𝐶 → 𝑆 over a
connected Noetherian base-scheme 𝑆 and endowed with a section, with𝐺 simply connected almost-simple, is isomorphic
to (Sym2 Λ∗(𝑇𝐺))𝒲𝐺 ≅ ℤ via a ‘central charge’ homomorphism, which coincides with the inverse of our transgression
map 𝜏𝐺 .
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𝐺, that is, the quotient of𝐺 by its radical, and let sc ∶ 𝐺sc ↠ 𝐺ss be the universal cover. The choice
of a maximal torus 𝑇𝐺 ⊂ 𝐺 determines maximal tori 𝑇𝐺ss ⊂ 𝐺ss and 𝑇𝐺sc ⊂ 𝐺sc in such a way that
ss(𝑇𝐺) = 𝑇𝐺ss and sc(𝑇𝐺sc) = 𝑇𝐺ss . We get the following morphisms of tori

sc ∶ 𝑇𝐺sc
sc
��→ 𝑇𝐺

ss
��→ 𝑇𝐺ss . (1.3)

The following theorem says that, in the genus zero case, the relative Picard group is completely
determined by a suitable weight function.

TheoremD (see Theorems 4.2 and 5.2). Assume that g = 0. Let 𝐺 be a reductive group and choose
a maximal torus 𝜄 ∶ 𝑇𝐺 ↪ 𝐺. Fix 𝛿 ∈ 𝜋1(𝐺) and choose a lift 𝑑 ∈ 𝜋1(𝑇𝐺) of 𝛿, that is, such that
[𝑑] = 𝛿. Consider the homomorphism (called the weight function with respect to the representative
𝑑)

𝑤𝑑𝐺 ∶ RPic
(
Bun𝛿𝐺,0,𝑛

) 𝜄∗
#
��→ RPic

(
Bun𝑑𝑇𝐺,0,𝑛

) 𝑤𝑑
𝑇𝐺
����→ Λ∗(𝑇𝐺), (1.4)

where the function 𝑤𝑑
𝑇𝐺

(which is the weight function for the torus 𝑇𝐺) is defined by (using that
RPic(Bun𝑑

𝑇𝐺,0,𝑛
) is generated by tautological line bundles)

⎧⎪⎨⎪⎩
𝑤𝑑𝑇(ℒ(𝜒, 𝜁)) = [(𝑑, 𝜒) + |𝜁| + 1]𝜒,
𝑤𝑑𝑇(⟨(𝜒, 𝜁), (𝜒′, 𝜁′)⟩) = [(𝑑, 𝜒′) + |𝜁′|]𝜒 + [(𝑑, 𝜒) + |𝜁|]𝜒′.

(1) There exists a representative 𝑑 ∈ 𝜋1(𝑇𝐺) of 𝛿 ∈ 𝜋1(𝐺) such that 𝑤𝑑𝐺 is injective.
(2) Let Ω∗

𝑑
(𝑇𝐺) ⊂ Λ

∗(𝑇𝐺) be the subgroup of those characters, whose composition with Λ∗(sc) ∶
Λ∗(𝑇𝐺) → Λ

∗(𝑇𝐺sc) is equal to 𝑏(𝑑ss, −) for some element 𝑏 ∈ (Sym2 Λ∗(𝑇𝐺sc))𝒲𝐺 , where𝑑ss ∶=
𝜋1(ss)(𝑑) ∈ 𝜋1(𝑇𝐺ss ) = Λ(𝑇𝐺ss ) ⊆ Λ(𝑇𝐺sc). Then the image of 𝑤𝑑𝐺 is

Im(𝑤𝑑𝐺) =

{
Ω∗
𝑑
(𝑇𝐺) if 𝑛 ⩾ 1,

{𝜒 ∈ Ω∗
𝑑
(𝑇𝐺) ∶ (𝜒, 𝑑) ∈ 2ℤ} if 𝑛 = 0.

Furthermore, the homomorphism 𝑤𝑑
𝐺
is functorial for all the homomorphisms of reductive groups

𝜙 ∶ 𝐻 → 𝐺 such that 𝜙(𝑇𝐻) ⊆ 𝑇𝐺 .

The above theorem is proved for 𝑇 = 𝔾m and 𝑛 = 0 in [57, Proposition 2.6]. As we will see, the
case 𝐺 reductive and 𝑛 = 3 is a direct consequence of a result in [14].
In a sequel [36] to this paper, we compute the Picard group of the rigidification Bun𝛿

𝐺,g ,𝑛
�

𝑍(𝐺) of Bun𝛿
𝐺,g ,𝑛

by the center 𝑍(𝐺) of 𝐺 and the divisor class group of the good moduli space
of semistable 𝐺-bundles (extending the work of [47] for 𝔾m and of [32] for GL𝑟). This is closely
related to the computation of the subgroup associated to the 𝑍(𝐺)-gerbe Bun𝛿

𝐺,g ,𝑛
→ Bun𝛿

𝐺,g ,𝑛
�

𝑍(𝐺) in the Brauer group of the codomain (extending the work of [33] for GL𝑟). Moreover, we
also give alternative presentations of the Picard group of Bun𝛿

𝐺,g ,𝑛
and we study the restriction

homomorphism onto the Picard group of the moduli stack of principal 𝐺-bundles over a fixed
smooth curve (as computed in [14]).
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Finally, let us now discuss some potential applications of the main results of this paper (and of
its sequel [36]), which we will come back to in the near future. First of all, taking a line bundle 
on Bun𝛿

𝐺,g ,𝑛
(for a reductive group 𝐺) which is relatively positive in the sense of [69, (8.5)], and,

using the vanishing [69, Theorem 8.8] of the relative higher cohomology groups of , it follows
that (Φ𝛿

𝐺
)∗() is a vector bundle ong ,𝑛. For 𝐺 simply connected with Lie algebra 𝔤, the relative

Picard group of Bun𝐺,g ,𝑛 = Bun0𝐺,g ,𝑛 is freely generated by a line bundle , satisfying a suitable
positivity condition. In this case, (Φ𝛿

𝐺
)∗() is the (well-known) vector bundle of conformal blocks

attached to the triple (𝔤, 𝑙, 0), where 𝑙 is the unique integer such that 𝑙 =  and 0 is the 𝑛-tuple
of dominant integral weights corresponding to (0, … , 0). However, for 𝐺 non simply connected,
the above vector bundles do not seem to have been studied in full generality, and, in particular,
it would be interesting to determine their ranks (that is, to establish a general Verlinde formula),
to compute their Chern classes and to extend them to the stack g ,𝑛 of stable pointed curves.
Second, it would be natural to study a compactification of the universal stack of 𝐺-bundles over
g ,𝑛 (see [6, 52, 62, 63] for some recent progress), and to determine its Picard group aswas done for
𝔾m in [47] and forGL𝑟 in [32]. This could have potential applications to the study of the birational
geometry of Bun𝛿

𝐺,g ,𝑛
, as in [13, 20] for 𝐺 = 𝔾m.

Notations

1.1.We denote by 𝑘 = 𝑘 an algebraically closed field of arbitrary characteristic. All the schemes
and algebraic stacks that we will appear in this paper will be locally of finite type over 𝑘 (hence
locally Noetherian).

1.2. A curve is a connected, smooth and projective scheme of dimension one over 𝑘. The genus of
a curve 𝐶 is g(𝐶) ∶= dim𝐻0(𝐶, 𝜔𝐶).
A family of curves 𝜋 ∶ 𝐶 → 𝑆 is a proper and flat morphism of stacks whose geometric fibers

are curves. If all the geometric fibers of 𝜋 have the same genus g , then we say that 𝜋 ∶ 𝐶 → 𝑆 is a
family of curves of genus g (or a family of curves with relative genus g) and we set g(𝐶∕𝑆) ∶= g .
Note that any family of curves 𝜋 ∶ 𝐶 → 𝑆 with 𝑆 connected is a family of genus g curves for some
g ⩾ 0.

Remark 1.3. A family of genus g curves𝜋 ∶ 𝐶 → 𝑆 is projective (that is,𝜋 is a projectivemorphism)
if either g = g(𝐶∕𝑆) ≠ 1 or 𝜋 has a section 𝜎 ∶ 𝑆 → 𝐶.
Indeed, if g(𝐶∕𝑆) ≠ 1, then the relative dualizing line bundle 𝜔𝜋 is 𝜋-relatively ample if

g(𝐶∕𝑆) ⩾ 2 or 𝜋-relatively antiample if g(𝐶∕𝑆) = 0. On the other hand, if 𝜋 has a section 𝜎, then
Im(𝜎) is a relative Cartier divisor which is 𝜋-relatively ample.

Note that the assumptions in the above remark are really needed since there are examples of
families of genus one curves (without sections) that are not projective, see [59, XIII, 3.2] and [75].

1.4. Given two integers g , 𝑛 ⩾ 0, we will denote by g ,𝑛 the stack (over 𝑘) whose fiber over a
scheme 𝑆 is the groupoid of families (𝜋 ∶  → 𝑆, 𝜎 = {𝜎1, … , 𝜎𝑛}) of 𝑛-pointed curves of genus g
over 𝑆, that is, 𝜋 ∶  → 𝑆 is a family of curves of genus g and {𝜎1, … , 𝜎𝑛} are (ordered) sections of
𝜋 that are fiberwise disjoint.
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It is well-known that the stack g ,𝑛 is an irreducible algebraic stack, smooth and separated
over 𝑘, and of dimension 3g − 3 + 𝑛. Moreover, g ,𝑛 is a DM (Deligne–Mumford) stack if and
only if 3g − 3 + 𝑛 > 0.
We will denote by (𝜋g ,𝑛 = 𝜋 ∶ g ,𝑛 →g ,𝑛, 𝜎) the universal 𝑛-pointed curve overg ,𝑛.

1.5. A linear algebraic group over 𝑘 is a group scheme of finite type over 𝑘 that can be realized as
a closed algebraic subgroup ofGL𝑛, or equivalently it is an affine group scheme of finite type over
𝑘. We will be dealing almost always with linear algebraic groups that are smooth (which is always
the case if char(𝑘) = 0) and connected.
Given a linear algebraic group 𝐺, a principal 𝐺-bundle over an algebraic stack 𝑆 is a 𝐺-torsor

over 𝑆, where 𝐺 acts on the right.

2 PRELIMINARIES

2.1 Reductive groups

In this subsection, we will collect some result on the structure of reductive groups, that will be
used in what follows. An excellent introduction to reductive groups can be found in [49].
Let us first recall that a reductive group (over 𝑘) is a smooth and connected linear algebraic group

(over 𝑘) which does not contain non-trivial connected normal unipotent algebraic subgroups.
To any reductive group 𝐺, we can associate in a canonical way two semisimple groups and two
(algebraic) tori:

∙ the derived subgroup𝒟(𝐺) ∶= [𝐺, 𝐺];
∙ the abelianization 𝐺ab ∶= 𝐺∕𝒟(𝐺);
∙ the radical subgroupℛ(𝐺), which is equal (since 𝐺 is reductive) to the connected component
of identity of the center𝒵(𝐺);

∙ the semisimplification 𝐺ss ∶= 𝐺∕ℛ(𝐺).

The above four reductive groups associated to 𝐺 fit in a cross-like diagram:

(2.1.1)

where the horizontal and vertical lines are short exact sequences of reductive groups, the upper
right diagonal arrow is a central isogeny of semisimple groups and the lower left diagonal arrow
is a central isogeny of tori.
Since the two semisimple groups𝒟(𝐺) and 𝐺ss are isogenous, they share the same simply con-

nected cover, that we will denote by 𝐺sc, and the same adjoint quotient, that we will denote by
𝐺ad. Hence, we have the following tower of central isogenies of semisimple groups

𝐺sc ↠ 𝒟(𝐺) ↠ 𝐺ss ↠ 𝐺ad. (2.1.2)
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The Lie algebra 𝔤 of 𝐺 splits as

𝔤 = 𝔤ab ⊕ 𝔤ss, (2.1.3)

where 𝔤ab is the abelian Lie algebra of the tori ℛ(𝐺) and 𝐺ab, whose dimension is called the
abelian rank of𝐺, and 𝔤ss is the semisimple Lie algebra of each of the semisimple groups in (2.1.2),
whose rank is called the semisimple rank of 𝐺. The semisimple Lie algebra 𝔤ss decomposes as a
direct sum of simple Lie algebras of classical type (that is, type 𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛, 𝐸6, 𝐸7, 𝐸8, 𝐹4
or 𝐺2). If 𝐺 is a semisimple group such that its Lie algebra 𝔤 = 𝔤𝑠𝑠 is simple, then 𝐺 is said to
be almost-simple.
Recall now that all maximal tori of 𝐺 are conjugate and let us fix one such maximal torus, that

we call 𝑇𝐺 . We will denote by 𝐵𝐺 the Borel subgroup of 𝐺 that contains 𝑇𝐺 and by 𝒩(𝑇𝐺) the
normalizer of 𝑇𝐺 in 𝐺, so that

𝒲𝐺 ∶=𝒩(𝑇𝐺)∕𝑇𝐺 (2.1.4)

is the Weyl group of 𝐺.
The maximal torus 𝑇𝐺 induces compatible maximal tori of every semisimple group appearing

in (2.1.2), that we will call, respectively, 𝑇𝐺sc , 𝑇𝒟(𝐺), 𝑇𝐺ss and 𝑇𝐺ad . These tori fit into the following
commutative diagram:

(2.1.5)

where the horizontal and vertical lines are short exact sequences of tori, and the diagonal arrows
are (central) isogenies of tori. Using the canonical realization (2.1.4) of the Weyl group (and the
similar ones for the semisimple groups in (2.1.2)), diagram (2.1.5) induces canonical isomorphisms
of Weyl groups

𝒲𝐺sc ≅𝒲𝒟(𝐺) ≅𝒲𝐺 ≅𝒲𝐺ss ≅𝒲𝐺ad . (2.1.6)

Recall now that a torus 𝑇 determines two canonical lattices (that is, free abelian groups) of rank
equal to the dimension of 𝑇:

∙ the character lattice Λ∗(𝑇) ∶= Hom(𝑇, 𝔾m),
∙ the cocharacter lattice Λ(𝑇) ∶= Hom(𝔾m, 𝑇).

The above lattices are in canonical duality via the pairing given by composition

(−,−) ∶ Hom(𝔾m, 𝑇) ×Hom(𝑇, 𝔾m)⟶ Hom(𝔾m, 𝔾m) = ℤ. (2.1.7)
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By taking the cocharacter lattices of the tori in the diagram (2.1.5), we get the following 𝒲𝐺-
equivariant commutative diagram of lattices

(2.1.8)

where the horizontal and vertical lines are short exact sequences and the diagonal arrows are
finite index inclusions. Note that there are natural identifications

Λ(𝑇𝐺sc) ≅ Λcoroots(𝔤
ss) and Λ(𝑇𝐺ad) ≅ Λcoweights(𝔤

ss),

whereΛcoroots(𝔤ss) (respectively,Λcoweights(𝔤ss)) is the lattice of coroots (respectively, of coweights)
of the semisimple Lie algebra 𝔤ss.
In a similar way, if we take the character lattices of the tori in the diagram (2.1.5), we get the

following𝒲𝐺-equivariant commutative diagram of lattices

(2.1.9)

where the horizontal and vertical lines are short exact sequences and the diagonal arrows are
finite index inclusions. Note that there are natural identifications

Λ∗(𝑇𝐺sc) ≅ Λweights(𝔤
ss) and Λ(𝑇𝐺ad) ≅ Λroots(𝔤ss),

where Λweights(𝔤ss) (respectively, Λroots(𝔤ss)) is the lattice of weights (respectively, of roots) of the
semisimple Lie algebra 𝔤ss.
Note that the two diagrams (2.1.8) and (2.1.9), together with the root system of the semisimple

Lie algebra 𝔤ss, are equivalent to the root data of the reductive group 𝐺 (see [49, section 19]), and
hence it completely determines the reductive group 𝐺.
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The fundamental group 𝜋1(𝐺) of 𝐺 is canonically isomorphic to Λ(𝑇𝐺)∕Λ(𝑇𝐺sc) and it fits into
the following short exact sequence of finitely generated abelian groups

Λ(𝑇𝒟(𝐺))

Λ(𝑇𝐺sc)
↪ 𝜋1(𝐺) =

Λ(𝑇𝐺)

Λ(𝑇𝐺sc)
↠ Λ(𝐺ab), (2.1.10)

where the first term is the torsion subgroup of 𝜋1(𝐺) and the last term is the torsion-free quotient
of 𝜋1(𝐺).
We end this subsection with the following lemma that will be useful later on.

Lemma 2.1.1. Let 𝐺 be a reductive group with maximal torus 𝑇𝐺 ⊂ 𝐺 and consider the natural
action of the Weyl group𝒲𝐺 on Λ∗(𝑇𝐺). Then we have an isomorphism

Λ∗
ab
∶ Λ∗(𝐺ab)

≅
�→ Λ∗(𝑇𝐺)

𝒲𝐺 .

Proof. By taking the 𝒲𝐺-invariants in the short exact 𝒲𝐺-equivariant sequence in the central
column of (2.1.9) and using that𝒲𝐺 ≅𝒲𝒟(𝐺) acts trivially on Λ∗(𝐺ab), we get an exact sequence

0 → Λ∗(𝐺ab)
Λ∗
ab
���→ Λ∗(𝑇𝐺)

𝒲𝐺 → Λ∗(𝑇𝒟(𝐺))
𝒲𝒟(𝐺) .

Hence, it is enough to show that Λ∗(𝑇𝒟(𝐺))𝒲𝒟(𝐺) = 0. With this aim, take an element
𝜆 ∈Λ∗(𝑇𝒟(𝐺))

𝒲𝒟(𝐺) ⊂ Λ∗(𝑇𝐺sc) ≅ Λweights(𝔤
ss) and write it as rational linear combination of fun-

damental weights of 𝔤ss, that is, 𝜆 =
∑𝑟
𝑖=1 𝑏𝑖𝜖𝑖 , with 𝑏𝑖 ∈ ℚ. For any 𝑖, using standard properties of

the reflection 𝑠𝛼𝑖 ∈𝒲𝒟(𝐺) (respectively, 𝑠−𝛼𝑖 ) associated to the simple root 𝛼𝑖 (respectively, −𝛼𝑖)
and the invariance of 𝜆 under the action of the Weyl group𝒲𝒟(𝐺), we have that

𝑏𝑖 = (𝜆, 𝛼
∨
𝑖
) = (𝑠−𝛼𝑖 (𝜆), 𝛼

∨
𝑖
) = (𝜆, 𝑠𝛼𝑖 (𝛼

∨
𝑖
)) = (𝜆, −𝛼∨

𝑖
)) = −𝑏𝑖,

which implies 𝜆 = 0, as required. □

2.2 Integral bilinear symmetric forms and integral quadratic forms

In this subsection, we review some facts on integral bilinear symmetric forms and integral
quadratic forms.
Let Λ be a lattice of rank 𝑟, that is, Λ ≅ ℤ𝑟. We put integral bilinear (symmetric) forms and

quadratic forms on Λ (or Λ-integral)

Bil Λ ∶= {𝐵 ∶ Λ × Λ → ℤ such that 𝐵 is bilinear},

Bil𝑠 Λ ∶= {𝐵 ∶ Λ × Λ → ℤ such that 𝐵 is bilinear and symmetric},

QuadΛ ∶= {𝑄 ∶ Λ → ℤ such that 𝑄 is quadratic},

(2.2.1)

where, by definition, a quadratic form 𝑄 satisfies: 𝑄(𝑎 ⋅ 𝑥) = 𝑎2𝑄(𝑥) for any 𝑎 ∈ ℤ, 𝑥 ∈ Λ and
(𝑥, 𝑦) ↦ 𝑄(𝑥 + 𝑦) − 𝑄(𝑥) − 𝑄(𝑦) is a bilinear form on Λ.
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Integral symmetric bilinear forms and quadratic forms on Λ are related by the following maps

(2.2.2)

The maps 𝑞 and 𝑏 are injective with image given by even symmetric bilinear or quadratic forms

Im(𝑏) = (Bil𝑠 Λ)ev ∶= {𝐵 ∈ Bil𝑠 Λ ∶ 𝐵(𝑥, 𝑥) is even for any 𝑥 ∈ Λ},

Im(𝑞) = (QuadΛ)ev ∶= {𝑄 ∈ QuadΛ ∶ 𝑄(𝑥 + 𝑦) − 𝑄(𝑥) − 𝑄(𝑦) is even for any 𝑥, 𝑦 ∈ Λ}.
(2.2.3)

Note that both the compositions 𝑞 ◦ 𝑏 and 𝑏 ◦ 𝑞 are multiplication by 2.
Now we reinterpret the above constructions in terms of the dual lattice Λ∗ ∶= Hom(Λ,ℤ). On

the tensor product Λ∗ ⊗ Λ∗ there is an involution 𝑖 defined by 𝑖(𝜒 ⊗ 𝜇) = 𝜇 ⊗ 𝜒. Consider the
following lattices

(Λ∗ ⊗ Λ∗)𝑠 ∶= (Λ∗ ⊗ Λ∗)𝑖 ⊂ Λ∗ ⊗ Λ∗ and Sym2 Λ∗ ∶=
Λ∗ ⊗ Λ∗⟨𝜒 ⊗ 𝜇 − 𝜇 ⊗ 𝜒⟩ . (2.2.4)

We will denote the elements of Sym2 Λ∗ in the following way: 𝜒 ⋅ 𝜇 ∶= [𝜒 ⊗ 𝜇].
The lattices in (2.2.4) are isomorphic to the lattices of integral (symmetric) bilinear forms and

quadratic forms on Λ, respectively, via the following isomorphisms:

(2.2.5)
In terms of the isomorphisms (2.2.5), the maps in (2.2.2) take the following form

(2.2.6)
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If we fix a basis {𝜒𝑖}𝑟𝑖=1 of Λ
∗, then a basis of (Λ∗ ⊗ Λ∗)𝑠 is given by {{𝜒𝑖 ⊗ 𝜒𝑖}𝑖 ∪ {𝜒𝑖 ⊗ 𝜒𝑗 + 𝜒𝑗 ⊗

𝜒𝑖}𝑖<𝑗}, while a basis of Sym2 Λ∗ is given by {𝜒𝑖 ⋅ 𝜒𝑗}𝑖⩽𝑗 . Using the above basis, it follows that

coker(𝑏) = (ℤ∕2ℤ)𝑟 and coker(𝑞) = (ℤ∕2ℤ)(
𝑟
2).

We end this subsection with some results (that we will need later on) on 𝒲𝐺sc -invariant
quadratic forms on the lattice of cocharacters Λ(𝑇𝐺sc), where 𝑇𝐺sc is a (fixed) maximal torus of
a simply connected semisimple group 𝐺sc. As in § 2.1, we will denote by 𝐺sc ↠ 𝐺ad the adjoint
quotient of 𝐺sc, that is, the quotient of 𝐺sc by its finite center.
From what we said above, there are canonical isomorphisms

𝑏 ∶ Sym2 Λ∗(𝑇𝐺sc) = QuadΛ(𝑇𝐺sc)
≅
�→ (Bil𝑠 Λ(𝑇𝐺sc))

ev . (2.2.7)

Note that this isomorphism is equivariant with respect to the natural action of the Weyl group
𝒲𝐺sc on both sides.
We are interested in the invariant subgroup (Sym2 Λ∗(𝑇𝐺sc))𝒲𝐺sc , which therefore parame-

terizes𝒲𝐺sc -invariant even symmetric bilinear forms (or, equivalently,𝒲𝐺sc -invariant quadratic
forms) on Λ(𝑇𝐺sc) ≅ Λcoroots(𝔤ss). Let us first compute its rank.

Lemma 2.2.1.

(i) If𝐺sc is almost simple, then (Sym2 Λ∗(𝑇𝐺sc))𝒲𝐺sc is freely generated by an even symmetric bilin-
ear form 𝐵𝐺sc (called the basic inner product of 𝐺sc), which is non-degenerate and it satisfies
𝐵𝐺sc(𝛼

∨, 𝛼∨) = 2 for all short coroots 𝛼∨.
(ii) If 𝐺sc = 𝐺sc

1
× … × 𝐺sc𝑠 is the decomposition of 𝐺sc into almost simple factors, then

(Sym2 Λ∗(𝑇𝐺sc))
𝒲𝐺sc = (Sym2 Λ∗(𝑇𝐺sc

1
))
𝒲𝐺sc

1 ⊕ …⊕ (Sym2 Λ∗(𝑇𝐺sc𝑠 ))
𝒲𝐺sc𝑠 .

Proof. Part (i) is the content of [23, Lemma 1.7.5] and part (ii) can be proved as in [23, (1.8.3)]. □

Observe that we have a 𝒲𝐺sc -equivariant inclusion of lattices Λ(𝑇𝐺sc) ⊂ Λ(𝑇𝐺ad), see (2.1.8).
Hence, we can extend any (respectively, 𝒲𝐺sc -invariant) symmetric bilinear form 𝐵 ∶ Λ(𝑇𝐺sc) ×
Λ(𝑇𝐺sc) → ℤ to a unique rational (respectively, 𝒲𝐺sc -invariant) symmetric bilinear form 𝐵′ ∶

Λ(𝑇𝐺ad) × Λ(𝑇𝐺ad) → ℚ, called its rational extension.

Lemma 2.2.2. If 𝐵 ∈ (Sym2 Λ∗(𝑇𝐺sc))𝒲𝐺sc , then its rational extension 𝐵′ on Λ(𝑇𝐺ad) × Λ(𝑇𝐺ad)
is integral in Λ(𝑇𝐺ad) × Λ(𝑇𝐺sc) and Λ(𝑇𝐺sc) × Λ(𝑇𝐺ad), that is, 𝐵′(Λ(𝑇𝐺ad) × Λ(𝑇𝐺sc) + (Λ(𝑇𝐺sc) ×
Λ(𝑇𝐺ad)) ⊆ ℤ.

Proof. See [14, Lemma 4.3.4]. □

The above lemma allows us to define the contraction homomorphism associated to any element
𝑑 ∈ Λ(𝑇𝐺ad):

(𝑑, −) ∶ (Sym2 Λ∗(𝑇𝐺sc))
𝒲𝐺sc → Λ∗(𝑇𝐺sc)

𝐵 ↦ 𝐵(𝑑,−) ∶= 𝐵′(𝑑, −),
(2.2.8)

where 𝐵′ is the rational extension of 𝐵.
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Wewill need the following lemma, which tells us when the contraction homomorphism (𝑑, −)
is injective.

Lemma 2.2.3. Let 𝐺ad = 𝐺ad
1
× … × 𝐺ad𝑠 be the decomposition of 𝐺ad into almost simple factors

(which are then automatically semisimple adjoint groups) and choose maximal tori in such a way
that 𝑇𝐺ad = 𝑇𝐺ad

1
× … × 𝑇𝐺ad𝑠

.

(i) The contraction homomorphism (𝑑, −) associated to an element 𝑑 ∈ Λ(𝑇𝐺ab) is injective if and
only if 𝑑 satisfies the following condition

𝑑 = 𝑑1 +⋯ + 𝑑𝑠 ∈ Λ(𝑇𝐺ad) = Λ(𝑇𝐺ad
1
) ⊕ …⊕ Λ(𝑇𝐺ad𝑠

) with 𝑑𝑖 ≠ 0 for every 1 ⩽ 𝑖 ⩽ 𝑠. (∗)

(ii) For every 𝛿 ∈ 𝜋1(𝐺ad) =
Λ(𝑇

𝐺ad
)

Λ(𝑇𝐺sc )
, there exists a representative 𝑑 ∈ Λ(𝑇𝐺ad) of 𝛿, that is, [𝑑] = 𝛿,

that satisfies condition (*).

Proof. It follows easily from Lemma 2.2.1, see the proof of [14, Lemma 4.3.6]. □

2.3 Picard groups of algebraic stacks

In this subsection, we will collect some facts about the Picard group of algebraic stacks (locally of
finite type over 𝑘).
The first result describes the behavior of the Picard group under restriction to open substacks.

Lemma 2.3.1. Let  be a regular algebraic stack and  ⊂  be an open substack. Then the
restriction morphism

Pic()⟶ Pic( )

is surjective and it is an isomorphism if the codimension of the complement ∖ is at least two.

Proof. See [15, Lemma 7.3]. □

The next result (which is a generalization of [5, Lemma 5.2]) will be used several times in what
follows in order to descend a line bundle along a flat morphism of finite type.

Proposition 2.3.2. Let  be a regular algebraic stack, flat and of finite type over a regular integral
stack  that is generically a scheme. Assume that the fibers of 𝑓 ∶  →  are integral. Then we have
an exact sequence of Picard groups

Pic()
𝑓∗

��→ Pic()
res𝜂
���→ Pic(𝜂) → 0,

where 𝜂 ∶= Spec(𝑘()) is the generic point of  and res𝜂 is the restriction to the generic fiber 𝜂 ∶=
 × 𝜂.

Proof. It can be proven using the same arguments in the proof of [5, Lemma 5.2], which deals with
the special case  = Spec 𝑅 with 𝑅 a unique factorization domain (in which case Pic() = 0).



2080 FRINGUELLI and VIVIANI

The proof of the surjectivity of res𝜂 is the same as in [5, Lemma 5.2], using the fact that 
is regular.
The inclusion Im(𝑓∗) ⊆ ker(res𝜂) is obvious. Let us sketch a proof of the inclusion Im(𝑓∗) ⊇

ker(res𝜂), adapting the argument of [5, Lemma 5.2]. Let 𝐿 be a line bundle on  which is trivial
on the generic fiber𝜂. Choose a nowhere vanishing section of 𝐿|𝜂 ; this will extend to a section 𝑠
over some open substack ⊂  containing the generic fiber. Let𝐷 be the Cartier divisor defined
by 𝑠. In particular, we have that (𝐷) ≅ 𝐿. Write𝐷 =

∑
𝑖 𝑛𝑖𝐷𝑖 with 𝑛𝑖 ∈ ℤ and𝐷𝑖 prime divisors.

Since 𝑓 is equidimensional and dominant (being flat over an integral base) and the image 𝐸𝑖 ∶=
𝑓(𝐷𝑖) does not contain the generic point 𝜂 (by construction), we conclude that𝐸𝑖 is a prime divisor
of  . Since the fibers of 𝑓 are integral, we must have that 𝐷𝑖 = 𝑓−1(𝐸𝑖). Each prime divisor 𝐸𝑖
is Cartier because  is regular and, by what proved above, 𝑓∗ (

∑
𝑖 𝑛𝑖𝐸𝑖) =  (

∑
𝑖 𝑛𝑖𝐷𝑖) = 𝐿,

which concludes the proof. □

The following condition on a morphism of stacks will play an important role in what follows.
Recall that a morphism 𝜋 ∶  →  of algebraic stacks is fpqc, if it is faithfully flat and, for any
point 𝑥 ∈  , there exists an open neighborhood  ⊂  such that the image 𝜋( ) ⊂  is open
and the restriction 𝜋| ∶  → 𝜋( ) is quasi-compact (see [73, section 2.3.2]). For example, any
morphism 𝜋 ∶  →  that is faithfully flat and locally of finite presentation (that is, it is fppf) is
fpqc.

Definition 2.3.3. Let 𝜋 ∶  →  be a morphism of algebraic stacks. We will say that 𝜋 is Stein
if it is fpqc and the natural homomorphism (𝜋 )# ∶  → (𝜋 )∗

is an isomorphism for any
arbitrary base change  →  , where𝜋 ∶  =  ×  →  is the base change of𝜋 through the
morphism  →  .

For a Stein morphism 𝜋 ∶  →  , we have that 𝜋∗(𝔾m) = 𝔾m and hence the pullback map
𝜋∗ ∶ Pic() → Pic() on Picard groups is injective. We will need the following lemma on the
pullback of the relative Picard group

RPic(∕) ∶= Pic()∕𝜋∗(Pic()), (2.3.1)

along an fpqc morphism.

Lemma2.3.4. Let𝜋 ∶  →  be a Steinmorphismof algebraic stacks. Then, for any fpqcmorphism
 ′ →  , the pullback homomorphism

RPic(∕) → RPic(′∕
′)

of relative Picard groups is injective.

Proof. The Leray spectral sequences for the fppf sheaf 𝔾m with respect to the morphisms 𝜋 and
𝜋′ give the following commutative diagram of groups:
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with injective vertical arrows. The top horizontal arrow is injective because  ′ →  is fpqc and
𝑅1𝜋∗𝔾m is a sheaf for the fpqc topology. From the above commutative diagram, the bottom
horizontal arrow is also injective. □

Finally, we need to recall some facts about the Picard group of a quotient stack over 𝑘, which
in this text will always mean an algebraic stack of finite type over 𝑘 of the form [𝑋∕𝐺] with 𝑋 an
algebraic space of finite type over 𝑘 and 𝐺 a (smooth) linear algebraic group over 𝑘.
Recall that for a quotient stack  = [𝑋∕𝐺] the Picard group Pic() coincides with the equiv-

ariant Picard group Pic𝐺(𝑋) (that is, the group of 𝐺-linearized line bundles on 𝑋) while the
first operational Chow group 𝐴1() coincides with the first equivariant operational Chow group
𝐴1
𝐺
(𝑋) (as defined in [28, section 2.6]).

