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1. Introduction

Simple Lie algebras over an algebraically closed field F of characteristic p �= 2, 3 have
recently been classified by Block–Wilson–Premet–Strade (see [1, 22–28, 31–37, 39]).
The classification says that for p ≥ 7 the simple Lie algebras can be of two types:
of classical type and of generalized Cartan type.

The algebras of classical type are obtained by considering the simple Lie algebras
in characteristic zero (classified via Dynkin diagrams), by taking a model over the
integers via the Chevalley bases and then reducing modulo the prime p (see [30]).

The algebras of generalized Cartan type were constructed by Kostrikin–Shafare–
vich, Wilson and Kac ([15–20, 45, 46]) and are divided into four families, called
Witt–Jacobson, special, Hamiltonian and contact algebras. These four families
are the finite-dimensional analogue of the four classes of infinite-dimensional com-
plex simple Lie algebras, which occurred in Cartan’s classification [2] of Lie pseu-
dogroups.

In characteristic p = 5, apart from the above two types of algebras, there is one
more family of simple Lie algebras called Melikian algebras (introduced in [21]).
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In characteristic p = 2, 3, there are many exceptional simple Lie algebras (see
[37, p. 209]) and the classification seems still far away.

We are interested in a particular class of modular Lie algebras called restricted.
These can be characterized as those modular Lie algebras such that the p-power of
an inner derivation (which in characteristic p is a derivation) is still inner. Important
examples of restricted Lie algebras are the ones coming from groups schemes. Indeed
there is a one-to-one correspondence between restricted Lie algebras and finite group
schemes whose Frobenius vanishes (see [7, Chap. 2]).

The aim of this paper is to compute the restricted infinitesimal defor-
mations of the restricted simple Lie algebras in characteristic p ≥ 5. By
standard facts of deformation theory (see for example [10]), restricted infinitesi-
mal deformations of a restricted Lie algebra g are parameterized by the second
restricted cohomology group H2∗ (g, g) of g with values in the adjoint representation
(see [12]).

The restricted simple Lie algebras of classical type are known to be rigid as
Lie algebras, under the assumption p ≥ 5 (see [29]). This is equivalent to the
vanishing of the second ordinary cohomology group H2(g, g) for g restricted simple
of classical type. Therefore, using the so-called Hochschild 6-term exact sequence
(see (2.1) below), one can easily deduce the vanishing ofH2

∗ (g, g), which implies that
these algebras are rigid also as restricted Lie algebras. Note that in characteristic
zero, the vanishing of H2(g, g) for g simple follows from a classical result, known
as second Whitehead’s Lemma (see for example [11]). Interestingly, some of the
classical simple Lie algebras admit non-trivial deformations in characteristic p = 2
or 3 (see [4–6, 8]).

Under the assumption p ≥ 5, we compute the restricted infinitesimal deforma-
tions of the restricted simple Lie algebras not of classical type: the four infinite
families W (n) := W (n, 1), S(n) := S(n, 1), K(n) := K(n, 1), H(n) := H(n, 1) and
the exceptional restricted Melikian algebra M := M(1, 1) in characteristic p = 5.
Using the notations about those algebras which we are going to recall in what
follows and the squaring operation Sq (see Sec. 2.2), we can state our results as
follows.

Theorem 1.1. The infinitesimal restricted deformations of the restricted
Jacobson–Witt algebra W (n) are given by

H2
∗ (W (n),W (n)) = H2(W (n),W (n)) =

n⊕
i=1

〈Sq(Di)〉F .

Theorem 1.2. The infinitesimal restricted deformations of the restricted special
algebra S(n) are given by

H2
∗ (S(n), S(n)) =

n⊕
i=1

〈Sq(Di)〉F .
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Theorem 1.3. The infinitesimal restricted deformations of the restricted contact
algebra K(n) are given by

H2
∗ (K(n),K(n)) = H2(K(n),K(n)) =

2m⊕
i=1

〈Sq(xi)〉F ⊕ 〈Sq(1)〉F .

Theorem 1.4. The infinitesimal restricted deformations of the restricted
Hamiltonian algebra H(n) are given by

H2
∗ (H(n), H(n)) =

n⊕
i=1

〈Sq(xi)〉F ⊕ 〈Φ〉F ,

where the cocycle Φ is defined as

Φ(xa, xb) =
∑

0<δ≤a,bb

|δ|=3

(
a

δ

)(
b

δ̂

)
σ(δ) δ! xa+b−δ−bδ.

Theorem 1.5. The restricted infinitesimal deformations of the restricted Melikian
algebra M are given by

H2
∗ (M,M) = H2(M,M) = 〈Sq(1)〉F

2⊕
i=1

〈Sq(Di)〉F
2⊕
i=1

〈Sq(D̃i)〉F .

We prove these theorems using the computation of the second ordinary coho-
mology group H2(g, g) that we performed in [41–43], together with the 6-term
exact sequence of Hochschild (see Sec. 2.1) that relates the ordinary and restricted
cohomology.

