
Algebraic Geometry 4 (3) (2017) 353–393

doi:10.14231/AG-2017-020

The singularities and birational geometry

of the compactified universal Jacobian

Sebastian Casalaina-Martin, Jesse Leo Kass and Filippo Viviani

Abstract

In this paper, we establish that the singularities of the compactified universal Jacobian
are canonical if the genus is at least four. As a corollary, we determine the Kodaira
dimension and the Iitaka fibration of the compactified universal Jacobian for every
degree and genus. We also determine the birational automorphism group for every
degree if the genus is at least twelve. This extends work of G. Farkas and A. Verra, as
well as that of G. Bini, C. Fontanari and the third author.

1. Introduction

Jacobians of non-singular curves are principally polarized abelian varieties, which from the per-
spective of birational geometry are among the simplest varieties. On the other hand, for a family
of non-singular curves, the relative Jacobian may exhibit more interesting birational behavior,
not necessarily reflective of the birational geometry of the base. For instance, over the moduli
space of non-singular, genus g > 2, automorphism-free curves M◦g , there is a universal curve C◦g
and, consequently, a universal Jacobian Pic0(C◦g/M

◦
g ). In this paper, we investigate the birational

geometry of this space and show, for instance, that the Kodaira dimension of Pic0(C◦g/M
◦
g ) can

be different from the Kodaira dimension of M◦g .

More generally, for any integer d, Caporaso [Cap94] (see also [Pan96]) has constructed a com-
pactified universal Jacobian π : J̄d,g → Mg over the moduli space of Deligne–Mumford stable
curves, the fiber of which over a non-singular, automorphism-free curve C is the degree d Jaco-
bian JdC. In particular, J̄0,g provides a compactification of the universal Jacobian. In this paper,
we focus on two main problems concerning the birational geometry of these spaces, namely de-
termining the Kodaira dimension and determining the birational automorphism group. These
problems go back at least to Caporaso’s work and have been investigated recently by Farkas and
Verra [FV13] and Bini, Fontanari and the third author [BFV12] in special cases.
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Due to [BFV12], the main point needed to answer these questions in full generality is to
provide a good description of the local structure of J̄d,g. In this paper, we investigate this question
in detail, providing an explicit description of the complete local ring at a point as well as formulas
for various invariants of the ring in terms of the dual graphs of the curves. In particular, we
establish that J̄d,g has canonical singularities.

Theorem A. Assume char(k) = 0. If g > 4, then the compactified universal Jacobian J̄d,g has
canonical singularities for any d ∈ Z.

The arguments build on the previous work of the authors in two ways. First, extending the
deformation theory in [CKV15], we are able to reduce the problem to the study of a special
class of combinatorial rings, called cographic toric face rings, investigated in [CKV13]. In full
generality, these rings can exhibit poor behavior (see [CKV13, § 5.1]). However, as it turns out,
the rings appearing from the deformation theory of the compactified universal Jacobian form
a special class of rings with mild singularities. The specific cographic rings appearing in this
paper will be denoted by U(Γ) and are defined from the data of a graph Γ (Definition 3.1). Our
main result for these rings is the following theorem.

Theorem B. Let Γ be a finite, connected graph, and let k be an algebraically closed field. The
cographic toric ring U(Γ) is a finitely generated, integral k-algebra, and the singularities of the
associated variety SpecU(Γ) are Gorenstein, rational, and terminal.

Using the results in [CKV13], together with standard results on toric varieties, we are also
able to establish a number of further properties of the rings U(Γ) (and consequently J̄d,g) in
terms of invariants of the graph Γ, including the dimension (Corollary 5.2), the dimension of the
tangent space (Proposition 5.8), and the multiplicity (Theorem 5.12).

From Theorem A and the work of Bini–Fontanari–Viviani, one obtains the following conse-
quence for the birational geometry of J̄d,g.

Corollary C. Assume char(k) = 0. The Kodaira dimension of the universal Jacobian J̄d,g is
given by

κ(J̄d,g) =


−∞ if g 6 9 ,

0 if g = 10 ,

19 if g = 11 ,

3g − 3 if g > 12 .

Moreover, for g > 10, the Iitaka fibration of Jd,g is given as follows:

(i) For g > 12, the Iitaka fibration is the forgetful morphism π : J̄d,g →Mg.

(ii) For g = 11, the Iitaka fibration is the rational map J̄d,11 99K F11, where Fg is the mod-
uli space of K3 surfaces with polarization of degree 2g − 2 and the rational map takes
a general pair (C,L) to the pair (S,OS(C)), where S is the unique K3 containing C
(see [Muk96]).

(iii) For g = 10, the Iitaka fibration is the structure morphism J̄d,10 → Spec k.

For g = 22 and g > 24, the statement on the Kodaira dimension follows from general results
in birational geometry, together with well-known results for Mg (see Remark 8.10). In the re-
maining range, the result was proven by Bini–Fontanari–Viviani [BFV12, Theorem 1.2] under
the numerical condition that gcd(d+ 1− g, 2g − 2) = 1 or g = 23, and by Farkas–Verra [FV13]

354



The singularities and birational geometry

in the special case d = g. In particular, the case d = 0 was not known. We also point out that
while we have obtained here a complete classification of the Kodaira dimension for the universal
Jacobian, the Kodaira dimension of the moduli space of curves is still unknown in the range
17 6 g 6 21 and for g = 23. Finally, for 10 6 g 6 16, we have κ(J̄d,g) 6= κ(Mg). We direct
the reader to (8.35) for more details, as well as to Remark 8.12, which compares these numerics
with the recent work of Farkas–Verra [Far10, FV12, FV14, Far12] on the moduli space of theta
characteristics.

Another immediate observation is that the Kodaira dimension is independent of d. One might
guess that the reason for this is that J̄d,g is birational to J̄d′,g for different d and d′. Our next
result shows that this is not generally the case.

Corollary D. Assume char(k) = 0 and g > 12. If η : Jd,g 99K Jd′,g is a birational map, then
d′ = ±d+ n(2g − 2) and η is given by the map sending (C,L) ∈ Jd,g into (C,L±1 ⊗ ωnC) ∈ Jd′,g.
In particular, the following hold:

(i) The universal Jacobian Jd,g is birational to Jd′,g if and only if d′ ≡ ±d mod 2g − 2.

(ii) The group Bir(Jd,g) of birational automorphisms of Jd,g is given by

Bir(Jd,g) =

{
Z/2Z if d = n(g − 1) for some n ∈ Z ,
{Id} otherwise .

Moreover, if d = n(g − 1) for some n ∈ Z, then the generator of Bir(Jd,g) is the birational
automorphism sending (C,L) into (C,L−1 ⊗ ωnC).

This was proven by Bini–Fontanari–Viviani [BFV12, Theorem 1.7] in the special case gcd(d+
1− g, 2g − 2) = 1 (or g > 22) and builds on work of Caporaso [Cap94].