Proposition 2.3.5 (Edidin–Graham [28]). Let  = [𝑋∕𝐺] be a quotient stack over 𝑘.

(i) If  is locally factorial (for example, if it is smooth), then there exists an algebraic space 𝑌
of finite type over 𝑘 (called an equivariant approximation of [𝑋∕𝐺]) together with a smooth,
surjective, finite type morphism 𝑓 ∶ 𝑌 →  that induces an isomorphism

𝑓∗ ∶ Pic()
≅
�→ Pic(𝑌).

(ii) If  is smooth, the first Chern class

𝑐1 ∶ Pic() → 𝐴
1()

is an isomorphism.
(iii) Assume 𝑝 ∶  →  is either a representable morphism of locally factorial algebraic stacks or a

smooth morphism of regular stacks, we have the following commutative diagram of groups

where 𝑓 ∶ 𝑌 →  is any equivariant approximation of  .

Proof. Part (ii) follows from [28, Corollary 1].
Part (i): Pick a representation 𝑉 of 𝐺 such that 𝐺 acts freely on an open subset 𝑈 of 𝑉 whose

complement has codimension at least 2 and set 𝑌 ∶= 𝑋 × 𝑈∕𝐺, which is an algebraic space (of
finite type over 𝑘) since 𝐺 acts freely on 𝑋 × 𝑈. Consider the morphism

𝑓 ∶ 𝑌 = 𝑋 × 𝑈∕𝐺
𝑖
�→ [𝑋 × 𝑉∕𝐺]

ℎ
�→ [𝑋∕𝐺] =  ,

where 𝑖 is induced by the inclusion 𝑈 ↪ 𝑉 and ℎ is induced by the first projection 𝑋 × 𝑉 → 𝑋.
From [28, Lemma 2], we deduce that the pullback map 𝑓∗ induces an isomorphism

𝑓∗ ∶ Pic() = Pic𝐺(𝑋)
ℎ∗

��→
≅
Pic𝐺(𝑋 × 𝑉)

𝑖∗

��→
≅
Pic𝐺(𝑋 × 𝑈) = Pic(𝑌).
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Part (iii): Assume first that 𝑝 is a representable morphism of locally factorial stacks. Then there
exists a morphism of𝐺-schemes 𝜋 ∶ 𝐶 → 𝑋, such that 𝜋∕𝐺 ∶ [𝐶∕𝐺] → [𝑋∕𝐺] is exactly the mor-
phism 𝑝. Then the assertion follows by the construction of 𝑌 in the proof of part (i) and the
observation that  × 𝑌 ≅ 𝐶 × 𝑈∕𝐺.
Assume now that 𝑝 is smooth and  and  are regular. By construction 𝑓 is the composition of

an open immersion 𝑖 ∶ 𝑌 ↪ of regular stacks whose complement has codimension at least 2
and a vector bundle ℎ ∶ →  . So, the same happens to 𝑓 = ℎ̃ ◦ �̃� ∶  × 𝑌 → . Observe that
ℎ̃∗, respectively, �̃�∗, is an isomorphism because ℎ̃ is a vector bundle, respectively, by Lemma 2.3.1.
Hence, the same holds for 𝑓∗, concluding the proof. □

2.4 Chow groups of flag bundles

In this section, we collect some facts about Chow groups of flags bundles (i.e bundles of flag vari-
eties). As usual, 𝐺 is a reductive group, and we fix a Borel subgroup 𝐵 = 𝐵𝐺 ⊂ 𝐺 and a maximal
torus 𝑇 = 𝑇𝐺 ⊂ 𝐵.
The flag variety𝐺∕𝐵 is a smooth projective variety of dimension𝑁 ∶= dim𝐺 − dim𝐵. The quo-

tient 𝐺∕𝑇 is an affine bundle on 𝐺∕𝐵. Let 𝐸 be a 𝐺-bundle over a scheme 𝐶. Since 𝐺 acts on 𝐸,
by taking the quotient with respect to 𝐵 and 𝑇, we obtain the flag bundle 𝐸∕𝐵 → 𝐶 and its affine
bundle 𝐸∕𝑇, respectively. They sit in the following cartesian diagram (on the left)

(2.4.1)

which induces a commutative diagram (on the right) at the level of operational Chow rings𝐴∗(−).
The isomorphisms in the right diagram come from the fact that both the verticalmaps in the upper
square of the left diagram are vector bundles. Furthermore, it is well-known (see, for example, [27,
Lemmas 2 and 3]) that

Sym∗ Λ∗(𝑇) ≅ 𝐴∗(𝑇) ≅ 𝐴∗(𝐵).

Hence, we have a well-defined commutative diagram of homomorphisms of graded rings:

(2.4.2)

where the vertical arrow is the isomorphism given by the pullback along 𝐸∕𝑇 → 𝐸∕𝐵. The next
result, due to Brion and Edidin–Graham, will be fundamental in the computation of the Picard
group of our main object.
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Proposition 2.4.1. Let 𝐸 → 𝐶 be a 𝐺-bundle over a scheme and let 𝑝 ∶ 𝐸∕𝐵 → 𝐶 be the associated
flag bundle. Then for any 𝑣 ∈ (Sym∗ Λ∗(𝑇𝐺))𝒲𝐺 ,

(i) we have the equality in 𝐴∗(𝐸∕𝐵)ℚ

𝑝∗𝑝∗𝑐
𝐺,𝐵
𝐸

(
𝑣 ⋅
∏
𝛼>0

𝛼

)
= |𝒲𝐺| ⋅ 𝑐𝐺,𝐵𝐸 (𝑣),

where {𝛼 > 0} ⊂ Λ∗(𝑇𝐺) is the set of positive roots with respect to the Borel subgroup 𝐵;
(ii) if 𝐸 → 𝐶 is locally trivial for the Zariski topology (for example, if it admits a 𝐵-reduction), there

exists a unique integral class Γ𝐺
𝐸
(𝑣) ∈ 𝐴∗(𝐶), functorial with respect to base changes of 𝐸 → 𝐶,

such that:
(a) we have the equality 𝑝∗Γ𝐺

𝐸
(𝑣) = 𝑐𝐺,𝐵

𝐸
(𝑣) in 𝐴∗(𝐸∕𝐵),

(b) we have the equality |𝒲𝐺| ⋅ Γ𝐺𝐸(𝑣) = 𝑝∗𝑐𝐺,𝐵𝐸 (𝑣 ⋅
∏
𝛼>0 𝛼) in 𝐴∗(𝐶),

Proof. Point (i): See [19, Proposition 1.2]. Point (ii): The assertion (a) is exactly the content of [27,
Theorem 1]. Consider the (integral) class in 𝐴∗(𝐸∕𝐵):

𝑚 ∶= |𝒲𝐺| ⋅ 𝑝∗Γ𝐺𝐸(𝑣) − 𝑝∗𝑝∗𝑐𝐺,𝐵𝐸
(
𝑣 ⋅
∏
𝛼>0

𝛼

)
= |𝒲𝐺| ⋅ 𝑐𝐺,𝐵𝐸 (𝑣) − 𝑝∗𝑝∗𝑐

𝐺,𝐵
𝐸

(
𝑣 ⋅
∏
𝛼>0

𝛼

)
.

We claim that𝑚 = 0 in 𝐴1(𝐸∕𝐵). Indeed, by diagram (2.4.2), the class𝑚 is the pullback of a class
from𝐴∗(𝐵) ≅ Sym∗ Λ∗(𝑇)which is torsion-free. Furthermore, by applying (i) to the flag bundle
𝐵 → 𝐺 (see Remark 2.4.2), we get that𝑚must be a torsion class, hence is zero. By hypothesis,
the bundle 𝑝 ∶ 𝐸∕𝐵 → 𝐶 is a Chow envelope. In particular, the pullback 𝑝∗ of integral Chow
groups is injective. Hence,𝑚 = 0 which implies (b). □

Remark 2.4.2. The point (𝑖) of the above proposition is still true if we assume that𝐶 is an algebraic
stack of finite type over 𝑘. It is essentially due to the fact that the computation in [19, Proposi-
tion 1.2] uses Grothendieck–Riemann–Roch theorem, which still holds in our setting because 𝑝
is representable, by diagram (2.4.1).

Using the diagram (2.4.2), we get the analogous result for the 𝐺∕𝑇-bundle 𝑞 ∶ 𝐸∕𝑇 → 𝐶.

Corollary 2.4.3. With the assumptions of Proposition 2.4.1, we have

1|𝒲𝐺|𝑞∗𝑝∗𝑐𝐺,𝐵𝐸
(
𝑣 ⋅
∏
𝛼>0

𝛼

)
= 𝑐𝐺,𝑇

𝐸
(𝑣) ∈ 𝐴∗(𝐸∕𝑇)ℚ for any 𝑣 ∈ (Sym∗ Λ∗(𝑇𝐺))𝒲𝐺 .

Remark 2.4.4. Observe that, even if the class |𝒲𝐺|−1∏𝛼>0 𝛼 is not integral, its image in𝐴𝑁(𝐺∕𝐵)
defines an integral class, which is indeed the Poincaré dual of the closed orbit [𝐵∕𝐵] ∈ 𝐺∕𝐵 (see
[24]). Themap 𝑐𝐺,𝐵

𝐺
∶ Sym𝑁 Λ∗(𝑇𝐺) → 𝐴

𝑁(𝐺∕𝐵) ≅ ℤ in degree𝑁 is not surjective for some reduc-
tive groups𝐺. The order of the cokernel is the so-called torsion index. So, for an arbitrary reductive
group 𝐺, there may not exist an integral class in Sym𝑁 Λ∗(𝑇𝐺) whose image in 𝐴𝑁(𝐺∕𝐵) is the
class [𝐵∕𝐵] ∈ 𝐺∕𝐵.
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2.5 Weak Franchetta conjecture

The aim of this section is to recall the so-called ‘weak Franchetta Conjecture’, which is the com-
putation of the relative Picard of the universal curve 𝜋 ∶ g ,𝑛 →g ,𝑛 (over our fixed base field
𝑘 = 𝑘):

RelPic(g ,𝑛) ∶= Pic(g ,𝑛)∕𝜋
∗ Pic(g ,𝑛).

Theorem 2.5.1 (Weak Franchetta Conjecture). The group RelPic(g ,𝑛) is generated by the rela-
tive dualizing line bundle 𝜔𝜋 and the line bundles {(𝜎1), … ,(𝜎𝑛)} associated to the universal
sections 𝜎1, … , 𝜎𝑛, subject to the following relations:

∙ if g = 1, then 𝜔𝜋 = 0;
∙ if g = 0, then (𝜎1) = ⋯ = (𝜎𝑛) and 𝜔𝜋 = (−2𝜎1).

The above result was proved for g ⩾ 3 by Arbarello–Cornalba [2] if char(𝑘) = 0 and by Schröer
[61] for an arbitrary field 𝑘. The extension to arbitrary pairs g , 𝑛 ⩾ 0 can be found in [35].
Note also that the result forRelPic(g ,𝑛)ℚ follows (under the assumption 2g − 2 + 𝑛 > 0, that is,

wheng ,𝑛 is aDMstack) from the computation ofPic(g ,𝑛)ℚ performed byArbarello–Cornalba
[3] in characteristic zero and by Moriwaki [51] in positive characteristic.

Remark 2.5.2. Note that the group RelPic(1,0) is trivial, which gives another proof of the fact that
𝜋 ∶ 1,0 →1,0 is not projective, see Remark 1.3.

The above theorem allows us to compute also the group of relative degree-0 line bundles on the
universal family 𝜋 ∶ g ,𝑛 →g ,𝑛:

RelPic0(g ,𝑛) ∶= {𝐿 ∈ RelPic(g ,𝑛)|𝐿 has 𝜋-relative degree 0}.
Corollary 2.5.3. The group RelPic0(g ,𝑛) is

(i) freely generated by 𝜔𝜋((2 − 2g)𝜎1) and (𝜎𝑖 − 𝜎𝑖+1) for 𝑖 = 1, … , 𝑛 − 1, if 𝑛 ⩾ 1 and g ⩾ 2;
(ii) freely generated by (𝜎𝑖 − 𝜎𝑖+1) for 𝑖 = 1, … , 𝑛 − 1, if 𝑛 ⩾ 1 and g = 1;
(iii) trivial if either 𝑛 = 0 or g = 0.

3 THE UNIVERSALMODULI STACK 𝐁𝐮𝐧𝑮,g ,𝒏

In this section,𝐺will be a connected (smooth) linear algebraic group over 𝑘 = 𝑘, that is, a connected
and smooth affine group scheme of finite type over 𝑘. Further restrictions on𝐺, like reductiveness,
will be specified when needed.
We denote by Bun𝐺,g ,𝑛 the universal moduli stack of 𝐺-bundles over 𝑛-pointed curves of genus

g . More precisely, for any scheme 𝑆, Bun𝐺,g ,𝑛(𝑆) is the groupoid of triples (𝐶 → 𝑆, 𝜎, 𝐸), where
(𝜋 ∶  → 𝑆, 𝜎 = {𝜎1, … , 𝜎𝑛}) is a family of 𝑛-pointed curves of genus g over 𝑆 and 𝐸 is a 𝐺-bundle
on 𝐶. We will denote by (𝜋 ∶ 𝐺,g ,𝑛 → Bun𝐺,g ,𝑛, 𝜎, ) the universal family of 𝐺-bundles.
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By definition, we have a forgetful surjective morphism

Φ𝐺(= Φ𝐺,g ,𝑛) ∶ Bun𝐺,g ,𝑛 ⟶g ,𝑛

(𝐶 → 𝑆, 𝜎, 𝐸) ↦ (𝐶 → 𝑆, 𝜎)
(3.1)

onto the moduli stack g ,𝑛 of 𝑛-pointed curves of genus g . Note that the universal 𝑛-pointed
curve (𝐺,g ,𝑛 → Bun𝐺,g ,𝑛, 𝜎) overBun𝐺,g ,𝑛 is the pullback of the universal𝑛-pointed curve (g ,𝑛 →

g ,𝑛, 𝜎) overg ,𝑛.
When 𝑛 = 0, we will remove the reference to the points from the notation (for example, Bun𝐺,g

instead of Bun𝐺,g ,0,g instead ofg ,𝑛, (𝐶 → 𝑆, 𝐸) instead of (𝐶 → 𝑆, 𝜎, 𝐸), etc).
For any family of curves 𝐶 → 𝑆, we denote by Bun𝐺(𝐶∕𝑆) the moduli stack of 𝐺-bundles on

𝐶 → 𝑆. More precisely, for any 𝑆-scheme 𝑇, Bun𝐺(𝐶∕𝑆)(𝑇) is the groupoid of𝐺-bundles on𝐶𝑇 ∶=
𝐶 ×𝑆 𝑇. By definition, we have a forgetful surjective morphism

Φ𝐺(𝐶∕𝑆) ∶ Bun𝐺(𝐶∕𝑆)⟶ 𝑆 (3.2)

The relation between the universal stacks Bun𝐺,g ,𝑛 and the relative stacks Bun𝐺(𝐶∕𝑆) goes as
follows. First of all, we have that

Bun𝐺(g ,𝑛∕g ,𝑛) = Bun𝐺,g ,𝑛. (3.3)

On the other hand, if the family 𝐶 → 𝑆 has constant relative genus g = g(𝐶∕𝑆), then we have
that

Bun𝐺(𝐶∕𝑆) = 𝑆 ×g
Bun𝐺,g , (3.4)

with respect to the modular morphism 𝑆 →g associated to the family 𝐶 → 𝑆.
The geometric properties of the universal stack Bun𝐺,g ,𝑛 and of the relative stack Bun𝐺(𝐶∕𝑆)

are collected in the following theorem.

Theorem 3.1 (Behrend [12], Wang [74]). Let 𝜋 ∶ 𝐶 → 𝑆 be a family of curves.

(i) Bun𝐺(𝐶∕𝑆) is an algebraic stack locally of finite presentation and smooth over 𝑆.
(ii) The relative diagonal of Bun𝐺(𝐶∕𝑆) → 𝑆 is affine and finitely presented.

In particular, this is true for Bun𝐺,g ,𝑛 overg ,𝑛.

Proof. Part (i): Bun𝐺(𝐶∕𝑆) is an algebraic stack locally of finite presentation over 𝑆 by [12,
Proposition 4.4.5] and smooth over 𝑆 by [12, Proposition 4.5.1] (see also [74, Proposition 6.18]).
Part (ii): Since the properties of being affine and finitely presented are both étale local on the

target, we can assume, up to replacing 𝑆 with an étale cover, that the family 𝜋 has a section.
This implies that the family 𝜋 is projective (since the image of a section defines a relatively ample
Cartier divisor), and hence the relative diagonal ofBun𝐺(𝐶∕𝑆) → 𝑆 is affine and finitely presented
by [74, Corollary 3.2.2].
The corresponding statement forBun𝐺,g ,𝑛 follows from the relative case applied to the universal

family 𝜋 ∶ g ,𝑛 →g ,𝑛. □
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Any morphism of connected linear algebraic groups 𝜙 ∶ 𝐺 → 𝐻 determines a morphism of
stacks overg ,𝑛

𝜙#(= 𝜙#,g ,𝑛) ∶ Bun𝐺,g ,𝑛 ⟶ Bun𝐻,g ,𝑛(
𝐶 → 𝑆, 𝜎, 𝐸

)
⟼

(
𝐶 → 𝑆, 𝜎, (𝐸 × 𝐻)∕𝐺

), (3.5)

where the (right) action of𝐺 on 𝐸 × 𝐻 is (𝑝, ℎ).g ∶= (𝑝.g , 𝜙(g)−1ℎ). And, similarly, given a family
of curves 𝐶 → 𝑆, we can define the morphism of stacks

𝜙#(= 𝜙#(𝐶∕𝑆)) ∶ Bun𝐺(𝐶∕𝑆) ⟶ Bun𝐻(𝐶∕𝑆)

𝐸 ⟼ (𝐸 × 𝐻)∕𝐺.
(3.6)

Remark 3.2. Since Φ𝐺,g ,𝑛 (respectively, Φ𝐺(𝐶∕𝑆)) is locally of finite type overg ,𝑛 (respectively,
𝑆) by Theorem 3.1(i), we deduce from [66, Tag 06U9] that the morphisms (3.5) (respectively, (3.6))
are locally of finite type.

Lemma 3.3. Any commutative (respectively, cartesian) diagram of connected linear algebraic
groups,

induces a commutative (respectively, cartesian) diagram of moduli stacks

The analogue statement is true for the stack of principal bundles over a fixed family of curves 𝐶 → 𝑆.

Proof. The proof is essentially the same as [14, Lemma 2.2.1]. □

Remark 3.4. Observe that if𝐺 is trivial, thenBun𝐺,g ,𝑛 =g ,𝑛. In particular, we have the following
cartesian diagrams

Similarly, for any family of curves 𝐶 → 𝑆, we have an isomorphism

Bun𝐺×𝐻(𝐶∕𝑆) ≅ Bun𝐺(𝐶∕𝑆) ×𝑆 Bun𝐻(𝐶∕𝑆).
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3.1 The connected components of 𝐁𝐮𝐧𝑮,g ,𝒏

In this subsection, we will recall the description of the connected components of Bun𝐺,g ,𝑛, we
determine their relative dimension overg ,𝑛 and we study when these connected components
are of finite type overg ,𝑛 (and hence also over 𝑘). And similarly for the connected components
of Bun𝐺(𝐶∕𝑆) → 𝑆.
Recall that to any connected (smooth) linear algebraic group 𝐺 over 𝑘 = 𝑘 it is possible to asso-

ciate, in a functorial way, a finitely generated abelian group, denoted by 𝜋1(𝐺) and called the
fundamental group† of 𝐺. For more details on the topic, we refer the reader to [48, section 10], see
also [17, section 1.8; 21; 22]. Consider the exact sequence of connected linear algebraic groups

1 → 𝐺𝑢 → 𝐺
red
���→ 𝐺red → 1, (3.1.1)

where 𝐺𝑢 is the unipotent radical of 𝐺 (that is, the largest connected normal subgroup of 𝐺 that
is unipotent) and 𝐺red ∶= 𝐺∕𝐺𝑢 is the reductive canonical quotient of 𝐺. From the definition of
fundamental group (see [48, section 10]), it follows immediately that the morphism red induces
an isomorphism‡

𝜋1(red) ∶ 𝜋1(𝐺)
≅
�→ 𝜋1(𝐺

red), (3.1.2)

where 𝜋1(𝐺red) can be computed from the root data of 𝐺red as explained in Subsection 2.1.

Theorem 3.1.1 (Hoffmann [39]). The connected components of Bun𝐺,g ,𝑛 (and of Bun𝐺(𝐶∕𝑆) for
any family of curves𝐶 → 𝑆 with 𝑆 connected) are in functorial bijection with the fundamental group
𝜋1(𝐺) of 𝐺.

Proof. Hoffmann proves in [39, Theorem 5.8] that, for a curve𝐶 over 𝑘 = 𝑘, the connected compo-
nents of Bun𝐺(𝐶∕𝑘) are in functorial bijection with 𝜋1(𝐺). This implies our result using thatΦ𝐺 ∶
Bun𝐺,g ,𝑛 →g ,𝑛 and Φ𝐺(𝐶∕𝑆) ∶ Bun𝐺(𝐶∕𝑆) → 𝑆 are smooth (and surjective) by Theorem 3.1,
and thatg ,𝑛 is connected. □

For any 𝛿 ∈ 𝜋1(𝐺), we denote with

Φ𝛿𝐺,g ,𝑛 = Φ
𝛿
𝐺 ∶ Bun

𝛿
𝐺,g ,𝑛 →g ,𝑛

(
respectively, Φ𝛿𝐺(𝐶∕𝑆) ∶ Bun

𝛿
𝐺(𝐶∕𝑆) → 𝑆

)
(3.1.3)

the corresponding connected component of Bun𝐺,g ,𝑛 (respectively, of Bun𝐺(𝐶∕𝑆) for a family of
curves 𝐶 → 𝑆 with 𝑆 connected).
The functoriality in the above Theorem 3.1.1 means that for any morphism 𝜙 ∶ 𝐺 → 𝐻 of

connected linear algebraic groups over 𝑘, the induced morphisms (3.5) and (3.6) respect the
decomposition into connected components, that is, for any 𝛿 ∈ 𝜋1(𝐺) and for any family of curves
𝐶 → 𝑆 with 𝑆 connected, we have that

𝜙#(Bun
𝛿
𝐺,g ,𝑛) ⊆ Bun

𝜋1(𝜙)(𝛿)
𝐻,g ,𝑛

and 𝜙#(Bun𝐺(𝐶∕𝑆)) ⊆ Bun
𝜋1(𝜙)(𝛿)
𝐻

(𝐶∕𝑆),

where 𝜋1(𝜙) ∶ 𝜋1(𝐺) → 𝜋1(𝐻) is the map induced by the morphism 𝜙.

† The name is justified by the fact that if 𝑘 = ℂ, then 𝜋1(𝐺) coincides with the topological fundamental group of the
complex Lie group 𝐺(ℂ).
‡ If 𝑘 = ℂ, this isomorphism follows from the well-known fact that the complex Lie group 𝐺𝑢(ℂ) is simply connected.
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Corollary 3.1.2. For every g , 𝑛 ⩾ 0 and 𝛿 ∈ 𝜋1(𝐺), the algebraic stack Bun𝛿𝐺,g ,𝑛 is smooth over 𝑘
(hence regular) and integral.

Proof. The algebraic stack Bun𝛿
𝐺,g ,𝑛

is smooth over 𝑘 because it is smooth over g ,𝑛 by Theo-
rem 3.1(i) andg ,𝑛 is smooth over 𝑘. Moreover, being also connected by Theorem 3.1.1, Bun𝛿

𝐺,g ,𝑛
is integral. □

We now determine the relative dimension of each connected component Bun𝛿
𝐺,g ,𝑛

overg ,𝑛.
To this aim, consider the morphism

𝜋1(det ◦ ad) ∶ 𝜋1(𝐺)
𝜋1(ad)
������→ 𝜋1(GL(𝔤))

𝜋1(det)
������→
≅

𝜋1(𝔾m) = ℤ, (3.1.4)

where ad = ad𝐺 ∶ 𝐺 → GL(𝔤) is the adjoint representation of 𝐺 and det ∶ GL(𝔤) → 𝔾m is the
determinant morphism.

Theorem 3.1.3. The relative dimension of Bun𝛿
𝐺,g ,𝑛

→g ,𝑛 (and of Bun𝛿
𝐺
(𝐶∕𝑆) → 𝑆 for any

family of curves 𝐶 → 𝑆 with 𝑆 connected) is equal to

(g − 1) dim𝐺 − 𝜋1(det ◦ ad)(𝛿).

If 𝐺 is reductive, then Bun𝐺,g ,𝑛 is equidimensional over g ,𝑛 (respectively, Bun𝐺(𝐶∕𝑆) is
equidimensional over 𝑆) of relative dimension equal to

(g − 1) dim𝐺.

Proof. Clearly, it is enough to prove the statement for Bun𝛿
𝐺
(𝐶∕𝑘) where 𝐶 is a curve over 𝑘 = 𝑘.

Fix a 𝐺-bundle 𝐸 on 𝐶. We denote by ad(𝐸) ∶= (𝐸 × 𝔤)∕𝐺 the adjoint bundle of 𝐸, that is, the
vector bundle on 𝐶 induced by 𝐸 via the adjoint representation ad ∶ 𝐺 → GL(𝔤).
It is well-known that the first-order infinitesimal deformations of a 𝐸 → 𝐶 are parameter-

ized by 𝐻1(𝐶, ad(𝐸)) while the infinitesimal automorphisms of 𝐸 → 𝐶 are parameterized by
𝐻0(𝐶, ad(𝐸)). Hence, the dimension of Bun𝛿

𝐺
(𝐶∕𝑘) at a point 𝐸 → 𝐶 is equal to

dim𝐻1(𝐶, ad(𝐸)) − dim𝐻0(𝐶, ad(𝐸)) = −𝜒(ad(𝐸)) = −𝜋1(det ◦ ad)(𝛿) − (1 − g) dim𝐺,

where in the last equality we have applied Riemann–Roch theorem to the vector bundle ad(𝐸)
over 𝐶 which has rank dim𝐺 and degree equal to 𝜋1(det ◦ ad)(𝛿). For another proof which does
not use deformation theory, see [12, section 8.1].
The last statement follows from the well-known fact that if 𝐺 is reductive, then Im(ad𝐺) ⊆

SL(𝔤). For another proof, see [12, Corollary 8.1.9]. □

We now determine which connected components Bun𝛿
𝐺,g ,𝑛

are of finite type over g ,𝑛 (and
hence also over 𝑘) and, similarly, which connected components Bun𝐺(𝐶∕𝑆) are of finite type over
𝑆. The answer turns out to depend solely on the group 𝐺 and not on the pair (g , 𝑛) nor on the
family 𝐶 → 𝑆 nor on the given connected component.
First of all, we show that unipotent groups give rise to finite type stacks of bundles. To achieve

this, we need the following lemma.
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Lemma 3.1.4. Let 𝑈 be a smooth connected normal unipotent subgroup in 𝐺. Then, it admits a
linearly filtered filtration, that is, a filtration

{1} ⊂ 𝑈𝑟 ⊂ … ⊂ 𝑈1 ⊂ 𝑈0 = 𝑈

of normal smooth connected unipotent subgroups of𝐺 such that the quotient𝑉𝑖 ∶= 𝑈𝑖∕𝑈𝑖+1 is a vec-
tor group, that is, it is isomorphic to𝔾𝑚𝑎 for some𝑚 ⩾ 1, and the action by conjugation of𝐺 restricted
to 𝑉𝑖 is linear, that is, factors through the natural action of GL𝑚 on 𝔾𝑚𝑎 .

Proof. Since 𝑘 is algebraically closed, 𝑈 is a smooth connected split unipotent group, see [16,
section 15]. By [46, Theorem B], there exists a filtration

{1} ⊂ 𝑈𝑟 ⊂ … ⊂ 𝑈1 ⊂ 𝑈0 = 𝑈

by𝐺-invariant normal subgroups of𝑈 such that the quotient𝑉𝑖 ∶= 𝑈𝑖∕𝑈𝑖+1 is a vector group and
the action by conjugation of𝐺 restricted to𝑉𝑖 is linear. Observe that the𝐺-invariance is equivalent
to say that 𝑈𝑖 is normal in 𝐺. The properties of being connected, smooth and unipotent are easy
to check. □

We are now ready to prove the following.

Proposition 3.1.5. Consider an exact sequence of smooth connected linear algebraic groups

1 → 𝑈 → 𝐺
𝜑
�→ 𝐻 → 1,

with 𝑈 unipotent. Then the morphism 𝜑# ∶ Bun𝐺,g ,𝑛 → Bun𝐻,g ,𝑛 (respectively, the
𝜑# ∶ Bun𝐺(𝐶∕𝑆) → Bun𝐻(𝐶∕𝑆) for any family of curves 𝐶 → 𝑆) is smooth, surjective and of
finite type.

Proof. We present the proof just for the universal moduli stacks; the proof for the relative case
Bun𝐺(𝐶∕𝑆) follows immediately by pulling back 𝜑# along the morphism 𝑆 →g associated to
the family of curves 𝐶 → 𝑆 (up to restricting to the connected components of 𝑆). By Lemma 3.1.4,
the group 𝑈 admits a linearly filtered filtration

{1} ⊂ 𝑈𝑟 ⊂ … ⊂ 𝑈1 ⊂ 𝑈0 = 𝑈 (3.1.5)

We proceed by induction on the length of the filtration.
∙ 𝑳𝒆𝒏g𝒕𝒉(𝑼∙) = 𝟎 By assumption,𝑈 ≅ 𝔾𝑚𝑎 and the action of 𝐺 by conjugation on𝑈 is linear.
Let us first show the surjectivity of 𝜑#. Let (𝜋 ∶ 𝐶 → 𝑇, 𝜎, 𝐹) ∈ Bun𝐻,g ,𝑛(𝑇). Since𝑈 is abelian,

there is a conjugation action of𝐻 on 𝑈 and we may form the quotient

𝑈𝐹𝐻 ∶= (𝐹 × 𝑈)∕𝐻 → 𝐶,

with respect to the diagonal action of 𝐻 on 𝐹 and 𝑈. By hypothesis 𝐺, and so 𝐻, acts linearly on
𝑈. So,𝑈𝐹

𝐻
is a vector bundle on 𝐶, hence 𝑅2(𝜋fppf)∗(𝑈𝐹𝐻) = 0. We may now apply [12, Proposition

4.2.5] in order to infer that 𝜑# is surjective.
Consider now an object (𝜋 ∶ 𝐶 → 𝑇, 𝜎, 𝐸) ∈ Bun𝐺,g ,𝑛(𝑇). By [12, Proposition 4.2.4], the fiber of

𝜑# over 𝜑#((𝜋 ∶ 𝐶 → 𝑇, 𝜎, 𝐸)) ∈ Bun𝐻,g ,𝑛(𝑇) is isomorphic to the moduli stack Bun𝑈𝐸
𝐺
(𝐶∕𝑇) of
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torsors under the (non-constant) underlying additive group scheme of the vector bundle

𝑈𝐸𝐺 ∶= (𝐸 × 𝑈)∕𝐺 → 𝐶,

where 𝐺 acts on 𝑈 by conjugation. By [12, Corollary 8.1.3], the stack Bun𝑈𝐸
𝐺
(𝐶∕𝑇) is smooth and

of finite type over 𝑇, which then implies the same property for 𝜑#.
∙ 𝒓 ∶=𝑳𝒆𝒏g𝒕𝒉(𝑼∙) > 𝟏 By hypothesis, 𝑈 sits in the middle of an exact sequence

1 → 𝑈1 → 𝑈 → 𝑉 → 1,

where 𝑈1 is a smooth connected unipotent normal subgroup of 𝐺 and 𝑉 is a vector group on
which 𝐺 acts linearly. In particular, we have that 𝜑# factors through

Bun𝐺,g ,𝑛 → Bun𝐺∕𝑈1,g ,𝑛 → Bun𝐻,g ,𝑛.

The second map is smooth, surjective and of finite type by the previous case. Observe that 𝑈1
admits a linearly filtered filtration of length 𝑟 − 1 (restrict the filtration (3.1.5) to𝑈1). By inductive
hypothesis, the map Bun𝐺,g ,𝑛 → Bun𝐺∕𝑈1,g ,𝑛 is smooth, surjective and of finite type and so is the
map 𝜑#. □

Corollary 3.1.6. Let 𝐺 be a smooth connected linear algebraic group and let red ∶ 𝐺 → 𝐺red
be its reductive quotient. Then red# ∶ Bun𝐺,g ,𝑛 → Bun𝐺red,g ,𝑛 (respectively, red# ∶ Bun𝐺(𝐶∕𝑆) →
Bun𝐺red(𝐶∕𝑆) for any family of curves 𝐶 → 𝑆) is smooth, surjective and of finite type.

Proof. Apply Proposition 3.1.5 to the exact sequence (3.1.1). □

We are now ready to show the following.

Proposition 3.1.7. For a connected smooth linear algebraic group𝐺 over 𝑘, the following conditions
are equivalent.