Note that the second restricted cohomology group for the above algebras is freely
generated over F by the squaring operators of the elements of negative degree,
with one remarkable exception: For the Hamiltonian algebra H(n), there is an
exceptional extra-cocycle Φ. Observe moreover that, quite interestingly, for the
special algebras S(n) and the Hamiltonian algebrasH(n), the restricted cohomology
group H2

∗ (g, g) is a proper subgroup of the ordinary cohomology group H2(g, g). In
other words, there are infinitesimal deformations of the algebra that do not admit
a restricted structure.

Since the restricted infinitesimal deformations of a restricted Lie algebra g cor-
respond to the infinitesimal deformations of the associated finite group scheme G
of height one, the above results give the infinitesimal deformations of some simple
finite group schemes (see [40, 44] for more details). In order to complete the pic-
ture, it would be very interesting to extend the above computations to the minimal
p-envelope of all the simple Lie algebras.

The paper is organized as follows. Section 2 contains preliminary results. We
quickly review the ordinary and restricted cohomology of Lie algebras and the
6-term Hochschild exact sequence relating the first two ordinary and restricted
cohomology groups. Moreover we recall the definition of the squaring operation.
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In each of the remaining five sections, we recall the basic definitions of the five
classes of restricted simple Lie algebras of non-classical type and we compute the
corresponding infinitesimal deformations.

2. Preliminaries

2.1. Ordinary and restricted cohomology

In this section we review, in order to fix notations, the ordinary and restricted
cohomology of Lie algebras, following [12, 13].

Let g be a Lie algebra over a field F . We denote by Ug the universal enveloping
algebra of g and by Ig its augmentation ideal, that is the kernel of the augmentation
map ε : Ug → F . For a g-module M (or, equivalently, an unital Ug-module), the
(ordinary) cohomology groups Hn(g,M) are the right derived functor of the fixed
point functor M �→ Mg, considered as a functor from the category of g-modules
to the category of abelian groups. They can be computed into two different ways,
using a Lie complex or an associative complex.

The Lie complex has n-dimensional cochains Cn(g,M) = {f : Λn(g) →M} and
differential d : Cn(g,M) → Cn+1(g,M) defined by

df(x0, . . . , xn) =
n∑
i=0

(−1)ixi · f(x0, . . . , x̂i, . . . , xn)

+
∑
p<q

(−1)p+qf([xp, xq], x0, . . . , x̂p, . . . , x̂q, . . . , xn),

where the signˆmeans that the argument below must be omitted.
The associative complex has n-dimensional cochains Cn(Ig,M) = {g : I⊗ng →

M}, and differential d : Cn(Ig,M) → Cn+1(Ig,M) defined by

dg(s0, . . . , sn) = s0 · g(s1, . . . , sn) +
n∑
i=1

(−1)ig(s0, . . . , si−1si, . . . , sn).

Now let (g, [p]) be a restricted Lie algebra over F . Denote by U [p]
g := Ug/(xp −

x[p]) the restricted enveloping algebra of (g, [p]) and with I
[p]
g its augmented ideal.

For a restricted g-module M (or, equivalently, an unital U [p]
g -module), the restricted

cohomology groups Hn∗ (g,M) are the right derived functor of the fixed point func-
tor M �→Mg, considered as a functor from the category of restricted g-modules to
the category of abelian groups. Explicitly, these can be calculated via an associa-
tive complex which is obtained from the one described above for ordinary coho-
mology groups simply by replacing Ig with I

[p]
g . Observe, on the other hand,

that the ordinary Lie complex does not generalize to restricted cohomology, a
fact which makes the computation of the restricted cohomology harder than the
ordinary one.
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There is a 6-term exact sequence relating the first two ordinary and restricted
cohomology groups (see [12]):

0 → H1
∗ (g,M) → H1(g,M) D−→ HomFr(g,ML) →

→ H2
∗ (g,M) → H2(g,M) H−→ HomFr(g, H1(g,M)), (2.1)

where HomFr(V,W ) denotes the Frobenius-semilinear morphisms between the two
F -vector spaces V and W , that is

HomFr(V,W ) = {f : V →W | f(αx+ βy) = αpf(x) + βpf(y)},

for any α, β ∈ F, x, y ∈ V and D and H are defined on the Lie cochains φ ∈
H1(g,M) and ψ ∈ H2(g,M) as, respectively (for any x, y ∈ g):

Dφ(x) = xp−1 ◦ φ(x) − φ(x[p]),

Hψ(x) · y =
p−1∑
j=0

xj ◦ ψ(x, (ad x)p−1−j(y)) − ψ(x[p], y).

In the particular case in which M = g is the adjoint representation and the algebra
g has no center, the above 6-term exact sequence (2.1) becomes{

H1∗ (g, g) = H1(g, g),

0 → H2
∗ (g, g) → H2(g, g) H−→ HomFr(g, H1(g, g)),

(2.2)

and the operator H becomes (for any ψ ∈ H2(g, g) and x, y ∈ g)

Hψ(x) · y =
p−1∑
j=0

(adx)j ◦ ψ(x, (ad x)p−1−j(y)) − ψ(x[p], y). (2.3)

Remark 2.1. The Hochschild 6-term exact sequence (2.1) has been interpreted as
the initial sequence of two different spectral sequences relating the ordinary and
restricted cohomology:{

Ep,q1 = HomFr(Spg, Hq−p(g,M)) ⇒ Hp+q
∗ (g,M), if p �= 2, (see [14])

Ep,q2 = HomFr(Λqg, H
p
∗ (g,M)) ⇒ Hp+q(g,M), (see [9])

where Spg and Λqg denote, respectively, the pth symmetric power and the qth
alternating power.