This paper is organized as follows. In Section 2, we review terminology concerning graphs and
various constructions with graphs that will appear later. In Section 3, we define the combinatorial
rings U(Γ) and establish some first properties of the rings. In Section 4, we establish some
specific presentations of the rings which are useful for later computations and also for connecting
the rings with deformations. In Section 5, we discuss the singularities of the rings U(Γ). In
Section 6, we describe the rings as invariants for a group action, which provides the framework
for the connection with deformations of sheaves. In Section 7, we provide some examples of
these rings. In Section 8, we make the connection with the compactified universal Jacobian
and establish the results on the singularities, Kodaira dimension, and birational automorphism
group.

The paper ends with an appendix in which we investigate the singularities of finite quotients
of toric varieties. More specifically, the focus is on establishing a Reid–Tai–Shepherd-Barron
criterion for singular toric varieties, that is, a numerical condition that can be used to determine
when a finite quotient of a singular toric variety has canonical or terminal singularities. The main
result is Proposition A.6, which in conjunction with Theorem A.11 is a direct generalization of
the Reid–Tai–Shepherd-Barron criterion. While we expect that the generalization is well known
to the experts, we were not aware of a reference and include proofs here.

2. Preliminaries on graphs

In this section, we introduce some constructions on graphs that we will use in this paper.
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2.1 Graph notation

Following Serre [Ser80, § 2.1], a graph Γ consists of the data

(
→
E

s //
t
// V,

→
E

ι→
→
E) ,

where V and
→
E are sets, ι is a fixed-point-free involution, and s and t are maps satisfying

s(
→
e ) = t(ι(

→
e )) for all

→
e ∈

→
E. The maps s and t are called the source and target maps, respectively.

We call V =: V (Γ) the set of vertices. We call
→
E =:

→
E(Γ) the set of oriented edges.

We define the set of (unoriented) edges to be E(Γ) = E :=
→
E/ι. Given an oriented edge

→
e ∈

→
E,

we will denote by
→
e the class of

→
e in E. An orientation of an edge e ∈ E is a representative

for e in
→
E; we use the notation

→
e and

←
e for the two possible orientations of e. An orientation

of a graph Γ is a section φ : E →
→
E of the quotient map. An oriented graph consists of a pair

(Γ, φ), where Γ is a graph and φ is an orientation. Given an oriented graph, we say that φ(e) is

the positive orientation of the edge e ∈ E. Given a subset S ⊆ E, we define
→
S ⊆

→
E to be the set

of all orientations of the edges in S.

We will say that two edges of a graph are parallel if they connect the same (not necessarily
distinct) vertices. We say that an edge of a connected graph is a separating edge if removing the
edge disconnects the graph. Two edges of a connected graph are a separating pair if they are
both non-separating edges and if removing the two edges disconnects the graph.

If Γ is connected, then we say that an orientation φ of Γ is totally cyclic if there does not
exist a proper non-empty subset W ⊂ V (Γ) such that the edges between W and its complement
V (Γ) rW all go in the same direction (that is, either all these edges are oriented from W to
V (Γ) rW or all are oriented in the opposite direction). If Γ is disconnected, then we say that
an orientation of Γ is totally cyclic if the orientation induced on each connected component of Γ
is totally cyclic.

A graph Γ is called cyclic if it is connected, free from separating edges, and satisfies b1(Γ) :=
|E(Γ)| − |V (Γ)|+ 1 = 1. We will also call a cyclic graph a circuit. A cyclic graph together with
a totally cyclic orientation is called an oriented circuit. A loop is a circuit with a single edge.

2.2 Ordinary homology and oriented homology

Given any graph Γ, we can form its ordinary homology (which coincides with the homology of
the underlying topological space) and its oriented homology.

Let C0(Γ,Z) be the free Z-module with basis V (Γ), let C1(Γ,Z) be the free Z-module gener-

ated by
→
E(Γ), and consider the boundary map D defined as

D : C1(Γ,Z)→ C0(Γ,Z) ,
→
e 7→ t(

→
e )− s(→e ) .

(2.1)

We will denote by H•(Γ,Z) the groups obtained from the homology of C•(Γ,Z), and we will call
them the oriented homology groups of Γ. Let ( , ) be the unique scalar product on C1(Γ,R) =

C1(Γ,Z) ⊗Z R (and also its restriction to H1(Γ,Z)) such that the elements of
→
E(Γ) form an

orthonormal basis.

Let C0(Γ,Z) = C0(Γ,Z), let C1(Γ,Z) be the quotient of C1(Γ,Z) by the relation
←
e = −→e for
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every e ∈ E(Γ), and consider the boundary map

∂ : C1(Γ,Z)→ C0(Γ,Z) ,

[
→
e ] 7→ t(

→
e )− s(→e ) ,

(2.2)

where we denote by [
→
e ] the class of

→
e in C1(Γ,Z). We will denote by H•(Γ,Z) the groups obtained

from the homology of C•(Γ,Z), and we will call them the ordinary homology groups of Γ. Note
that H•(Γ,Z) is isomorphic to the homology of the underlying topological space of Γ. Let ( , )
be the unique scalar product on C1(Γ,Z) (and also its restriction to H1(Γ,Z)) such that

([
→
e ], [

→
e ]) = −([

→
e ], [

←
e ]) = 1 for any e ∈ E ,

([
→
e 1], [

→
e 2]) = 0 for any

→
e 1,
→
e 2 ∈

→
E such that [

→
e 1] 6= ±[

→
e 2] .

For a connected graph Γ, the coranks of the images of D and ∂ are one. Consequently, for a
connected graph, we have

rankH1(Γ,Z) = |E(Γ)| − |V (Γ)|+ 1 =: b1(Γ) ,

rankH1(Γ,Z) = 2|E(Γ)| − |V (Γ)|+ 1 = b1(Γ) + |E(Γ)| .
(2.3)

In order to determine the relationship between ordinary and oriented homology, consider the
following commutative diagram:

C1(Γ,Z)

����

D // C0(Γ,Z)

C1(Γ,Z)
∂ // C0(Γ,Z) ,

(2.4)

where the left vertical map send
→
e into [

→
e ]. This diagram (2.4) induces an equality H0(Γ,Z) =

H0(Γ,Z) and a surjection H1(Γ,Z)� H1(Γ,Z), whose kernel can be described as follows.

Lemma 2.1. The kernel of the natural surjection H1(Γ,Z) � H1(Γ,Z) is generated by {→e +
←
e }e∈E(Γ).

Proof. From the definition of D, we have
→
e +

←
e ∈ H1(Γ,Z). Clearly,

→
e +

←
e also maps to 0

in C1(Γ,Z). On the other hand, suppose that
∑

e∈E(ae
→
e +be

←
e ) ∈ H1(Γ,Z) is in the kernel of the

above map. Then, by definition,
∑

e∈E(ae − be)[
→
e ] = 0, and so ae = be for all e ∈ E since {[→e ]}

is a basis for C1(Γ,Z).

2.3 Doubled graphs and doubled orientations

In this section, we introduce a class of graphs, called doubled graphs, together with canonical
totally cyclic orientations of them, called doubled orientations, which are obtained from a graph
by doubling its edges.