(i) The reductive group 𝐺red is a torus.
(ii) Φ𝛿

𝐺
∶ Bun𝛿

𝐺,g ,𝑛
→g ,𝑛 is of finite type for any pair g , 𝑛 ⩾ 0 and for any 𝛿 ∈ 𝜋1(𝐺).

(iii) Φ𝛿
𝐺
∶ Bun𝛿

𝐺,g ,𝑛
→g ,𝑛 is quasi-compact for some pair g , 𝑛 ⩾ 0 and for some 𝛿 ∈ 𝜋1(𝐺).

(iv) Bun𝛿
𝐺,g ,𝑛

is quasi-compact over 𝑘, for some pair g , 𝑛 ⩾ 0 and for some 𝛿 ∈ 𝜋1(𝐺).
(v) Φ𝛿

𝐺
(𝐶∕𝑆) ∶ Bun𝛿

𝐺
(𝐶∕𝑆) → 𝑆 is of finite type for any family of curves 𝐶 → 𝑆 with 𝑆 connected

and for any 𝛿 ∈ 𝜋1(𝐺).
(vi) Φ𝛿

𝐺
(𝐶∕𝑆) ∶ Bun𝛿

𝐺
(𝐶∕𝑆) → 𝑆 is quasi-compact over 𝑆, for some family of curves 𝐶 → 𝑆 with 𝑆

connected and for some 𝛿 ∈ 𝜋1(𝐺).

The above proposition could be well-known to the experts, but we are not aware of any
reference, so that we include a complete proof.

Proof. Let us split the proof in several steps.
(i) ⇒ (ii) and (v) By Proposition 3.1.5, the morphisms Bun𝛿

𝐺,g ,𝑛
→ Bun𝛿

𝐺red,g ,𝑛
and

Bun𝛿
𝐺
(𝐶∕𝑆) → Bun𝛿

𝐺red
(𝐶∕𝑆) are of finite type. Hence, it is enough to show that if 𝑇 is a torus,

then
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∙ Φ𝛿
𝑇
∶ Bun𝛿

𝑇,g ,𝑛
→g ,𝑛 is of finite type for any pair g , 𝑛 ⩾ 0 and for any 𝛿 ∈ 𝜋1(𝑇);

∙ Φ𝛿
𝑇
(𝐶∕𝑆) ∶ Bun𝛿

𝑇
(𝐶∕𝑆) → 𝑆 is of finite type for any family 𝐶 → 𝑆 (with 𝑆 connected) and for

any 𝛿 ∈ 𝜋1(𝑇).

This follows from the fact that, fixing an isomorphism 𝑇 ≅ 𝔾𝑟𝑚, the stack Bun
𝛿
𝑇,g ,𝑛

→g ,𝑛

(respectively, Bun𝛿
𝑇
(𝐶∕𝑆) → 𝑆) is isomorphic to the fibered product of 𝑟 connected components

of the Jacobian stack Bun𝔾m,g ,𝑛 →g ,𝑛 (respectively, Bun𝔾m(𝐶∕𝑆) → 𝑆) which is of finite type.
(ii)⇒ (iii) and (v)⇒ (vi): Obvious.
(iii)⇔ (iv) Sinceg ,𝑛 is quasi-compact and separated over 𝑘, then using [66, Tag 050Y] and

[66, Tag 050W], we deduce thatBun𝛿
𝐺,g ,𝑛

→g ,𝑛 is quasi-compact if and only if Bun𝛿𝐺,g ,𝑛 is quasi-
compact over 𝑘.
(iii) or (vi)⇒ (i) Both conditions (iii) and (vi) imply that there exists a curve 𝐶 over 𝑘 and an

element 𝛿 ∈ 𝜋1(𝐺) such that Bun𝛿𝐺(𝐶∕𝑘) is quasi-compact. Since the morphism Bun𝐺(𝐶∕𝑘) →
Bun𝐺red(𝐶∕𝑘) is surjective by Corollary 3.1.6, we deduce that Bun𝛿𝐺red(𝐶∕𝑘) is quasi-compact by
[66, Tag 050X]. Hence, the proof will follow from the following.

Claim. If 𝐺 is a reductive group such that Bun𝛿
𝐺
(𝐶∕𝑘) is quasi-compact, for some curve 𝐶 over 𝑘

and some 𝛿 ∈ 𝜋1(𝐺), then 𝐺 is a torus. □

To prove the claim, consider the upper semicontinuous function

ℎ ∶ Bun𝛿
𝐺
(𝐶∕𝑘) → ℤ

𝐸 ↦ dim𝐻0(𝐶, ad(𝐸)).
(3.1.6)

Since Bun𝛿
𝐺
(𝐶∕𝑘) is quasi-compact by assumption and ℎ is upper semicontinuous, then ℎ must

be bounded. We now deduce from the boundedness of ℎ the fact that 𝐺 must be a torus.
Fix a maximal torus and a Borel subgroup 𝑇𝐺 ⊂ 𝐵𝐺 ⊂ 𝐺. Let 𝑑 ∈ 𝜋1(𝑇𝐺) = Λ(𝑇𝐺) be a lift

of 𝛿 ∈ 𝜋1(𝐺) = Λ(𝑇𝐺)∕Λ(𝑇𝐺sc). Consider a 𝐺-bundle 𝐸 → 𝐶 in the image of the morphism
Bun𝑑

𝑇𝐺
(𝐶∕𝑘) → Bun𝛿

𝐺
(𝐶∕𝑘). Then its adjoint bundle splits as direct sum of line bundles

ad(𝐸) ≅ 
dim𝑇𝐺
𝐶

⨁
𝛼 root

𝐿𝛼,

such that deg 𝐿𝛼 = (𝑑, 𝛼). By direct computation, for any integer𝑚 there exists a lift 𝑑𝑚 of 𝛿 such
that (𝑑𝑚, 𝛼) ⩾ 𝑚 for any positive root 𝛼. In particular, for any 𝑚 ⩾ max{2g − 2, 0} where g is the
genus of 𝐶, there exists a 𝐺-bundle 𝑃𝑚 → 𝐶 in Bun𝛿𝐺(𝐶∕𝑘) such that

ℎ(𝑃𝑚) = dim𝑇𝐺 +
∑
𝛼>0 dim𝐻

0(𝐶, 𝐿𝛼) = dim𝑇𝐺 +
∑
𝛼>0((𝑑𝑚, 𝛼) + 1 − g) ⩾

⩾ dim𝑇𝐺 + #{𝛼 > 0}(𝑚 + 1 − g) = dim𝑇𝐺 + (dim𝐵𝐺 − dim𝑇𝐺)(𝑚 + 1 − g).

Since ℎ is bounded (as observed above), we must have that dim𝐵𝐺 = dim𝑇𝐺 , which then forces
𝑇𝐺 = 𝐵𝐺 = 𝐺, and the claim is proved. □

3.2 Finite type open subsets of 𝐁𝐮𝐧𝑮,g ,𝒏 and the instability exhaustion

In this subsection, we study 𝑘-finite type open substacks of the moduli stack Bun𝐺,g ,𝑛 (and of
Bun𝐺(𝐶∕𝑆)).
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First of all, assuming that 𝐺 is reductive, we introduce the instability exhaustion of Bun𝛿
𝐺,g ,𝑛

,
which provides a cover of Bun𝛿

𝐺,g ,𝑛
by open substacks of finite type over 𝑘.

Definition 3.2.1. Let 𝐺 be a reductive group over 𝑘 and let 𝐸 → 𝐶 be a 𝐺-bundle on a smooth
curve over 𝑘. The bundle has instability degree less than or equal to𝑚 if for any reduction 𝐹 to any
parabolic subgroup 𝑃 ⊆ 𝐺 (that is, 𝐹 → 𝐶 is a principal 𝑃-bundle such that 𝐸 ≅ (𝐹 × 𝐺)∕𝑃) we
have

deg(ad(F)) ⩽ 𝑚,

where ad(𝐹) ∶= (𝐹 × 𝔭)∕𝑃 is the adjoint bundle of 𝐹, that is, the vector bundle on 𝐶 induced by
𝐹 via the adjoint representation 𝑃 → 𝐺𝐿(𝔭).

Remark 3.2.2. Note that if 𝑃 = 𝐺 in the above definition (so that 𝐹 = 𝐸), then

deg(ad(𝐸)) = 0,

since the adjoint representation ad𝐺 of a reductive group 𝐺 is such that Im(ad𝐺) ⊆ SL(𝔤). Hence,
the instability degree of any 𝐺-bundle 𝐸 → 𝐶 is always non-negative.

For any 𝑚 ⩾ 0, we denote by Bun𝛿,⩽𝑚
𝐺,g ,𝑛

⊂ Bun𝛿
𝐺,g ,𝑛

the locus of 𝐺-bundles (over 𝑛-pointed
smooth curves) whose geometric fibers having instability degree less than or equal to 𝑚. The
analogous locus in the relative situation Bun𝛿

𝐺
(𝐶∕𝑆) will be denoted by Bun𝛿,⩽𝑚

𝐺
(𝐶∕𝑆). Note that

the locus Bun𝛿,⩽0
𝐺,g ,𝑛

is exactly the locus of semistable 𝐺-bundles. The properties of the above loci
are collected in the following Proposition, which is based on the results of [12, section 7].

Proposition 3.2.3. Let 𝐺 be a reductive group over 𝑘. Then

(i) the loci {Bun𝛿,⩽𝑚
𝐺,g ,𝑛

}𝑚⩾0 form an exhaustive chain of open substacks of Bun𝛿
𝐺,g ,𝑛

(called the
instability exhaustion of Bun𝛿

𝐺,g ,𝑛
);

(ii) the stack Bun𝛿,⩽𝑚
𝐺,g ,𝑛

is a smooth algebraic stack of finite type overg ,𝑛;
(iii) if 𝐺 is a torus, then Bun𝛿,⩽𝑚

𝐺,g ,𝑛
= Bun𝛿

𝐺,g ,𝑛
for any𝑚 ⩾ 0;

(iv) if 𝐺 is not a torus, then the complement of Bun𝛿,⩽𝑚
𝐺,g ,𝑛

has codimension at least g +𝑚.

The same holds true for the relative moduli stack Bun𝛿
𝐺
(𝐶∕𝑆) for any family of curves 𝐶 → 𝑆 with

𝑆 connected.

Proof. We will show the proposition in the relative case Bun𝛿
𝐺
(𝐶∕𝑆); the universal case follows

easily from the relative case.
Part (i): The openness of Bun𝛿,⩽𝑚

𝐺
(𝐶∕𝑆) ⊆ Bun𝛿

𝐺
(𝐶∕𝑆) follows from [12, Theorem 7.2.4]. By

definition, it is clear that Bun𝛿,⩽𝑚
𝐺

(𝐶∕𝑆) ⊆ Bun𝛿,⩽𝑚+1
𝐺

(𝐶∕𝑆), so that {Bun𝛿,⩽𝑚
𝐺

(𝐶∕𝑆)}𝑚⩾0 form a
chain of open substacks of Bun𝛿

𝐺,g ,𝑛
. The fact that the open substacks {Bun𝛿,⩽𝑚

𝐺
(𝐶∕𝑆)}𝑚⩾0 cover

Bun𝛿
𝐺
(𝐶∕𝑆) follows from [12, Lemma 6.1.3], which implies that for any 𝐺-bundle 𝐸 over a curve

𝐶 there exists𝑚 ⩾ 0 such that the instability degree of 𝐸 is less than or equal to𝑚.
Part (ii): The fact that Bun𝛿,⩽𝑚

𝐺
(𝐶∕𝑆) is a smooth algebraic stack locally of finite type over 𝑆

follows from Theorem 3.1. The fact that Bun𝛿,⩽𝑚
𝐺

(𝐶∕𝑆) is of finite type over 𝑆 can be proved with
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the same arguments of [12, Theorem 8.2.6] (which treats the case 𝑆 = Spec 𝑘). Indeed, as in [12,
Theorem 8.2.6], themoduli stack Bun𝛿,⩽𝑚

𝐺
(𝐶∕𝑆) has a cover given by a finite number of connected

components of the moduli stack of Bun𝐵𝐺 (𝐶∕𝑆), with 𝐵𝐺 ⊂ 𝐺 Borel subgroup, which are of finite
type over 𝑆 by Proposition 3.1.7.
Part (iii): If 𝐺 = 𝑇 is a torus, then its unique parabolic subgroup is 𝑇 itself. Then Remark 3.2.2

implies that each 𝑇-bundle on 𝐶 → Spec 𝑘 has instability degree less than or equal to 0, or, in
other words, that Bun𝐺(𝐶∕𝑆)𝛿,⩽0 = Bun𝐺(𝐶∕𝑆)𝛿. Then part (i) implies that Bun𝐺(𝐶∕𝑆)𝛿,⩽𝑚 =
Bun𝐺(𝐶∕𝑆)

𝛿 for any𝑚 ⩾ 0.
Part (iv): We follow the same strategy of [15, Lemma 2.1]. First of all, it is enough to prove

the statement for 𝑆 = Spec 𝑘 with 𝑘 algebraically closed. Note that Bun𝛿,⩽𝑚
𝐺

(𝐶∕𝑘) ⊊ Bun𝛿
𝐺
(𝐶∕𝑘),

since Bun𝛿,⩽𝑚
𝐺

(𝐶∕𝑘) is of finite type over 𝑘 by (ii) while Bun𝛿
𝐺
(𝐶∕𝑘) is not of finite type over 𝑘

by Proposition 3.1.7 because 𝐺 is not a torus. Pick an irreducible component  of Bun𝛿
𝐺
(𝐶∕𝑘) ⧵

Bun𝛿,⩽𝑚
𝐺

(𝐶∕𝑘) and let 𝑓 ∶ Spec𝐾 → Bun𝛿
𝐺
(𝐶∕𝑘) be a geometric point mapping onto the generic

point of  . Themorphism 𝑓 is the classifying morphism of a𝐺-bundle 𝐸 → 𝐶𝐾 ∶= 𝐶 ×𝑘 𝐾 whose
degree of instability is greater of 𝑚. By definition of degree of instability, the 𝐺-bundle 𝐸 → 𝐶𝐾
admits a reduction to a 𝑃-bundle 𝐹 → 𝐶𝐾 for some parabolic subgroup 𝑃 ⊆ 𝐺 such that

deg(ad(𝐹)) ⩾ 𝑚 + 1. (3.2.1)

Let Bun𝜖
𝑃
(𝐶∕𝑘) be the connected component of Bun𝑃(𝐶∕𝑘) containing 𝐹 → 𝐶𝐾 . By construction,

we have a morphism

𝜄# ∶ Bun
𝜖
𝑃(𝐶∕𝑘) → Bun

𝛿
𝐺(𝐶∕𝑘),

which is dominant onto  . Hence, using Theorem 3.1.3 and (3.2.1), we deduce that

dim ⩽ dimBun𝜖𝑃(𝐶∕𝑘) = −deg(ad()) + (g − 1)dim𝑃 ⩽ −(𝑚 + 1) + (g − 1)dim𝑃.

Then, using that dimBun𝛿
𝐺
(𝐶∕𝑘) = (g − 1) dim𝐺 again by Theorem 3.1.3, we conclude that

codim ⩾ (g − 1)(dim𝐺 − dim𝑃) + 𝑚 + 1 ⩾ g +𝑚,

where in the last inequality we used that 𝑃 ⊊ 𝐺 which follows from (3.2.1) and Remark 3.2.2. □

A useful corollary of the above result is the following.

Corollary 3.2.4. Assume that𝐺 is a non-abelian reductive group and let𝑁 ∈ ℕ. Anymorphism 𝑓 ∶
 → Bun𝛿

𝐺,g ,𝑛
, with  a quasi-compact algebraic stack (over 𝑘), factors through an open substack

(of finite type over 𝑘) Bun𝛿,⩽𝑚
𝐺,g ,𝑛

⊂ Bun𝛿
𝐺,g ,𝑛

for some 𝑚 ≫ 0, such that the complementary substack
has codimension at least𝑁. The same holds true for the relative moduli stack Bun𝛿

𝐺
(𝐶∕𝑆).

Proof. We present the proof only for the universal case, the proof for the relative case uses the
same argument.
Since  is quasi-compact and {Bun𝛿,⩽𝑚

𝐺,g ,𝑛
}𝑚⩾0 form an exhaustive chain of open substacks of

Bun𝛿
𝐺,g ,𝑛

by Proposition 3.2.3, we get that 𝑓() is contained in Bun𝛿,⩽𝑚
𝐺,g ,𝑛

(for some𝑚 ⩾ 0), which
is equivalent to say that 𝑓 factors through Bun𝛿,⩽𝑚

𝐺,g ,𝑛
.
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Since the codimension of the complement Bun𝛿
𝐺,g ,𝑛

⧵ Bun𝛿,⩽𝑚
𝐺,g ,𝑛

goes to infinity as 𝑚 increases
by Proposition 3.2.3(iv), we can obtain, up to increasing 𝑚, that the complementary substack of
Bun𝛿,⩽𝑚

𝐺,g ,𝑛
has codimension at least 𝑁. □

Next, we prove that, for an arbitrary connected (smooth) linear algebraic group𝐺, every 𝑘-finite
type open substack of Bun𝐺,g ,𝑛 is a quotient stack over 𝑘 (in the sense of Proposition 2.3.5), with
a notable exception.

Proposition 3.2.5. If (g , 𝑛) ≠ (1, 0) then any open substack of Bun𝐺,g ,𝑛 which is of finite type over
𝑘 is a quotient stack over 𝑘.
The same holds true for the relative moduli stack Bun𝐺(𝐶∕𝑆), if the family of curves 𝐶 → 𝑆 has

relative genus g ≠ 1 or if it has a section.

The above proposition is false for (g , 𝑛) = (1, 0). For example, if 𝐺 = {1} is trivial, then
Bun{1},1,0 =1,0 is of finite type over 𝑘 but it is not a quotient stack since its geometric points
have non-affine automorphism groups.

Proof. Let us first prove the first statement. Fix ⊂ Bun𝐺,g ,𝑛 an open substack of finite type over
𝑘. By [29, Lemma 2.12], it is enough to show that there exists a vector bundle  →  such that
the automorphism group of any geometric point 𝑥 of acts faithfully on the fiber 𝑥.
Assume first 𝐺 = 𝐺𝐿𝑟. Then we can identify Bun𝐺𝐿𝑟,g ,𝑛 with the moduli stack of objects (𝜋 ∶

𝐶 → 𝑆, 𝜎, 𝐸), where (𝜋 ∶ 𝐶 → 𝑆, 𝜎) is a family of 𝑛-pointed curves of genus g and 𝐸 is a rank 𝑟
vector bundle over 𝐶. Since (g , 𝑛) ≠ (1, 0), there exists a relatively ample line bundle 𝐿 on the
universal family g ,𝑛 →g ,𝑛 by Remark 1.3. Since  is of finite type, by standard arguments
there exists an integer 𝑘 ≫ 0 such that for any object (𝜋 ∶ 𝐶 → 𝑆, 𝜎, 𝐸) ∈  (𝑆), if we denote by
𝐿𝑆 the pullback of 𝐿 along the modular morphism 𝐶 → g ,𝑛, we have that

𝐿𝑘𝐶 is relatively very ample on 𝜋 ∶ 𝐶 → 𝑆,

𝐸(𝑘) ∶= 𝐸 ⊗ 𝐿𝑘𝐶 is relatively globally generated on 𝜋 ∶ 𝐶 → 𝑆,

𝜋∗𝐿
𝑘
𝐶 and 𝜋∗𝐸(𝑘) are locally free sheaves on 𝑆 and commute with base change.

(3.2.2)

Consider now the vector bundle  →  defined, for any (𝜋 ∶ 𝐶 → 𝑆, 𝜎, 𝐸) ∈  (𝑆), as

((𝜋 ∶ 𝐶 → 𝑆, 𝜎, 𝐸)) ∶= 𝜋∗𝐿
𝑘
𝐶 ⊕ 𝜋∗𝐸(𝑘). (3.2.3)

We will now show that the automorphism group of any geometric point 𝑥 of acts faithfully on
the fiber 𝑥, which will conclude the proof for GL𝑟. Let (𝐶, 𝜎, 𝐸) ∈  (𝐾) be a geometric point of

 . An element in Aut(𝐶, 𝜎, 𝐸) is a pair (𝜑, 𝑓), where 𝜑 ∶ 𝐶
≅
�→ 𝐶 is an automorphism of the curve

preserving the marked points and 𝑓 ∶ 𝜑∗𝐸
≅
�→ 𝐸 is an automorphism of vector bundles. Since the

line bundle 𝐿𝐶 is the pullback of a line bundle on the universal family g ,𝑛, there exists a canonical

isomorphism 𝐿(𝜑) ∶ 𝜑∗𝐿𝐶
≅
�→ 𝐿𝐶 . The action of (𝜑, 𝑓) on a global section (𝜂, 𝑒) ∈ ((𝐶, 𝜎, 𝐸)) =

𝐻0(𝐶, 𝐿𝑘
𝐶
) ⊕ 𝐻0(𝐶, 𝐸(𝑘)) is given by

(𝜑, 𝑓) ◦ (𝜂, 𝑒) =
(
𝐿(𝜑)𝑘(𝜑∗𝜂), (𝑓 ⊗ 𝐿(𝜑)𝑘)(𝜑∗𝑒)

)
. (3.2.4)
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Assume that (𝜑, 𝑓) acts trivially on any global section of ((𝐶, 𝜎, 𝐸)). Since 𝜑 fixes all the sec-
tions of𝐻0(𝐶, 𝐿𝑘

𝐶
) and 𝐿𝑘

𝐶
is very ample on 𝐶, 𝜑must be the identity, that is, (𝜑, 𝑓) = (id, 𝑓). Since

(id, 𝑓) fixes all the sections of 𝐸(𝑘) and 𝐸(𝑘) is global generated, then 𝑓 also is the identity. Hence,
we conclude that Aut(𝐶, 𝜎, 𝐸) acts faithfully on ((𝐶, 𝜎, 𝐸)) and we are done.
Let 𝐺 be an arbitrary (smooth and connected) linear algebraic group, fix a faithful representa-

tion 𝜌 ∶ 𝐺 → 𝐺𝐿𝑟 and consider the morphism

𝜌# ∶ Bun𝐺,g ,𝑛 → BunGL𝑟,g ,𝑛.

Since  ⊂ Bun𝐺,g ,𝑛 is of finite type over 𝑘 (hence quasi-compact), Corollary 3.2.4 implies there
exists a 𝑘-finite type open substack ⊂ BunGL𝑟,g ,𝑛 such that 𝜌#( ) ⊆  . We choose  →  as
the pullback, along themorphism𝜌# ∶  →  , of a vector bundle →  as in the previous case.
We now conclude since, given a geometric point (𝐶, 𝜎, 𝐸) ∈  (𝐾), the action ofAut((𝐶, 𝜎, 𝐸)) on
((𝐶, 𝜎, 𝐸)) = ((𝐶, 𝜎, 𝜑#(𝐸))) is faithful because we have an injective homomorphism

Aut(𝐶, 𝜎, 𝐸) ↪ Aut(𝐶, 𝜎, 𝜌#(𝐸))

and the group Aut(𝐶, 𝜎, 𝜌#(𝐸)) acts faithfully on ((𝐶, 𝜎, 𝜑#(𝐸))) by our choice of the vector
bundle  →  .
The second statement about Bun𝐺(𝐶∕𝑆) is proved with a similar argument starting from a

relatively ample line bundle 𝐿 on 𝜋 ∶ 𝐶 → 𝑆, which exists by Remark 1.3. □

3.3 On the forgetful morphism 𝚽𝑮 ∶ 𝐁𝐮𝐧𝑮,g ,𝒏 →g ,𝒏

The aim of this subsection is to prove that, for a reductive group 𝐺, the forgetful morphism Φ𝛿
𝐺
∶

Bun𝛿
𝐺,g ,𝑛

→g ,𝑛 is Stein (in the sense of Definition 2.3.3) for any 𝛿 ∈ 𝜋1(𝐺).
Before doing this, we need to introduce an auxiliary stack, which is a slight generalization of

the moduli stack of principal bundles. The first part of the subsection is a repetition of [14, section
4.2] in the context of non-trivial families of curves. However, we briefly recall the main points and
we refer the reader to [14, section 4.2]for more details.
Let 𝐺 be a reductive group sitting in the middle of an exact sequence

1 → 𝐺 → 𝐺
dt
��→ 𝔾𝑚 → 1, (3.3.1)

with 𝐺 semisimple and simply connected. In particular, 𝜋1(𝐺) = 𝜋1(𝔾𝑚) = ℤ.
Let 𝐶 → 𝑆 be a family of smooth curves of genus g admitting a section 𝜎. We will sometimes

make the following assumption:

(⋆) there exists an isomorphism between the formal completion of 𝐶 at 𝜎 and Spf (𝑆�𝑡�).

We remark that such an isomorphism always exists Zariski-locally on 𝑆.
Consider the algebraic stack Φ𝑑,𝜎

(𝐶∕𝑆) ∶ Bun𝑑,𝜎 (𝐶∕𝑆) → 𝑆 parameterizing twisted principal
𝐺-bundles on 𝐶 → 𝑆, that is, pairs (𝐸, 𝜑) such that

∙ 𝐸 → 𝐶 is a principal 𝐺-bundle,
∙ 𝜑 is an isomorphism dt#(𝐸) ≅ (𝑑𝜎) of 𝔾𝑚-bundles.



2096 FRINGUELLI and VIVIANI

In particular, there is a forgetful morphism of algebraic stacks over 𝑆

Bun𝑑,𝜎 (𝐶∕𝑆)⟶ Bun𝑑
𝐺
(𝐶∕𝑆) ⊂ Bun𝐺(𝐶∕𝑆),

(𝐸, 𝜑) ↦ 𝐸.
(3.3.2)

For any linear algebraic 𝑘-group 𝐻, we define the following functors over an affine 𝑆-scheme
𝑇 = Spec(𝑅).

(i) The loop group L𝐻(𝑇) ∶= 𝐻(𝑅�𝑡�).
(ii) The positive loop group L+𝐻(𝑇) ∶= 𝐻(𝑅�𝑡�).
(iii) The affine Grassmannian Gr𝐻(𝑇), which is the sheafification on the fpqc topology of the

quotient L𝐻(𝑇)∕L+𝐻(𝑇).

If the family𝐶 → 𝑆 satisfies (⋆), the affineGrassmannianGr𝐻 can be identifiedwith the functor of
𝐻-bundles on𝐶 → 𝑆with a trivialization on the complement𝑈 ∶= 𝐶 ⧵ Im(𝜎) of the section𝜎 (see
[31, section 6]). In particular, there is a well-defined morphism of categories fibered in groupoids
(over the category of schemes over 𝑆)

glue𝐻,𝜎 ∶ Gr𝐻 ⟶ Bun𝐻(𝐶∕𝑆), (3.3.3)

which forgets the trivialization on 𝑈.
Fix now a cocharacter 𝛿 ∶ 𝔾𝑚 → 𝐺 such that dt ◦ 𝛿 = 𝑑 ∈ Hom(𝔾𝑚, 𝔾𝑚) = ℤ = 𝜋1(𝔾𝑚).

Denote by 𝑡𝛿 ∈ L𝐺(𝑆) the image of 𝑡 ∈ L𝔾𝑚(𝑆) via the morphism 𝛿∗ ∶ L𝔾𝑚 → L𝐺. We then have
a morphism of affine Grassmannians:

𝑡𝛿∗ ∶ Gr𝐺 ⟶ Gr𝐺

𝑓 ⋅ L+𝐺 ↦ 𝑡𝛿𝑓 ⋅ L+𝐺.
(3.3.4)

The composition glue𝐺,𝜎 ◦ 𝑡𝛿∗ factors as

glue𝐺,𝜎 ◦ 𝑡𝛿∗ ∶ Gr𝐺
glue𝐺,𝜎,𝑑
��������→ Bun𝑑,𝜎 (𝐶∕𝑆) → Bun

𝑑

𝐺
(𝐶∕𝑆) ⊂ Bun𝐺(𝐶∕𝑆) (3.3.5)

due to the fact that dt∗ ◦ 𝑡𝛿∗ ∶ Gr𝐺 → Gr𝐺 → Gr𝔾𝑚 is constant with image equal to the line bundle
(𝑑𝜎), together with a trivialization on 𝑈. An important property of the morphism glue𝐺,𝜎,𝑑 is
provided by the following result.

Lemma3.3.1. Let𝜋 ∶ 𝐶 → 𝑆 be a family of curveswith a section𝜎 anda𝐺-bundle𝐸. Then, any triv-
ialization of the line bundledt#(𝐸) on𝑈 ∶= 𝐶 ⧵ Im(𝜎) can be lifted, after a suitable étale base change
𝑆′ → 𝑆, to a trivialization of𝐸 ×𝑆 𝑆′ on𝑈 ×𝑆 𝑆′. In particular, glue𝐺,𝜎,𝑑 admits a section étale-locally
on 𝑆.

Proof. It is a generalization of [26, Theorem 3]. One can modify the argument in the proof of [26,
Theorem 3] arguing as in lemma [14, Lemma 4.2.2]. □

We are now ready to show the following

Proposition 3.3.2. If 𝐺 is reductive, then Φ𝛿
𝐺
∶ Bun𝛿

𝐺,g ,𝑛
→g ,𝑛 is Stein for any 𝛿 ∈ 𝜋1(𝐺).
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Proof. Theorem 3.1 gives that Φ𝛿
𝐺
is faithfully flat and locally of finite presentation, which

implies that Φ𝛿
𝐺
is fpqc. To conclude that Φ𝛿

𝐺
is Stein, it remains to show that the homomor-

phism (Φ𝛿
𝐺
)# ∶ g ,𝑛

→ (Φ𝛿
𝐺
)∗(Bun𝛿

𝐺,g ,𝑛
) is a universal isomorphism. For that purpose, it is also

enough to show that, for any family of (smooth) curves 𝐶 → 𝑆 of genus g admitting a section 𝜎
satisfying the condition (⋆) and with 𝑆 being a connected affine Noetherian scheme, the mor-
phism Φ𝛿

𝐺
(𝐶∕𝑆) ∶ Bun𝛿

𝐺
(𝐶∕𝑆) → 𝑆 is such that Φ𝛿

𝐺
(𝐶∕𝑆)# ∶ 𝑆 → Φ

𝛿
𝐺
(𝐶∕𝑆)∗(Bun𝛿

𝐺
(𝐶∕𝑆)) is an

isomorphism (or equivalently that Φ𝛿
𝐺
(𝐶∕𝑆) is a Stein morphism).

We divide the proof into the following steps:

(i) 𝐺 = 𝑇 a torus;
(ii) twisted bundles, that is, Φ𝑑,𝜎

(𝐶∕𝑆) ∶ Bun𝑑,𝜎 (𝐶∕𝑆) → 𝑆;
(iii) product of twisted bundles and torus bundles, that is, Φ𝑑,𝜎

(𝐶∕𝑆) × Φ𝜖
𝑇
(𝐶∕𝑆) ∶

Bun𝑑,𝜎 (𝐶∕𝑆) ×𝑆 Bun
𝜖
𝑇
(𝐶∕𝑆) → 𝑆 with 𝑇 a torus;

(iv) 𝐺 an arbitrary reductive group.

Step (i) The morphism Φ𝛿
𝑇
(𝐶∕𝑆) ∶ Bun𝛿

𝑇
(𝐶∕𝑆) → 𝑆 is a Stein morphism since it is the

composition of a 𝑇-gerbe Bun𝛿
𝑇
(𝐶∕𝑆) → Bun𝛿

𝑇
(𝐶∕𝑆) � 𝑇 with an abelian algebraic space

Bun𝛿
𝑇
(𝐶∕𝑆)� 𝑇 → 𝑆 (see Subsection 4.1 for more details).