2.2. Squaring operation

There is a canonical way to produce 2-cocycles in H2(g, g) over a field of character-
istic p > 0, namely the squaring operation (see [10]). Given a derivation γ (inner or
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not), one defines the squaring of γ to be

Sq(γ)(x, y) =
p−1∑
i=1

[γi(x), γp−i(y)]
i!(p− i)!

(2.4)

where γi is the i-th iteration of γ. In [10] it is shown that [Sq(γ)] ∈ H2(g, g) is an
obstruction to integrability of the derivation γ, that is to the possibility of finding
an automorphism of g extending the infinitesimal automorphism given by γ.

3. The Witt–Jacobson Algebra

Let us recall the definition of the restricted Witt–Jacobson algebra, following
[38, Sec. 4.2]. Let A(n) = A(n; 1) := F [x1, . . . , xn]/(xp1, . . . , x

p
n) be the ring of p-

truncated polynomials in n variables over a field F of positive characteristic p ≥ 5.

Definition 3.1. The restricted Witt–Jacobson algebra W (n) = W (n; 1) is
the restricted Lie algebra DerFA(n) of derivations of A(n) = F [x1, . . . , xn]/
(xp1 , . . . , x

p
n).

The Witt–Jacobson algebra W (n) is a free A(n)-module with basis {D1, . . . ,

Dn}, where we put Dj := ∂
∂xj

. Therefore dimF (W (n)) = npn with a basis over F
given by {xaDj | 1 ≤ j ≤ n, 0 ≤ ai ≤ p− 1}. It has a natural grading obtained by
assigning to the element xaDj the degree |a| − 1 :=

∑n
i=1 ai − 1. In particular the

elements of negative degree are W (n)−1 = 〈D1, . . . , Dn〉F . The [p]-map is defined
on the elements of the base by

(xaDj)[p] =

{
xaDj, if xaDj = xjDj ,

0, otherwise.

It is a classical result of Celousov (see [3] or [38, Sec. 4.8]) that every derivation of
W (n) is inner or in other words that

H1
∗ (W (n),W (n)) = H1(W (n),W (n)) = 0. (3.1)

Therefore, from the Hochschild exact sequence (2.2), we deduce that H2
∗ (W (n),

W (n)) = H2(W (n),W (n)). The Theorem 1.1 follows from [41, Theorem 1.1]:

H2(W (n),W (n)) =
n⊕
i=1

〈Sq(Di)〉F .

4. The Special Algebra

Let us recall the definition of the restricted special algebra, following [38, Sec. 4.3].
Fix an integer n ≥ 3 and a field F of characteristic p ≥ 5. Consider the following
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map, called divergence:

div:


W (n) → A(n),

n∑
i=1

fiDi �→
n∑
i=1

Di(fi).

The kernel of the divergence map S′(n) = S′(n; 1) = {E ∈W (n) | div(E) = 0} is a
graded subalgebra of W (n) of dimension (n− 1)pn + 1.

Definition 4.1. The restricted special algebra S(n) = S(n; 1) is the derived sub-
algebra of S′(n):

S(n) := S′(n)(1) = [S′(n), S′(n)].

It turns out that there is an exact sequence

0 → S(n) → S′(n) →
n⊕
i=1

〈xτ−(p−1)εiDi〉F → 0,

where τ := (p− 1, . . . , p− 1) and εi is the n-tuple having 1 at the ith place and 0
outside. Therefore S(n) has F -dimension (n− 1)(pn − 1). A set of generators (but
not linearly independent!) of S(n) is given by the elements {Dij(f) | f ∈ A(n), 1 ≤
i < j ≤ n}, where the maps Dij are defined by:

Dij :

{
A(n) →W (n),

f �→ Dj(f)Di −Di(f)Dj .

In particular, the elements of negative degree are S(n)−1 = 〈D1, . . . , Dn〉F . The
[p]-map on the above generators is given by

Dij(xa)[p] =

{
Dij(xa), if xa = xixj ,

0, otherwise.

The first cohomology group of the adjoint representation is equal to (see [3] or
[38, Sec. 4.8]):

H1
∗ (S(n), S(n)) = H1(S(n), S(n)) =

n⊕
i=1

〈ad(xτ−(p−1)εiDi)〉F
⊕

〈ad(x1D1)〉F .

From this result, we can deduce a criterion saying when a derivation of S(n) is inner.
First we introduce the following notation. Observe that, expressing any element
E ∈ S(n) as F -linear combination of the generators Dij(xτ ), the coefficients of
the terms of minimal degree Dij(xj) = Di and of maximal degree Dij(xτ ) =
xτ−εjDi−xτ−εiDj are well-defined, that is they are the same for any such expression
of E. We call the above coefficients EDi and EDij(xτ), respectively.
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Lemma 4.2. A derivation γ : S(n) → S(n) is inner if and only it satisfies the
following conditions:

(i) For every 1 ≤ i ≤ n, there exists j �= i such that γ(xp−1
i Dj)Dij(xτ ) = 0.