Definition 2.2. Let Γ be a connected graph. Define the doubled graph of Γ, denoted Γd, to
be the graph obtained by doubling the edges of Γ; that is, Γd is the graph obtained from Γ by
replacing each edge e of Γ with a pair of parallel edges e′ and e′′ of Γd having the same endpoints

as e (see Figure 1). To be precise, we have V (Γd) = V (Γ) and
→
E(Γd) =

⋃
→
e∈
→
E
{→e
′
,
→
e
′′
}, and we

define

s(
→
e
′
) = s(

→
e
′′
) = s(

→
e ) , t(

→
e
′
) = t(

→
e
′′
) = t(

→
e ) and ι(

→
e
′
) =

←
e
′
, ι(
→
e
′′
) =

←
e
′′
.
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Figure 1. Doubled graph

Figure 2. Doubled orientation

Note that

E(Γd) =
⋃

e∈E(Γ)

{e′, e′′} ,

where we use the convention that if e =
→
e , then e′ =

→
e
′

and e′′ =
→
e
′′
.

The graph Γd drawn with its unoriented edges looks like the graph Γ drawn with its oriented
edges (see Figure 1). In this way, choosing an identification of edges gives an orientation φd of Γd.
In fact, given an orientation φ of Γ, one obtains an orientation φd of Γd by orienting each edge e′

in the same direction as φ(e) and each edge e′′ in the opposite direction (see Figure 2).

Definition 2.3. Given an orientation φ of Γ, define the doubled orientation

φd : E
(
Γd
)
→
→
E
(
Γd
)
,

φd(e′) = φ(e)′ , φd(e′′) = ι(φ(e)′′) .

Lemma 2.4. The doubled orientation φd on Γd is canonical; that is, it does not depend on the
choice of φ up to automorphisms of Γd, and it is totally cyclic.
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Proof. Choose an (unoriented) edge f ∈ E(Γ), define a new orientation φf of Γ by reversing the
orientation on f , that is, setting

φf (e) =

{
ι(φ(f)) if e = f ,

φ(e) if e 6= f .

Define an automorphism ψ of Γd that is the identity on vertices, exchanges f ′ and f ′′, and fixes e′

and e′′ for all other edges e 6= f of Γ. Then, clearly, ψ will send the orientation φd into (φf )d.
Since every other orientation of Γ can be obtained from φ by iteratively applying the above
construction, we have shown that φd is canonical.

The fact that φd is totally cyclic follows easily from the fact that any two parallel (unoriented)
edges e′ and e′′ of Γd associated with an edge e of Γ are given opposite orientations by φd.

The oriented homology of Γ is canonically isomorphic to the ordinary homology of Γd. In
order to prove this, fix an orientation φ of Γ and consider the diagram

[φd(e′)] ∈
_

��

C1(Γd,Z)

∼=
��

∂ // C0(Γd,Z)

φ(e) ∈ C1(Γ,Z)
D // C0(Γ,Z) ,

(2.5)

where the left vertical map is the group isomorphism obtained by, for each e ∈ E(Γ), sending
[φd(e′)] ∈ C1(Γd,Z) into φ(e) ∈ C1(Γ,Z) (and [φd(e′′)] to ιφ(e)). In short, if we choose a dou-
bled orientation φd on Γd, then C1(Γd,Z) can be given a basis consisting of the oriented edges
determined by φd; these edges are in bijection (including orientation) with the collection of all
oriented edges of Γ, which form a basis of C1(Γ,Z) (see Figure 2).

Lemma 2.5. The diagram (2.5) is commutative, and it induces an isomorphism Hi(Γ
d,Z)

∼=−→
Hi(Γ,Z) for i = 0, 1.

Proof. This is straightforward to check and is left to the reader.

2.4 The affine semigroup ring R(Γ, φ) and its associated toric variety X(Γ,φ)

In this section, we review the definition of the ring R(Γ, φ) from [CKV13, § 4]. Let (Γ, φ) be a
graph with a totally cyclic orientation. Consider the pointed full-dimensional rational polyhedral
cone

σΓ(φ) :=
⋂

e∈E(Γ)

{(·, φ(e)) > 0} ⊂ H1(Γ,Z)⊗Z R . (2.6)

(This was denoted σ(∅, φ) in [CKV13, § 3].) According to Gordan’s lemma (see, for example,
[CLS11, Proposition 1.2.17]), the semigroup

CΓ(φ) := σΓ(φ) ∩H1(Γ,Z) ⊂ H1(Γ,Z) = Zb1(Γ) (2.7)

is a positive, normal, affine semigroup, that is, a finitely generated subgroup isomorphic to
a subsemigroup of Zd for some d ∈ N, such that 0 is the unique invertible element and such that
if m · z ∈ CΓ(φ) for some m ∈ N and z ∈ Zd, then z ∈ CΓ(φ).

Recall [CKV13, Definition 4.2] that we define

R(Γ, φ) := k[CΓ(φ)]
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to be the affine semigroup ring associated with CΓ(φ), that is, the k-algebra whose underlying
vector space has basis {Xc : c ∈ CΓ(φ)} and whose multiplication is defined by Xc ·Xc′ := Xc+c′ .
The ring R(Γ, φ) is a normal, Cohen–Macaulay domain of dimension equal to (for example,
[CKV13, Lemma 4.3])

dimR(Γ, φ) = dimσΓ(φ) = b1(Γ) . (2.8)

The affine variety

X(Γ,φ) := SpecR(Γ, φ) (2.9)

is the toric variety associated with the fan Σ(Γ,φ) consisting of the dual cone

σΓ(φ)∨ ⊂ H1(Γ,Z)∨ ⊗Z R

together with all its faces.

3. The cographic toric variety XΓ and the cographic toric ring U(Γ)

Fix a graph Γ. Using the notation of Section 2.2, set MΓ := H1(Γ,Z) and NΓ := H1(Γ,Z)∨.
Consider the pointed rational polyhedral cone

σΓ :=
⋂
→
e∈ ~E

{
(,
→
e ) > 0

}
⊂MΓ ⊗Z R , (3.1)

and denote its dual cone by σ∨Γ ⊂ NΓ ⊗Z R. Again from Gordan’s lemma, the semigroup

C(Γ) := H1(Γ,Z) ∩ σΓ (3.2)

is a positive, normal, affine semigroup.

Definition 3.1. (i) The cographic toric ring U(Γ) of Γ (over a base field k) is the affine semi-
group k-algebra associated with C(Γ); that is,

U(Γ) := k[C(Γ)] .

Explicitly, U(Γ) is the k-algebra whose underlying vector space has basis {Xc : c ∈ C(Γ)} and
whose multiplication is defined by Xc ·Xc′ := Xc+c′ .

(ii) The cographic toric variety XΓ of Γ (over a base field k) is the affine variety

XΓ := SpecU(Γ) = Spec k[C(Γ)] .

Observe that XΓ is the (normal) toric variety associated with the rational polyhedral fan ΣΓ

in NΓ ⊗Z R formed by σ∨Γ and all its faces. We describe σ∨Γ in more detail in Section 5.

Example 3.2. Let L be the loop graph, that is, the graph with one vertex v and one unoriented
edge e which is a loop around v. Then C1(L,Z) is freely generated by

→
e and

←
e and the boundary

map D is trivial; hence H1(L,Z) = C1(L,Z) = 〈→e ,←e 〉. The cone σL of (3.1) is the first quadrant

in H1(L,Z) ⊗Z R ∼= R2, and the semigroup C(L) of (3.2) is isomorphic to N2, generated by
→
e

and
←
e . Therefore,

U(L) = k[C(L)] = k
[
X
→
e , X

←
e
] ∼= k[X,Y ] and XL = SpecU(L) = A2

k .