Step (ii) Consider the commutative diagram

where glue𝐺,𝜎,𝑑 is the morphism (3.3.5). Since glue𝐺,𝜎,𝑑 admits a section étale-locally on 𝑆 by
Lemma 3.3.1, we have that the natural homomorphism

Φ𝑑,𝜎
(𝐶∕𝑆)∗(glue

#
𝐺,𝜎,𝑑

) ∶ Φ𝑑,𝜎
(𝐶∕𝑆)∗

(
Bun𝑑,𝜎 (𝐶∕𝑆)

)
→ 𝑓∗Gr𝐺

is injective. Hence, it is enough to show that 𝑓# ∶ 𝑆 → 𝑓∗Gr𝐺 is an isomorphism.
The affine Grassmannian 𝑓 ∶ Gr𝐺 → 𝑆 is an ind-scheme, which is the direct limit of flat and

projective morphisms 𝑓𝑖 ∶ 𝑌𝑖 → 𝑆 with geometrically integral fibers (see [31]). By standard argu-
ments, each homomorphism 𝑓#

𝑖
∶ 𝑆 → (𝜋𝑖)∗𝑌𝑖 is an isomorphism. Since, by definition of

morphisms of ind-schemes, 𝑓# is the inverse limit of the homomorphisms 𝑓#
𝑖
, we deduce that

𝑓# is an isomorphism, q.e.d.
Step (iii) Let 𝐺 be a group sitting in the middle of (3.3.1). The natural map Bun(𝑑,𝜖)

𝐺×𝑇
(𝐶∕𝑆) →

Bun𝑑
𝐺
(𝐶∕𝑆) is Stein by Remark 3.4 and Step (i). Since the diagram

(3.3.6)

is cartesian, then also the morphism pr# must be Stein. We conclude using that Φ𝑑,𝜎
(𝐶∕𝑆) ∶

Bun𝑑,𝜎 (𝐶∕𝑆) → 𝑆 is Stein by Step (ii).
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Step (iv)By lemma [14, Lemma 5.3.2], for any 𝛿 ∈ 𝜋1(𝐺), there exists a reductive group𝐺 sitting
in the middle of an exact sequence as in (3.3.1), equipped with a central isogeny 𝐺 ×ℛ(𝐺) →
𝐺 × 𝔾m inducing a faithfully flat map of moduli stacks

Bun(
1,0)

𝐺×ℛ(𝐺)
(𝐶∕𝑆) → Bun(𝛿,1)

𝐺×𝔾m
(𝐶∕𝑆). (3.3.7)

Consider the following cartesian diagram

(3.3.8)

Since, themap (3.3.7) is faithfully flat, also the left vertical map in (3.3.8) is faithfully flat; hence, in
particular, its structural morphism is injective. This fact, together with the fact that themorphism
Bun𝑑,𝜎 (𝐶∕𝑆) ×𝑆 Bun

0
ℛ(𝐺)

(𝐶∕𝑆) → 𝑆 is Stein by Step (iii), implies that Φ𝛿
𝐺
(𝐶∕𝑆) ∶ Bun𝛿

𝐺
(𝐶∕𝑆) →

𝑆 is also Stein. □

3.4 On the reductions to a Borel subgroup

The aim of this subsection is to study the morphism from the moduli stack of 𝐵𝐺-bundles to the
moduli stack of 𝐺-bundles, where 𝐵𝐺 is a Borel subgroup of a reductive group 𝐺. The main The-
orem is the following one, which is based upon results of Drinfeld–Simpson [26] and Holla [40]
(which indeed relies on a result of Harder [38]).

Theorem 3.4.1. Let 𝐺 be a reductive group over 𝑘 and choose a maximal torus 𝑇𝐺 with associated
Borel subgroup 𝑗 ∶ 𝐵𝐺 ↪ 𝐺.

(i) For any 𝑑 ∈ 𝜋1(𝑇𝐺) = 𝜋1(𝐵red𝐺 ) = 𝜋1(𝐵𝐺), the morphism

𝑗# ∶ Bun
𝑑
𝐵𝐺,g ,𝑛

⟶ Bun[𝑑]
𝐺,g ,𝑛

is of finite type.
(ii) For any 𝛿 ∈ 𝜋1(𝐺) there exists a representative 𝑑 ∈ 𝜋1(𝑇𝐺) = 𝜋1(𝐵red𝐺 ) = 𝜋1(𝐵𝐺), that is, [𝑑] =

𝛿, such that the morphism of moduli stacks

𝑗# ∶ Bun
𝑑
𝐵𝐺,g ,𝑛

⟶ Bun𝛿𝐺,g ,𝑛

is smooth with geometrically integral fibers of dimension
∑
𝛼<0(𝛼, 𝑑) + (g − 1) dim(𝐺∕𝐵𝐺),

where {𝛼 < 0} ⊂ Λ∗(𝑇𝐺) is the set of negative roots with respect to the Borel subgroup 𝐵𝐺 .

Proof. Part (i): first of all, the morphism 𝑗# is locally of finite type by Remark 3.2. Hence, it is
enough to show that 𝑗# is quasi-compact.
Theorem 3.1(ii) implies that the diagonal of Φ[𝑑]

𝐺
∶ Bun[𝑑]

𝐺,g ,𝑛
→g ,𝑛 is affine, and hence

quasi-compact and quasi-separated, which by definition means that the morphism Φ[𝑑]
𝐺

is quasi-
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separated. Using this and the fact that Φ𝑑
𝐵𝐺
∶ Bun𝑑

𝐵𝐺,g ,𝑛
→g ,𝑛 is of finite type, and hence

quasi-compact, by Proposition 3.1.7, we deduce that 𝑗# is quasi-compact by [66, Tag 050Y].
Part (ii): First of all, observe that the canonical diagram

(3.4.1)

is cartesian by Lemma 3.3. So, without loss of generality, we can assume that 𝐺 is semisimple.
By [26, section 4], the smoothness and the formula for the relative dimension of 𝑗# hold if

(𝛼, 𝑑) ⩽ min{1, 2 − 2g} for any positive root 𝛼.
The fiber over an 𝑆-point (𝐶 → 𝑆, 𝜎, 𝐸) is canonically identified with the moduli space

Sec𝑑(𝐶, 𝐸∕𝐵𝐺) of sections of the flag bundle𝐸∕𝐵𝐺 → 𝐶 of type𝑑, that is, the induced𝐵𝐺-reduction
is in the connected component Bun𝑑

𝐵𝐺,g ,𝑛
. Holla proved in [40, Theorem 5.1 and Remark 5.14]

that there exists 𝑁 ∈ ℤ such that, if (𝛼, 𝑑) ⩽ 𝑁 for any positive root 𝛼, then the morphism
Sec𝑑(𝐶, 𝐸∕𝐵𝐺) → 𝑆 has geometrically connected fibers.We remark that the statement in [40, The-
orem 5.1 and Remark 5.14] is presented when 𝑆 is the spectrum of a field. However, in the proof
the author shows that the integer𝑁 exists for any family of curves over an integral affine scheme
of finite type over ℤ.
Hence, to conclude the proof, we need a representative 𝑑 such that (𝛼, 𝑑) ⩽ min{1, 2 − 2g , 𝑁}

for any positive root 𝛼. This can be shown either by direct computation or as direct consequence
of [26, Proposition 3]. □

3.5 Tautological line bundles

In this subsection, we will introduce certain natural line bundles on Bun𝐺,g ,𝑛, that we call
tautological line bundles.
With this in mind, let us recall two standard ways of producing line bundles on the base of a

family of curves (see [4, chapter XIII, section 4, 5], and the references therein). Let 𝜋 ∶ 𝐶 → 𝑆
be a family of smooth curves over an algebraic stack 𝑆 and let 𝜔𝜋 be the relative dualizing line
bundle. To any coherent sheaf  on 𝐶 flat over 𝑆, we associate a line bundle 𝑑𝜋() over the base
𝑆, called the determinant of cohomology of  with respect to 𝜋 ∶ 𝐶 → 𝑆 and defined as follows:
choose a complex of locally free sheaves of finite rank 𝑓 ∶ 𝐾0 → 𝐾1 such that ker(𝑓) ≅ 𝜋∗() and
coker(𝑓) ≅ 𝑅1𝜋∗() (this is always possible), and define

𝑑𝜋() ∶= det 𝜋∗(𝐾0) ⊗ det 𝜋∗(𝐾1)
−1 ∈ Pic(). (3.5.1)

The determinant of cohomology is functorial with respect to base change, and it is multiplicative
in short exact sequences and compatible with Serre Duality, that is,

{
𝑑𝜋() ≅ 𝑑𝜋() ⊗ 𝑑𝜋() for any short exact sequence 0 →  → →  → 0,

𝑑𝜋( ⊗𝜔𝜋) ≅ 𝑑𝜋(
∨) if  is locally free.

(3.5.2)
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Moreover, if wehave two line bundles and on𝐶, we can produce a line bundle ⟨ ,⟩𝜋 = ⟨ ,⟩
over 𝑆, called the Deligne pairing of  and  with respect to 𝜋 ∶  →  , which is related to the
determinant of cohomology via the following isomorphism:

⟨ ,⟩𝜋 ≅ 𝑑𝜋( ⊗ ) ⊗ 𝑑𝜋()
−1 ⊗ 𝑑𝜋()

−1 ⊗ 𝑑𝜋(). (3.5.3)

The Deligne pairing is symmetric, bilinear and compatible with sections, that is,

⎧⎪⎪⎨⎪⎪⎩
⟨ ,⟩𝜋 ≅ ⟨,⟩𝜋,⟨1 ⊗ 2,⟩𝜋 ≅ ⟨1,⟩𝜋 ⊗ ⟨2,⟩𝜋,⟨(𝜎),⟩𝜋 ≅ 𝜎∗(), where 𝜎 is a section of 𝜋.

(3.5.4)

The first Chern class of the Deligne pairing is given by

𝑐1(⟨ ,⟩𝜋) = 𝜋∗(𝑐1() ⋅ 𝑐1()). (3.5.5)

In our setting, wewill apply the above two constructions to the universal family of𝐺-bundles (𝜋 ∶
𝐺,g ,𝑛 → Bun𝐺,g ,𝑛, 𝜎, ). To start with, we produce natural line bundles on 𝐺,g ,𝑛 via the following
procedure. Any character 𝜒 ∶ 𝐺 → 𝔾m gives rise to a morphism of stacks (see (3.5))

𝜒# ∶ Bun𝐺,g ,𝑛 → Bun𝔾m,g ,𝑛.

By pulling back via 𝜒# the universal 𝔾m-bundle (that is, line bundle) on the universal curve over
Bun𝔾m,g ,𝑛, we get a line bundle 𝜒 over the universal curve 𝜋 ∶ 𝐺,g ,𝑛 → Bun𝐺,g ,𝑛. Then, using
these natural line bundles on 𝐺,g ,𝑛 and the sections 𝜎1, … , 𝜎𝑛 of 𝜋, we define the following line
bundles, that we call tautological line bundles:

ℒ(𝜒, 𝜁) ∶= 𝑑𝜋
(
𝜒(𝜁1 ⋅ 𝜎1 +⋯ + 𝜁𝑛 ⋅ 𝜎𝑛)

)
,

⟨(𝜒, 𝜁), (𝜒′, 𝜁′)⟩ ∶= ⟨𝜒(𝜁1 ⋅ 𝜎1 +⋯ + 𝜁𝑛 ⋅ 𝜎𝑛),𝜒′(𝜁
′
1 ⋅ 𝜎1 +⋯ + 𝜁′𝑛 ⋅ 𝜎𝑛)⟩𝜋, (3.5.6)

for 𝜒, 𝜒′ ∈ Hom(𝐺, 𝔾m) and 𝜁 = (𝜁1, … , 𝜁𝑛), 𝜁′ = (𝜁′1, … , 𝜁
′
𝑛) ∈ ℤ

𝑛. From (3.5.3), we deduce that

⟨(𝜒, 𝜁), (𝜒′, 𝜁′)⟩ ∶=ℒ(𝜒 + 𝜒′, 𝜁 + 𝜁′) ⊗ℒ(𝜒, 𝜁)−1 ⊗ℒ(𝜒′, 𝜁′)−1 ⊗ℒ(0, 0). (3.5.7)

When 𝑛 = 0, we will write ℒ(𝜒) ∶=ℒ(𝜒, 0) and ⟨𝜒, 𝜒′⟩ ∶= ⟨(𝜒, 0), (𝜒′, 0)⟩. Note that ℒ(0, 𝜉)
and ⟨(0, 𝜉), (0, 𝜉′)⟩, for any 𝜉, 𝜉′ ∈ ℤ𝑛, are pullback of line bundles ong ,𝑛 = Bun{id},g ,𝑛.

Remark 3.5.1. The reader may have noticed that we have not used the relative dualizing sheaf 𝜔𝜋
(or powers of it) of the universal family 𝐺,g ,𝑛 → Bun𝐺,g ,𝑛 in the definition of the tautological line
bundles. This is due to the following relations that hold for any family of curves 𝜋 ∶ 𝐶 → 𝑆, for
any line bundle  on 𝐶 and for any 𝑛 ∈ ℤ:

⎧⎪⎨⎪⎩
⟨, 𝜔𝜋⟩𝜋 ≅ 𝑑𝜋()−1 ⊗ 𝑑𝜋(−1) = ⟨,⟩𝜋 ⊗ 𝑑𝜋()−2 ⊗ 𝑑𝜋()2,
𝑑𝜋(𝜔

𝑛
𝜋 ⊗ ) ≅ 𝑑𝜋()

1−2𝑛 ⊗ ⟨,⟩𝑛𝜋 ⊗ 𝑑𝜋()6𝑛2−4𝑛, (3.5.8)
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where the first formula is obtained by applying (3.5.3) twice, once to the pair (, 𝜔𝜋) and once to
the pair (,−1), and the second formula is obtained by applying (3.5.3) to ⟨, 𝜔𝑛𝜋⟩𝜋 and using
Mumford’s formula 𝑑𝜋(𝜔𝑛𝜋) ≅ 𝑑𝜋()

6𝑛2−6𝑛+1 (see [4, chapter XIII, Theorem 7.6]).

4 REDUCTIVE ABELIAN CASE

In this section, we will compute the relative Picard group of Bun𝑑
𝑇,g ,𝑛

:

RPic(Bun𝑑𝑇,g ,𝑛) ∶= Pic(Bun
𝑑
𝑇,g ,𝑛)∕(Φ

𝑑
𝑇)
∗(Pic(g ,𝑛)), (4.1)

where 𝑇 is a torus, 𝑑 ∈ 𝜋1(𝑇) = Λ(𝑇) and Φ𝑑𝑇 ∶ Bun
𝑑
𝑇,g ,𝑛

→g ,𝑛 is the natural forgetful mor-
phism. The three cases g ⩾ 2, g = 1 and g = 0 behave differently. The first two cases are similar
and they are collected in the following.

Theorem 4.1. Assume g ⩾ 1.

(1) The relative Picard groupRPic(Bun𝑑
𝑇,g ,𝑛

) is generated by the tautological line bundles (3.5.6) and
there are exact sequences of abelian groups

0 → Sym2 Λ∗(𝑇) ⊕ (Λ∗(𝑇) ⊗ ℤ𝑛)
𝜏𝑇+𝜎𝑇
������→ RPic

(
Bun𝑑𝑇,g ,𝑛

) 𝜌𝑇
��→ Λ∗(𝑇) → 0 if g ⩾ 2, (4.2)

0 → Sym2 Λ∗(𝑇) ⊕ (Λ∗(𝑇) ⊗ ℤ𝑛)
𝜏𝑇+𝜎𝑇
������→ RPic

(
Bun𝑑𝑇,1,𝑛

) 𝜌𝑇
��→

Λ∗(𝑇)

2Λ∗(𝑇)
→ 0 if g = 1, (4.3)

where 𝜏𝑇(= 𝜏𝑇,g ,𝑛) (called transgression map) and 𝜎𝑇(= 𝜎𝑇,g ,𝑛) are defined by

𝜏𝑇(𝜒 ⋅ 𝜒′) = ⟨(𝜒, 0), (𝜒′, 0)⟩, for any 𝜒, 𝜒′ ∈ Λ∗(𝑇),
𝜎𝑇(𝜒 ⊗ 𝜁) = ⟨(𝜒, 0), (0, 𝜁)⟩, for any 𝜒 ∈ Λ∗(𝑇) and 𝜁 ∈ ℤ𝑛,

and 𝜌𝑇(= 𝜌𝑇,g ,𝑛) is the unique homomorphism such that

𝜌𝑇(ℒ(𝜒, 𝜁)) =

{
𝜒 ∈ Λ∗(𝑇) if g ⩾ 2,
[𝜒] ∈ Λ∗(𝑇)

2Λ∗(𝑇)
if g = 1,

for any 𝜒 ∈ Λ∗(𝑇) and 𝜁 ∈ ℤ𝑛.

Furthermore, the exact sequences (4.2) and (4.3) are contravariant with respect to homomor-
phisms of tori.

(2) Fix an isomorphism 𝑇 ≅ 𝔾𝑟𝑚 which induces an isomorphism Λ∗(𝑇) ≅ Λ∗(𝔾𝑟𝑚) = ℤ
𝑟. Denote by

{𝑒𝑖}
𝑟
𝑖=1

the canonical basis of ℤ𝑟 and by {𝑓𝑗}𝑛𝑗=1 the canonical basis of ℤ
𝑛. The relative Picard

group of Bun𝑑
𝑇,g ,𝑛

is freely generated by⟨
(𝑒𝑖, 0), (0, 𝑓𝑗)

⟩
= 𝜎∗

𝑗
(𝑒𝑖 ), for 𝑖 = 1, … , 𝑟, and 𝑗 = 1,… , 𝑛,

⟨(𝑒𝑖, 0), (𝑒𝑘, 0)⟩ = ⟨𝑒𝑖 ,𝑒𝑘⟩, for
⎧⎪⎨⎪⎩
1 ⩽ 𝑖 ⩽ 𝑘 ⩽ 𝑟 if g ⩾ 2,

1 ⩽ 𝑖 < 𝑘 ⩽ 𝑟 if g = 1,

ℒ(𝑒𝑖, 0) = 𝑑𝜋(𝑒𝑖 ), for 𝑖 = 1, … , 𝑟.
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Note that the homomorphisms 𝜏𝑇 and 𝜎𝑇 are well-defined in the full Picard group of Bun𝑑𝑇,g ,𝑛
(and not just in its relative Picard group).
The case g = 0 is rather different from the other cases and we isolate it in the following

Theorem 4.2. Assume g = 0.

(1) The relative Picard groupRPic(Bun𝑑
𝑇,0,𝑛
) is generated by the tautological line bundles (3.5.6) and

there is an injective homomorphism

RPic
(
Bun𝑑𝑇,0,𝑛

) 𝑤𝑑
𝑇
=𝑤𝑑

𝑇,0,𝑛
���������→ Λ∗(𝑇), (4.4)

defined by

⎧⎪⎨⎪⎩
𝑤𝑑𝑇(ℒ(𝜒, 𝜁)) = [(𝑑, 𝜒) + |𝜁| + 1]𝜒,
𝑤𝑑𝑇(⟨(𝜒, 𝜁), (𝜒′, 𝜁′)⟩) = [(𝑑, 𝜒′) + |𝜁′|]𝜒 + [(𝑑, 𝜒) + |𝜁|]𝜒′,

where (𝑑, 𝜒), (𝑑, 𝜒′) ∈ ℤ are obtained from the perfect pairing (2.1.7), |𝜁| = ∑𝑖 𝜁𝑖 ∈ ℤ and
similarly for |𝜁′|.
Moreover, the homomorphism (4.4) is contravariant with respect to homomorphisms of tori.

(2) The image of 𝑤𝑑
𝑇
is equal to

Im(𝑤𝑑𝑇) =

{
Λ∗(𝑇) if 𝑛 ⩾ 1,
{𝜒 ∈ Λ∗(𝑇) ∶ (𝑑, 𝜒) ∈ 2ℤ} if 𝑛 = 0.

In particular, 𝑤𝑑
𝑇
is an isomorphism if either 𝑛 ⩾ 1 or 𝑛 = 0 and 𝑑 ∈ 2Λ(𝑇), while it is an index

two inclusion in the remaining cases.
(3) Fix an isomorphism 𝑇 ≅ 𝔾𝑟𝑚 which induces isomorphisms Λ∗(𝑇) ≅ Λ∗(𝔾𝑟𝑚) = ℤ

𝑟 and Λ(𝑇) ≅
Λ(𝔾𝑟𝑚) = ℤ

𝑟. Write 𝑑 = (𝑑1, … , 𝑑𝑟) ∈ ℤ𝑟 under the above isomorphism Λ(𝑇) ≅ ℤ𝑟. Denote by
{𝑒𝑖}

𝑟
𝑖=1

the canonical basis of ℤ𝑟, by {𝑓𝑗}𝑛𝑗=1 the canonical basis of ℤ
𝑛 and by {𝜖𝑖}𝑟𝑖=1 a basis of the

subgroup {
𝜒 = (𝜒1, … , 𝜒𝑟) ∈ ℤ

𝑟 ∶ (𝜒, 𝑑) =

𝑟∑
𝑖=1

𝜒𝑖𝑑𝑖 ∈ 2ℤ

}
⊆ ℤ𝑟.

The relative Picard group of Bun𝑑
𝑇,0,𝑛

is freely generated by

⎧⎪⎪⎨⎪⎪⎩

{⟨(𝑒𝑖, 0), (0, 𝑓1)⟩ = 𝜎∗1(𝑒𝑖 )}𝑟𝑖=1 if 𝑛 ⩾ 1,{
𝑑𝜋(𝜔

(𝑑,𝜖𝑖 )

2
𝜋 ⊗ 𝜖𝑖 ) =ℒ(𝜖𝑖)

1−(𝑑,𝜖𝑖) ⊗ ⟨𝜖𝑖, 𝜖𝑖⟩ (𝑑,𝜖𝑖 )2 }𝑟
𝑖=1

if 𝑛 = 0.

With the aim of proving the above theorems, wewill study in the next subsection the restriction
of the line bundles on Bun𝑇,g ,𝑛 to the geometric fibers overg ,𝑛.
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4.1 The restriction of the Picard group to the fibers I

The aim of this subsection is to define a 𝑇-gerbe structure on Bun𝑇,g ,𝑛 and to study the restriction
of the relative Picard group of Bun𝑇,g ,𝑛 to a fiber over a geometric point ofg ,𝑛.
The automorphism group of any 𝑆-point (𝐶 → 𝑆, 𝜎1, … , 𝜎𝑛, 𝐸) of Bun𝑇,g ,𝑛 contains the torus

𝑇, which is indeed isomorphic to the subgroup of automorphisms of (𝐶 → 𝑆, 𝜎1, … , 𝜎𝑛, 𝐸) that
induce the identity on the underlying family of pointed curves (𝐶 → 𝑆, 𝜎1, … , 𝜎𝑛). Therefore, we
can consider the rigidificationΠ𝑇 ∶ Bun𝑇,g ,𝑛 → J𝑇,g ,𝑛 ∶= Bun𝑇,g ,𝑛 � 𝑇 of Bun𝑇,g ,𝑛 by the torus 𝑇
(see [60, section 5]). By definition,Bun𝑇,g ,𝑛 is a𝑇-gerbe over 𝐽𝑇,g ,𝑛. This implies that the connected
components of J𝑇,g ,𝑛 are exactly

J𝑑𝑇,g ,𝑛 ∶= Π𝑇(Bun
𝑑
𝑇,g ,𝑛) for 𝑑 ∈ 𝜋1(𝑇) = Λ(𝑇)

andΠ𝑇 restricts to a 𝑇-gerbeΠ𝑑𝑇 ∶ Bun
𝑑
𝑇,g ,𝑛

→ J𝑑
𝑇,g ,𝑛

. The stack J(𝑑)
𝑇,g ,𝑛

admits a forgetful morphism

Ψ(𝑑)
𝑇
∶ J(𝑑)
𝑇,g ,𝑛

→g ,𝑛 over the moduli stack of curves and we set:

RPic(J𝑑𝑇,g ,𝑛) ∶= Pic(J
𝑑
𝑇,g ,𝑛)∕(Ψ

𝑑
𝑇)
∗ Pic(g ,𝑛).

The Leray spectral sequence for the étale sheaf 𝔾m with respect to the morphism Π𝑑
𝑇
gives the

exact sequence of (relative) Picard groups:

0 → RelPic(J𝑑𝑇,g ,𝑛)
(Π𝑑
𝑇
)∗

�����→ RelPic(Bun𝑑𝑇,g ,𝑛)
𝑤𝑑
𝑇
���→ Pic(𝑇) = Λ∗(𝑇). (4.1.1)

The homomorphism 𝑤𝑑
𝑇
, called the weight function, can be computed as follows. Let  be a line

bundle on Bun𝑑
𝑇,g ,𝑛

and fix a 𝑘-point 𝜉 ∶= (𝐶, 𝑥1, … , 𝑥𝑛, 𝐸) of Bun𝑑𝑇,g ,𝑛. The automorphism group
of 𝜉 acts on the fiber 𝜉 of  over 𝜉. Since the torus 𝑇 is contained in the automorphism group of
𝜉, this defines an action of 𝑇 on 𝜉 ≅ 𝑘 which is given by a character of 𝑇. This character, which
is independent of the chosen 𝑘-point 𝜉 and on the chosen isomorphism 𝜉 ≅ 𝑘, coincides with
𝑤𝑑
𝑇
().
We now describe the fiber of Π𝑇 ∶ Bun𝑇,g ,𝑛 → J𝑇,g ,𝑛 over a geometric point (𝐶, 𝑝1, … , 𝑝𝑛) of

g ,𝑛. Consider the Jacobian stack  (𝐶) parameterizing line bundles on 𝐶 and its rigidification
𝐽(𝐶) ∶=  (𝐶) � 𝔾m, which is the Jacobian variety of 𝐶. The connected components of  (𝐶) and
of 𝐽(𝐶) are

 (𝐶) =
∐
𝑒∈ℤ

 𝑒(𝐶) → 𝐽(𝐶) =
∐
𝑒∈ℤ

𝐽𝑒(𝐶),

where  𝑒(𝐶) is the stack parameterizing line bundles on 𝐶 of degree 𝑒 and 𝐽𝑒(𝐶) =  𝑒(𝐶) � 𝔾m.
Equivalently, there is a commutative diagram of sets

(4.1.2)

whose fiber over 𝑒 ∈ ℤ is the 𝔾m-gerbe  𝑒(𝐶) → 𝐽𝑒(𝐶).
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The fiber ofΠ𝑇 ∶ Bun𝑇,g ,𝑛 → J𝑇,g ,𝑛 over a geometric point (𝐶, 𝑝1, … , 𝑝𝑛) ofg ,𝑛 is canonically
isomorphic to the 𝑇-gerbe

𝑇(𝐶) ∶= Hom(Λ
∗(𝑇), (𝐶))

Π𝑇(𝐶)
⟶ Hom(Λ∗(𝑇), 𝐽(𝐶)) =∶ 𝐽𝑇(𝐶). (4.1.3)

The connected components of (4.1.3) are exactly the fibers of the 𝑇-gerbe Π𝑑
𝑇
∶ Bun𝑑

𝑇,g ,𝑛
→ J𝑑

𝑇,g ,𝑛
and they are given by

 𝑑𝑇 (𝐶) ∶= Hom𝑑(Λ
∗(𝑇), (𝐶))

Π𝑑
𝑇
(𝐶)
⟶ Hom𝑑(Λ

∗(𝑇), 𝐽(𝐶)) =∶ 𝐽𝑑𝑇(𝐶), (4.1.4)

whereHom𝑑 denote the set of homomorphisms whose composition with the diagonal homomor-
phisms of (4.1.2) is the element 𝑑 ∈ 𝑋(𝑇) = Hom(𝑋∗(𝑇), ℤ).
We now recall the explicit description of the Picard group of  𝑑

𝑇
(𝐶), where 𝐶 is a smooth curve

defined over an algebraically closed field 𝑘, adapting the description of [14, section 3] from 𝑑 = 0
to an arbitrary 𝑑 ∈ Λ(𝑇).
First of all, the 𝔾m-gerbe  (𝐶) → 𝐽(𝐶) is trivial, that is,  (𝐶) ≅ 𝐽(𝐶) × 𝐵𝔾m, since it admits

sections each of which correspond to a Poincaré line bundle on 𝐽(𝐶) × 𝐶. This implies that also
the𝑇-gerbeΠ𝑇(𝐶) (and hence alsoΠ𝑑𝑇(𝐶)) is trivial, that is,𝑇(𝐶) ≅ 𝐽𝑇(𝐶) × 𝐵𝑇. Hence, the Leray
spectral sequence for the étale sheaf 𝔾m with respect to the morphism Π𝑑

𝑇
(𝐶) gives the following

split short exact sequence of Picard groups:

(4.1.5)

where the section 𝑠𝑝, that depends on a chosen point 𝑝 ∈ 𝐶(𝑘), sends an element 𝜒 ∈
𝑋∗(𝑇) = Hom(𝑇, 𝔾m) into the line bundle on  𝑑

𝑇
(𝐶) naturally associated to the 𝔾m-bundle

𝜒#(𝐶)| 𝑑
𝑇
(𝐶)×{𝑝}, where 𝐶 is the universal 𝑇-bundle on 𝑇(𝐶) × 𝐶.

The continuous part of the Picard groups of 𝐽𝑑
𝑇
(𝐶) and of  𝑑

𝑇
(𝐶) can be described as follows.

Any character 𝜒 ∈ Λ∗(𝑇) determines a morphism

𝜒# ∶ 
𝑑
𝑇 (𝐶) = Hom𝑑(Λ

∗(𝑇), (𝐶)) →  (𝑑,𝜒)(𝐶)

𝜙 ↦ 𝜙(𝜒).

Denote byℒ𝐶,𝜒 the pullback via𝜒# × id𝐶 ∶  𝑑𝑇 (𝐶) × 𝐶 →  (𝑑,𝜒)(𝐶) × 𝐶 of the universal line bun-
dle ℒ𝐶 on  (𝑑,𝜒)(𝐶) × 𝐶, and let 𝑝1 and 𝑝2 be the projections of  𝑑𝑇 (𝐶) × 𝐶 onto the first and
second factor, respectively. There is an injective homomorphism

𝑗𝑑𝑇(𝐶) ∶ Hom(Λ(𝑇), 𝐽𝐶(𝑘)) = Λ
∗(𝑇) ⊗ 𝐽𝐶(𝑘) ↪ Pic(

𝑑
𝑇 (𝐶)),

𝜒 ⊗ 𝑁 ↦ ⟨ℒ𝐶,𝜒, 𝑝∗2(𝑁)⟩𝑝1 . (4.1.6)

Using the analogue of formula (3.5.3) for themorphism𝑝1 and the functoriality of the determinant
of cohomology, we get

⟨ℒ𝐶,𝜒, 𝑝∗2(𝑁)⟩𝑝1 = 𝑑𝑝1(ℒ𝐶,𝜒 ⊗ 𝑝∗2(𝑁)) ⊗ 𝑑𝑝1(ℒ𝐶,𝜒)−1 = 𝑡∗𝑁(𝑑𝑝1(ℒ𝐶,𝜒)) ⊗ 𝑑𝑝1(ℒ𝐶,𝜒)−1,
(4.1.7)
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where 𝑡𝑁 ∶  𝑑𝑇 (𝐶) →  𝑑
𝑇
(𝐶) is the translation by𝑁. Arguing as in [47, Lemma 6.2] and using that

the line bundlesℒ𝐶,𝜒 ⊗ 𝑝∗2(𝑁) andℒ𝐶,𝜒 have both𝑝1-relative degree equal to (𝑑, 𝜒), we compute

𝑤𝑑𝑇(𝐶)(𝑑𝑝1(ℒ𝐶,𝜒 ⊗ 𝑝
∗
2(𝑁))) = [(𝑑, 𝜒) + 1 − g]𝜒 = 𝑤𝑑𝑇(𝐶)(𝑑𝑝1(ℒ𝐶,𝜒)).

This, together with formula (4.1.7), implies that the weight of the line bundles ⟨ℒ𝐶,𝜒, 𝑝∗2(𝑁)⟩𝑝1
are zero; hence the morphism 𝑗𝑑

𝑇
(𝐶) factors as

(4.1.8)

The quotients

are called the Neron–Severi groups; they are discrete groups that admit the following description.
First of all, at the level of the Neron–Severi groups the splitting of the sequence (4.1.5) is

canonical (that is, independent of the point 𝑝 ∈ 𝐶), and hence we get a canonical isomorphism

NS( 𝑑𝑇 (𝐶))
≅
�→ Λ∗(𝑇) ⊕ NS(𝐽𝑑𝑇(𝐶)),

[𝐿] ↦ (𝑤𝑑𝑇(𝐿), [𝐿 ⊗ 𝑠𝑝(𝑤
𝑑
𝑇(𝐿))

−1]).

(4.1.9)

The Neron–Severi group of 𝐽𝑑
𝑇
(𝐶) admits the following explicit description. The Jacobian

𝐽𝐶 = 𝐽
0(𝐶) of 𝐶 is endowed with a standard principal polarization 𝜙𝜃 ∶ 𝐽𝐶

≅
�→ 𝐽∨

𝐶
induced by the

theta divisor. This determines an involution (called the Rosati involution) † ∶ End(𝐽𝐶) → End(𝐽𝐶)
on the endomorphism algebra of 𝐽𝐶 by sending 𝛼 to 𝜙−1

𝜃
◦ 𝛼∨ ◦ 𝜙𝜃. Denote by Hom𝑠(Λ(𝑇) ⊗

Λ(𝑇), End(𝐽𝐶)) the abelian group of homomorphisms that are symmetric with respect to the
Rosati involution on End(𝐽𝐶), that is, such that 𝜙(𝜆1 ⊗ 𝜆2) = 𝜙(𝜆2 ⊗ 𝜆1)†. As explained in [14,
Corollary 3.1.3], there is an isomorphism

𝑐 ∶ NS(𝐽𝑑𝑇(𝐶))
≅
�→ Hom𝑠(Λ(𝑇) ⊗ Λ(𝑇), End(𝐽𝐶)),

[𝐿] ↦

{
(𝑑1, 𝑑2) ↦

(
𝐽𝐶

(𝑑1,−)⊗id𝐽𝐶
�����������→ 𝐽0𝑇(𝐶)

𝜙𝐿
��→ 𝐽0𝑇(𝐶)

∨
((𝑑2,−)⊗id𝐽𝐶 )

∨

�������������→ 𝐽∨
𝐶

𝜙−1
𝜃
���→ 𝐽𝐶

)}
,

(4.1.10)

where 𝜙𝐿 is the homomorphism of abelian varieties sending 𝑎 ∈ 𝐽0
𝑇
(𝐶) into 𝑡∗𝑎(𝐿) ⊗ 𝐿

−1 ∈

Pic0(𝐽𝑑
𝑇
(𝐶)) = 𝐽0

𝑇
(𝐶)∨.