(ii)
∑n
k=1 γ(Dk)Dk

= 0.

Proof. We first prove that the two conditions are necessary. Consider an inner
derivation ad(D), with D ∈ S(n) ⊂W (n). To prove condition (i), write D as linear
combination of the base elements xaDh ∈ W (n). Consider the element of W (n)
given by (for i �= j)

ad(xaDh)(x
p−1
i Dj) = [xaDh, x

p−1
i Dj ] = xaDh(x

p−1
i )Dj − xp−1

i Dj(xa)Dh.

Clearly, the two elements at the end cannot be equal to xτ−εjDi and therefore
ad(D)(xp−1

i Dj)Dij(xτ ) = 0. To prove condition (ii), writeD =
∑n

i=1 aixiDi+E with
ExiDi = 0 for every i. Clearly D ∈ S(n) if and only if E ∈ S(n) and

∑n
i=1 ai = 0.

We compute
n∑
k=1

ad(D)(Dk)Dk
= −

n∑
k=1

ak = 0.

However, the two conditions are also sufficient since
n∑
k=1

ad(x1D1)(Dk)Dk
= ad(x1D1)(D1)D1 = −1,

ad(xτ−(p−1)εiDi)(x
p−1
i Dj) = −xτ−εiDj + xτ−εjDi = −Dij(xτ ).

In [41, Theorem 1.2], we prove that the second ordinary cohomology group of
the adjoint representation of S(n) is

H2(S(n), S(n)) =
n⊕
i=1

〈Sq(Di)〉F
⊕

〈Θ〉F , (4.1)

where Θ is defined by Θ(Di, Dj) = Dij(xτ ) and extended by 0 elsewhere. Using
this result and the Hochschild exact sequence (2.2), we can compute the second
restricted cohomology group.

Proof of Theorem 1.2. The cocycle Θ does not belong toH2
∗ (S(n), S(n)). Indeed,

using that D[p]
i = 0, we compute (for i �= j)

HΘ(Di) · xp−1
i Dj =

p−1∑
k=0

Dp−1−k
i Θ(Di, D

k
i (x

p−1
i Dj)) = −Θ(Di, Dj) = −Dij(xτ ).

Therefore, according to Lemma 4.2(i), the derivationHΘ(Di) is not inner and hence
Θ �∈ H2

∗ (S(n), S(n)) by the Hochschild exact sequence (2.2).
On the other hand, we are going to prove that Sq(Dh) ∈ H2

∗ (S(n), S(n)) (for
any h) by showing that for any Drs(xa) ∈ S(n) the derivation HSq(Dh)(Drs(xa))
satisfies the two conditions of Lemma 4.2.
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Suppose first, by contradiction, that the first condition of Lemma 4.2 is not
satisfied for certain indices i �= j, that is [HSq(Dh)(Drs(xa)) · xp−1

i Dj ]Dij(xτ ) �= 0.
Then the index i must be equal to r or s and therefore, since we can choose the
index j �= i, we can assume without loss of generality that (i, j) = (r, s). However,
from the definition of the operator H , it is straightforward to see that

HSq(Dh)(Drs(xa)) · xp−1
r Ds ∈ 〈xpa−εr−pεs−pεhDs, x

pa−(p+1)εs−pεhDr〉F ,

and this contradicts the hypothesis since the multi-index pa− εr−pεs−pεh cannot
be equal to the multi-index τ − εr.

Suppose next, again by contradiction, that the second condition of Lemma 4.2 is
not satisfied, that is

∑
k[HSq(Dh)(Drs(xa)) ·Dk]Dk

�= 0. Then the element Drs(xa)
must have degree 1 and the formula (2.3) for H simplifies as

HSq(Dh)(Drs(xa)) ·Dk = Sq(Dh)(Drs(xa), adDrs(xa)p−1 ·Dk).

From this formula it is straightforward to see that

HSq(Dh)(Drs(xa)) ·Dk ∈ 〈Drs(xpa−pεh−(p−1)(εr+εs)−εk)〉F .

Therefore if [HSq(Dh)(Drs(xa)) · Dk]Dk
�= 0, we must have that xa = xrxsxh and

that k = r or s. Now we distinguish two cases, according to whether h is equal to
one of the two indices r and s, or not. If h �= r, s, using the formulas{

adDrs(xrxsxh)p−1 ·Dr = Drs(xsx
p−1
h ),

adDrs(xrxsxh)p−1 ·Ds = −Drs(xrx
p−1
h ),

we get a contradiction with the non-vanishing hypothesis because of the following
HSq(Dh)(Drs(xrxsxh)) ·Dr = Sq(Dh)(Drs(xrxsxh), Drs(xsx

p−1
h ))

= [Drs(xrxs), Drs(xs)] = −Dr,

HSq(Dh)(Drs(xrxsxh)) ·Ds = Sq(Dh)(Drs(xrxsxh),−Drs(xrx
p−1
h ))

= −[Drs(xrxs), Drs(xr)] = Ds.