The cographic toric ring U(Γ) and the cographic toric variety XΓ also admit another pre-
sentation in terms of the affine semigroup algebra (and its corresponding affine toric variety)
associated to the double graph Γd with its double orientation Γd; see Sections 2.3 and 2.4.
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Proposition 3.3. There is an isomorphism of k-algebras

U(Γ) ∼= R
(
Γd, φd

)
inducing the isomorphism XΓ

∼= X(Γd,φd) of toric varieties.

Proof. Comparing (2.6) with (3.1), it is easily checked that the isomorphism H1(Γd,Z)
∼=−→

H1(Γ,Z) of Lemma 2.5 sends the cone σΓd(φd) isomorphically into the cone σΓ and hence the
semigroup CΓd(φd) isomorphically onto the semigroup C(Γ). By taking the associated semigroup
algebras, we get the isomorphism R(Γd, φd) ∼= U(Γ) and, by passing to prime spectra, we obtain
that X(Γd,φd)

∼= XΓ.

4. An explicit presentation of the cographic toric ring U(Γ)

The aim of this section is to give an explicit presentation of the cographic toric ring U(Γ), which
also shows that U(Γ) is a deformation of the cographic toric face ring R(Γ) introduced and
studied in [CKV13].

To begin, we define a map

ψ : H1(Γ,Z)×H1(Γ,Z)→ ZE(Γ)
>0 .

For a cycle z ∈ H1(Γ,Z) ⊆ C1(Γ,Z), denote by Supp(z) (the support of z) the set of edges of
E(Γ) that appear with non-zero coefficient in z. Then we can write z uniquely as

z =
∑

e∈Supp(z)

ae[
→
e ]

with ae > 0 for all e ∈ Supp(z).

Now if

z(1) =
∑

e∈Supp(z(1))

a(1)
e

[→
e

(1)]
and z(2) =

∑
e∈Supp(z(2))

a(2)
e

[→
e

(2)]
,

then define

ψ
(
z(1), z(2)

)
e

:=


0 if e /∈ Supp(z(1)) ∩ Supp

(
z(2)
)
,

0 if
[→
e

(1)]
=
[→
e

(2)]
,

min
(
a

(1)
e , a

(2)
e

)
if
[→
e

(1)]
= −

[→
e

(2)]
.

(4.1)

Remark 4.1. While the definition above is made independent of an orientation and will be useful
for the proof of the theorem below, the definition may be more transparent with the introduction
of an orientation. So, for the sake of exposition, choose an orientation φ of Γ. Then a cycle
z ∈ H1(Γ,Z) has a unique expression of the form z =

∑
e∈E αeφ(e), with the αe ∈ Z. Now if

z(1) =
∑

e∈E α
(1)
e φ(e) and z(2) =

∑
e∈E α

(2)
e φ(e), then define

ψ
(
z(1), z(2)

)
e

=

{
0 if α

(1)
e α

(2)
e > 0 ,

min
(
|α(1)
e |, |α(2)

e |
)

otherwise .

In other words, we are just tallying the number of edges (with multiplicity) that two cycles share
in opposite directions. Note that this definition agrees with the one above and does not depend
on the choice of φ.
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Remark 4.2. It follows from [CKV13, Corollary 3.4] that ψ(z(1), z(2)) = 0 if and only if z(1)

and z(2) lie in a common cone of the cographic fan F⊥Γ on H1(Γ,Z)⊗R (see [CKV13, § 1.4] and
the references therein).

The key to obtaining an explicit presentation of the cographic toric ring U(Γ) is the following
alternative description of the semigroup C(Γ) of (3.2).

Proposition 4.3. The semigroup C(Γ) is isomorphic to the set H1(Γ,Z)×ZE(Γ)
>0 endowed with

the structure of semigroup given by

(z1, n1)× (z2, n2) 7→ (z1 + z2, ψ(z1, z2) + n1 + n2) . (4.2)

In order to prove this proposition, we will need the following two lemmas.

Lemma 4.4. Under the natural surjection H1(Γ,Z) � H1(Γ,Z) induced by (2.4), the semi-
group C(Γ) maps surjectively onto H1(Γ,Z).

Proof. We will prove this by constructing a section

H1(Γ,Z)→ C(Γ) . (4.3)

Any cycle z ∈ H1(Γ,Z) can be written uniquely in the form z =
∑

e∈Supp(z) ae[
→
e ] with ae > 0.

Thus

z 7→
∑

e∈Supp(z)

ae
→
e

gives a well-defined map H1(Γ,Z)→ C(Γ). It is clearly a section.

Lemma 4.5. The semigroup C(Γ) is the sub-semigroup of H1(Γ,Z) generated by {→e +
←
e }e∈E(Γ)

and the image of the section H1(Γ,Z)→ C(Γ) defined in (4.3) above.

Proof. Clearly, both {→e +
←
e }e∈E(Γ) as well as the image of the section H1(Γ,Z) → C(Γ) lie

in C(Γ).

Now, let z ∈ C(Γ). Recall that by definition this means that z =
∑
→
e∈
→
E
a→
e

→
e with a→

e
> 0

for all
→
e ∈

→
E. Let z′ be the image of z in H1(Γ,Z), and let z′′ be the image of z′ in C(Γ) under

the section. Then z − z′′ ∈ ker (H1(Γ,Z)→ H1(Γ,Z)). Thus, using Lemma 2.1, we can write

z = z′′+
∑

e∈E be(
→
e +

←
e ). But, by the construction of z′′, for all e ∈ E, the coefficient of either

→
e

or
←
e in z′′ is zero. Thus be > 0 for all e ∈ E, and we are done.

Proof of Proposition 4.3. It follows from Lemma 4.5 that there is an explicit bijection between

the sets C(Γ) and H1(Γ,Z)×ZE(Γ)
>0 . By tracing the semigroup law on C(Γ) via this bijection, we

end up exactly with the semigroup law on H1(Γ,Z)×ZE(Γ)
>0 given by (4.2), and we are done.

From the explicit description of the semigroup C(Γ) given in Proposition 4.3, we derive the
following explicit presentation of the cographic toric ring U(Γ).

Theorem 4.6. Let Γ be a connected graph. Consider the k-algebra D(Γ) whose underlying

vector space has basis {XzT ε : z ∈ H1(Γ,Z), ε ∈ ZE(Γ)
>0 } and whose multiplication is defined by

the rule XzT ε ·Xz′T ε
′

:= Xz+z′Tψ(z,z′)+ε+ε′ . In other words,

D(Γ) :=
k[Xz]z∈H1(Γ,Z)[Te]e∈E

(XzXz′ −Xz+z′ ~Tψ(z,z′))
.

Then we have an isomorphism U(Γ) ∼= D(Γ).
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Proof. Observe that D(Γ) is the semigroup k-algebra associated with the set H1(Γ,Z) × ZE(Γ)
>0

endowed with semigroup law (4.2). Then the result follows from Proposition 4.3.