By putting everything together, we obtain the following description of the Picard groups of
 𝑑
𝑇
(𝐶) and of 𝐽𝑑

𝑇
(𝐶).
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Proposition 4.1.1. Let𝐶 be a curve over an algebraically closed field 𝑘 and let 𝑑 ∈ Λ(𝑇). Then there
is a diagram with exact rows and columns

where:

(1) 𝑗𝑑
𝑇
(𝐶) and 𝑗

𝑑

𝑇(𝐶) are the homomorphisms defined in (4.1.6) and (4.1.8), respectively;
(2) 𝛾𝑑𝑇(𝐶) is the composition of the morphism Pic(𝐽𝑑

𝑇
(𝐶)) ↠ NS(𝐽𝑑

𝑇
(𝐶)) and the isomorphism

(4.1.10);
(3) 𝛾𝑑

𝑇
(𝐶) is the composition of the morphism Pic( 𝑑

𝑇
(𝐶)) ↠ NS( 𝑑

𝑇
(𝐶)), the isomorphism (4.1.9)

and the isomorphism idΛ∗(𝑇) ⊕𝑐, where 𝑐 is the morphism (4.1.10).

Moreover, the above diagram is functorial with respect to homomorphism of tori.

Note that if 𝐶 has genus zero (in which case 𝐽𝐶 = 0), the above diagram gives that Pic(𝐽𝑑
𝑇
(𝐶)) =

0 and that the weight function 𝑤𝑑
𝑇
(𝐶) ∶ Pic( 𝑑

𝑇
(𝐶)) → Λ∗(𝑇) is an isomorphism.

Now, given a geometric point (𝐶, 𝑝1, … , 𝑝𝑛) ofg ,𝑛, we are going to write down a formula for
the restriction homomorphism towards the Neron–Severi group

RPic(Bun𝑑𝑇,g ,𝑛)
res𝑑
𝑇
(𝐶)

������→ Pic( 𝑑𝑇 (𝐶)) ↠ NS(
𝑑
𝑇 (𝐶))

on the tautological classes. Note that the canonical map id𝐽𝐶 ∶ ℤ → End(𝐽𝐶) given by the addition
on the abelian variety 𝐽𝐶 induces a homomorphism

−⊗ id𝐽𝐶 ∶ Bil
𝑠 Λ(𝑇) → Hom𝑠(Λ(𝑇) ⊗ Λ(𝑇), End(𝐽𝐶)), (4.1.11)

where the source is the group of integral bilinear symmetric forms onΛ(𝑇), which has been intro-
duced in Subsection 2.2. Note that this homomorphism is injective if the genus of𝐶 is positive and
it is identically zero if the genus of 𝐶 is zero.

Proposition 4.1.2. Let (𝐶, 𝑝1, … , 𝑝𝑛) be a geometric point ofg ,𝑛 and let 𝑑 ∈ Λ(𝑇).

(1) The composition

RPic(Bun𝑑𝑇,g ,𝑛)
res𝑑
𝑇
(𝐶)

������→ Pic( 𝑑𝑇 (𝐶))
𝑤𝑑
𝑇
(𝐶)

�����→ Λ∗(𝑇)

coincides with the weight function 𝑤𝑑
𝑇
of (4.1.1) and it is given on the tautological classes of

RPic(Bun𝑑
𝑇,g ,𝑛

) by
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⎧⎪⎨⎪⎩
𝑤𝑑𝑇(ℒ(𝜒, 𝜁)) = [(𝑑, 𝜒) + |𝜁| + 1 − g]𝜒,

𝑤𝑑𝑇(⟨(𝜒, 𝜁), (𝜒′, 𝜁′)⟩) = [(𝑑, 𝜒′) + |𝜁′|]𝜒 + [(𝑑, 𝜒) + |𝜁|]𝜒′,
where (𝑑, 𝜒), (𝑑, 𝜒′) ∈ ℤ are obtained from the perfect pairing (2.1.7), |𝜁| = ∑𝑖 𝜁𝑖 ∈ ℤ and
similarly for |𝜁′|.

(2) The composition

𝛾𝑑𝑇(𝐶) ∶ RPic(Bun
𝑑
𝑇,g ,𝑛)

res𝑑
𝑇
(𝐶)

������→ Pic( 𝑑𝑇 (𝐶))
𝛾𝑑
𝑇
(𝐶)

�����→ Hom𝑠(Λ(𝑇) ⊗ Λ(𝑇), End(𝐽𝐶))

is given on the tautological classes of RPic(Bun𝑑
𝑇,g ,𝑛

) by

⎧⎪⎨⎪⎩
𝛾𝑑𝑇(𝐶)(ℒ(𝜒, 𝜁)) = (𝜒 ⊗ 𝜒) ⊗ id𝐽𝐶

𝛾𝑑𝑇(𝐶)(⟨(𝜒, 𝜁), (𝜒′, 𝜁′)⟩) = (𝜒 ⊗ 𝜒′ + 𝜒′ ⊗ 𝜒) ⊗ id𝐽𝐶 ,
where 𝜒 ⊗ 𝜒 and 𝜒 ⊗ 𝜒′ + 𝜒′ ⊗ 𝜒 are elements of (Λ∗(𝑇) ⊗ Λ∗(𝑇))𝑠 which is canonically
identified with Bil𝑠 Λ(𝑇) by (2.2.5).

Note that, once Theorems 4.1 and 4.2 are proved, we will know that RPic(Bun𝑑
𝑇,g ,𝑛

) is gen-
erated by tautological classes, and hence the above proposition gives a complete description of
the restriction homomorphism towards the Néron–Severi group on the entire RPic(Bun𝑑

𝑇,g ,𝑛
).

The full restriction morphism res𝑑
𝑇
(𝐶) ∶ RPic(Bun𝑑

𝑇,g ,𝑛
) → Pic( 𝑑

𝑇
(𝐶)) will be described in

Proposition 4.3.3.

Proof. The formulae for ⟨(𝜒, 𝜇), (𝜒′, 𝜇′)⟩ follow from the ones forℒ(𝜒, 𝜇) and Equation (3.5.7).
Hence, it is enough to prove the formulae for (𝜒, 𝜇).
Let us first prove part (1). Clearly, the weight function 𝑤𝑑

𝑇
is equal to the composition

𝑤𝑑
𝑇
(𝐶) ◦ res𝑑

𝑇
(𝐶). Arguing as in [47, Lemma 6.2] and using thatℒ(𝜒, 𝜇) = 𝑑𝜋(𝜒(

∑
𝑖 𝜁𝑖𝑝𝑖)) and

that the 𝜋-relative Euler–Poincaré characteristic of 𝜒(
∑
𝑖 𝜁𝑖𝑝𝑖) is equal to [(𝑑, 𝜒) + |𝜁| + 1 − g]

since 𝜒(
∑
𝑖 𝜁𝑖𝑝𝑖) has 𝜋-relative degree equal to (𝑑, 𝜒) + |𝜁|, we deduce that

𝑤𝑑𝑇(ℒ(𝜒, 𝜁)) = [(𝑑, 𝜒) + |𝜁| + 1 − g]𝜒.

Let us now compute 𝛾𝑑
𝑇
(𝐶)(ℒ(𝜒, 𝜁)). To ease the notation, we set

⎧⎪⎨⎪⎩
�̃� ∶=ℒ(𝜒, 𝜁)|𝐶 ∈ Pic( 𝑑𝑇 (𝐶)),
𝐿 ∶= �̃� ⊗ 𝑠𝑝(𝑤

𝑑
𝑇(ℒ(𝜒, 𝜁)))

−1 ∈ Pic(𝐽𝑑𝑇(𝐶)).

By (4.1.9) and (4.1.10), we have

𝛾𝑇(𝐶)(ℒ(𝜒, 𝜁)) = 𝑐([𝐿]). (4.1.12)
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To compute 𝑐([𝐿]), let us analyze the morphism 𝜙𝐿 ∶ 𝐽
0
𝑇
(𝐶) → 𝐽0

𝑇
(𝐶)∨. The fiber over

(𝐶, 𝑝1, … , 𝑝𝑛) of the morphism 𝜒# ∶ Bun𝑑𝑇,g ,𝑛 → Bun
(𝑑,𝜒)
𝔾m,g ,𝑛

(respectively, of its rigidification 𝜒# ∶

J𝑑
𝑇,g ,𝑛

→ J
(𝑑,𝜒)
𝔾m,g ,𝑛

) is equal to the morphism

𝜒 ∶  𝑑𝑇 (𝐶) = Hom𝑑(Λ
∗(𝑇), (𝐶)) →  (𝑑,𝜒)(𝐶)

𝜙 ↦ 𝜙(𝜒)
(respectively, 𝜒 ∶ 𝐽𝑑𝑇(𝐶) → 𝐽

(𝑑,𝜒)(𝐶)).

Consider the universal line bundleℒ𝐶 on  (𝑑,𝜒)(𝐶) × 𝐶 and set

⎧⎪⎨⎪⎩
�̃� ∶= 𝑑𝑝1(ℒ𝐶(𝜇1𝑝1 +⋯ + 𝜇𝑛𝑝𝑛)) ∈ Pic(

(𝑑,𝜒)(𝐶)),

𝑀 ∶= 𝑑𝑝1(ℒ𝐶(𝜇1𝑝1 +⋯ + 𝜇𝑛𝑝𝑛)) ⊗ (ℒ
−𝑤𝑑

𝑇
(ℒ(𝜒,𝜁))

𝐶
)| (𝑑,𝜒)(𝐶)×{𝑝} ∈ Pic(𝐽(𝑑,𝜒)(𝐶)),

where 𝑝1 ∶  (𝑑,𝜒)(𝐶) × 𝐶 →  (𝑑,𝜒)(𝐶) is the first projection. It is well-known (see, for example,
[56, chapter 17]) that the morphism 𝜙𝑀 ∶ 𝐽𝐶 → 𝐽∨𝐶 is equal to the standard principal polarization

𝜙𝜃 ∶ 𝐽𝐶
≅
�→ 𝐽∨

𝐶
.

By definition of the tautological line bundleℒ(𝜒, 𝜁) in § 3.5, it follows that

�̃� = 𝜒∗(�̃�) and 𝐿 = 𝜒∗(𝑀).

Since themorphism 𝜒 ∶ 𝐽𝑑
𝑇
(𝐶) → 𝐽(𝑑,𝜒)(𝐶) is equivariant with respect to themorphism of abelian

varieties 𝜒 ∶ 𝐽0
𝑇
(𝐶) → 𝐽0(𝐶) = 𝐽𝐶 , we compute for any 𝑎 ∈ 𝐽0𝑇(𝐶):

𝜙𝐿(𝑎) = 𝑡
∗
𝑎(𝜒

∗(𝑀)) ⊗ 𝜒∗(𝑀)−1 = 𝜒∗(𝑡∗
𝜒(𝑎)
(𝑀)) ⊗ 𝜒∗(𝑀−1) = 𝜒∗(𝜙𝑀(𝜒(𝑎)).

Thus, we conclude that the morphism 𝜙𝐿 is equal to the following composition

𝜙𝐿 ∶ 𝐽
0
𝑇(𝐶)

𝜒
�→ 𝐽𝐶

𝜙𝑀=𝜙𝜃
������→ 𝐽∨

𝐶

𝜒∨

���→ 𝐽0𝑇(𝐶)
∨. (4.1.13)

Using this, it follows from (4.1.10) that 𝑐([𝐿]) sends (𝑑1, 𝑑2) ∈ Λ(𝑇) ⊗ Λ(𝑇) to the endomorphism
of 𝐽𝐶 given by the following composition

𝑐([𝐿])(𝑑1, 𝑑2) ∶ 𝐽𝐶
(𝑑1,−)⊗id𝐽𝐶
�����������→ 𝐽0𝑇(𝐶)

𝜒
�→ 𝐽𝐶

𝜙𝑀=𝜙𝜃
������→ 𝐽∨

𝐶

𝜒∨

���→ 𝐽0𝑇(𝐶)
∨
((𝑑2,−)⊗id𝐽𝐶 )

∨

�������������→ 𝐽∨
𝐶

𝜙−1
𝜃
���→ 𝐽𝐶.

We conclude that 𝑐([𝐿])(𝑑1, 𝑑2) is equal to the multiplication on 𝐽𝐶 by (𝑑1, 𝜒) ⋅ (𝑑2, 𝛾), which is
equivalent to say that 𝑐([𝐿]) = (𝛾 ⊗ 𝛾) ⊗ id𝐽𝐶 . □

The results of this subsection are already sufficient to compute the relative Picard group of
Bun𝑑

𝑇,g ,𝑛
in genus 0.

Proof of Theorem 4.2. First of all, since the Jacobian of a curve of genus 0 is trivial, it follows that
the morphism Ψ𝑇 ∶ J𝑇,0,𝑛 →0,𝑛 is an isomorphism. Hence, from the exact sequence (4.1.1), we
deduce that the weight function

RPic
(
Bun𝑑𝑇,0,𝑛

) 𝑤𝑑
𝑇
���→ Λ∗(𝑇),
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is an injective homomorphism. The weight function applied to the tautological classes in
Pic(Bun𝑑

𝑇,0,𝑛
) has been computed in Proposition 4.1.2 and it coincides with the formula given

in Theorem 4.2(1). The functoriality of the homomorphism (4.4) will follow, once we will have
proved that RPic(Bun𝑑

𝑇,0,𝑛
) is generated by tautological classes, from the functoriality properties

of the Deligne pairing and the determinant of cohomology. To prove the remaining statements in
Theorem 4.2, we will distinguish the two cases 𝑛 > 1 and 𝑛 = 0.
Case I: 𝑛 > 0.
If we fix an isomorphism 𝑇 ≅ 𝔾𝑟𝑚 and use the same notation as in the statement of

Theorem 4.2(3), we get that

𝑤𝑑𝑇(⟨(𝑒𝑖, 0), (0, 𝑓1)⟩) = 𝑒𝑖 for any 𝑖 = 1, … , 𝑟.
We deduce that the weight function 𝑤𝑑

𝑇
is an isomorphism and that the elements

{⟨(𝑒𝑖, 0), (0, 𝑓1)⟩}𝑟𝑖=1 form a basis of RPic(Bun𝑑
𝑇,0,𝑛
), which is therefore generated by tautologi-

cal classes.
Case II: 𝑛 = 0.
First of all, with the notation of Theorem 4.2(3) and using (3.5.8), we get

𝑤𝑑𝑇

(
𝑑𝜋

(
𝜔
(𝑑,𝜖𝑖 )

2
𝜋 ⊗ 𝜖𝑖

))
= 𝑤𝑑𝑇

(
ℒ(𝜖𝑖)

1−(𝑑,𝜖𝑖) ⊗ ⟨𝜖𝑖, 𝜖𝑖⟩ (𝑑,𝜖𝑖 )2 ) = (1 − 𝑑𝑖)(𝑑𝑖 + 1)𝜖𝑖 + 𝑑𝑖2 2𝑑𝑖𝜖𝑖 = 𝜖𝑖.
This implies that

{𝜒 ∈ Λ∗(𝑇) ∶ (𝑑, 𝜒) ∈ 2ℤ} ⊆ Im𝑤𝑑𝑇. (4.1.14)

It remains to prove that equality holds, to which also implies that the elements {𝑑𝜋(𝜔
(𝑑,𝜖𝑖 )

2
𝜋 ⊗

𝜖𝑖 )}
𝑟
𝑖=1

form a basis of RPic(Bun𝑑
𝑇,0,0
).

Consider the morphism 𝐹𝑇 ∶ Bun
𝑑
𝑇,0,1

→ Bun𝑑
𝑇,0,0

forgetting the section , which is also the
universal curve over Bun𝑑

𝑇,0,0
. The pullback along 𝐹𝑇 induces an inclusion of Picard groups

𝐹∗𝑇 ∶ Pic(Bun
𝑑
𝑇,0,0) ↪ Pic(Bun

𝑑
𝑇,0,1).

Using the explicit descriptions 0,0 ≅ PGL2 and 0,1 ≅ (𝔾a ⋊ 𝔾m), it is easy to see
that Pic(0,0) = Hom(PGL2, 𝔾m) = 0 and Pic(0,1) = Hom(𝔾a ⋊ 𝔾m,𝔾m) = Hom(𝔾m, 𝔾m) =
ℤ generated by𝜓1 = 𝜎∗1(𝜔𝜋). Therefore,we conclude thatRPic(Bun

𝑑
𝑇,0,0
) = Pic(Bun𝑑

𝑇,0
) and, using

the Case I proved above, that any line bundle on Bun𝑑
𝑇,0,1

can be written as ⟨(𝜒, 0), (0, 𝑓1)⟩⊗𝜓𝑛1 =
𝜎∗
1
(𝜒 ⊗ 𝜔

𝑛
𝜋) for some unique 𝜒 ∈ Λ

∗(𝑇) and some unique 𝑛 ∈ ℤ. Note also that 𝑤𝑑
𝑇
(𝜎∗
1
(𝜒 ⊗

𝜔𝑛𝜋)) = 𝜒, as follows from the explicit formula for 𝑤𝑑
𝑇
.

Consider nowa line bundle ∈ Pic(Bun𝑑
𝑇,0,0
) = RPic(Bun𝑑

𝑇,0,0
) and let𝜒 ∶= 𝑤𝑑

𝑇
( ) ∈ Λ∗(𝑇).

Since the pullback 𝐹∗
𝑇
commutes with the weight functions for Bun𝑑

𝑇,0,0
and for Bun𝑑

𝑇,0,1
(which

we have been denoting with the same symbol 𝑤𝑑
𝑇
), we have that 𝐹∗

𝑇
( ) = 𝜎∗

1
(𝜒 ⊗ 𝜔

𝑛
𝜋) for some

𝑛 ∈ ℤ. Now 𝐹∗
𝑇
( ) is trivial on the geometric fibers of 𝐹𝑇 while 𝜎∗1(𝜒 ⊗ 𝜔

𝑛
𝜋) has 𝐹𝑇-relative

degree equal to (𝑑, 𝜒) − 2𝑛. This is only possible if (𝑑, 𝜒) = 2𝑛, which implies that

𝜒 ∈ {𝜒 ∈ Λ∗(𝑇) ∶ (𝑑, 𝜒) ∈ 2ℤ}.

Hence, equality holds in (4.1.14) and we are done. □
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4.2 The relative Picard group of 𝐁𝐮𝐧𝒅
𝑻,g ,𝒏

in genera g ⩾ 𝟏

The aim of this subsection is to prove Theorem 4.1. We will first exhibit explicit generators of
RPic(Bun𝑑

𝑇,g ,𝑛
) for g ⩾ 1, thus proving Theorem 4.1,(2) and then deduce from it Theorem 4.1(1).

We fix an isomorphism 𝑇 ≅ 𝔾𝑟𝑚 which induces an isomorphism Λ∗(𝑇) ≅ Λ∗(𝔾𝑟𝑚) = ℤ
𝑟. Then

we can identify the objects in Bun𝑇,g ,𝑛 with the vector bundles of rank 𝑟 which are direct sums of
line bundles. According to Theorem 3.1.1, the connected components of Bun𝑇,g ,𝑛 correspond to
the 𝑟-uples 𝑑 ∶= (𝑑1, … , 𝑑𝑟) of integers, which correspond to the degrees of each line bundle in
the splitting.
We will first focus on the case 𝑑 = (0, … , 0) and 𝑛 ⩾ 1, and then deal with the other cases.

Lemma 4.2.1. Assume 𝑛 ⩾ 1 and g ⩾ 1. The group RPic(J0
𝑇,g ,𝑛

) is freely generated by

⟨
𝑒𝑖 ((g − 1)𝜎1), 𝜔𝜋((2 − 2g)𝜎1)

⟩
for 𝑖 = 1, … , 𝑟, if g ⩾ 2,⟨

𝑒𝑖 ((g − 1)𝜎1),(𝜎𝑗 − 𝜎𝑗+1)
⟩

for 𝑖 = 1, … , 𝑟, and 𝑗 = 1,… , 𝑛 − 1,

𝑑𝜋(𝑒𝑖 ((g − 1)𝜎1) for 𝑖 = 1, … , 𝑟,

𝑑𝜋

(
𝑒𝑖 ⊗ 𝑒𝑘 ((g − 1)𝜎1)

)
for 1 ⩽ 𝑖 < 𝑘 ⩽ 𝑟.

Proof. Set {𝐽𝑟 →} ∶= {J0
𝑇,g ,𝑛

→g ,𝑛}, where 𝑟 = dim𝑇. We remark that 𝐽𝑟 → is an abelian
stack over , that is, a representable morphism of stacks such that every geometric fiber is an
abelian variety. The identity section is given by the trivial vector bundle 𝑟

𝐶g ,𝑛
on the universal

curve ofg ,𝑛. We recall the following facts.

(i) There exists an exact sequence of abstract groups:

0 → Hom

(
, 𝐽∨𝑟

) 𝜈
�→ RPic(𝐽𝑟)

𝛾𝑟(𝐶)
�����→ NS(𝐽𝑟𝐶), (4.2.1)

where 𝐽∨𝑟 is the dual abelian stack of 𝐽𝑟 and 𝛾𝑟(𝐶) is the restriction to the Neron–Severi group
of 𝑟 copies of the Jacobian of some curve 𝐶. It can be proved using an argument similar to the
proof of [34, Proposition 3.6].

(ii) There exists a curve of genus g ⩾ 1 over the base field 𝑘 such that the natural homomorphism
id𝐽𝐶 ∶ ℤ → End(𝐽𝐶) is an isomorphism (see [50]).

If 𝑟 = 1, then the line bundle 𝑑𝜋(𝑒1 ((g − 1)𝜎1) induces a principal polarization on 𝐽1. Since
𝐽𝑟 ≅ 𝐽1 × ⋯ × 𝐽1, it follows that the line bundle

⨂𝑟
𝑖=1 𝑑𝜋(𝑒𝑖 ((g − 1)𝜎1) induces a principal

polarization on 𝐽𝑟. This implies that we have the following isomorphism of abelian stacks

𝐽𝑟
≅
�→ 𝐽∨𝑟

(𝐶 → 𝑆, {𝜎𝑗},
⨁𝑟
𝑖=1 𝐹𝑖) ↦

(
𝐶 → 𝑆, {𝜎𝑗},

⨁𝑟
𝑖=1 𝑑𝜋

(
𝐹𝑖 ⊗ 𝑒𝑖 ((g − 1)𝜎1)

)
⊗ 𝑑𝜋
(
𝑒𝑖 ((g − 1)𝜎1)

)−1)
.

Using the above isomorphism and the identification Hom(, 𝐽1) = RelPic
0(g ,𝑛), we deduce

an isomorphism of abelian groups:
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RPic0(g ,𝑛)
⊕𝑟 = Hom(, 𝐽𝑟)

≅
�→ Hom

(
, 𝐽∨𝑟

)
𝑟⨁
𝑖=1

𝐹𝑖 ↦

𝑟⨁
𝑖=1

𝑑𝜋(𝐹𝑖 ⊗ ((g − 1)𝜎1)) ⊗ 𝑑𝜋(((g − 1)𝜎1))
−1.

Using Corollary 2.5.3 of the weak Franchetta’s conjecture (see Theorem 2.5.1) and the above
isomorphism, we deduce that the group Hom(, 𝐽

∨
𝑟 ) is freely generated by

𝑑𝜋

(
𝜔𝜋((2 − 2g)𝜎1) ⊗ 𝑒𝑖 ((g − 1)𝜎1)

)
⊗ 𝑑𝜋

(
𝑒𝑖 ((g − 1)𝜎1)

)−1
for 𝑖 = 1, … , 𝑟, if g ⩾ 2,

𝑑𝜋

(
(𝜎𝑗 − 𝜎𝑗+1) ⊗ 𝑒𝑖 ((g − 1)𝜎1)

)
⊗ 𝑑𝜋

(
𝑒𝑖 ((g − 1)𝜎1)

)−1
for 𝑖 = 1, … , 𝑟,
and 𝑗 = 1,… , 𝑛 − 1.

Using (3.5.3), we see that the image of the homomorphism 𝜈 in (4.2.1) is freely generated by⟨
𝜔𝜋((2 − 2g)𝜎1),𝑒𝑖 ((g − 1)𝜎1)

⟩
for 𝑖 = 1, … , 𝑟, if g ⩾ 2,⟨

(𝜎𝑗 − 𝜎𝑗+1),𝑒𝑖 ((g − 1)𝜎1)
⟩

for 𝑖 = 1, … , 𝑟, and 𝑗 = 1,… , 𝑛 − 1.
(4.2.2)

Consider now the following line bundles on Bun0
𝑇,g ,𝑛

:

𝑑𝜋

(
𝑒𝑖 ((g − 1)𝜎1)

)
, for 𝑖 = 1, … , 𝑟,

𝑑𝜋

(
𝑒𝑖 ⊗ 𝑒𝑘 ((g − 1)𝜎1)

)
, for 1 ⩽ 𝑖 < 𝑘 ⩽ 𝑟.

(4.2.3)

By Proposition 4.1.2, the weights of the above line bundles are 0. Hence, by the exact sequence
(4.1.1), they descend to line bundles on J0

𝑇,g ,𝑛
. If we take a curve 𝐶 as in (ii), the image of these line

bundles under the restriction homomorphism 𝛾𝑟(𝐶) of (4.2.1) freely generate NS(𝐽𝑟𝐶) because of
Proposition 4.1.2(2) (see also Subsection 2.2).
Using the exact sequence (4.2.1), we deduce thatRPic(𝐽𝑟) is freely generated by the lines bundles

in (4.2.2) together with the ones in (4.2.3), which concludes our proof. □

Lemma 4.2.2. Assume 𝑛 ⩾ 1 and g ⩾ 1. The group RelPic(Bun0
𝑇,g ,𝑛

) is freely generated by⟨
𝑒𝑖 ((g − 1)𝜎1), 𝜔𝜋((2 − 2g)𝜎1)

⟩
for 𝑖 = 1, … , 𝑟, if g ⩾ 2,⟨

𝑒𝑖 ((g − 1)𝜎1),(𝜎𝑗 − 𝜎𝑗+1)
⟩

for 𝑖 = 1, … , 𝑟, and 𝑗 = 1,… , 𝑛 − 1,

𝑑𝜋

(
𝑒𝑖 ((g − 1)𝜎1)

)
for 𝑖 = 1, … , 𝑟,

𝑑𝜋

(
𝑒𝑖 ⊗ 𝑒𝑘 ((g − 1)𝜎1)

)
for 1 ⩽ 𝑖 < 𝑘 ⩽ 𝑟,

𝑑𝜋

(
𝑒𝑖 (g ⋅ 𝜎1)

)
for 𝑖 = 1, … , 𝑟.

Proof. Consider the exact sequence (4.1.1). By Proposition 4.1.2(1), the images via the weight
function 𝑤0

𝑇
of the line bundles

𝑑𝜋

(
𝑒𝑖 (g ⋅ 𝜎1)

)
for 𝑖 = 1, … , 𝑟

freely generate Λ∗(𝑇). By combining this with Lemma 4.2.1, the proof follows. □
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We are now ready to prove the second part of Theorem 4.1.

Proof of Theorem 4.1(2). We will distinguish three cases.
Case I: 𝑛 ⩾ 1 and 𝑑 = 0.
By Lemma 4.2.2, for g ⩾ 2 (respectively, for g = 1), the relative Picard group RPic(Bun0

𝑇,g ,𝑛
)

is free of rank 𝑟𝑛 + 𝑟(𝑟 + 1)∕2 + 𝑟 (respectively, 𝑟𝑛 + 𝑟(𝑟 + 1)∕2), which is equal to the number
of line bundles appearing in Theorem 4.1(2). Then, to prove the theorem, it is enough to show
that the generators in Lemma 4.2.2 can be expressed as integral combinations of the line bundles
appearing in Theorem 4.1(2). This follows from the following formulae inRPic(Bun0

𝑇,g ,𝑛
) (in addi-

tive notation), which are obtained using Properties (3.5.4) and (3.5.3) of the Deligne pairing and
Equation (3.5.8):⟨

𝑒𝑖 ((g − 1)𝜎1), 𝜔𝜋((2 − 2g)𝜎1)
⟩
= ⟨𝑒𝑖 , 𝜔𝜋⟩ + (2 − 2g)⟨(𝑒𝑖, 0), (0, 𝑓1)⟩ =⟨(𝑒𝑖, 0), (𝑒𝑖, 0)⟩ − 2 ⋅ ℒ(𝑒𝑖, 0) + (2 − 2g) ⋅ ⟨(𝑒𝑖, 0), (0, 𝑓1)⟩,⟨

𝑒𝑖 ((g − 1)𝜎1),(𝜎𝑗 − 𝜎𝑗+1)
⟩

=
⟨
(𝑒𝑖, 0), (0, 𝑓𝑗)

⟩
−
⟨
(𝑒𝑖, 0), (0, 𝑓𝑗+1)

⟩
,

𝑑𝜋

(
𝑒𝑖 (𝑚 ⋅ 𝜎1)

)
= 𝑚 ⋅ ⟨(𝑒𝑖, 0), (0, 𝑓1)⟩ +ℒ(𝑒𝑖, 0) for any𝑚 ∈ ℤ,

𝑑𝜋

(
𝑒𝑖 ⊗ 𝑒𝑘 ((g − 1)𝜎1)

)
= ⟨𝑒𝑖 ⊗ 𝑒𝑘 ,((g − 1)𝜎1)⟩ + 𝑑𝜋(𝑒𝑖 ⊗ 𝑒𝑘 ) =

= (g − 1) ⋅ (⟨(𝑒𝑖, 0), (0, 𝑓1)⟩ + ⟨(𝑒𝑘, 0), (0, 𝑓1)⟩) + ⟨(𝑒𝑖, 0), (𝑒𝑘, 0)⟩ +ℒ(𝑒𝑖, 0) +ℒ(𝑒𝑘, 0).

Case II: 𝑛 ⩾ 1 and 𝑑 = (𝑑1, … , 𝑑𝑟) arbitrary.
Consider the isomorphism overg ,𝑛

𝔱 ∶ Bun𝑑𝑇,g ,𝑛
≅
�→ Bun0𝑇,g ,𝑛

(𝐶 → 𝑆, {𝜎𝑗},⊕𝑖𝐹𝑖) ↦ (𝐶 → 𝑆, {𝜎𝑗},⊕𝑖𝐹𝑖(−𝑑𝑖𝜎1))

The induced morphism �̃� ∶ 𝑑
𝑇,g ,𝑛

→ 0
𝑇,g ,𝑛

on the universal families satisfies

�̃�∗(𝑒𝑖 ) = 𝑒𝑖 (−𝑑𝑖𝜎1) for any 𝑖 = 1, … , 𝑟. (4.2.4)

By Case I, the relative Picard group of Bun0
𝑇,g ,𝑛

is freely generated by the line bundles appearing
in Theorem 4.1(2). Hence, the relative Picard group of Bun𝑑

𝑇,g ,𝑛
is freely generated by the pull-

backs of these line bundles along the isomorphism 𝔱. Using the functoriality of the determinant
of cohomology and of theDeligne pairing, togetherwith Properties (3.5.3) and (3.5.4), andRelation
(4.2.4), we get the following relations in RPic(Bun𝑑

𝑇,g ,𝑛
) (in additive notation)

𝔱∗(⟨(𝑒𝑖, 0), (0, 𝑓𝑗)⟩) = ⟨(𝑒𝑖, 0), (0, 𝑓𝑗)⟩,
𝔱∗(⟨(𝑒𝑖, 0), (𝑒𝑘, 0)⟩) = ⟨(𝑒𝑖, 0), (𝑒𝑘, 0)⟩ − 𝑑𝑖⟨(𝑒𝑘, 0), (0, 𝑓1)⟩ − 𝑑𝑘⟨(𝑒𝑖, 0), (0, 𝑓1)⟩,
𝔱∗ℒ(𝑒𝑖, 0) =ℒ(𝑒𝑖, 0) − 𝑑𝑖⟨(𝑒𝑖, 0), (0, 𝑓1)⟩.

(4.2.5)

From the above relations, it follows that RPic(Bun𝑑
𝑇,g ,𝑛

) is freely generated by the line bundles
appearing in Theorem 4.1(2).
Case III: 𝑛 = 0 and 𝑑 = (𝑑1, … , 𝑑𝑟) arbitrary.
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We have to show that RPic(Bun𝑑
𝑇,g
) is freely generated by the line bundles

⟨(𝑒𝑖, 0), (𝑒𝑘, 0)⟩, for 1 ⩽ 𝑖 ⩽ 𝑘 ⩽ 𝑟,
ℒ(𝑒𝑖, 0), for 𝑖 = 1, … , 𝑟.

(4.2.6)

Consider themorphism𝐹𝑇 ∶ Bun𝑑𝑇,g ,1 → Bun
𝑑
𝑇,g

forgetting the section. Since𝐹𝑇 is the pullback of
the universal family g =g ,1 →g along the SteinmorphismΦ𝑑𝑇 ∶ Bun

𝑑
𝑇,g
→g (see Propo-

sition 3.3.2), Lemma 2.3.4 implies that the pullback along 𝐹𝑇 induces an inclusion of relative
Picard groups

𝐹∗𝑇 ∶ RPic(Bun
𝑑
𝑇,g ) ↪ RPic(Bun

𝑑
𝑇,g ,1).