On the other hand, if h = r �= s, one can prove by induction on 1 ≤ t ≤ p− 1 that
adDhs(x2

hxs)
t ·Dh =

t∏
u=1

(u − 3) ·Dhs(xthxs),

adDhs(x2
hxs)

t ·Ds = −t!Dhs(xt+1
h ).

Therefore both the above expressions vanish for t = p − 1, which contradicts our
assumption.
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5. The Contact Algebra

Let us recall the definition of the restricted contact algebra. Fix an odd integer
n = 2m+ 1 ≥ 3 and a field F of characteristic p ≥ 5. For any j ∈ {1, . . . , 2m}, we
define the sign σ(j) and the conjugate j′ of j as follows:

σ(j) =

{
1, if 1 ≤ j ≤ m,

−1, if m < j ≤ 2m,
and j′ =

{
j +m, if 1 ≤ j ≤ m,

j −m, if m < j ≤ 2m.

Consider the operator DH : A(n) → W (n) defined as

DH(f) =
2m∑
j=1

σ(j)Dj(f)Dj′ =
m∑
i=1

[Di(f)Di+m −Di+m(f)Di],

where, as usual, Di := ∂
∂xi

∈W (n). We denote by K ′(n) = K ′(n, 1) the graded Lie
algebra over F whose underlying F -vector space is A(n), endowed with the grading
defined by deg(xa) = |a| + an − 2 =

∑2m
i=1 ai + 2an − 2 and with the Lie bracket

defined by

[xa, xb] = DH(xa)(xb) + [andeg(xb) − bndeg(xa)]xa+b−εn .

Definition 5.1. The contact algebra is the derived subalgebra of K ′(n):

K(n) = K(n; 1) = K ′(n)(1) = [K ′(n),K ′(n)].

Indeed it turns out that

K(n) =

{
K ′(n), if p � | (m+ 2),

K ′(n)�=τ , if p | (m+ 2),

where K ′(n)�=τ is the sub-vector space of K ′(n) generated over F by the monomials
xa such that a �= τ := (p− 1, . . . , p− 1). Note that the elements of negative degree
are K(n)−2 = 〈1〉F and K(n)−1 = 〈x1, . . . , xn〉F . The [p]-map on the base {xa} is
given by

(xa)[p] =

{
xa, if xa = xixi′ or xa = xn,

0, otherwise.

Observe that our notations for the contact algebra differ slightly from the ones of
[38, Sec. 4.5], since we have dropped the operator DK used there. Therefore, our
elements xa correspond to their elements DK(xa).

The first cohomology group of the adjoint representation is equal to (see [3] or
[38, Sec. 4.8]):

H1
∗ (K(n),K(n)) = H1(K(n),K(n)) =

{
0, if p � | (m+ 2),
〈adxτ 〉F , if p | (m+ 2).

(5.1)

From this result, we can deduce a criterion saying when a derivation of K(n) is
inner in the case p|(m+ 2) (in the other case, every derivation is inner). As usual,
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for any two elements E, xa ∈ K(n), we indicate with Exa the coefficient of E with
respect to the base element xa.

Lemma 5.2. Suppose that p divides m + 2. Then a derivation γ : K(n) → K(n)
is inner if and only if γ(1)xτ−εn = 0.

Proof. We first prove that the condition is necessary. Consider an inner deriva-
tion ad(xa), with xa ∈ K(n). Then, from the computation ad(xa)(1) = [xa, 1] =
−2anxa−εn , we deduce that ad(xa)(1)xτ−εn = 0 since xτ �∈ K(n) by the hypothesis
p|(m+ 2). However, the condition is also sufficient since ad(xτ )(1) = 2xτ−εn .

In [42, Theorem 1.1], we prove that the second cohomology group of the adjoint
representation is

H2(K(n),K(n)) =
2m⊕
i=1

〈Sq(xi)〉F ⊕ 〈Sq(1)〉F . (5.2)

Using this result and the exact sequence (2.2), we compute the second restricted
cohomology group.

Proof of Theorem 1.3. The theorem is clearly true in the case when p does not
divide m+ 2, because in this case the first cohomology group vanishes. In the case
where p | (m + 2), we are going to show that for any xa ∈ K(n) the derivations
HSq(1)(xa) and HSq(xi)(x

a) satisfy the condition of Lemma 5.2.
Consider first the cocycle Sq(1) = 2Sq(Dn). From the definition (2.3) of the

operator H , it is straightforward to check that

HSq(1)(xa) · 1 ∈ 〈xpa−2pεn〉F .
Therefore the condition of Lemma 5.2 is satisfied since the multi-index pa − 2pεn
cannot be equal to τ − εn.

Consider next the cocycle Sq(xi). From the definition (2.3) of H together with
the fact that ad(xi) = σ(i)Di′ + xiDn, it is straightforward to check that

HSq(xi)(x
a) · 1 ∈

〈 ∑
r,s∈Z

xpa+rεi−(p−r)εi′−sεn
〉
F

.