Remark 4.7. From Theorem 4.6 together with Remark 4.2, it follows that by setting the vari-
ables Te equal to 0, we get a surjective morphism of k-algebras

U(Γ) ∼= D(Γ)� R(Γ) , (4.4)

where R(Γ) is the cographic toric face ring introduced in [CKV13, Definition 1.2]. Thus, the
cographic toric variety XΓ can be viewed as a deformation of the cographic toric face variety
SpecR(Γ) [CKV13, Definition 1.2] over the base Spec k[Te]e∈E .

5. Singularities of XΓ

The aim of this section is to study the singularities of the cographic toric variety XΓ. Recall from
Definition 3.1 that XΓ is the (normal) toric variety associated with the rational polyhedral fan
ΣΓ in NΓ ⊗Z R formed by the rational polyhedral cone σ∨Γ (3.1) and all its faces. The following
lemma summarizes the basic properties of the cone σ∨Γ .

Lemma 5.1. Let Γ be a connected graph. Set MΓ = H1(Γ,Z).

(i) The cone σ∨Γ ⊆M∨Γ = NΓ is equal to

σ∨Γ =

{ ∑
→
e∈
→
E(Γ)

ae · ( ,
→
e ) : ae > 0

}
,

where ( ,
→
e ) denotes the element of NΓ obtained by pairing an element of MΓ with

→
e via the

scalar product ( , ) defined in Section 2.2.

(ii) The cone σ∨Γ is pointed and of full dimension in NΓ ⊗ R.

(iii) The extremal rays of σ∨Γ are of the form 〈( ,→e )〉 := R>0 ·( ,
→
e ) as

→
e varies in

→
E(Γ). Moreover,

given
→
e 1 6=

→
e 2, we have

〈( ,→e 1)〉 = 〈( ,→e 2)〉 ⇐⇒ →
e 1 =

→
e 2 is a separating edge of Γ .

(iv) For every
→
e ∈

→
E(Γ), the primitive element of the ray 〈( ,→e )〉 with respect to the lattice NΓ

is ( ,
→
e ), that is, 〈( ,→e )〉 ∩ NΓ = Z>0 · ( ,

→
e ).

Proof. Property (i) follows from (3.1), using the definition of a dual cone. Also, the first part of
property (iii) follows from property (ii). We will deduce the remaining properties of σ∨Γ from the
properties of its dual cone σΓ ⊂ MΓ, which is isomorphic to the cone σΓd(σd) ⊂ H1(Γd,Z), as
shown in the proof of Proposition 3.3.

According to [CKV13, Proposition 3.1], the cone σΓd(φd) is a pointed and full-dimensional
cone in H1(Γd,Z)⊗ R. By duality, we deduce that statement (ii) holds.

363



S. Casalaina-Martin, J. L. Kass and F. Viviani

Now, observe that if e is a non-separating edge of Γ, then the orientations φd|Γd\{e′} and

φd|Γd\{e′′} induced by φd on the graphs Γd \{e′} and Γd \{e′′}, respectively, are still totally cyclic.

On the other hand, if e is a separating edge of Γ, then the corresponding edges e′ and e′′ of Γd

form a pair of parallel edges; hence the orientation φd|Γd\{e′,e′′} induced by φd on Γd \ {e′, e′′} is

still totally cyclic, while neither the orientation induced by φd on Γd \ {e′} nor the one induced
on Γd \ {e′′} is totally cyclic. Therefore, [CKV13, Proposition 3.1] implies that the codimension
one faces of σΓd(φd) are given by (with the notation of Section 2.4)

(a) σΓd\{e′}
(
φd|Γd\{e′}

)
and σΓd\{e′′}

(
φd|Γd\{e′′}

)
for any non-separating edge e of Γ,

(b) σΓd\{e′,e′′}
(
φd|Γd\{e′,e′′}

)
for any separating edge e of Γ.

The faces of type (a) are given by intersecting σΓd(φd) with, respectively, the hyperplanes
{(·, φd(e′)) = 0} and {(·, φd(e′′)) = 0} for any non-separating edge e of Γ. On the other hand, the
faces of type (b) are given by intersecting with the hyperplanes {(·, φd(e′)) = 0} = {(·, φd(e′′)) =
0} for any separating edge e of Γ. By duality, we obtain property (iii).

For part (iv), consider the element
→
e +

←
e ∈ H1(Γ,Z) = MΓ. Since (

→
e +

←
e ,
→
e ) = 1, we get

that ( ,
→
e ) is the primitive element of the ray 〈( ,→e )〉.

Corollary 5.2. The variety XΓ does not contain torus factors and has dimension equal to

dimXΓ = dimσ∨Γ = rankH1(Γ,Z) = b1(Γ) + |E(Γ)| . (5.1)

Proof. This follows directly from Lemma 5.1(ii), using [CLS11, Proposition 3.3.9(c)] and [BH98,
Proposition 6.6.1].

We will want the following result describing the behavior of the cographic toric variety in the
presence of separating edges and loops.

Lemma 5.3. Let Γ be a connected graph with n separating edges and m loops, and let Γ′ be the
graph obtained from Γ by contracting the separating edges and deleting the loops. Then we have

XΓ = An+2m
k ×XΓ′ .

Proof. Let {f1, . . . , fn} be the separating edges of Γ, let {e1, . . . , em} be the loops of Γ, and

set γi := [
→
e i] ∈ H1(Γ,Z). Clearly, we have H1(Γ,Z) = H1(Γ′,Z) ⊕

⊕m
i=1〈γi〉. Moreover, if we

denote by ψ the map (4.1) associated with H1(Γ,Z) and by ψ′ the analogous map associated
with H1(Γ′,Z), then we have

ψ

(
z(1) +

∑
i

n
(1)
i γi, z

(2) +
∑
i

n
(2)
i γi

)
e

=


ψ′
(
z(1), z(2)

)
if e 6∈ {e1, . . . , em} ,

0 if e = ei and n
(1)
i n

(2)
i > 0 ,

min
(
|n(1)
i |, |n

(2)
i |
)

if e = ei and n
(1)
i n

(2)
i < 0

for any z(j) ∈ H1(Γ′,Z) and n
(i)
j ∈ Z. This implies easily that (using the notation of Theorem 4.6)

D(Γ) = D(Γ′)⊗k
k[Xγ1 , X−γ1 , . . . , Xγm , X−γm , Te1 , . . . , Tem ]

(Xγ1X−γ1 − Te1 , . . . , XγmX−γm − Tem)
⊗k k[Tf1 , . . . , Tfn ] .

By passing to the prime spectra and using Theorem 4.6, we conclude.

Remark 5.4. A lengthier, but more elementary argument can be made for Lemma 5.3 directly
from the definitions, without using Theorem 4.6.
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From the point of view of birational geometry, the singularities of XΓ are particularly nice.

Theorem 5.5. The variety XΓ is Gorenstein and terminal and has rational singularities.

Proof. It is well known that any (normal) toric variety has rational singularities (for example,
[CLS11, Theorem 11.4.2]) and is Cohen–Macaulay (for example, [CLS11, Theorem 9.2.9]).