By the definition of the tautological line bundles it follows that 𝐹∗
𝑇
ℒ(𝜒) =ℒ(𝜒, 0) and

𝐹∗
𝑇
(⟨(𝜒, 0), (𝜒′, 0)⟩) = ⟨(𝜒, 0), (𝜒′, 0)⟩ for any 𝜒, 𝜒′ ∈ Λ∗(𝑇). Using this and Case II, it follows that

the line bundles in (4.2.6) are linearly independent in RPic(Bun𝑑
𝑇,g
) and that RPic(Bun𝑑

𝑇,g ,1
) is

freely generated by their pullback via 𝐹∗
𝑇
and the line bundles ⟨(𝑒𝑖, 0), (0, 𝑓1)⟩ for 𝑖 = 1, … , 𝑟. So,

in order to conclude the proof, it is enough to show that
𝑟⨂
𝑖=1

⟨(𝑒𝑖, 0), (0, 𝑓1)⟩𝑎𝑖 ∈ 𝐹∗𝑇 RelPic(Bun𝑑𝑇,g )⟹ 𝑎𝑖 = 0 for any 𝑖.

Assume that there exists  ∶=
⨂𝑟
𝑖=1⟨(𝑒𝑖, 0), (0, 𝑓1)⟩𝑎𝑖 descending to RelPic(Bun𝑑

𝑇,g
). For 𝑖 =

1, … , 𝑟, let 𝐿𝑖 be a line bundle of degree 𝑑𝑖 over a curve 𝐶. We have a cartesian diagram of stacks

(4.2.7)

where g is the morphism corresponding to the 𝑘-object (𝐶, 𝐿1 ⊕⋯⊕ 𝐿𝑟). Then g̃ corresponds to
the 𝐶-object

(𝐶 × 𝐶
𝑝𝑟2
���→ 𝐶,Δ, 𝐿1 ⊠ 𝐶 ⊕⋯⊕ 𝐿𝑟 ⊠ 𝐶),

where Δ ∶ 𝐶 → 𝐶 × 𝐶 is the diagonal embedding. By (3.5.4), we have the following equalities in
RPic(Bun𝑑

𝑇,g ,1
)

⟨(𝑒𝑖, 0), (0, 𝑓1)⟩ = 𝜎∗1(𝑒𝑖).
In particular, we have the following equality of line bundles on 𝐶:

g̃∗
⟨
(𝑒𝑖, 0), (0, 𝑓𝑗)

⟩
≅ Δ∗(𝐿𝑖 ⊠ 𝐶) ≅ 𝐿𝑖,

which implies that g̃∗ ≅
⨂𝑟
𝑖=1 𝐿

𝑎𝑖
𝑖
. Now, if the coefficients 𝑎𝑖 are not all zero and the line bundles

𝐿𝑖 are generic, then the line bundle g̃∗ is non-trivial (using that the genus of 𝐶 is non zero). This
implies that is not the pullback of a line bundle on Bun𝑇,g , as desired. □

We can finally show that the first part of Theorem 4.1 is implied by the second part.
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Proof of Theorem 4.1(1). First of all, because of the bilinearity and symmetry of the Deligne pairing
(see (3.5.4)), themaps 𝜏𝑇 and𝜎𝑇 arewell-definedhomomorphisms of groups and the image of 𝜏𝑇 +
𝜎𝑇 is the subgroup ofRPic(Bun𝑑𝑇,g ,𝑛) generated by all the line bundles of the form ⟨(𝜒, 𝜁), (𝜒′, 𝜁′)⟩,
with 𝜒, 𝜒′ ∈ 𝑋∗(𝑇) and 𝜁, 𝜁′ ∈ ℤ𝑛. Theorem 4.1(2) shows that the map 𝜏𝑇 + 𝜎𝑇 is injective and
hence it gives rise to the short exact sequence of abelian groups

0 → Sym2 Λ∗(𝑇) ⊕ (Λ∗(𝑇) ⊗ ℤ𝑛)
𝜏𝑇+𝜎𝑇
������→ RPic

(
Bun𝑑𝑇,g ,𝑛

)
→ coker(𝜏𝑇 + 𝜎𝑇) → 0. (4.2.8)

Next, consider the map

𝜂 ∶ Λ∗(𝑇)⟶ coker(𝜏𝑇 + 𝜎𝑇)

𝜒 ↦ [ℒ(𝜒, 0)].
(4.2.9)

Equation (3.5.7) implies that themap 𝜂 is a homomorphism of abelian groups.Moreover, the same
Equation (3.5.7) also implies that

⟨(𝜒, 0), (0, 𝜁)⟩ ≡ ℒ(𝜒, 𝜇) ⊗ℒ(𝜒, 0)−1 mod (Φ𝑑𝐺)
∗(Pic(g ,𝑛)),

which gives that [ℒ(𝜒, 0)] = [ℒ(𝜒, 𝜁)] for any 𝜁 ∈ ℤ𝑛.
Since RPic(Bun𝑑

𝑇,g ,𝑛
) is generated by tautological line bundles by Theorem 4.1(2), we deduce

that the map 𝜂 is surjective and hence it induces an isomorphism

𝜂 ∶
Λ∗(𝑇)

ker(𝜂)

≅
�→ coker(𝜏𝑇 + 𝜎𝑇)

[𝜒] ↦ [ℒ(𝜒, 𝜁)],

for any 𝜁 ∈ ℤ𝑛. (4.2.10)

We now claim that

ker(𝜂) =

{
{0} if g ⩾ 2,
2Λ∗(𝑇) if g = 1.

(4.2.11)

Indeed, Theorem 4.1(2) implies easily that ker(𝜂) is trivial if g ⩾ 2. On the other hand, if g = 1,
then the first relation in (3.5.8) gives that (using that 𝜔𝜋 is trivial)

ℒ(𝜒, 0)2 = 𝑑𝜋(𝜒)
2 ≡ ⟨(𝜒, 0), (𝜒, 0)⟩ = ⟨𝜒,𝜒⟩ mod Φ∗𝐺(Pic(g ,𝑛)),

which implies that 2Λ∗(𝑇) ⊆ ker(𝜂). And, moreover, equality holds by Theorem 4.1(2).
By putting together (4.2.8), (4.2.10) and (4.2.11), we get the exact sequences (4.2) and (4.3), where

themap 𝜌𝑇 is the composition of the surjectionRPic(Bun𝑑𝑇,g ,𝑛) ↠ coker(𝜏𝑇 + 𝜎𝑇)with the inverse
of the isomorphism of (4.2.10).
Finally, the functoriality of the exact sequences (4.2) and (4.3) follows from the functoriality

properties of the Deligne pairing and of the determinant of cohomology. □

4.3 The restriction of the Picard group to the fibers II

In this subsection, we complete the results of Subsection 4.1 on the restriction map res𝑑
𝑇
(𝐶) ∶

RPic(Bun𝑑
𝑇,g ,𝑛

) → Pic( 𝑑
𝑇
(𝐶)) to the fiber over a geometric point (𝐶, 𝑝1 … , 𝑝𝑛) ofg ,𝑛.
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With this aim, we now study for g ⩾ 1 the image and the kernel of the direct sum of the weight
function 𝑤𝑑

𝑇
and of the following map

𝛾𝑑𝑇 ∶ RPic(Bun
𝑑
𝑇,g ,𝑛)⟶ Bil𝑠 Λ(𝑇),

ℒ(𝜒, 𝜁)) ↦ 𝜒 ⊗ 𝜒,

⟨(𝜒, 𝜁), (𝜒′, 𝜁′)⟩↦ 𝜒 ⊗ 𝜒′ + 𝜒′ ⊗ 𝜒,
(4.3.1)

which is a well-defined homomorphism by Proposition 4.1.2, since the composition of 𝛾𝑑
𝑇
with

the injective homomorphism id𝐽𝐶 ∶ ℤ → End(𝐽𝐶) (for g ⩾ 1) gives the homomorphism 𝛾𝑇(𝐶) ∶
RPic(Bun𝑑

𝑇,g ,𝑛
) → NS(𝐽𝑑

𝑇
(𝐶)) over any geometric point (𝐶, 𝑝1 … , 𝑝𝑛) ofg ,𝑛.

Proposition 4.3.1. Assume that g ⩾ 1. Consider the following group

𝐻g ,𝑛 ∶=

{
{(𝑚, 𝜁) ∈ ℤ⊕ ℤ𝑛 ∶ (2g − 2)𝑚 + |𝜁| = 0} if g ⩾ 2,
{𝜁 ∈ ℤ𝑛 ∶ |𝜁| = 0} if g = 1.

There is an exact sequence

0 → Λ∗(𝑇) ⊗ 𝐻g ,𝑛

𝑗𝑑
𝑇
��→ RPic(Bun𝑑𝑇,g ,𝑛)

𝑤𝑑
𝑇
⊕𝛾𝑑
𝑇

�������→ Λ∗(𝑇) ⊕ Bil𝑠 Λ(𝑇), (4.3.2)

where the morphism 𝑗𝑑
𝑇
is defined as

𝑗𝑑𝑇(𝜒 ⊗ (𝑚, 𝜁)) =

⟨
𝜒, 𝜔

𝑚
𝜋

(
𝑛∑
𝑖=1

𝜁𝑖𝜎𝑖

)⟩
if g ⩾ 2,

𝑗𝑑𝑇(𝜒 ⊗ 𝜁) =

⟨
𝜒,

(
𝑛∑
𝑖=1

𝜁𝑖𝜎𝑖

)⟩
if g = 1.

Moreover, the image of 𝑤𝑑
𝑇
⊕ 𝛾𝑑

𝑇
is equal to

Im(𝑤𝑑𝑇 ⊕ 𝛾
𝑑
𝑇) =

⎧⎪⎨⎪⎩
Λ∗(𝑇) ⊕ Bil𝑠 Λ(𝑇) if 𝑛 ⩾ 1,{
(𝜒, 𝑏) ∈ Λ∗(𝑇) ⊕ Bil𝑠 Λ(𝑇) ∶

(2g − 2)|(𝑥, 𝜒) − 𝑏(𝑑, 𝑥) + (g − 1)𝑏(𝑥, 𝑥)
for any 𝑥 ∈ Λ(𝑇)

}
if 𝑛 = 0.

(4.3.3)

Note that𝐻g ,𝑛 = 0 (or, equivalently, the map 𝑤𝑑𝑇 ⊕ 𝛾
𝑑
𝑇
is injective) if and only if either 𝑛 = 0 or

g = 𝑛 = 1.

Proof. Let us first compute the kernel of 𝑤𝑑
𝑇
⊕ 𝛾𝑑

𝑇
. Using Theorem 4.1(2) (and the notation of

Theorem 4.1(2)), an element of RPic(Bun𝑑
𝑇,g ,𝑛

) can be written uniquely as

 =
∑

1⩽𝑖⩽𝑗⩽𝑟

𝑎𝑖𝑗⟨(𝑒𝑖, 0), (𝑒𝑗, 0)⟩ + ∑
1⩽𝑘⩽𝑟

⟨(𝑒𝑘, 0), (0, 𝜁𝑘)⟩ + ∑
1⩽𝑙⩽𝑟

𝑏𝑙ℒ(𝑒𝑙, 0) (4.3.4)
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for some 𝑎𝑖𝑗, 𝑏𝑙 ∈ ℤ, 𝜁𝑘 ∈ ℤ𝑛, with the property that 𝑎𝑖𝑖 = 0 if g = 1. Using the definition (4.3.1)
of 𝛾𝑑

𝑇
and the formula for 𝑤𝑑

𝑇
contained in Proposition 4.1.2(1), we compute

𝑤𝑑𝑇() =
∑

1⩽𝑖⩽𝑗⩽𝑟

𝑎𝑖𝑗(𝑑𝑖𝑒𝑗 + 𝑑𝑗𝑒𝑖) +
∑
1⩽𝑘⩽𝑟

|𝜁𝑘|𝑒𝑘 + ∑
1⩽𝑙⩽𝑟

𝑏𝑙(𝑑𝑙 + 1 − g)𝑒𝑙,

𝛾𝑑𝑇() =
∑

1⩽𝑖⩽𝑗⩽𝑟

𝑎𝑖𝑗(𝑒𝑖 ⊗ 𝑒𝑗 + 𝑒𝑗 ⊗ 𝑒𝑖) +
∑
1⩽𝑙⩽𝑟

𝑏𝑙𝑒𝑙 ⊗ 𝑒𝑙,
(4.3.5)

where 𝑑 = (𝑑1, … , 𝑑𝑟) under the isomorphism Λ(𝑇) ≅ ℤ𝑟. From the above formulae, it follows
that

 ∈ ker(𝑤𝑑𝑇 ⊕ 𝛾
𝑑
𝑇) ⇔

⎧⎪⎪⎨⎪⎪⎩
𝑎𝑖𝑗 = 0 for 𝑖 < 𝑗,

2𝑎𝑖𝑖 + 𝑏𝑖 = 0,

2𝑎𝑖𝑖𝑑𝑖 + |𝜁𝑖| + 𝑏𝑖(𝑑𝑖 + 1 − g) = 0,

⇔

⎧⎪⎪⎨⎪⎪⎩
𝑎𝑖𝑗 = 0 for 𝑖 < 𝑗,

𝑏𝑖 = −2𝑎𝑖𝑖,

(𝑎𝑖𝑖 , 𝜁
𝑖) ∈ 𝐻g ,𝑛.

In other words, belongs to the kernel of 𝑤𝑑
𝑇
⊕ 𝛾𝑑

𝑇
if and only if has the following form

 =
∑
1⩽𝑖⩽𝑟

(𝑎𝑖𝑖 ,𝜁
𝑖)∈𝐻g ,𝑛

[
𝑎𝑖𝑖⟨𝑒𝑖 ,𝑒𝑖 ⟩ − 2𝑎𝑖𝑖𝑑𝜋(𝑒𝑖 ) +

⟨
𝑒𝑖 ,

(∑
𝑘

(𝜁𝑖)𝑘𝜎𝑘

)⟩]

=
∑
1⩽𝑖⩽𝑟

(𝑎𝑖𝑖 ,𝜁
𝑖)∈𝐻g ,𝑛

⟨
𝑒𝑖 , 𝜔

𝑎𝑖𝑖
𝜋

(∑
𝑘

(𝜁𝑖)𝑘𝜎𝑘

)⟩
,

where the second equality follows from the first formula in (3.5.8). This shows that 𝑗𝑑
𝑇
is an

injective homomorphism whose image is equal to the kernel of 𝑤𝑑
𝑇
⊕ 𝛾𝑑

𝑇
.

Now, it is straightforward from (4.3.5) that𝑤𝑑
𝑇
⊕ 𝛾𝑑

𝑇
is surjective if𝑛 ⩾ 1. It remains to determine

the image of 𝑤𝑑
𝑇
⊕ 𝛾𝑑

𝑇
for 𝑛 = 0. Let {𝜖1, … , 𝜖𝑟} be the basis of Λ(𝑇) dual to the canonical basis

{𝑒1, … , 𝑒𝑟} of Λ∗(𝑇) ≅ ℤ𝑟. From (4.3.5), it follows that an element (𝜒, 𝑏) ∈ Λ∗(𝑇) ⊕ Bil𝑠 Λ(𝑇) is
equal to the image via 𝑤𝑑

𝑇
⊕ 𝛾𝑑

𝑇
of an element ∈ RPic(Bun𝑑

𝑇,g ,𝑛
) as in (4.3.4) if and only if

𝑏(𝜖𝑖, 𝜖𝑗) = 𝑎𝑖𝑗 for 𝑖 < 𝑗,

𝑏(𝜖𝑖, 𝜖𝑖) = 2𝑎𝑖𝑖 + 𝑐𝑖,

𝜒(𝜖𝑖) =
∑
𝑖⩽𝑗

𝑑𝑗𝑎𝑖𝑗 +
∑
𝑗⩽𝑖

𝑑𝑗𝑎𝑗𝑖 + 𝑐𝑖(𝑑𝑖 + 1 − g).

(4.3.6)

Using the first two conditions in (4.3.6), we can rewrite the third condition as

𝜒(𝜖𝑖) =
∑
𝑖⩽𝑗

𝑑𝑗𝑎𝑖𝑗 +
∑
𝑗⩽𝑖

𝑑𝑗𝑎𝑗𝑖 + 𝑐𝑖(𝑑𝑖 + 1 − g) =
∑
𝑗≠𝑖

𝑑𝑗𝑏(𝜖𝑖, 𝜖𝑗) + (2𝑎𝑖𝑖 + 𝑐𝑖)𝑑𝑖 + 𝑐𝑖(1 − g)

=
∑
𝑗

𝑑𝑗𝑏(𝜖𝑖, 𝜖𝑗) + (𝑏(𝜖𝑖, 𝜖𝑖) − 2𝑎𝑖𝑖)(1 − g) = 𝑏(𝜖𝑖, 𝑑) − (g − 1)𝑏(𝜖𝑖, 𝜖𝑖) + (2g − 2)𝑎𝑖𝑖.

(4.3.7)
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Therefore, we deduce that the element (𝜒, 𝑏) belongs to the image of 𝑤𝑑
𝑇
⊕ 𝛾𝑑

𝑇
if and only if

(2g − 2)|𝜒(𝜖𝑖) − 𝑏(𝑑, 𝜖𝑖) + (g − 1)𝑏(𝜖𝑖, 𝜖𝑖) for any 1 ⩽ 𝑖 ⩽ 𝑟. (4.3.8)

Now if 𝑥 =
∑𝑟
𝑖=1 𝜆𝑖𝜖𝑖 we have that

𝜒(𝑥) − 𝑏(𝑑, 𝑥) + (g − 1)𝑏(𝑥, 𝑥)

=

𝑟∑
𝑖=1

𝜆𝑖[𝜒(𝜖𝑖) − 𝑏(𝑑, 𝜖𝑖)] +

𝑟∑
𝑖=1

(g − 1)𝜆2𝑖 𝑏(𝜖𝑖, 𝜖𝑖) + 2(g − 1)
∑
𝑖<𝑗

𝜆𝑖𝜆𝑗𝑏(𝜖𝑖, 𝜖𝑗)

≡

𝑟∑
𝑖=1

𝜆𝑖[𝜒(𝜖𝑖) − 𝑏(𝑑, 𝜖𝑖)(g − 1)𝑏(𝜖𝑖, 𝜖𝑖)] mod 2g − 2.

Hence, condition (4.3.8) is equivalent to the condition

(2g − 2)|𝜒(𝑥) − 𝑏(𝑑, 𝑥) + (g − 1)𝑏(𝑥, 𝑥) for any 𝑥 ∈ Λ(𝑇),

appearing in the statement. □

Remark 4.3.2. For 𝑛 = 0, the invariant factors of Im(𝑤𝑑
𝑇
⊕ 𝛾𝑑

𝑇
) ⊆ Λ∗(𝑇) ⊕ Bil𝑠 Λ(𝑇) are

⎛⎜⎜⎜⎜⎝
1, … , 1
⏟⏟⏟
(dim𝑇+12 )

, 2g − 2,… , 2g − 2
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

dim𝑇

⎞⎟⎟⎟⎟⎠
,

as can be shown easily using (4.3.8).

We can finally describe the full restrictionmorphism res𝑑
𝑇
(𝐶) ∶ Pic(Bun𝑑

𝑇,g ,𝑛
) → Pic( 𝑑

𝑇
(𝐶)) for

any geometric point (𝐶, 𝑝1, … , 𝑝𝑛) ofg ,𝑛 and g ⩾ 1 (for g = 0 we have that res𝑑
𝑇
(𝐶) = 𝑤𝑑

𝑇
, with

the identification 𝑤𝑑
𝑇
(𝐶) ∶ Pic( 𝑑

𝑇
(𝐶))

≅
�→ Λ∗(𝑇), see Proposition 4.1.1). We will use the notation

of Propositions 4.1.1 and 4.3.1.

Proposition 4.3.3. Assume that g ⩾ 1 and let (𝐶, 𝑝1, … , 𝑝𝑛) be a geometric point ofg ,𝑛 defined
over an algebraically closed field 𝐾. Then the restriction morphism res𝑑

𝑇
(𝐶) ∶ Pic(Bun𝑑

𝑇,g ,𝑛
) →

Pic( 𝑑
𝑇
(𝐶)) fits into the following commutative diagram with exact rows

(4.3.9)
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where −⊗ id𝐽𝐶 is the inclusion (4.1.11) and the left vertical morphism is induced by the morphism

𝜄𝐶 = 𝜄(𝐶,𝑝1,…,𝑝𝑛) ∶ 𝐻g ,𝑛 → 𝐽𝐶(𝐾)

(𝑚, 𝜁) ↦ 𝜔𝑚𝐶 (

𝑛∑
𝑖=1

𝜁𝑖𝑝𝑖) if g ⩾ 2,

𝜁 ↦ 𝐶(

𝑛∑
𝑖=1

𝜁𝑖𝑝𝑖) if g = 1.

In particular, the kernel of the restriction morphism res𝑑
𝑇
(𝐶) is equal to Λ∗(𝑇) ⊗ ker(𝜄𝐶).

Proof. The top horizontal row is exact by Proposition 4.3.1 while the bottom left horizontal arrow is
injective by Proposition 4.1.1. It remains therefore to prove the commutativity of the diagram. The
right square is commutative by Proposition 4.1.2. The commutativity of the left square follows
straightforwardly by comparing the definition of 𝑗𝑑

𝑇
(see Proposition 4.3.1) with the definition

(4.1.6) of 𝑗𝑑
𝑇
(𝐶). □

5 REDUCTIVE NON-ABELIAN CASE

The aim of the section is to describe the relative Picard group of Bun[𝑑]
𝐺,g ,𝑛

RPic(Bun[𝑑]
𝐺,g ,𝑛

) ∶= Pic(Bun[𝑑]
𝐺,g ,𝑛

)∕(Φ[𝑑]
𝐺
)∗(Pic(g ,𝑛)), (5.1)

for a reductive group 𝐺 and any [𝑑] ∈ 𝜋1(𝐺). Throughout this section, we fix a maximal torus
𝜄 ∶ 𝑇𝐺 ↪ 𝐺 and we denote by𝒲𝐺 the Weyl group of 𝐺 that we identify with𝒩(𝑇𝐺)∕𝑇𝐺 . We will
denote by 𝐵𝐺 the unique Borel subgroup of 𝐺 containing 𝑇𝐺 .
As for the reductive abelian case in Section 4, we need to distinguish the genus zero and non-

zero cases. Below are the main theorems of this section.

Theorem5.1. Assume g > 0. Let 𝑑 ∈ Λ(𝑇𝐺). We denote by [𝑑] its image in𝜋1(𝐺) = Λ(𝑇𝐺)∕Λ(𝑇𝐺sc)
and by [𝑑]ab ∶= [𝑑ab] ∶= [Λab(𝑑)] its image in 𝜋1(𝐺ab) = Λ(𝐺ab).

(1) There exists a unique homomorphism (called transgression map)

𝜏𝐺(= 𝜏𝐺,g ,𝑛) ∶ (Sym
2 Λ∗(𝑇𝐺))

𝒲𝐺 ⟶ RPic
(
Bun[𝑑]

𝐺,g ,𝑛

)
, (5.2)

such that the composition 𝜄∗
#
◦ 𝜏𝐺 is equal to the 𝒲𝐺-invariant part of the homomorphism

𝜏𝑇𝐺 ∶ Sym
2 Λ∗(𝑇𝐺) → RPic(Bun

𝑑
𝑇𝐺,g ,𝑛

) defined in Theorem 4.1(1).
In particular, 𝜏𝐺 is injective.

(2) The commutative diagram of abelian groups

(5.3)
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is formed by injective morphisms and it is a pushout, that is,

RPic
(
Bun[𝑑]

ab

𝐺ab,g ,𝑛

)
⨿Sym2 Λ∗(𝐺ab) (Sym

2 Λ∗(𝑇𝐺))
𝒲𝐺

ab∗
∐
𝜏𝐺

��������→
≅

RPic
(
Bun𝑑𝐺,g ,𝑛

)
.

Furthermore, the homomorphism (5.2) and the diagram (5.3) are functorial for all the homomor-
phisms of reductive groups 𝜙 ∶ 𝐻 → 𝐺 such that 𝜙(𝑇𝐻) ⊆ 𝑇𝐺 .

The case g = 0 is completely different. In particular, the description of the Picard group may
vary depending on the connected component of Bun𝐺,0,𝑛.

Theorem 5.2. Assume g = 0. Let 𝑑 ∈ Λ(𝑇𝐺) and set 𝑑ss ∶= Λss(𝑑) ∈ Λ(𝐺ss) ⊆ Λ(𝐺ad).

(1) If 𝑑ss satisfies condition (*) of Lemma 2.2.3(i), then the homomorphism

𝑤𝑑𝐺 ∶ RPic
(
Bun[𝑑]

𝐺,0,𝑛

) 𝜄∗
#
��→ RPic

(
Bun𝑑𝑇𝐺,0,𝑛

) 𝑤𝑑
𝑇𝐺
����→ Λ∗(𝑇𝐺) (5.4)

is injective. Moreover, given [𝑑] ∈ 𝜋1(𝐺), it is always possible to choose a representative 𝑑 ∈
Λ(𝑇𝐺) such that 𝑑ss satisfies condition (*) of Lemma 2.2.3(i).
Furthermore, the homomorphism 𝑤𝑑

𝐺
is functorial for all the homomorphisms of reductive

groups 𝜙 ∶ 𝐻 → 𝐺 such that 𝜙(𝑇𝐻) ⊆ 𝑇𝐺 .
(2) LetΩ∗

𝑑
(𝑇𝐺) ⊂ Λ

∗(𝑇𝐺) be the subgroup of characterswhose image inΛ∗(𝑇𝐺sc) is equal to 𝑏(𝑑ss, −)
for some element 𝑏 ∈ (Sym2 Λ∗(𝑇𝐺sc))𝒲𝐺 . The image of 𝑤𝑑𝐺 is equal to

Im(𝑤𝑑𝐺) =

{
Ω∗
𝑑
(𝑇𝐺) if 𝑛 ⩾ 1,

{𝜒 ∈ Ω∗
𝑑
(𝑇𝐺) ∶ (𝜒, 𝑑) ∈ 2ℤ} if 𝑛 = 0.

The theorem has been proved in [14] under the assumption 𝑛 = 3 (in which case Bun𝐺,0,3 =
Bun𝐺(ℙ

1
𝑘
) since 0,3 = ℙ1𝑘), and this result is a fundamental ingredient of our proof.

5.1 The pullback to the maximal torus bundles

The aim of this subsection is to study the injectivity of the pullback of the (relative) Picard groups
along the morphism

𝜄# ∶ Bun
𝑑
𝑇𝐺,g ,𝑛

→ Bun[𝑑]
𝐺,g ,𝑛

.

The results of this subsection are also true for the pullback of the (relative) Picard groups along
the morphism

𝜄#(𝐶∕𝑆) ∶ Bun
𝑑
𝑇𝐺
(𝐶∕𝑆) ↪ Bun[𝑑]

𝐺
(𝐶∕𝑆),

for any family 𝐶 → 𝑆 of curves, when 𝑆 is an integral and regular quotient stack over 𝑘.
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Proposition 5.1.1. Assume that (g , 𝑛) ≠ (1, 0). The restriction of Φ[𝑑]
𝐺
∶ Bun[𝑑]

𝐺,g ,𝑛
→g ,𝑛 over the

geometric generic point 𝜂 ofg ,𝑛 gives rise to an injective homomorphism

RPic
(
Bun[𝑑]

𝐺,g ,𝑛

)
⟶Pic

(
Bun[𝑑]

𝐺
(𝜂)
)
,

where 𝜂 is the curve corresponding to 𝜂.
The same holds true for the relative moduli stack Bun[𝑑]

𝐺
(𝐶∕𝑆) for any family of curves 𝐶 → 𝑆,

provided that 𝑆 is an integral and regular quotient stack over 𝑘.

Proof. Note thatg ,𝑛 is an integral and regular algebraic stack over the base field 𝑘 = 𝑘 and it
is a quotient stack over 𝑘 if (g , 𝑛) ≠ (1, 0) (see, for example, Proposition 3.2.5 with 𝐺 equal to the
trivial group). Then, up to replacing it with an equivariant approximation as in Proposition 2.3.5,
we can assume that g ,𝑛 is (generically) an integral regular 𝑘-scheme for any g and 𝑛 and we
denote its generic point by 𝜂.
Now, if 𝐺 is a torus, then Bun[𝑑]

𝐺,g ,𝑛
is of finite type over g ,𝑛 by Proposition 3.1.7. If 𝐺 is not

a torus, then consider the open substack Bun[𝑑],⩽2
𝐺,g ,𝑛

⊂ Bun[𝑑]
𝐺,g ,𝑛

of the instability exhaustion (as in

§ 3.2), which is of finite type overg ,𝑛 by Proposition 3.2.3(ii). Since the complement of Bun
[𝑑],⩽2
𝐺,g ,𝑛

in Bun[𝑑]
𝐺,g ,𝑛

has codimension at least two on each geometric fiber of Φ[𝑑]
𝐺
∶ Bun[𝑑]

𝐺,g ,𝑛
→g ,𝑛 and

Bun[𝑑]
𝐺,g ,𝑛

→g ,𝑛 is smooth by Theorem 3.1(i), Lemma 2.3.1 implies that the restriction maps
induce isomorphisms

RPic
(
Bun[𝑑]

𝐺,g ,𝑛

) ≅
�→ RPic

(
Bun[𝑑],⩽2

𝐺,g ,𝑛

)
and Pic

(
Bun[𝑑]

𝐺
(𝜂)
) ≅
�→ Pic

(
Bun[𝑑],⩽2

𝐺
(𝜂)
)
.

Hence, up to replacing Bun[𝑑]
𝐺,g ,𝑛

with Bun[𝑑],⩽2
𝐺,g ,𝑛

if 𝐺 is not a torus, we can assume that

Φ[𝑑]
𝐺
∶ Bun[𝑑]

𝐺,g ,𝑛
→g ,𝑛 is of finite type.

Note thatΦ[𝑑]
𝐺
is flat with integral fibers since it is smooth by Theorem 3.1(i) andwith (geometri-

cally) connected fibers by Theorem 3.1.1. Hence, we can apply Proposition 2.3.2 to the morphism
Φ[𝑑]
𝐺
∶ Bun[𝑑]

𝐺,g ,𝑛
→g ,𝑛 and deduce that the restriction to the generic fiber of Φ

[𝑑]
𝐺

induces an
isomorphism

RPic
(
Bun[𝑑]

𝐺,g ,𝑛

)
≅ Pic

(
Bun[𝑑]

𝐺
(𝜂)
)
. (5.1.1)

Consider now the geometric generic point 𝜂 = Spec 𝑘(𝜂). SinceBun[𝑑]
𝐺
(𝜂) → 𝜂 is Stein (as follows

from Proposition 3.3.2 by base change along 𝜂 →g ,𝑛) and 𝜂 → 𝜂 is fpqc, then Lemma 2.3.4
implies that we have an injective base change morphism

Pic
(
Bun[𝑑]

𝐺
(𝜂)
)
↪ Pic

(
Bun[𝑑]

𝐺
(𝜂)
)
. (5.1.2)

We conclude by putting together (5.1.1) and (5.1.2).
The proof for Bun[𝑑]

𝐺
(𝐶∕𝑆) is the same, using the given assumptions on 𝑆. □
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Corollary 5.1.2.

(i) If g ⩾ 1, then for any 𝑑 ∈ Λ(𝑇𝐺) the pullback map

𝜄∗# ∶ RPic
(
Bun[𝑑]

𝐺,g ,𝑛

)
⟶RPic

(
Bun𝑑𝑇𝐺,g ,𝑛

)
is injective.

(ii) If g = 0 and 𝑑 ∈ Λ(𝑇𝐺) is such that 𝑑ss ∶= Λss(𝑑) ∈ Λ(𝐺ss) ⊆ Λ(𝐺ad) satisfies condition (*) of
Lemma 2.2.3(i), then the pullback map

𝜄∗# ∶ RPic(Bun
[𝑑]
𝐺,g ,0

)⟶ RPic(Bun𝑑𝑇𝐺,g ,0
)

is injective.

The same holds true for the relative moduli stack Bun[𝑑]
𝐺
(𝐶∕𝑆) for any family of curves 𝐶 → 𝑆,

provided that 𝑆 is an integral and regular quotient stack over 𝑘.

Note that Lemma 2.2.3(ii) guarantees that any 𝛿 ∈ 𝜋1(𝐺) admits a representative 𝑑 ∈ Λ(𝑇𝐺),
that is, [𝑑] = 𝛿 ∈ 𝜋1(𝐺), satisfying condition (*).

Proof. We will give the proof for Bun[𝑑]
𝐺,g ,𝑛

by distinguishing the case (g , 𝑛) ≠ (1, 0) from the case

(g , 𝑛) = (1, 0); the proof for Bun[𝑑]
𝐺
(𝐶∕𝑆) follows the same argument of the first case.