Since n = 2m + 1 �= 3 by the hypothesis p | (m + 2) and p ≥ 5, the multi-index
pa+ rεi − (p− r)εi′ − sεn cannot be equal to τ − εn and therefore the condition of
Lemma 5.2 is satisfied.

6. The Hamiltonian Algebra

Let us recall the definition of the restricted Hamiltonian algebra. Fix an even integer
n = 2m ≥ 2 and a field F of characteristic p ≥ 5.
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We introduce some notations that will be used in this section. As before, for
any j ∈ {1, . . . , 2m}, we define the sign σ(j) and the conjugate j′ of j as follows:

σ(j) =

{
1, if 1 ≤ j ≤ m,

−1, if m < j ≤ 2m,
and j′ =

{
j +m, if 1 ≤ j ≤ m,

j −m, if m < j ≤ 2m.

Given two n-tuples of natural numbers a = (a1, . . . , an) and b = (b1, . . . , bn), we
say that a ≤ b if ai ≤ bi for every i. We define the degree of a ∈ Nn as |a| =

∑n
i=1 ai

and the factorial as a! =
∏n
i=1 ai!. For two multi-indices a, b ∈ Nn such that b ≤ a,

we set
(
a
b

)
:=

∏n
i=1

(
ai

bi

)
= a!

b!(a−b)! . Moreover, we define the sign of a ∈ N2m as
σ(a) =

∏
σ(i)ai and the conjugate of a as the multi-index â such that âi = ai′ for

every 1 ≤ i ≤ 2m. We set τ := (p− 1, . . . , p− 1) (as usual) and 0 := (0, . . . , 0).

We denote by H̃(n) = H̃(n; 1) the graded F -Lie algebra whose underlying vector
space is A(n), endowed with the grading defined by deg(xa) = |a| − 2 and with the
Lie bracket defined by

[xa, xb] = DH(xa)(xb),

where DH : A(n) →W (n) is defined (as before) by

DH(f) =
2m∑
j=1

σ(j)Dj(f)Dj′ =
m∑
i=1

[Di(f)Di+m −Di+m(f)Di] .

We denote by H ′(n) = H ′(n, 1) the quotient of H̃(n) by the central element 1.

Definition 6.1. The restricted Hamiltonian algebra is the derived subalgebra of
H ′(n):

H(n) = H(n; 1) = H ′(n)(1) = [H ′(n), H ′(n)].

Observe that H(n) has F -dimension pn − 2, with a base given by the elements
{xa} such that xa �= 1 and xa �= xτ . The elements of negative degree are H(n)−1 =
〈x1, . . . , xn〉F . On the elements of the base, the [p]-map is given by

(xa)[p] =

{
xa, if xa = xixi′ ,

0, otherwise.

Note that our notations for the Hamiltonian algebra differ slightly from the ones
of [38, Sec. 4.4], since for simplicity we have dropped the operator DH used there.
Therefore, our elements xa correspond to their elements DH(xa).

The first cohomology group of the adjoint representation is given by (see [3] or
[38, Sec. 4.8]):

H1
∗ (H(n), H(n)) = H1(H(n), H(n)) = 〈adxτ 〉F

n⊕
i=1

〈xp−1
i Di′〉F ⊕ 〈deg〉F , (6.1)
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where xp−1
i Di′ is the derivation which sends xa ∈ H(n) into xp−1

i Di′(xa) ∈ H(n)
and deg is the operator degree defined by deg(xa) = deg(xa) xa.

From this result, we can deduce a criterion saying when a derivation of H(n) is
inner. As usual, given two elements E, xa ∈ H(n), we denote by Exa the coefficient
of E with respect to the base element xa.

Lemma 6.2. A derivation γ : H(n) → H(n) is inner if and only if it satisfies the
three following conditions:

(i) There exists an index i such that γ(xi)xτ−ε
i′ = 0.

(ii) For any index i, it holds that γ(xτ−(p−1)εi)xτ−ε
i′ = 0.

(iii) There exists an index i such that γ(xi)xi + γ(xi′)xi′ = 0.

Proof. We first prove that the three conditions are necessary. Consider an inner
derivation ad(D), with D ∈ H(n). Write D as linear combination of the base
elements xa. The element ad(xa)(xi) = [xa, xi] = −σ(i)ai′xa−εi′ cannot belong to
〈xτ−εi′ 〉F since xτ �∈ H(n). Therefore the condition (i) is verified. Consider now the
element

[xa, xτ−(p−1)εi] = −σ(i)aixa+τ−pεi−εi′ +
∑
j �=i,i′

σ(j)[aj′ − aj ]xa+τ−(p−1)εi−εj−εj′ .