According to [CLS11, Proposition 8.2.12] (see also Proposition A.3), XΓ is Gorenstein, that
is, the canonical divisor KXΓ

is Cartier, if and only if there exists an element m ∈MΓ such that
〈m,uρ〉 = 1 for any extremal ray ρ of σ∨Γ , where 〈 , 〉 denotes the canonical pairing between MΓ

and NΓ = M∨Γ and uρ denotes the minimal generator of ρ ∩ NΓ. Now, consider the following
element of C1(Γ,Z):

mΓ :=
∑
→
e∈
→
E

→
e =

∑
e∈E

(→
e +

←
e
)
. (5.2)

Since D(
←
e ) = −D(

→
e ), we get D(mΓ) = 0, and hence mΓ ∈ MΓ = H1(Γ,Z). By definition of the

scalar product (see Section 2.2), we easily get

(mΓ,
→
e ) = 1 for any

→
e ∈

→
E .

For brevity, we will use the notation u→
e

for the element ( ,
→
e ) ∈ NΓ determined by

→
e ∈

→
E. The

above equality translates into

〈mΓ, u→e 〉 = 1 . (5.3)

By Lemma 5.1, the rays of σ∨Γ are all of the form 〈u→
e
〉 = R>0 · u→e (as

→
e varies in

→
E) and u→

e
is

the primitive element of the ray 〈u→
e
〉. Therefore, we conclude that XΓ is Gorenstein.

Finally, let us show that XΓ has terminal singularities. Since we have already proved that XΓ

is Gorenstein, we conclude that XΓ has canonical singularities by [CLS11, Proposition 11.4.11].
Thus, using [CLS11, Proposition 11.4.12] (see also Proposition A.5), we conclude that in order
to prove that XΓ has terminal singularities, it is (necessary and) sufficient to prove the following.

Claim 5.6. If x ∈ σ∨Γ ∩ NΓ is such that 〈mΓ, x〉 = 1, then x = u→
e

for some
→
e ∈

→
E.

By Lemma 5.1(i), we can write x =
∑
→
e∈
→
E
a→
e
·u→

e
for certain a→

e
∈ R>0. Note that such a rep-

resentation may not be unique if the cone σ∨Γ is not simplicial, but we fix one such representation.
By hypothesis, and recalling the definition of mΓ (5.2), we have

1 = 〈mΓ, x〉 =

〈∑
→
e
′
∈
→
E

→
e
′
,
∑
→
e∈
→
E

a→
e
· u→

e

〉
=
∑
→
e∈
→
E

a→
e
. (5.4)

Now, consider, for any e ∈ E(Γ), the element γe :=
→
e +

←
e ∈ C1(Γ,Z). As above, since D(

←
e ) =

−D(
→
e ), we get D(γe) = 0, that is, γe ∈ MΓ = H1(Γ,Z). Using (5.4) and the fact that a→

e
> 0,

we get

〈γe, x〉 = a→
e

+ a←
e
∈ [0, 1] .

Moreover, since x ∈ NΓ and γe ∈MΓ, we get 〈γe, x〉 ∈ Z; hence 〈γe, x〉 is equal either to 1 or to 0.

In the first case, all the coefficients a→
e

with
→
e 6= →

e or
←
e must vanishes because of (5.4); hence

x = a→
e
u→
e

+ a←
e
u←
e

. In the second case, that is, if 〈γe, x〉 = 0, then necessarily a→
e

= a←
e

= 0. We
can therefore iterate the argument using all the edges of Γ and, since x 6= 0, in the end we find
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that necessarily

x = a→
e
u→
e

+ a←
e
u←
e

for some e ∈ E(Γ) . (5.5)

By virtue of Lemma 5.3, we may assume that Γ does not have separating edges, so in particular e
is not a separating edge of Γ. Using this, it is easy to see that there exists a cycle γ ∈ H1(Γ,Z)

that contains
→
e but not

←
e . Therefore, from (5.4) and (5.5), we get

〈γ, x〉 = a→
e
∈ [0, 1] .

However, since x ∈ NΓ and γ ∈ MΓ, we get 〈γ, x〉 ∈ Z; hence a→
e

= 〈γ, x〉 is equal either to 1 or
to 0, which implies that x is equal either to u→

e
or to u←

e
. Claim 5.6 is now proved.

We can now give a complete classification of the graphs Γ for which XΓ is smooth or has
finite quotient singularities.

Proposition 5.7. Let Γ be a connected graph. The following conditions are equivalent:

(i) XΓ = Ab1(Γ)+|E(Γ)|
k .

(ii) The variety XΓ is smooth.

(iii) The variety XΓ has finite quotient singularities.

(iv) The graph Γ is tree-like; that is, Γ becomes a tree after removing all the loops.

Proof. The implication (iv) ⇒ (i) follows from Lemma 5.3.

The implications (i) ⇒ (ii) ⇒ (iii) are obvious.

(iii)⇔ (iv): First of all, from Lemma 5.3 we get that it is enough to prove the statement under
the hypothesis that Γ has no separating edges. Note that, under this assumption, condition (iv)
now simply becomes that Γ has a unique vertex. According to [CLS11, Theorem 11.4.8], the
variety XΓ has finite quotient singularities if and only if σ∨Γ is simplicial, that is, its number of
extremal rays is equal to its dimension. By Lemma 5.1(ii), the dimension of σ∨Γ is equal to

dimσ∨Γ = dimH1(Γ,Z) = b1(Γ) + |E(Γ)| = 2|E(Γ)| − |V (Γ)|+ 1 ,

and its number of extremal rays is equal to 2|E(Γ)| by Lemma 5.1(iii). Therefore, σ∨Γ is simplicial
if and only if Γ has a unique vertex, and we are done.

Denote by 0 the unique torus fixed point of the affine toric variety XΓ, and let m the maximal
ideal of U(Γ) corresponding to it. Explicitly, under the isomorphism U(Γ) ∼= D(Γ) of Theorem 4.6,
the ideal m is generated by the variables Xz and Te. The dimension of the tangent space of XΓ

at 0 or, equivalently, the embedded dimension of U(Γ) at m, is easy to determine in terms of the
(unoriented) circuits Cir(Γ) of Γ and the loops Loops(Γ) of Γ.

Proposition 5.8. The Zariski tangent space T0(XΓ) at 0 has dimension equal to

dimT0(XΓ) = 2|Cir(Γ)|+ |E(Γ)| − |Loops(Γ)| .

Proof. By [CKV13, Theorem 4.15(i), Proposition 5.2], the embedded dimension of R(Γd, φd) at
m is equal to the cardinality of the set Cirφd(Γd) of oriented circuits compatibly oriented with φd.
Therefore, we conclude by applying Proposition 3.3 and the lemma below.

Lemma 5.9. The set Cirφd(Γd) of oriented circuits compatibly oriented with φd is equal to

|Cirφd(Γd)| = 2|Cir(Γ)|+ |E(Γ)| − |Loops(Γ)| .
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Proof. For every e ∈ E(Γ) \ Loops(Γ), we set ηe := φd(e′) + φd(e′′) ∈ Cirφd(Γd), where e′ and e′′

are the two edges of Γd corresponding to e ∈ Γ. By taking the image of a circuit of Γd under the
natural contraction map Γd → Γ, we get a well-defined map

Cirφd(Γd) \ {ηe : e ∈ E(Γ) \ Loops(Γ)} → Cir(Γ) .