Case I: (g , 𝒏) ≠ (𝟏, 𝟎). For a given 𝑑 ∈ Λ(𝑇𝐺) = 𝜋1(𝑇𝐺), consider the following commutative
diagram

(5.1.3)

where the horizontal arrows are induced by the restriction to geometric generic fibers overg ,𝑛

and the vertical arrows are the pullbacks induced by the maps 𝜄# ∶ Bun𝑑𝑇𝐺,g ,𝑛 → Bun
[𝑑]
𝐺,g ,𝑛

and

𝜄#(𝜂) ∶ Bun
𝑑
𝑇𝐺
(𝜂) → Bun

[𝑑]
𝐺
(𝜂). The top horizontal arrow (and also the bottom horizontal one)

is injective by Proposition 5.1.1. Therefore, the injectivity of 𝜄∗
#
will follow from the above diagram

(5.1.3) if we show that the map 𝜄#(𝜂)∗ is injective.
According to [14, Theorem 5.3.1(iv)], the map 𝜄#(𝜂)∗ fits into the following commutative

diagram of abelian groups with exact arrows

(5.1.4)
where the map 𝜋1(𝜄)∗ is induced by the natural homomorphism 𝜋1(𝜄) ∶ 𝜋1(𝑇𝐺) → 𝜋1(𝐺) and
the map (𝜄𝐺)NS,𝑑 is defined in [14, Definition 5.2.5]. Now, the map 𝜋1(𝜄)∗ is injective since the
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homomorphism 𝜋1(𝜄) ∶ 𝜋1(𝑇𝐺) = Λ(𝑇𝐺) → 𝜋1(𝐺) =
Λ(𝑇𝐺)

Λ(𝑇𝐺sc )
is surjective. On the other hand,

from [14, Definition 5.2.5] it follows that:

∙ if g ⩾ 1, then (𝜄𝐺)NS,𝑑 is injective for any 𝑑 ∈ Λ(𝑇𝐺), using that natural homomorphism ℤ →

End(𝐽𝜂 ) is injective;
∙ if g = 0, then (𝜄𝐺)NS,𝑑 is injective precisely when 𝑑ss satisfies condition (*) of Lemma 2.2.3(i)
(see also the proof of [14, Lemma 4.3.6]).

Case II: (g , 𝒏) = (𝟏, 𝟎). Consider the cartesian diagram of families of genus one curves

(5.1.5)

By pullback, we obtain the following commutative diagram of relative Picard groups

(5.1.6)

where𝐹∗
𝐺
(respectively,𝐹∗

𝑇𝐺
) is injective byLemma2.3.4,which can be applied sinceΦ𝐺,1,0 (respec-

tively,Φ𝐺,1,0 ◦ 𝜄#,1,0 = Φ𝑇𝐺,1,0) is Stein by Proposition 3.3.2 and 𝐹 is fpqc (being a family of curves),
and 𝜄∗

#,1,1
is injective by Case I. From (5.1.6) we get that 𝜄∗

#,1,0
is injective, and we are done. □

5.2 The transgression map

In this subsection, we will construct the transgression map (5.2) and prove Theorem 5.1(1).
We first show that the map (5.2) exists for the rational first operational Chow group of the

moduli stackBun[𝑑],⩽𝑚
𝐺,g ,𝑛

of𝐺-bundleswith instability degree less than or equal to𝑚 (see Subsection
3.2).

Proposition 5.2.1. For any [𝑑] ∈ 𝜋1(𝐺) and for any𝑚 ⩾ 0, there exists a unique homomorphism
of groups

𝑐1(𝜏𝐺)
⩽𝑚
ℚ
∶ (Sym2 Λ∗(𝑇𝐺))

𝒲𝐺 → 𝐴1
(
Bun[𝑑],⩽𝑚

𝐺,g ,𝑛

)
ℚ
, (5.2.1)

such that, for any object (𝐶
𝜋
�→ 𝑆, 𝜎, 𝐸) and

∑
𝑖 𝜒𝑖 ⋅ 𝜇𝑖 ∈ (Sym

2 Λ∗(𝑇𝐺))
𝒲𝐺 , it satisfies the following

properties.

(i) We have the equality(
𝑐1(𝜏𝐺)

⩽𝑚
ℚ
(
∑
𝑖

𝜒𝑖 ⋅ 𝜇𝑖)

)
(𝐶

𝜋
�→ 𝑆, 𝜎, 𝐸) =

∑
𝑖

1|𝒲𝐺| (𝜋 ◦ 𝑝)∗

(
𝑐𝐺,𝐵
𝐸

(
𝜒𝑖 ⋅ 𝜇𝑖 ⋅

∏
𝛼>0

𝛼

))
∈ 𝐴1(𝑆)ℚ.
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(ii) If (𝐶
𝜋
�→ 𝑆, 𝜎, 𝐸) admits a reduction to a 𝑇-bundle 𝑄, we have the equality(
𝑐1(𝜏𝐺)

⩽𝑚
ℚ
(
∑
𝑖

𝜒𝑖 ⋅ 𝜇𝑖)

)
(𝐶

𝜋
�→ 𝑆, 𝜎, 𝐸) =

∑
𝑖

𝑐1

(⨂
𝑖

⟨𝜒𝑖♯(𝑄), 𝜇𝑖♯(𝑄)⟩𝜋)
=
∑
𝑖

𝜋∗
(
𝑐1(𝜒𝑖♯(𝑄)) ⋅ 𝑐1(𝜇𝑖♯(𝑄))

)
∈ 𝐴1(𝑆)ℚ.

Proof. We remove the 𝑛-sections 𝜎 from the notation. For any family (𝐶
𝜋
�→ 𝑆, 𝐸) of 𝐺-bundles, let

𝐸∕𝐵
𝑝
�→ 𝐶

𝜋
�→ 𝑆 be the associated flag bundle. Following the notations of Subsection 2.4, we define

𝑐1(𝜏𝐺)
⩽𝑚
ℚ
(𝐶

𝜋
�→ 𝑆, 𝐸) ∶ (Sym2 Λ∗(𝑇))𝒲𝐺 → 𝐴1(𝑆)ℚ

𝑣 ↦ 1|𝒲𝐺 | (𝜋 ◦ 𝑝)∗
(
𝑐𝐺,𝐵
𝐸

(
𝑣 ⋅
∏
𝛼>0 𝛼
))
.

(5.2.2)

It is compatible with base change and, so, it defines a homomorphism to the first rational opera-
tional Chow group of the moduli stack Bun𝑑,⩽𝑚

𝐺,g ,𝑛
, satisfying the equality (i). We need to check the

equality (ii). Assume that (𝐶 → 𝑆, 𝐸) has a reduction to a 𝑇-bundle 𝑄. A reduction to 𝑇 is equiv-
alent to the existence of a section 𝜎 ∶ 𝐶 → 𝐸∕𝑇 for the natural morphism 𝑞 ∶ 𝑃∕𝑇 → 𝐶. In other
words, we have a commutative diagram as follows

(5.2.3)

where all the squares are cartesian. Using the notations of Subsection 2.4, we have the following
equalities

𝑐1(𝜒♯(𝑄)) ⋅ 𝑐1(𝜇♯(𝑄)) = 𝑐
𝑇,𝑇
𝑄
(𝜒 ⋅ 𝜇) = 𝜎∗𝑐𝐺,𝑇

𝐸
(𝜒 ⋅ 𝜇) ∈ 𝐴1(𝐶) for any 𝜒, 𝜇 ∈ Λ∗(𝑇).

Hence, the cycle in the second row of (ii) is equal to∑
𝑖

𝜋∗
(
𝑐1(𝜒𝑖♯(𝑄)) ⋅ 𝑐1(𝜇𝑖♯(𝑄))

)
=
∑
𝑖

𝜋∗(𝜎
∗𝑐𝐺,𝑇
𝐸
(𝜒𝑖 ⋅ 𝜇𝑖)) for any

∑
𝑖

𝜒𝑖 ⋅ 𝜇𝑖 ∈ (Sym
2 Λ∗(𝑇))𝒲𝐺 .

(5.2.4)
If 𝑣 ∶=

∑
𝑖 𝜒𝑖 ⋅ 𝜇𝑖 ∈ (Sym

2 Λ∗(𝑇))𝒲𝐺 , we have the following equalities in 𝐴1(𝑆)ℚ

𝑐1(𝜏𝐺)
⩽𝑚
ℚ
(𝑣)(𝐶

𝜋
�→ 𝑆, 𝐸) ∶= (𝜋 ◦ 𝑝)∗

(
𝑐𝐺,𝐵
𝐸

(
𝑣 ⋅
∏
𝛼>0 𝛼|𝒲𝐺 |
))

= 𝜋∗𝜎
∗𝑞∗𝑝∗

(
𝑐𝐺,𝐵
𝐸

(
𝑣 ⋅
∏
𝛼>0 𝛼|𝒲𝐺 |
))

= 𝜋∗𝜎
∗𝑐𝐺,𝑇
𝐸
(𝑣).

(5.2.5)
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The first equality follows because 𝜎 is a section of 𝑞 ∶ 𝑃∕𝑇 → 𝐶 and the second one by applying
the functor 𝜋∗𝜎∗ to the equality in Corollary 2.4.3. Putting (5.2.4) and (5.2.5) together, we have the
assertion. □

We are now ready for the proof of Theorem 5.1(1), distinguishing the case (g , 𝑛) ≠ (1, 0) from
the special case (g , 𝑛) = (1, 0).

Proof of Theorem 5.1(1) in the case (g , 𝑛) ≠ (1, 0). First of all, the uniqueness follows from the
injectivity of 𝜄∗

#
, see Corollary 5.1.2(i) (recall that we are assuming that g ⩾ 1).

The remaining part of the proof is devoted to the existence of the map 𝜏𝐺 . Observe that we can
assume that 𝐺 is not a torus, for otherwise the statement is a tautology.
Consider the factorization of the morphism 𝜄# as

𝜄# ∶ Bun
𝑑
𝑇𝐺,g ,𝑛

𝑙#
��→ Bun𝑑𝐵𝐺,g ,𝑛

𝑗#
��→ Bun[𝑑]

𝐺,g ,𝑛
,

induced by the inclusions 𝑙 ∶ 𝑇𝐺 ↪ 𝐵𝐺 and 𝑗 ∶ 𝐵𝐺 ↪ 𝐺, where we have used that 𝜋1(𝐵𝐺) =
𝜋1(𝑇𝐺) since 𝐵red𝐺 = 𝑇𝐺 .
According to Theorem 3.4.1, up to choosing a different representative of [𝑑] ∈ 𝜋1(𝐺), we can

assume that the morphism 𝑗# is smooth, of finite type and with geometrically integral fibers.
Since Bun𝑑

𝐵𝐺,g ,𝑛
is quasi-compact by Proposition 3.1.7 and 𝐺 is non-abelian, Corollary 3.2.4

implies that there exists𝑚 ≫ 0 (which we fix from now on) such that we have a factorization

𝑗# ∶ Bun
𝑑
𝐵𝐺,g ,𝑛

𝑗#
��→ Bun[𝑑],⩽𝑚

𝐺,g ,𝑛
⊂ Bun[𝑑]

𝐺,g ,𝑛

and such the complementary substack of Bun[𝑑],⩽𝐶
𝐺,g ,𝑛

has codimension at least two in Bun[𝑑]
𝐺,g ,𝑛

.
Clearly the morphism 𝑗# is still smooth (hence flat), of finite type and with geometrically inte-
gral fibers. Moreover, the algebraic stacks Bun𝑑

𝐵𝐺,g ,𝑛
and Bun[𝑑],⩽𝑚

𝐺,g ,𝑛
are regular and integral by

Corollary 3.1.2. Furthermore, the algebraic stacks Bun𝑑
𝐵𝐺,g ,𝑛

and Bun[𝑑],⩽𝑚
𝐺,g ,𝑛

are both of finite
type over g ,𝑛 (and hence over 𝑘) by, respectively, Propositions 3.1.7 and 3.2.3(ii); hence, since
(g , 𝑛) ≠ (1, 0), they are both quotient stacks over 𝑘 by Proposition 3.2.5.
Observe that we have the following chain of homomorphisms

where the map res is given by restriction and it is an isomorphism by Lemma 2.3.1, the map 𝑐1 is
an isomorphism by Proposition 2.3.5(ii) (using that Bun[𝑑],⩽𝑚

𝐺,g ,𝑛
is a regular quotient 𝑘-stack) and

𝐴1(Bun[𝑑],⩽𝑚
𝐺,g ,𝑛

)tf is the torsion-free quotient of 𝐴1(Bun
[𝑑],⩽𝑚
𝐺,g ,𝑛

).
The proof of the theorem will follow from the following.

Claim I. The homomorphism 𝑐1(𝜏𝐺)
⩽𝑚
ℚ

of (5.2.1) factors set-theoretically through
Pic(Bun[𝑑],⩽𝑚

𝐺,g ,𝑛
), that is, there exists a map of sets

𝜏⩽𝑚
𝐺
∶ (Sym2 Λ∗(𝑇𝐺))

𝒲𝐺 → Pic(Bun[𝑑],⩽𝑚
𝐺,g ,𝑛

) such that 𝑐ℚ
1
◦ 𝜏⩽𝑚
𝐺
= 𝑐1(𝜏𝐺)

⩽𝑚
ℚ
. (5.2.6)
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Let us first show that Claim I allows us to conclude the proof of the theorem. Indeed, the Claim
implies that 𝑐1(𝜏𝐺)

⩽𝑚
ℚ

factors through a homomorphism

𝑐1(𝜏𝐺)
⩽𝑚 ∶ (Sym2 Λ∗(𝑇𝐺))

𝒲𝐺 → 𝐴1(Bun[𝑑],⩽𝑚
𝐺,g ,𝑛

)tf . (5.2.7)

Since RPic(Bun[𝑑]
𝐺,g ,𝑛

) is torsion-free by Corollary 5.1.2(i) and Theorem 4.1(2), the composition

𝐴1(Bun[𝑑],⩽𝑚
𝐺,g ,𝑛

)
res−1 ◦ 𝑐−1

1
����������→

≅
Pic(Bun[𝑑]

𝐺,g ,𝑛
) ↠ RPic(Bun[𝑑]

𝐺,g ,𝑛
)

factors through a homomorphism

𝛼⩽𝑚 ∶ 𝐴1(Bun[𝑑],⩽𝑚
𝐺,g ,𝑛

)tf ↠ RPic(Bun
[𝑑]
𝐺,g ,𝑛

). (5.2.8)

Now we define the transgression map as

𝜏𝐺 ∶ (Sym
2 Λ∗(𝑇𝐺))

𝒲𝐺
𝑐1(𝜏𝐺)

⩽𝑚

��������→ 𝐴1(Bun[𝑑],⩽𝑚
𝐺,g ,𝑛

)tf
𝛼⩽𝑚

����→ RPic(Bun[𝑑]
𝐺,g ,𝑛

).

Proposition 5.2.1(ii) implies that the composition 𝜄∗
#
◦ 𝜏𝐺 is equal to the𝒲𝐺-invariant part of the

homomorphism 𝜏𝑇𝐺 defined in Theorem 4.1(1), and we are done.
It remains to prove Claim I. To this aim, consider the following commutative diagram induced

by the morphism 𝑗#:

(5.2.9)

where both the maps 𝑐1 are isomorphisms by Proposition 2.3.5(ii) (using that Bun[𝑑],⩽𝑚
𝐺,g ,𝑛

and

Bun𝑑
𝐵𝐺,g ,𝑛

are regular quotient 𝑘-stacks) and the maps 𝑗#
∗
are injective since the composition

𝜄∗# ∶ Pic(Bun
[𝑑]
𝐺,g ,𝑛

)
res
��→
≅
Pic(Bun[𝑑],⩽𝑚

𝐺,g ,𝑛
)
𝑗#
∗

���→ Pic(Bun𝑑𝐵𝐺,g ,𝑛
)
𝑙∗
#
��→ Pic(Bun𝑑𝑇𝐺,g ,𝑛

)

is injective by Corollary 5.1.2(i).
Fix 𝑣 ∈ (Sym2 Λ∗(𝑇))𝒲𝐺 and set 𝑙 ∶= 𝑐1(𝜏𝐺)

⩽𝑚
ℚ
(𝑣) ∈ 𝐴1(Bun[𝑑],⩽𝑚

𝐺,g ,𝑛
)ℚ. The pullback 𝑗#

∗
(𝑙) ∈

𝐴1(Bun𝑑
𝐵𝐺,g ,𝑛

)ℚ is an integral class by Proposition 2.4.1(ii), that is

𝑗#
∗
(𝑙) = 𝑐ℚ

1
(𝑀) for some𝑀 ∈ Pic(Bun𝑑𝐵𝐺,g ,𝑛). (5.2.10)

Claim II. The line bundle𝑀 is trivial along the fibers of 𝑗#.
Indeed, let 𝑥 ∶ Spec𝐾 → Bun[𝑑],⩽𝑚

𝐺,g ,𝑛
be a point (with𝐾 some field) corresponding to a𝐺-bundle

𝐸 → 𝐶
𝜋
�→ Spec(𝐾), together with 𝑛 ordered pairwise fiberwise disjoint sections of𝜋 (that we omit
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from the notation, as usual). The fiber of 𝑗# above the point 𝑥 can be identified with the 𝐾-stack
Sect𝑑(𝐶, 𝐸∕𝐵) of sections of the flag bundle 𝐸∕𝐵

𝑝
�→ 𝐶 such that the associated reduction to a 𝐵𝐺-

bundle is a𝐾-rational point of Bun𝑑
𝐵𝐺,g ,𝑛

. By Proposition 2.4.1(ii), the first Chern class of𝑀 is such

that for any morphism 𝑆
𝑓
�→ Sect𝑑(𝐶, 𝐸∕𝐵) we have that

𝑐1(𝑀)(𝑓) = (𝜋 ×𝑘 id𝑆)∗

(
Γ𝐺𝐸×𝐾𝑆

(𝑣)
)
∈ 𝐴1(𝑆),

where Γ𝐺
𝐸×𝐾𝑆

(𝑣) ∈ 𝐴2(𝐶 ×𝐾 𝑆) is the class appearing in Proposition 2.4.1(ii). By the functoriality
of the class Γ𝐺

𝐸
(−), we have that

Γ𝐺𝐸×𝐾𝑆
(𝑣) = pr∗𝐶Γ

𝐺
𝐸(𝑣),

where pr𝐶 ∶ 𝐶 ×𝐾 𝑆 → 𝐶 is the projection onto the first factor. The class Γ𝐺𝐸(𝑣) belongs to 𝐴
2(𝐶)

which is zero since 𝐶 is a curve over 𝐾. Hence, Γ𝐺
𝐸×𝐾𝑆

(𝑣) = 0 which implies that 𝑐1(𝑀) = 0 and
proves Claim II.
We already observed that 𝑗# ∶ Bun𝑑𝐵,g ,𝑛 → Bun

[𝑑],⩽𝑚
𝐺,g ,𝑛

is a smooth morphism of finite type
between regular integral stacks with geometrically integral fibers. Up to replacing the quotient
stack Bun[𝑑],⩽𝑚

𝐺,g ,𝑛
with an equivariant approximation as in Proposition 2.3.5(iii), we may assume

that Bun[𝑑],⩽𝑚
𝐺,g ,𝑛

is a regular integral algebraic space over 𝑘 (in particular, it is generically a scheme
by [66, Tag 06NH]). By Proposition 2.3.2, we have an exact sequence of Picard groups

Pic(Bun[𝑑],⩽𝑚
𝐺,g ,𝑛

)
𝑗#
∗

���→ Pic(Bun𝑑𝐵,g ,𝑛)
res𝜂
���→ Pic(Sect𝑑(𝐶𝜂, 𝐸𝜂∕𝐵) → 0, (5.2.11)

where the group on the right-hand side is the Picard group of the generic fiber of 𝑗#. By (5.2.11)
and Claim II, we have that

𝑗#
∗
(𝐿) = 𝑀 for some 𝐿 ∈ Pic(Bun[𝑑],⩽𝑚

𝐺,g ,𝑛
). (5.2.12)

From (5.2.10) and (5.2.12) and using the injectivity of the maps 𝑗#
∗
in the diagram (5.2.9), we infer

that 𝑐ℚ
1
(𝐿) = 𝑙, which concludes the proof of Claim I. □

Proof of Theorem 5.1(1) in the case (g , 𝑛) = (1, 0). Consider the commutative diagram

(5.2.13)

where the bottom square is (5.1.6), the commutativity of the top square follows from Theo-
rem 5.1(1) applied to (g , 𝑛) = (1, 1) and the equality 𝜏𝑇𝐺,1,1 = 𝐹

∗
𝑇𝐺

◦ 𝜏𝑇𝐺,1,0 follows from the fact
that the transgression maps for tori do not involve the marked sections (see Theorem 4.1(1)).
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Now, since 𝐹𝐺 (respectively, 𝐹𝑇𝐺 ) is a family of curves, by the seesaw principle the image of the
pullback 𝐹∗

𝐺
(respectively, 𝐹∗

𝑇𝐺
) consists of the classes of line bundles on Bun[𝑑]

𝐺,1,1
(respectively,

on Bun𝑑
𝑇𝐺,1,1

) that are trivial on the fibers of 𝐹𝐺 (respectively, of 𝐹𝑇𝐺 ). Moreover, since 𝐹𝑇𝐺 is the

pullback of 𝐹𝐺 via the morphism 𝜄#,1,0 (see (5.1.5)), a line bundle 𝐿 on Bun
[𝑑]
𝐺,1,1

is trivial on the
fibers of 𝐹𝐺 if and only if 𝜄∗#,1,1(𝐿) is trivial on the fibers of 𝐹𝑇𝐺 . In other words, the bottom square
in (5.2.13) is cartesian. Using this and the fact that 𝜏𝑇𝐺,1,1 factors through the inclusion 𝐹

∗
𝑇𝐺

(via
the homomorphism 𝜏𝑇𝐺,1,0, see (5.2.13)), we deduce that 𝜏𝐺,1,1 must factor through the inclusion
𝐹∗
𝑇𝐺

giving rise to a homomorphism

𝜏𝐺,1,0 ∶ (Sym
2 Λ∗(𝑇𝐺))

𝒲𝐺 → RPic(Bun[𝑑]
𝐺,1,0
),

that, by construction, satisfies the property stated in Theorem 5.1(1). □

Remark 5.2.2. The transgression map 𝜏𝐺 ∶ Sym2 Λ∗(𝑇𝐺)𝒲𝐺 → RPic(Bun
[𝑑]
𝐺,g ,𝑛

) admits a canon-

ical lift to Pic(Bun[𝑑]
𝐺,g ,𝑛

). This follows from Theorem 5.1(1) using that 𝜏𝑇𝐺 admits a lifting to

Pic(Bun[𝑑]
𝑇𝐺,g ,𝑛

) (as we observed after Theorem 4.1) and Corollary 5.1.2(i).

5.3 𝓦𝑮-Invariant line bundles on the moduli stack of 𝑮-bundles

The aimof this subsection is to proveTheorem5.1(2).Hence,wewill assume that g ⩾ 1 throughout
this subsection.
The morphisms of linear algebraic groups 𝑇ab ∶ 𝑇𝐺

𝜄
�→ 𝐺

ab
��→ 𝐺ab induce the following diagram

relating the three (injective) transgression maps 𝜏𝑇𝐺 , 𝜏𝐺 and 𝜏𝐺ab :

(5.3.1)
where we have used that the injective homomorphism Sym2 Λ∗

ab
factors through the invariant

subgroup 𝛽 ∶ (Sym2 Λ∗(𝑇𝐺))𝒲𝐺 ↪ Sym2 Λ∗(𝑇𝐺) and where we have also inserted the pushout

PO ∶= RPic
(
Bun[𝑑]

ab

𝐺ab,g ,𝑛

)
⨿Sym2 Λ∗(𝐺ab)

(
Sym2 Λ∗(𝑇𝐺)

)𝒲𝐺 .
Observe that

(a) (𝑇ab)∗# = 𝜄
∗
#
◦ ab∗# is injective (and hence also ab

∗
# is injective) by Theorem 4.1(1);

(b) 𝜄∗
#
is injective by Corollary 5.1.2(i).
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(c) 𝜏𝑇𝐺 ◦ 𝛽 = 𝜄∗
#
◦ 𝜏𝐺 by Theorem 5.1(1);

(d) 𝜏𝑇𝐺 ◦ 𝛽 ◦ 𝛼 = 𝜏𝑇𝐺 ◦ Sym2 Λ∗
ab
= (𝑇ab)

∗
#
◦ 𝜏𝐺ab = 𝜄

∗
#
◦ ab∗# ◦ 𝜏𝐺ab since the transgressionmap

for tori is functorial by Theorem 4.1(1).

Combining (b), (c) and (d), we get 𝜏𝐺 ◦ 𝛼 = ab∗# ◦ 𝜏𝐺ab , which implies, by the universal property
of the pushout, that there exists a morphism (indicated by a dotted arrow in the above diagram)

ab∗
∐
𝜏𝐺 ∶= Π ∶ PO → RPic

(
Bun[𝑑]

𝐺,g ,𝑛

)
.

To prove Theorem 5.1(2), it is enough to show that:

(i) the homomorphism Π is an inclusion of finite index;
(ii) the inclusion 𝜄∗

#
◦ Π ∶ PO ↪ RPic(Bun𝑑

𝑇𝐺,g ,𝑛
) is a primitive sub-lattice, that is,

PO = POℚ ∩ RPic(Bun
𝑑
𝑇𝐺,g ,𝑛

) ⊂ RPic(Bun𝑑𝑇𝐺,g ,𝑛
)ℚ.

Indeed, property (i) implies POℚ = RPic(Bun
[𝑑]
𝐺,g ,𝑛

)ℚ. Combining with (ii), we have

RPic(Bun[𝑑]
𝐺,g ,𝑛

) ⊂ RPic(Bun[𝑑]
𝐺,g ,𝑛

)ℚ ∩ RPic(Bun
𝑑
𝑇𝐺,g ,𝑛

) = POℚ ∩ RPic(Bun
𝑑
𝑇𝐺,g ,𝑛

) = PO.

Hence, the homomorphism Π is an isomorphism and Theorem 5.1(2) follows.
The remaining of this subsection is devoted to proving (i) and (ii). Before doing this, we need

to identify the pushout with a certain subgroup of RPic(Bun𝑑
𝑇𝐺,g ,𝑛

).

Definition 5.3.1. We call the algebraic action of theWeyl group𝒲𝐺 on the groupRPic(Bun𝑑𝑇𝐺,g ,𝑛)
the unique action such that, on the tautological bundles, it is defined as follows

𝑤.ℒ(𝜒, 𝜁) = ℒ(𝑤.𝜒, 𝜁),

𝑤.⟨(𝜒, 𝜁), (𝜒′, 𝜁′)⟩ = ⟨(𝑤.𝜒, 𝜁), (𝑤.𝜒′, 𝜁′)⟩, (5.3.2)

where 𝑤.𝜒 is the natural action of 𝒲𝐺 on the character lattice Λ∗(𝑇𝐺). We will denote by
RPic(Bun𝑑

𝑇𝐺,g ,𝑛
)𝒲𝐺 the subgroup in RPic(Bun𝑑

𝑇𝐺,g ,𝑛
) of the invariant elements.

Observe that the algebraic action is well-defined on RPic(Bun𝑑
𝑇𝐺,g ,𝑛

) because of Theorem 4.1.
Moreover, the exact sequences (4.2) and (4.3) for RPic(Bun𝑑

𝑇𝐺,g ,𝑛
) are equivariant with respect to

the natural action of𝒲𝐺 onΛ∗(𝑇𝐺). Furthermore, we can extend the algebraic action of𝒲𝐺 to an
action on Pic(Bun𝑑

𝑇𝐺,g ,𝑛
) by letting𝒲𝐺 act trivially on the pullbacks of the line bundles ong ,𝑛.

Remark 5.3.2. The Weyl group𝒲𝐺 acts naturally on the universal moduli stack Bun𝑇𝐺,g ,𝑛 of 𝑇𝐺-
bundles. Indeed, for to 𝑤 ∈𝒩(𝑇𝐺) and to any 𝑇𝐺-bundle 𝐸 on a family (𝐶 → 𝑆, 𝜎) of 𝑛-pointed
curves of genus g , we can associate a new 𝑇𝐺-bundle 𝑤.𝐸 on (𝐶 → 𝑆, 𝜎), whose total space is the
same as 𝐸, but the action of the torus is twisted by𝑤, that is, the action 𝜎𝑤.𝐸 ∶ 𝑤.𝐸 × 𝑇𝐺 → 𝑤.𝐸 is
defined as 𝜎𝑤.𝐸(𝑝, 𝑡) ∶= 𝜎𝐸(𝑝,𝑤(𝑡)), where 𝜎𝐸 is the action of 𝑇𝐺 on 𝐸. In general, 𝐸 and 𝑤.𝐸 are
not isomorphic as 𝑇𝐺-bundles. However, if𝑤 ∈ 𝑇𝐺 , the morphism 𝐸 → 𝑤.𝐸 sending 𝑝 into𝑤.𝑝 is
an isomorphism of𝑇𝐺-bundles. In particular, the group𝒲𝐺 has a natural action onPic(Bun𝑇𝐺,g ,𝑛).
In general,𝒲𝐺 does not preserve the connected components of Bun𝑇𝐺,g ,𝑛. Indeed, the action by
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𝑤 ∈𝒲𝐺 defines an isomorphism

𝜎𝐺(𝑤,−) ∶ Bun
𝑑
𝑇𝐺,g ,𝑛

≅ Bun𝑤.𝑑𝑇𝐺,g ,𝑛
,

where 𝑤.𝑑 is the natural action of 𝒲𝐺 on the cocharacter lattice Λ(𝑇𝐺) = 𝜋1(𝑇𝐺). It is easy to
check that the algebraic action of Definition 5.3.1 coincides with the natural action restricted to
Pic(Bun𝑑

𝑇𝐺,g ,𝑛
) ⊂ Pic(Bun𝑇𝐺,g ,𝑛) if (and only if) 𝑤.𝑑 = 𝑑.

Lemma 5.3.3. The commutative diagram of abelian groups

(5.3.3)

is a pushout, where 𝜏𝒲𝐺
𝑇𝐺

is the 𝑊𝐺-invariant part of the transgression map 𝜏𝑇𝐺 and (𝑇ab)
∗
#
is the

pullback map (which lands in the 𝒲𝐺-invariant subgroup) induced by the morphism of tori 𝑇ab ∶

𝑇𝐺
𝜄
�→ 𝐺

ab
��→ 𝐺ab.

Proof. We have already observed that the exact sequences in Theorem 4.1(1) for RPic(Bun𝑑
𝑇𝐺,g ,𝑛

)

are 𝒲𝐺-equivariant with the action defined in Definition 5.3.1. Moreover, since the exact
sequences in Theorem 4.1(1) are functorial with respect to morphisms of tori, we can pull back
the exact sequences for 𝐺ab along the morphism 𝑇ab ∶ 𝑇𝐺 → 𝐺ab and we will land in the 𝒲𝐺-
invariant parts of the exact sequences for 𝑇𝐺 since Λ∗ab(Λ

∗(𝐺ab)) ⊂ Λ∗(𝑇𝐺)
𝒲𝐺 . In other words, we

have a morphism of exact sequences

(5.3.4)

where 𝑚 = 0 if g ⩾ 2 and 𝑚 = 2 if g = 1, and the injectivity of [Λ∗
ab
] for 𝑚 = 2 follows from the

equality (Λ∗
ab
)−1(2Λ∗(𝑇𝐺)) = 2Λ

∗(𝐺ab))which is easily deduced from the fact that the embedding
Λ∗
ab
∶ Λ∗(𝐺ab) ↪ Λ∗(𝑇𝐺) is primitive (see (2.1.9)). Note that the morphism 𝜌

𝒲𝐺
𝑇𝐺

in the above dia-
gram (5.3.4) could be non-surjective since taking invariants with respect to the𝒲𝐺-action is not
an exact functor (only left exact). We now make the following

Claim. Im(𝜌𝒲𝐺
𝑇𝐺
) = Im([Λ∗

ab
]).

Indeed, if 𝑚 = 0, then the claim follows from the fact that Λ∗
ab
(Λ∗(𝐺ab)) = Λ∗(𝑇𝐺)

𝒲𝐺 by
Lemma 2.1.1, which implies that [Λ∗

ab
] is surjective and hence that also 𝜌𝒲𝐺

𝑇𝐺
is surjective. If𝑚 = 2,

we argue as follows. The inclusion Im(𝜌𝒲𝐺
𝑇𝐺
) ⊃ Im([Λ∗

ab
]) follows from the surjectivity of 𝜌𝐺ab . To
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prove the reverse inclusion, consider the exact sequence 0 → Λ∗(𝑇𝐺)
2.
�→ Λ∗(𝑇𝐺) →

Λ∗(𝑇𝐺)

2Λ∗(𝑇𝐺)
→ 0.