We have that xa+τ−pεi−εi′ �∈ 〈xτ−εi′ 〉F since ai ≤ p− 1 and xa+τ−(p−1)εi−εj−εj′ �∈
〈xτ−εi′ 〉F since ai′ ≥ 0. Therefore condition (ii) is verified. Finally, to prove con-
dition (iii), we write D =

∑m
i=1 aixixi′ + E with Exixi′ = 0 for every i. For any

index i, we have that

D(xi)xi +D(xi′ )xi′ = −σ(i)ai + σ(i)ai = 0,

and therefore also condition (iii) is verified. However, the three conditions are also
sufficient since 

ad(xτ )(xi) = [xτ , xi] = σ(i)xτ−εi′ ,

(xp−1
i Di′)(xτ−(p−1)εi) = −xτ−εi′ ,

deg(xi)xi + deg(xi′ )xi′ = −1 − 1 = −2.

In [41, Theorem 1.2], we prove that the second cohomology group of the adjoint
representation is

H2(H(n), H(n))

=



n⊕
i=1

〈Sq(xi)〉F
⊕
i<j

j �=i′

〈Πij〉F
m⊕
i=1

〈Πi〉F ⊕ 〈Φ〉F , if n ≥ 4,

2⊕
i=1

〈Sq(xi)〉F ⊕ 〈Φ〉F , if n = 2,

(6.2)
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where the above cocycles are defined (and vanish elsewhere) by

Πij(xa, xb) = xp−1
i′ xp−1

j′ [Di(xa)Dj(xb) −Di(xb)Dj(xa)], for j �= i, i′,

Πi(xixa, xi′xb) = xa+b+(p−1)(εi+εi′ ),

if a+ b �= τ − (p− 1)(εi + εi′),

Πi(xk, xτ−(p−1)(εi+εi′ )) = −σ(k)xτ−εk′ , for any 1 ≤ k ≤ n,

Φ(xa, xb) =
∑

0≤δ≤a,bb

|δ|=3

(
a

δ

)(
b

δ̂

)
σ(δ)δ!xa+b−δ−bδ .

Using the above result (6.2) and the Hochschild exact sequence (2.2), we can
compute the second restricted cohomology group.

Proof of Theorem 1.4. For n ≥ 4, the cocycles Πij and Πi do not belong to
H2

∗ (H(n), H(n)). To unify the notation we set (only during this proof) Πii′ = Πi

for 1 ≤ i ≤ m. Then, using that x[p]
r = 0, we compute (for i < j):

HΠij (xi) · xτ−(p−1)εj′ = Πij(xi, (adxi)p−1(xτ−(p−1)εj′ )) = σ(i)xτ−εj ,

HΠij (xj) · xτ−(p−1)εi′ = Πij(xj , (adxj)p−1(xτ−(p−1)εi′ )) = −σ(j)xτ−εi ,

HΠij (xk) · xτ−(p−1)εh = 0, if k �= i, j or h �= i′, j′.

Therefore according to Lemma 6.2(ii), no linear combination of Πij can be in the
kernel of the map H and therefore in H2

∗ (H(n), H(n)).
Next we prove that Sq(xh) = σ(h)Sq(Dh′) ∈ H2

∗ (H(n), H(n)) by showing that
for any xa ∈ H(n) the derivation HSq(xh)(xa) satisfies the conditions of Lemma 6.2.
Suppose, by contradiction, that the condition (ii) of Lemma 6.2 is not satisfied for
some index i. Then for degree reasons we must have

p− 2 = deg(xp−1
i Di′) = deg(Sq(xh)) + p deg(xa) = −p+ p deg(xa),

which is impossible since p �= 2. Suppose now, by contradiction, that the condition
(iii) of Lemma 6.2 is not satisfied and in particular that

[HSq(xh)(xa) · xh]xh
+ [HSq(xh)(xa) · xh′ ]xh′ �= 0. (*)

From the definition of H , it is straightforward to see that{
HSq(xh)(xa) · xh ∈ 〈xpa−2pεh′−(p−1)εh〉F ,
HSq(xh)(xa) · xh′ ∈ 〈xpa−(2p−1)εh′−pεh〉F .

(**)

From the hypothesis (*), it follows that xa = x2
h′xh and therefore the formula (2.3)

simplifies (for any index k) as follows

HSq(xh)(x2
h′xh) · xk = Sq(xh)(x2

h′xh, (adx2
h′xh)p−1xk).
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By induction on 1 ≤ r ≤ p− 1, one can verify that{
(adx2

h′xh)rxh′ = σ(h′)r(−1)(−2) · · · (−r)xr+1
h′ ,

(adx2
h′xh)rxh = σ(h′)r2(2 − 1) · · · (2 − (r − 1))xrh′xh.

In particular we have that (adx2
h′xh)p−1xh′ = (adx2

h′xh)p−1xh = 0 and, substi-
tuting in the above expression, we get HSq(xh)(x2

h′xh) · xh′ = HSq(xh)(x2
h′xh) · xh

contradicting the hypothesis (*). Finally, by using the first equation of (**) and
the fact that the multi-index pa− 2pεh′ − (p− 1)εh cannot be equal to τ − εh′ , the
condition (i) of Lemma 6.2 is satisfied for i = h.