Since any circuit of Γ can be lifted in exactly two ways to an oriented circuit of Γd compatibly
oriented with φd, the above map is surjective and 2:1. This concludes the proof.

Remark 5.10. In terms of Theorem 4.6, Proposition 5.8 reflects the fact that D(Γ) is generated
by 2|Cir(Γ)| variables X and |E(Γ)| variables T and has |Loops(Γ)| relations involving linear
terms.

We now consider the multiplicity of XΓ at 0. To that aim, we need to recall some definitions.
Let HZ be a lattice, and let σ be a strongly convex rational polyhedral cone in HR = HZ⊗R. Set
C(σ) := σ ∩HZ, let HR,σ = 〈σ〉 ⊆ HR be the linear span of σ in HR, and set HZ,σ := 〈σ〉 ∩HZ.
Note that HR,σ = HZ,σ ⊗ R. We denote by volC(σ) the unique translation-invariant measure
on HR,σ such that the volume of a standard unimodular simplex ∆ is 1 (that is, ∆ is the convex
hull of a basis of HZ,σ together with 0). Following [GKZ94, Chapter 5, Section E, p. 184], denote
by K+(C(σ)) ⊆ HR,σ the convex hull of the set C(σ) \ {0} and by K−(C(σ)) the closure of
σ \K+(C(σ)). The set K−(C(σ)) is a bounded (possibly not convex) lattice polyhedron in HR,σ
which is called the subdiagram part of C(σ).

Definition 5.11 ([GKZ94, Chapter 5, Definition 3.8]). The subdiagram volume of C(σ) is the
natural number

u(C(σ)) := volC(σ)(K−(C(σ))) .

Now, let R(σ) = R(C(σ)) be the semigroup ring associated with C(σ). Let m be the maximal
ideal generated by the generators of the k-algebra R(σ). Let 0 be the corresponding point in
Xσ := SpecR(σ). The multiplicity of Xσ at 0 is given by (see, for example, [GKZ94, Chapter 5,
Theorem 3.14])

mult0Xσ = u(C(σ)) .

Theorem 5.12. Let Γ be a graph, and let σ = σΓ. Then mult0XΓ = u(C(σ)).

Remark 5.13. It would be interesting to have a formula for mult0XΓ in terms of standard
invariants of the graph Γ (or Γd).

6. The cographic toric ring U(Γ) as a ring of invariants

In this section, we show that the cographic toric ring U(Γ) appears as ring of invariants of a torus
acting on a certain polynomial ring. Indeed, this invariant ring will appear in Section 8 in the
description of the completed local rings of the compactified universal Jacobian.

Consider the action of the algebraic torus TΓ :=
∏
v∈V (Γ) Gm on the polynomial ring

B(Γ) := k
[
X→
e

:
→
e ∈

→
E
]

given by the rule that λ = (λv)v∈V (Γ) ∈ TΓ acts as

λ ·X→
e

= λ
s(
→
e )
λ−1

t(
→
e )
X→
e
. (6.1)
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In order to more easily connect the results of this paper to those in [CKV15], we note the
following.

Remark 6.1. The ring B(Γ) is isomorphic to

k[Xe, Ye, Te : e ∈ E(Γ)]

(XeYe − Te)

and its completion at the maximal ideal (Xe, Ye) is isomorphic to the ring denoted by B̂(Γ) in
[CKV15, Theorem A]. Under this isomorphism, the action of TΓ on B(Γ) given above induces

the same action of TΓ on B̂(Γ) as that given in [CKV15, Theorem A].

Theorem 6.2. The cographic toric ring U(Γ) is isomorphic to the subring B(Γ)TΓ ⊂ B(Γ) of
TΓ-invariants on B(Γ).

Proof. Using Theorem 4.6, we are going to show that B(Γ)TΓ is isomorphic to the k-algebra D(Γ).
The proof is essentially identical to the proof of [CKV13, Theorem 6.1]; we first show that the
underlying k-vector spaces agree, and then we show that the multiplication rules agree. In keeping
with the notation of the proof of [CKV13, Theorem 6.1], we first observe (as in Remark 6.1) that
B(Γ) can be identified with

k[X←
e
, X→

e
, Te : e ∈ E(Γ)]

(X←
e
X→
e
− Te)

.

The key point is then to identify the invariant monomials in this ring. This is made easier by the
observation that every monomial has an expression of the form∏

e∈E(Γ)

Xae
→
e
T bee

with ae, be ∈ Z>0, where for each e ∈ E(Γ) we have that
→
e is one of the two orientations of e.

The expression is unique up to replacing
→
e with

←
e for those e such that ae = 0. The same

direct analysis of the action as in the proof of [CKV13, Theorem 6.1] shows that in order for

this monomial to be invariant, we must have
∑

e∈E(Γ) ae
→
e ∈ H1(Γ,Z). Thus, as k-vector spaces,

D(Γ) and B(Γ)TΓ agree. It remains to check that multiplication agrees. This can be checked at
the level of monomials, and ψ in the definition of D(Γ) (see Remark 4.1) was constructed exactly
to make these agree.

The cographic toric ring U(Γ) is related to the cographic toric face ring R(Γ) studied
in [CKV13], as explained in the following remark (see also Remark 4.7).

Remark 6.3. The action of TΓ on B(Γ) defines an action on the quotient

A(Γ) :=
B(Γ)

(X→
e
X←
e

: e ∈ E(Γ))
∼=
k[Xe, Ye : e ∈ E(Γ)]

(XeYe)
,

which coincides with the action of TΓ defined in [CKV13, Theorem A]. Therefore, the natural
surjection B(Γ)� A(Γ) induces, by taking TΓ-invariants, a map

U(Γ)→ R(Γ) , (6.2)

where R(Γ) := A(Γ)TΓ is the cographic toric face ring of Γ (see [CKV13, Theorem 6.1]). Indeed,
the morphism (6.2) coincides with the morphism (4.4), and, in particular, it is surjective.
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7. Examples

We now include a few examples of cographic toric rings.

7.1 The n-cycle Cn

Let Cn be the n-cycle graph, that is, the graph formed by n vertices connected by a closed chain
of n edges, as depicted in Figure 3.

•
@@

→
e n

//

→
e 1 •

��

→
e 2

•
OO→

e n−1

•
�� →e 3•

\\
→
e n−2

•
��
→
e 4· · ·

Figure 3. The n-cycle Cn with half of its oriented edges

The cographic toric ring of Cn admits the following explicit presentation:

U(Cn) =
k[X,Y, T1, . . . , Tn]

(XY − T1 · · ·Tn)
.

To see this, consider the explicit presentation of the cographic toric ring given in Section 4.
Note that there are two oriented circuits of Cn giving rise to the elements c := [

→
e 1] + · · ·+ [

→
e n]

and −c of H1(Γ,Z). Then, by Proposition 5.8, the generators of the ring U(Cn) are X = Xc,
Y = X−c, and Ti = Tei for 1 6 i 6 n. Since the function ψ of (4.1) on H1(Cn,Z) is such that
ψ(c,−c) = e1 + · · ·+ en, we get the relation XY − T1 · · ·Tn = 0.