Taking the long exact sequence of cohomology groups𝐻𝑖(𝒲𝐺, −) attached to the above sequence
and using again Lemma 2.1.1, we get a new exact sequence:

0 →
Λ∗(𝐺ab)

2Λ∗(𝐺ab)

[Λ∗
ab
]

�����→

(
Λ∗(𝑇𝐺)

2Λ∗(𝑇𝐺)

)𝒲𝐺 𝜕
�→ 𝐻1(𝒲𝐺, Λ

∗(𝑇𝐺)). (5.3.5)

Hence, the claim is equivalent to 𝜏 ◦ 𝜌𝒲𝐺
𝑇𝐺
= 0. We recall here the basic properties of the map

𝜕, the details are left to the reader. A crossed homomorphism is a function 𝑓 ∶𝒲𝐺 → Λ∗(𝑇𝐺)
such that 𝑓(𝑤1 ⋅ 𝑤2) = 𝑓(𝑤1) + 𝑤1.𝑓(𝑤2). A crossed homomorphism 𝑓 is called principal if there
exists 𝑚 ∈ Λ∗(𝑇𝐺) such that 𝑓(𝑤) = 𝑤.𝑚 −𝑚. The group 𝐻1(𝒲𝐺, Λ∗(𝑇𝐺)) is the quotient of the
group of crossed homomorphisms by the subgroup of the principal ones. For any character [𝜒] ∈
(Λ∗(𝑇𝐺)∕2Λ

∗(𝑇𝐺))
𝒲𝐺 , the element 𝜕([𝜒]) is the class of the crossed homomorphisms

𝒲𝐺 → 𝐻1(𝒲𝐺, Λ
∗(𝑇𝐺))

𝑤 ↦ 1

2
(𝑤.𝜒 − 𝜒).

(5.3.6)

Let 𝐿 be a 𝒲𝐺-invariant line bundle of RPic(Bun𝑑
𝑇𝐺,1,𝑛

). Using the 𝒲𝐺-equivariance of the
homomorphism 𝜌𝑇𝐺 , we have that

(𝜕 ◦ 𝜌𝑇𝐺 (𝐿))(𝑤) =
1

2
(𝑤 ⋅ 𝜌𝑇𝐺 (𝐿) − 𝜌𝑇𝐺 (𝐿)) =

1

2
(𝜌𝑇𝐺 (𝑤.𝐿 − 𝐿)) = 0 for any 𝑤 ∈𝒲𝐺,

thus concluding the proof of claim.
Now, applying the snake lemma to the diagram (5.3.4) and using the above claim together with

the fact that Λ∗
ab
(Λ∗(𝐺ab)) = Λ∗(𝑇𝐺)

𝒲𝐺 by Lemma 2.1.1, we get that

(Sym2 Λ∗(𝑇𝐺))
𝒲𝐺

Sym2 Λ∗(𝐺ab)
= coker

(
Sym2 Λ∗

ab
⊕ (Λ∗

ab
⊗ idℤ𝑛)

) ≅
�→ coker((𝑇ab)

∗
#).

The above isomorphism implies that the commutative diagram (5.3.3) is a pushout. □
We are now ready to prove the following.
Part (i). From the commutative diagram (5.3.1) it follows that the canonical isomorphism

PO ≅ RPic(Bun𝑑
𝑇𝐺,g ,𝑛

)𝒲𝐺 provided by Lemma 5.3.3 identifies the homomorphism 𝜄∗
#
◦ Πwith the

inclusion RPic(Bun𝑑
𝑇𝐺,g ,𝑛

)𝒲𝐺 ⊂ RPic(Bun𝑑
𝑇𝐺,g ,𝑛

). In particular, Πmust be injective.
To show that Π is a finite index inclusion, it remains to show that the rank of the codomain

of Π is at most the rank of the domain of Π (hence they must have the same rank). This will be
shown in the next two lemmas.

Lemma 5.3.4. We have the following inequality

rk Pic
(
Bun[𝑑]

𝐺,g ,𝑛

)
⩽ rk Pic

(
Bun[𝑑]

ab

𝐺ab,g ,𝑛

)
+ 𝑠, (5.3.7)

where 𝑠 is the number of simple factors in the adjoint quotient 𝐺ad.
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Proof. For any geometric point 𝜂 →g ,𝑛 corresponding to an 𝑛-pointed curve (𝜂, 𝜎) of genus g ,
we have a commutative diagram

(5.3.8)

where the vertical arrows are given by restriction to the fibers over 𝜂 →g ,𝑛 and the two
horizontal maps are injective by Corollary 5.1.2(i).

Claim. If 𝜂 →g ,𝑛 is the geometric generic point, then [res
[𝑑]
𝑇𝐺
(𝜂)] (and hence also [res

[𝑑]
𝐺
(𝜂)])

is injective.

Indeed, the claim is equivalent to the assertion that, under the assumption that 𝜂 →g ,𝑛 is
the geometric generic point, we have

(res𝑑𝑇𝐺
(𝜂))

−1
(
Pic
(
Bun[𝑑]

ab

𝐺ab
(𝐶𝜂)
))
= RPic

(
Bun[𝑑]

ab

𝐺ab,g ,𝑛

)
. (5.3.9)

This follows from Proposition 4.3.3 applied to the curve 𝜂 and to the tori 𝑇𝐺 and 𝐺ab. More pre-
cisely, using the notation of Proposition 4.3.3, we first observe that, if 𝜂 →g ,𝑛 is the geometric
generic point, then the weak Franchetta conjecture (see Theorem 2.5.1) implies that morphism
𝜄𝜂 ∶ 𝐻g ,𝑛 → 𝐽𝜂 (𝜂) is injective. Then, using the exact sequence (4.3.9), the equality (5.3.9) is a
consequence of the following two easily checked equalities

(
idΛ∗(𝑇𝐺) ⊗𝜄𝜂

)−1(
Λ∗(𝐺ab) ⊗ 𝐽𝜂 (𝜂)

)
= Λ∗(𝐺ab) ⊗ 𝐻g ,𝑛,(

idΛ∗(𝑇𝐺) ⊕(− ⊗ id𝐽𝜂
)

)−1(
Λ∗(𝐺ab) ⊕ Hom𝑠(Λ(𝐺ab) ⊗ Λ(𝐺ab), End(𝐽𝜂 ))

)
= Λ∗(𝐺ab) ⊕ Bil𝑠(Λ(𝐺ab).

Finally, the rank of the abelian group on the bottom left corner of (5.3.8) can be computed
using the results of Biswas–Hoffmann [14]. Indeed, using that𝜋1(𝐺ab) = Λ(𝐺ab) is the torsion-free
quotient of 𝜋1(𝐺) (see (2.1.10)), we get from [14, Theorem 5.3.1] an isomorphism

⎛⎜⎜⎜⎝
Pic
(
Bun[𝑑]

𝐺
(𝐶𝜂)
)

Pic
(
Bun[𝑑]

ab

𝐺ab
(𝐶𝜂)
)⎞⎟⎟⎟⎠ℚ

≅
�→

⎛⎜⎜⎜⎝
NS
(
Bun[𝑑]

𝐺
(𝐶𝜂)
)

NS
(
Bun[𝑑]

ab

𝐺ab
(𝐶𝜂)
)⎞⎟⎟⎟⎠ℚ

(5.3.10)

whereNS(−) is the group of [14, Definition 5.2.1]. Moreover, from the discussion at the end of [14,
section 5.2], we deduce that
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rk

⎛⎜⎜⎜⎝
NS
(
Bun[𝑑]

𝐺
(𝐶𝜂)
)

NS
(
Bun[𝑑]

ab

𝐺ab
(𝐶𝜂)
)⎞⎟⎟⎟⎠ = 𝑠. (5.3.11)

By putting together (5.3.10) and (5.3.11) and using the injectivity of the map [res[𝑑]
𝐺
(𝜂)] (see the

Claim), the inequality (5.3.7) follows. □

Lemma 5.3.5. We have the following inequality

rk PO = rk Pic
(
Bun𝑑𝑇𝐺,g ,𝑛

)𝒲𝐺
= rk Pic

(
Bun[𝑑]

ab

𝐺ab,g ,𝑛

)
+ 𝑠, (5.3.12)

where 𝑠 is the number of simple factors in the adjoint quotient of 𝐺ad.

Proof. From Lemma 5.3.3 and the fact that the maps that appear in the pushout diagram are all
injective, it follows that

rk PO = rk Pic
(
Bun𝑑𝑇𝐺,g ,𝑛

)𝒲𝐺
= rk Pic

(
Bun[𝑑]

ab

𝐺ab,g ,𝑛

)
+ rk(Sym2 Λ∗(𝑇𝐺))

𝒲𝐺 − rk Sym2 Λ∗(𝐺ab).

(5.3.13)
Recall that 𝐺sc is the universal cover of the derived subgroup𝒟(𝐺) of 𝐺 andℛ(𝐺) is the radical
subgroup of 𝐺 (see § 2.1). We then have isogenies of linear algebraic groups

𝐺sc ×ℛ(𝐺) ↠ 𝐺 and ℛ(𝐺) ↠ 𝐺ab

which identify their character lattices after tensoring with ℚ:

Λ∗(𝑇𝐺)ℚ
≅
�→ Λ∗(ℛ(𝐺) × 𝑇𝐺sc)ℚ = Λ

∗(ℛ(𝐺))ℚ ⊕ Λ
∗(𝑇𝐺sc)ℚ,

Λ∗(𝐺ab)ℚ
≅
�→ Λ∗(ℛ(𝐺))ℚ.

(5.3.14)

From the above isomorphisms, we deduce that

rk(Sym2 Λ∗(𝑇𝐺))
𝒲𝐺 = rk(Sym2 Λ∗(𝑇𝐺sc ×ℛ(𝐺)))𝒲𝐺 ,

rk Sym2 Λ∗(𝐺ab) = rk Sym2 Λ∗(ℛ(𝐺)).
(5.3.15)

Using that the first isomorphism in (5.3.14) commutes with the action of the Weyl group 𝒲𝐺 ≅
𝒲ℛ(𝐺)×𝐺sc ≅𝒲𝐺sc and that𝒲𝐺sc acts trivially on Λ∗(ℛ(𝐺)), we compute

(Sym2 Λ∗(𝑇𝐺sc ×ℛ(𝐺)))𝒲𝐺

= (Sym2 Λ∗(𝑇𝐺sc))
𝒲𝐺sc ⊕

[
Λ∗(𝑇𝐺sc)

𝒲𝐺sc ⊗ Λ∗(ℛ(𝐺))
]
⊕ Sym2 Λ∗(ℛ(𝐺))

= (Sym2 Λ∗(𝑇𝐺sc))
𝒲𝐺sc ⊕ Sym2 Λ∗(ℛ(𝐺)),

(5.3.16)

where we have used that Λ∗(𝑇𝐺sc)𝒲𝐺sc ≅ Λ∗((𝐺sc)ab) by Lemma 2.1.1 and the latter group is
zero because the abelianization of a semi-simple group is always trivial. Finally, Lemma 2.2.1
implies that

rk(Sym2 Λ∗(𝑇𝐺sc))
𝒲𝐺sc = 𝑠. (5.3.17)

We conclude by putting together (5.3.13), (5.3.15), (5.3.16) and (5.3.17). □
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Part (ii). By what we said at the beginning of the proof of part (i), we need to show that the
sublattice RPic(Bun𝑑

𝑇𝐺,g ,𝑛
)𝒲𝐺 ⊂ RPic(Bun𝑑

𝑇𝐺,g ,𝑛
) is primitive. This follows from

Lemma 5.3.6. Let 𝑊 be a group acting ℤ-linearly on a torsion-free abelian group 𝐴. Then the
subgroup 𝐴𝑊 of𝑊-invariants is a primitive subgroup of 𝐴, that is, if𝑚 ⋅ 𝑎 is𝑊-invariant for some
𝑎 ∈ 𝐴 and𝑚 ∈ ℤ, then 𝑎 is𝑊-invariant.

Proof. Let∈ 𝐴 and𝑚 ∈ ℤ such that𝑚 ⋅ 𝑎 ∈ 𝐴𝑊 . Then, using the ℤ-linearity of the action, we get
for any 𝑤 ∈ 𝑊

0 = 𝑤 ⋅ (𝑚 ⋅ 𝑎) − (𝑚 ⋅ 𝑎) = 𝑚(𝑤 ⋅ 𝑎 − 𝑎).

Since 𝐴 is torsion-free, we deduce 𝑤.𝑎 = 𝑎 for any 𝑤 ∈ 𝑊, that is, 𝑎 ∈ 𝐴𝑊 . □

5.4 Genus zero case

Here, we show Theorem 5.2. The first part is easy.

Proof of Theorem 5.2(1). The injectivity of 𝑤𝑑
𝐺
follows from the injectivity of 𝑤𝑑

𝑇𝐺
(see Theo-

rem 4.2(1)) and the injectivity of 𝜄#, which holds by Corollary 5.1.2(ii) provided that 𝑑ss satisfies
condition (*) of Lemma 2.2.3(i). The existence of a representative 𝑑 of a given class [𝑑] ∈ 𝜋1(𝐺)
with the property that 𝑑ss satisfies condition (*) follows from Lemma 2.2.3(ii).
The functoriality of 𝑤𝑑

𝐺
follows from the functoriality of 𝑤𝑑

𝑇𝐺
(see Theorem 4.2(1)) and the

functoriality of 𝜄# which is clear from the definition. □

The second part of Theorem 5.2 will be deduced from the following alternative description of
RPic(Bun[𝑑]

𝐺,0,𝑛
) as a pullback.

Proposition 5.4.1. For any 𝑑 ∈ Λ(𝑇𝐺), there exists a homomorphism

RPic
(
Bun[𝑑]

𝐺,0,𝑛

) 𝑓𝑑
𝐺
��→ (Sym2 Λ∗(𝑇𝐺sc))

𝒲𝐺 ,

such that the diagram

(5.4.1)

is cartesian (that is, it is a pullback diagram), where (𝑑ss, −) is the contraction homomorphism (2.2.8)
and 𝑤𝑑

𝔤ss
is the composition

𝑤𝑑𝔤ss ∶ RPic(Bun
𝑑
𝑇𝐺,g ,𝑛

)
𝑤𝑑
𝑇
���→ Λ∗(𝑇𝐺)

sc∗

���→ Λ∗(𝑇𝐺sc)

where the last homomorphism is induced by the morphism sc ∶ 𝐺sc → 𝐺 (see Subsection 2.1).

Let us first show how, using the above Proposition, we can prove Theorem 5.2.
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Proof of Theorem 5.2 (2). From the cartesian diagram (5.4.1), it follows that an element𝜒 ∈ Λ∗(𝑇𝐺)
belongs to the image of 𝑤𝑑

𝐺
if and only if it belongs to the image of 𝑤𝑑

𝑇𝐺
and its image in Λ∗(𝑇𝐺sc)

belongs to the image of (𝑑ss, −). The second condition is equivalent to requiring that 𝜒 ∈ Ω∗
𝑑
(𝑇𝐺).

We now conclude using the description of Im(𝑤𝑑
𝑇𝐺
) from Theorem 4.2(2). □

The remainder of this subsection is devoted to the proof of the above proposition.

Proposition 5.4.1. We will distinguish three cases.
Case I: 𝑛 = 3. Observe that, since0,3 = Spec(𝑘), we have canonical isomorphisms of stacks

Bun[𝑑]
𝐺,0,3

≅ Bun[𝑑]
𝐺
(ℙ1∕𝑘) and Bun𝑑𝑇𝐺,0,3

≅ Bun𝑑𝑇𝐺
(ℙ1∕𝑘).

By [14, Theorem 5.3.1], we have a commutative diagram

(5.4.2)

where, by [14, Definition 5.2.1], NS(Bun𝑑
𝑇𝐺
(ℙ1∕𝑘)) = Λ∗(𝑇𝐺) and

NS
(
Bun[𝑑]

𝐺
(ℙ1∕𝑘)

)
⊂ Λ∗(ℛ(𝐺)) ⊕ (Sym2 Λ(𝑇𝐺sc))

𝒲𝐺

is the subgroup of pairs (𝑙, 𝑏) such that the induced character 𝑙 + 𝑏(𝑑ss, −) ∈ Λ∗(ℛ(𝐺) × 𝑇𝐺sc)
belongs to the subgroup Λ∗(𝑇𝐺) ⊆ Λ∗(ℛ(𝐺) × 𝑇𝐺sc). From the discussion in § 4.1, it follows that
the above homomorphism 𝑐𝑇𝐺 coincides with the weight function 𝑤

𝑑
𝑇𝐺

of (4.1.1). Moreover, from
[14, Definition 5.2.5] it follows that the above homomorphism 𝜄NS,𝑑 coincide with the restriction
to NS(Bun[𝑑]

𝐺
(ℙ1∕𝑘)) of the homomorphism

Λ∗(ℛ(𝐺)) ⊕ (Sym2 Λ(𝑇𝐺sc))
𝒲𝐺

id+(𝑑ss,−)
���������→ Λ∗(ℛ(𝐺) × 𝑇𝐺sc)

which lands in the subgroupΛ∗(𝑇𝐺) by the definition ofNS(Bun
[𝑑]
𝐺
(ℙ1∕𝑘)). By putting everything

together, we obtain the following cartesian diagram

(5.4.3)
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where the square on the bottom is cartesian by the definition of NS(Bun[𝑑]
𝐺
(ℙ1∕𝑘)). The outer

cartesian diagram in (5.4.3) gives the desired cartesian diagram (5.4.1) for 𝑛 = 3 with 𝑓𝑑
𝐺
∶=

𝑝𝑟2 ◦ 𝑐𝐺 .
Case II: 𝑛 > 0. Consider the commutative diagram

(5.4.4)

where the morphisms 𝐹𝐺,𝑛 and 𝐹𝑇𝐺,𝑛 forget the last marked section. We get an induced
commutative diagram between the relative Picard groups

(5.4.5)

Claim. If 𝑛 > 0, then 𝐹∗
𝐺,𝑛

and 𝐹∗
𝑇𝐺,𝑛

are isomorphisms.

The above Claim implies the statement for 𝑛 > 0. Indeed, using also that the weight morphism
𝑤𝑑
𝑇𝐺
is compatible with the forgetfulmorphism𝐹∗

𝑇𝐺,𝑛
, we deduce that we have a cartesian diagram

(5.4.1) for RPic(Bun[𝑑]
𝐺,0,𝑛

) if and only if we have a similar cartesian diagram for RPic(Bun[𝑑]
𝐺,0,𝑛+1

).
Hence, we conclude using Case I.
It remains to prove the claim. First of all, the stackBun𝑑

𝑇𝐺,0,𝑛
is of finite type by Proposition 3.1.7,

hence it is a quotient stack by Proposition 3.2.5. Then, using Proposition 2.3.5, we can assume
that 𝐹𝑇𝐺,𝑛 ∶ Bun

𝑑
𝑇𝐺,0,𝑛+1

→ Bun𝑑
𝑇𝐺,0,𝑛

is a morphism of smooth integral algebraic spaces of finite
type over 𝑘. The same holds for 𝐹𝐺,𝑛 after restricting to a suitable open subset of the instability
exhaustion , see Proposition 3.2.3.
We will prove the claim for 𝐹∗

𝐺,𝑛
; the proof for 𝐹∗

𝑇𝐺,𝑛
is analogous. To this aim, consider the

cartesian diagram

(5.4.6)

where the morphism 𝐹𝑛 ∶0,𝑛+1 →0,𝑛 forgets the last marked section. The above diagram
induces the following commutative diagram

(5.4.7)
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with exact rows. By the snake lemma, the fact that 𝐹∗
𝐺,𝑛

is an isomorphism is a consequence of
the following two facts:

(a) 𝐹∗
𝐺,𝑛

and 𝐹∗𝑛 are surjective;
(b) ker(𝐹∗

𝐺,𝑛
) ⊆ Im(Φ∗

𝐺,0,𝑛
).

Indeed, (a) is a consequence of Proposition 2.3.2 applied (after a suitable equivariant approx-
imation, see Proposition 2.3.5) to the smooth morphisms 𝐹𝐺,𝑛 and 𝐹𝑛 with integral fibers, using
the fact that the generic fiber of 𝐹𝐺,𝑛 and of 𝐹𝑛 is the projective line with 𝑛 > 0 points removed,
and hence it has trivial Picard group.
To prove (b), let 𝐿 ∈ ker(𝐹∗

𝐺,𝑛
). Since𝐹𝐺,𝑛 ∶ Bun

[𝑑]
𝐺,0,𝑛+1

→ Bun[𝑑]
𝐺,0,𝑛

is obtained from the univer-
sal curve[𝑑]

𝐺,0,𝑛
→ Bun[𝑑]

𝐺,0,𝑛
by removing the𝑛 universal sections𝜎𝐺,𝑖 , we have that𝐿 belongs to the

subgroup of Pic(Bun[𝑑]
𝐺,0,𝑛+1

) ⊂ Pic([𝑑]
𝐺,0,𝑛

) generated by the line bundles ⟨(Im(𝜎𝐺,𝑖) − Im(𝜎𝐺,𝑗))⟩.
Since the universal curve [𝑑]

𝐺,0,𝑛
→ Bun[𝑑]

𝐺,0,𝑛
together with the 𝑛 universal sections 𝜎𝐺,𝑖 is a pull-

back of the universal curve 0,𝑛 →0.𝑛 together with the 𝑛 universal sections 𝜎𝑖 along the
morphism Φ𝐺,0,𝑛, we deduce that (Im(𝜎𝐺,𝑖) − Im(𝜎𝐺,𝑗)) = Φ∗𝐺,0,𝑛((Im(𝜎𝑖) − Im(𝜎𝑗))). Hence,
we conclude that 𝐿 ∈ Im(Φ∗

𝐺,0,𝑛
).

Case III: 𝑛 = 0. Arguing as in Case II, we observe that the diagram (5.4.4) with 𝑛 = 0 is carte-
sian with the vertical morphisms 𝐹𝐺,0 and 𝐹𝑇𝐺,0 being smooth and proper with geometric fibers
isomorphic to ℙ1, or, in other words, they are families of curves of genus zero. This implies that
the pullback morphism 𝐹∗

𝐺,0
(respectively, 𝐹∗

𝑇𝐺,0
) is injective with image equal to the subgroup of

line bundles in RPic(Bun[𝑑]
𝐺,0,1
) (respectively, in RPic(Bun𝑑

𝑇𝐺,0,1
)) that have degree 0 on the geo-

metric fibers of the family 𝐹𝐺,0 (respectively, 𝐹𝑇𝐺,0). We deduce that the diagram (5.4.5) for 𝑛 = 0
is cartesian (and with injective vertical homomorphisms). Therefore, using also that the weight
morphism 𝑤𝑑

𝑇𝐺
is compatible with the forgetful morphism 𝐹∗

𝑇𝐺,0
, we deduce that the existence of

a cartesian diagram (5.4.1) for RPic(Bun[𝑑]
𝐺,0,1
) implies the existence of the same cartesian diagram

for RPic(Bun[𝑑]
𝐺,0,0
). □

6 NON-REDUCTIVE CASE

The aim of the section is to show that the Picard group of Bun𝐺,g ,𝑛 for an arbitrary connected
smooth linear algebraic group 𝐺 is isomorphic to the Picard group of Bun𝐺red,g ,𝑛 where 𝐺red is the
reductive quotient of 𝐺.
More precisely, consider the smooth, surjective, finite type morphism (see Corollary 3.1.6)

red#(= red#,g ,𝑛) ∶ Bun
𝛿
𝐺,g ,𝑛 → Bun

𝛿
𝐺red,g ,𝑛

for any 𝛿 ∈ 𝜋1(𝐺) ≅ 𝜋1(𝐺red),

induced by the reductive quotient morphism red(= red𝐺) ∶ 𝐺 ↠ 𝐺red of (3.1.1), where we have
used the canonical isomorphism 𝜋1(red) ∶ 𝜋1(𝐺)

≅
�→ 𝜋1(𝐺

red) of (3.1.2). The main result of this
section is the following.

Theorem 6.1. For any 𝛿 ∈ 𝜋1(𝐺) ≅ 𝜋1(𝐺red), we have

red∗# ∶ Pic(Bun
𝛿
𝐺red,g ,𝑛

)
≅
�→ Pic(Bun𝛿𝐺,g ,𝑛)
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is an isomorphism. The same holds true for the homomorphism red#(𝐶∕𝑆)∗ for any family of curves
𝐶 → 𝑆, provided that 𝑆 is an integral and regular quotient stack over 𝑘.

Proof. We will present the proof just for the universal case, the proof for the relative one uses the
same argument.
First of all, it is enough to prove the theorem for 𝑛 > 0. Indeed, consider the following cartesian

diagrams of universal curves

(6.1)

which, by pullback, induces the following diagram of relative Picard groups

(6.2)

By the seesaw principle, 𝐹∗
𝐺
is injective and its image consists of the line bundles on Bun𝛿

𝐺,g ,1
that

are trivial on each geometric fiber of the family 𝐹𝐺 , and similarly for 𝐹∗𝐺red . Since the family 𝐹𝐺 is a
pullback of the family 𝐹𝐺red by (6.1), we get that the diagram (6.2) is cartesian (with injective verti-
cal homomorphisms). Hence, if red∗#,g ,1 is an isomorphism, then red

∗
#,g ,0 is also an isomorphism.

Therefore, for the rest of the proof, we may assume 𝑛 > 0 and, in particular, (g , 𝑛) ≠ (1, 0).
Surjectivity of red∗# This will follow from the more general

Claim. Let 1 → 𝑈 → 𝐺
𝜑
�→ 𝐻 → 1 be an exact sequence of connected smooth linear algebraic

groups with 𝑈 unipotent. For any 𝛿 ∈ 𝜋1(𝐺)
𝜋1(𝜑)
�����→
≅

𝜋1(𝐻), the pullback homomorphism

𝜑∗# ∶ Pic(Bun
𝛿
𝐻,g ,𝑛) → Pic(Bun

𝛿
𝐺,g ,𝑛)

is surjective.
We now prove the claim. By Lemma 3.1.4, the group 𝑈 admits a linearly filtered filtration

{1} ⊂ 𝑈𝑟 ⊂ … ⊂ 𝑈1 ⊂ 𝑈0 = 𝑈. (6.3)

We proceed by induction on the length 𝑟 ∶= Length(𝑈∙) of the filtration.
Assume first that 𝑟 = 0, that is, that 𝑈 is vector group and the action of 𝐺 by conjugation is

linear. For any connected smooth linear algebraic group 𝑁, we denote by Bun𝛿,⩽𝑚
𝑁,g ,𝑛

the open sub-
stack in Bun𝛿

𝑁,g ,𝑛
of those 𝑁-bundles whose image in Bun𝛿

𝑁red,g ,𝑛
has instability degree less than

or equal to𝑚. Observe that these open substacks are of finite type over 𝑘 by Proposition 3.2.3 and
Corollary 3.1.6. Since the case (g , 𝑛) = (1, 0) is excluded by the assumption, Bun𝛿,⩽𝑚

𝑁,g ,𝑛
is a quotient

stack over 𝑘 by Proposition 3.2.5.
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Consider the following cartesian diagrams of stacks

(6.4)

where inst⩽2
𝐺
and inst⩽2

𝐻
are open embeddings, 𝑓 is an equivariant approximation of the (smooth)

𝑘-quotient stack Bun𝛿,⩽2
𝐻,g ,𝑛

(as in Proposition 2.3.5(i)), the square on the left is cartesian by defini-
tion and the square on the right is cartesian since there is a canonical isomorphism 𝐻red ≅ 𝐺red
compatibile with the morphism 𝜑, that is, red𝐺 = red𝐻 ◦ 𝜑. Observe that:

∙ the horizontal arrows in the right square in (6.4) induce isomorphisms of Picard groups by
Proposition 3.2.3, Corollary 3.1.6 and Lemma 2.3.1;

∙ the horizontal arrows in the left square in (6.4) induce isomorphisms of Picard groups by
Proposition 2.3.5(iii).

It follows that 𝜑∗
#
is surjective if and only if 𝜑∗ is surjective, that is,

RPic(𝜑) ∶= Pic(𝑌)∕𝜑
∗
Pic(𝑋) = 0.

The morphism 𝜑# is surjective, smooth and of finite type between integral 𝑘-smooth stacks by
Corollary 3.1.2 and Proposition 3.1.5, which then implies that 𝜑 is a surjective, smooth and of
finite type morphism between 𝑘-smooth integral algebraic spaces. By [12, Proposition 4.2.4], the
fiber of𝜑# over a point (𝐶 → Spec𝐾, 𝜎, 𝐹) ∈ Bun𝛿𝐻,g ,𝑛(𝐾) is the stackBun𝑈𝐹𝐻 (𝐶∕𝐾) of torsors over
the curve 𝐶 → Spec(𝐾) with respect to the vector bundle 𝑈𝐹

𝐻
∶= (𝐹 × 𝑈)∕𝐻 → 𝐶. Moreover, by

[12, Corollary 8.1.2], we have an isomorphism of stacks

Bun𝑈𝐹
𝐻
(𝐶∕𝐾) ≅ [𝐻1(𝐶,𝑈𝐹𝐻)∕𝐻

0(𝐶,𝑈𝐹𝐻)],

where the underlying additive group of the vector space 𝐻0(𝐶,𝑈𝐹
𝐻
) acts trivially on the affine

space 𝐻1(𝐶,𝑈𝐹
𝐻
). In particular, the map 𝜑# (and hence also 𝜑) has integral fibers. Hence, 𝜑

satisfies the hypothesis of Proposition 2.3.2, which then gives

RPic(𝜑) ≅ Pic(𝑌𝜂),

with 𝑌𝜂 being the fiber of 𝜑 over the generic point 𝜂 of 𝑋. By the above discussion,

𝑌𝜂 = Bun (∕𝜂) ≅ [𝐻
1(,)∕𝐻0(,)],

for some vector bundle over a curve  → 𝜂. Since any line bundle over an affine space is trivial,
we have

Pic(𝑌𝜂) ≅ Hom(𝐻
0(,), 𝔾m) = 0,

where the latter equality follows because𝐻0(,) ≅ 𝔾dim𝐻
0(,)

𝑎 as algebraic group over 𝜂. This
concludes the proof for 𝑟 = 0.
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The case 𝑟 > 0 follows by splitting 𝜑# as a composition of morphism of stacks

𝜑# ∶ Bun𝐺,g ,𝑛 → Bun𝐺∕𝑈1,g ,𝑛 → Bun𝐻,g ,𝑛,

where𝑈1 is a proper subgroup of𝑈 in the filtration (6.3) and using the inductive hypothesis. This
concludes the proof of the claim.
Injectivity of 𝐫𝐞𝐝∗

#
Let 𝑇 be a maximal torus of the reductive quotient 𝐺red. Then, the exact

sequence 1 → 𝐺𝑢 → 𝐺 → 𝐺red → 1 restricted to the torus gives an exact sequence as follows

1 → 𝐺𝑢 → 𝑃 → 𝑇 → 1. (6.5)

Since being solvable is preserved by extensions, 𝑃 is a connected smooth solvable group. By [16,
Theorem 10.6],𝑃 admits a Levi decomposition, that is,𝑃 = 𝑃𝑢 ⋊ 𝑇𝑃, where𝑃𝑢 is the unipotent rad-
ical of 𝑃 and 𝑇𝑃 ⊂ 𝑃 is a maximal torus. By (6.5), wemust have 𝑃𝑢 = 𝐺𝑢 and 𝑇𝑃 = 𝑇. In particular,
the torus 𝜄 ∶ 𝑇 ↪ 𝐺red lifts to a (maximal) torus in 𝐺. Hence, the homomorphism

𝜄∗# ∶ RPic(Bun
𝛿
𝐺red,g ,𝑛

) → RPic(Bun𝑑𝑇,g ,𝑛), for any 𝑑 ∈ 𝜋1(𝑇) s.t. 𝛿 = [𝑑] ∈ 𝜋1(𝐺) ≅ 𝜋1(𝐺
red),

factors through red∗# ∶ RPic(Bun
𝛿
𝐺red,g ,𝑛

) → RPic(Bun𝛿
𝐺,g ,𝑛

). By Corollary 5.1.2, we can choose 𝑑 ∈
𝜋1(𝑇) in such a way that 𝜄∗# is injective, which then implies that red

∗
# is also injective. □

As a special case of Theorem 6.1, we get the following.

Corollary 6.2. Let 𝐶 be a (smooth, projective and connected) curve over 𝑘 = 𝑘. Then, for any 𝛿 ∈
𝜋1(𝐺) ≅ 𝜋1(𝐺

red), the homomorphism

red∗# ∶ Pic(Bun
𝛿
𝐺red
(𝐶∕𝑘))

≅
�→ Pic(Bun𝛿𝐺(𝐶∕𝑘))

is an isomorphism.

Remark 6.3. It is challenging to extend to the non-reductive case the presentations for the relative
Picard group RPic(Bun𝐺,g ,𝑛) given in Sections 4 and 5. Since any linear algebraic group contains
a maximal torus, the latticesΛ(−) andΛ∗(−) are well-defined in this setting. From this, it follows
immediately that if 𝐺 is a solvable group, the Picard group admits a presentation as in the case
of the tori in § 4. When 𝐺 is not solvable, we need a definition of Weil group. For a general linear
algebraic group, the Weil group is defined as the quotient

𝒲𝐺 ∶=𝒩(𝑇)∕𝒞(𝑇)

of the normalizer of the a maximal torus 𝑇 ⊂ 𝐺 by the centralizer of 𝑇. This definition should be
the right candidate for the generalizations of the results in Section 5.
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