Finally, we prove that Φ ∈ H2∗ (H(n), H(n)) by showing that for any xa ∈
H(n) the derivation HΦ(xa) satisfies the conditions of Lemma 6.2. Suppose, by
contradiction, that the condition (ii) of Lemma 6.2 is not satisfied for some index i.
Then for degree reasons, we must have

p− 2 = deg(xp−1
i Di′) = deg(Φ) + p deg(xa) = −4 + p deg(xa),

a contradiction. Analogously, if the condition (iii) of the Lemma is not satisfied by
HΦ(xa) for some index i, then we get a contradiction by looking at the degree

0 = deg(Φ) + p deg(xa) = −4 + p deg(xa).

Finally, suppose that the condition (i) of Lemma 6.2 is not satisfied for some index
i, that is [HΦ(xa) · xi]xτ−ε

i′ �= 0. Then, by looking at the degree, we get that

deg(xa) = 2m− 2
m− 1
p

> 0.

In particular we have that p | (m− 1), from which we deduce that either m = 1 or
m ≥ p+ 1 ≥ 6. Suppose first that m �= 1. Then, from the formula (2.3) and using
that (xa)[p] = 0, we deduce that

HΦ(xa) · xi ∈
∑
|δ|=3

p−1∑
k=0

〈(adxa)p−1−k(x(k+1)a−(k−1)εi−kεi′−δ−bδ)〉F .

Fix a multi-index δ appearing in the above summation and choose an index j �= i, i′

such δj = δj′ = 0 (this is possible since |δ| = 3 and n = 2m ≥ 12). Then the jth
coefficient of every monomial appearing in the expression

p−1∑
k=0

(adxa)p−1−k(x(k+1)a−(k−1)εi−kεi′−δ−bδ)

is p aj �= p−1. Therefore the monomial xτ−εi′ cannot appear in the above expression
and, repeating the same argument for every multi-index δ as before, we get that
[HΦ(xa) · xi]xτ−ε

i′ = 0, a contradiction. In the remaining case m = 1, we have that

HΦ(xa) · xi ∈
∑
|δ|=3

〈xpa−(p−2)εi−(p−1)εi′−δ−δ̂〉F .
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From this and the hypothesis [HΦ(xa) · xi]xτ−ε
i′ �= 0, we deduce that xa = x2

i x
2
i′ .

Using the straightforward formulas
(adx2

ix
2
i′ )
k(xi) = [−2σ(i)]kxk+1

i xki′ ,

Φ(x2
i x

2
i′ , x

k+1
i xki′) = 2σ(i)(k + 1)kxki x

k−1
i′ ,

(adx2
ix

2
i′ )
p−1−k(xki x

k−1
i′ ) = [−2σ(i)]p−1−kxp−1

i xp−2
i′ ,

we get that HΦ(xa) ·xi = 2σ(i)
∑p−1
k=0[(k+ 1)k]xτ−εi′ = 0, since

∑p−1
k=0 k ≡ 0 mod p

for p ≥ 3 and
∑p−1
k=0 k

2 ≡ 0 mod p for p ≥ 5. This contradiction finishes the
proof.

7. The Melikian Algebra

Let us recall the definition of the restricted Melikian algebra, following [37, Sec. 4.3].
Let F be a field of characteristic p = 5. Consider W (2) = DerFA(2) =

DerFF [x1, x2]/(x
p
1, x

p
2), the restricted Witt–Jacobson Lie algebra of rank 2. Let

W̃ (2) be a copy of W (2) and for an element D ∈ W (2) we indicate with D̃ the

corresponding element inside W̃ (2). The restricted Melikian algebra M := M(1, 1)
is defined as

M = A(2) ⊕W (2) ⊕ W̃ (2),

with Lie bracket defined by the following rules (for all D,E ∈ W (2) and f, g ∈
A(2)): 

[D, Ẽ] := [̃D,E] + 2 div(D)Ẽ,

[D, f ] := D(f) − 2 div(D)f,

[f1D̃1 + f2D̃2, g1D̃1 + g2D̃2] := f1g2 − f2g1,

[f, Ẽ] := fE,

[f, g] := 2 (gD2(f) − fD2(g))D̃1 + 2 (fD1(g) − gD1(f))D̃2,

where div(f1D1 + f2D2) := D1(f1) +D2(f2) ∈ A(2). The Melikian algebra M has
a Z-grading given by (for all D,E ∈ W (2) and f ∈ A(2)):

degM (D) := 3 deg(D),

degM (Ẽ) := 3 deg(E) + 2,

degM (f) := 3 deg(f) − 2.

In particular the elements of negative degree are

M−3 = 〈D1, D2〉F , M−2 = 〈1〉F , M−1 = 〈D̃1, D̃2〉F .
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The [p]-map is defined on an element X ∈M by

X [p] =

{
X, if X = x1D1 or x2D2,

0, otherwise.

It is known that every derivation of M is inner (see [37, Sec. 4.3]), that is

H1
∗ (M,M) = H1(M,M) = 0. (7.1)

Therefore, from the Hochschild exact sequence (2.2), we deduce that H2
∗ (M,M) =

H2(M,M). The Theorem 1.5 follows from [43, Theorem 1.1]:

H2(M,M) = 〈Sq(1)〉F
2⊕
i=1

〈Sq(Di)〉F
2⊕
i=1

〈Sq(D̃i)〉F .
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