It is easily checked that the cographic toric variety XCn = SpecU(Cn) satisfies

dimXCn = n+ 1 ,

dimT0(XCn) = n+ 2 ,

mult0XCn = 2 ,

which is, of course, in agreement with the formulas obtained in Section 5.

7.2 The n-thick edge In

Let In be the nth thick edge graph, that is, the graph formed by two vertices joined by n edges,
as depicted in Figure 4.

•

//

→
e n−1

//
→
e n

//
→
e 2

//

→
e 1

v1 v2... •

Figure 4. The n-thick edge In with half of its oriented edges
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The cographic toric ring of In admits the following explicit presentation:

U(In) =
k[Xij , Tk]16i 6=j6n,16k6n

(XijXji − TiTj , XijXjk − TjXik)
.

To see this, consider the explicit presentation of the cographic toric ring given in Section 4. Note
that the oriented circuits of In gives rise to the elements γij := [

→
e i] − [

→
e j ] ∈ H1(In,Z) for any

1 6 i < j 6 n. Then, using Proposition 5.8, we deduce that the generators of the ring U(In) are
Xij = Xγij for 1 6 i 6= j 6 n and Tk = Tek for 1 6 k 6 n. Since the only non-zero values of the
function ψ of (4.1) on the oriented circuits γij of H1(In,Z) are given by

ψ(γij , γji) = ei + ej ,

ψ(γij , γjk) = ej ,

we get the desired relations among the given generators.

It is easily checked that the cographic toric variety XIn = SpecU(In) satisfies

dimXIn = 2n− 1 ,

dimT0(XIn) = n2 ,

mult0XIn =

(
2(n− 1)

n− 1

)
,

which is, of course, in agreement with the formulas obtained in Section 5.

8. The compactified universal Jacobian

The aim of this section is to apply the results of the previous sections in order to study the
singularities of the compactified universal Jacobian J̄d,g and eventually prove in Theorem 8.4 that
J̄d,g has canonical singularities over a base field k of characteristic zero, at least if g > 4. We then
deduce some consequences for the birational geometry of the universal Jacobians Jd,g. The outline
of this section is as follows. In Section 8.1, we relate the local rings of the compactified universal
Jacobian to the rings appearing earlier in this paper. The culmination is Theorem 8.1, which
essentially reduces the problem to studying finite quotients of the cographic rings U(Γ). In order
to describe this quotient, it is convenient to compare with an associated quotient obtained from
the local structure of Mg; this comparison is made in Section 8.2, culminating in Theorem 8.2.
In Section 8.4, we give the proof of Theorem 8.4. The argument relies on a generalization of
the Reid–Tai–Shepherd-Barron criterion to singular toric varieties, which can be found in the
appendix. Consequences for the birational geometry of J̄d,g are given in Section 8.5.

8.1 The local rings of J̄d,g

In this subsection, which is heavily based on our previous work [CKV15], we obtain an explicit
description of the completed local rings of J̄d,g in terms of the cographic toric rings studied in
the previous sections.

Fix a point (C, I) ∈ J̄d,g; that is, C is a stable curve of genus g, and I is a rank one, torsion-
free sheaf of degree d on C, which is polystable with respect to the canonical polarization ωC .
Let Σ(C,I) (or simply Σ when the pair (C, I) we are dealing with is clear from the context) be
the set of nodes of C where I is not locally free. Let Γ(C,I) (or simply Γ when the pair (C, I) we
are dealing with is clear from the context) be the graph obtained from the dual graph of C by
contracting the edges corresponding to the nodes that are not in Σ(C,I). In particular, the edges
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of Γ(C,I) correspond naturally to the nodes in Σ(C,I). Note that Γ(C,I) is the dual graph of the
curve obtained from C by smoothing the nodes at which I is locally free. For convenience, we fix
an arbitrary orientation of Γ(C,I), and we denote by s, t : E(Γ(C,I)) → V (Γ(C,I)) the source and
target maps associating with any edge of Γ(C,I) the source and target with respect to the chosen
orientation.

We now review the deformation theory of the pair (C, I), referring to [CKV15] for more
details and proofs. As explained in [CKV15, § 3], the deformation functor Def(C,I) of the pair
(C, I) fits into the sequence

Def l.t.
(C,I) −→ Def(C,I)

F−→
∏
e∈Σ

Def(Ce,Ie) = Def loc
(C,I) , (8.1)

where Def(Ce,Ie) is the deformation functor of the pair consisting of Ce := Spec ÔC,e and the
pull-back Ie of I to Ce, the map F is the forgetful map taking deformations of (C, I) to local
deformations at the set of nodes e ∈ Σ where I fails to be locally free, and Def l.t.

(C,I) is the
subfunctor of Def(C,I) parametrizing locally trivial deformations, that is, deformations of (C, I)
that map to the trivial deformation via the forgetful map F . The above three deformation
functors are unobstructed and the forgetful map F is formally smooth (see [CKV15, § 3]). In
particular, we get an exact sequence of tangent spaces

0→ T Def l.t.
(C,I) → T Def(C,I) → T Def loc

(C,I) → 0 . (8.2)

Define the k-algebra

R(C,I) := k
[
T∨Def(C,I)

]
=
⊕
n∈N

Symn T∨Def(C,I) , (8.3)

where T∨Def(C,I) is the dual of the tangent space T Def(C,I). Fixing a splitting of the exact
sequence (8.2) and using the explicit description of a mini-versal deformation ring for Def(Xe,Ie)

obtained in [CKV15, Lemma 3.14], we can write R(C,I) in the following form:

R(C,I) = k
[
T∨Def loc

(C,I)

]
⊗k k

[
T∨Def l.t.

(C,I)

]
=
⊗
e∈Σ

k[Xe, Ye, Te]

(XeYe − Te)
⊗k k

[
T∨Def l.t.

(C,I)

]
= B(Γ)⊗k k

[
T∨Def l.t.

(C,I)

]
,

(8.4)

where B(Γ) is the ring defined in Remark 6.1. As proved in [CKV15, § 3.2], the mini-versal
deformation ring of the functor Def(C,I) is given by the completion R̂(C,I) of R(C,I) at the maximal
ideal m0 generated by T∨Def(C,I). Geometrically, the variables Xe and Ye correspond to the
deformations of I at the node e ∈ E(Γ) = Σ, and the variable Te corresponds to the smoothing
of C at e. Note also that the completion B̂(Γ) of B(Γ) at the maximal ideal generated by
T∨Def loc

(C,I) was shown to be mini-versal for Def loc
(C,I); for this reason, we will sometimes also

write

Rloc
(C,I) := B(Γ) =

⊗
e∈Σ

k[Xe, Ye, Te]

(XeYe − Te)
.

Now, consider the automorphism group Aut(C, I) of (C, I), consisting of all pairs (σ, τ) such

that σ : C
∼=−→ C is an automorphism of C and τ : I

∼=−→ σ∗(I) is an isomorphism of sheaves
on C. We have a natural exact sequence of groups

{1} −→ Aut(I)
i−→ Aut(C, I)

p−→ StabC(I) −→ {1} , (8.5)

where StabC(I) ⊆ Aut(C) is the subgroup of Aut(C) (which is finite since C is stable) consisting
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of all the elements σ ∈ Aut(C) such that σ∗(I) ∼= I. The group Aut(I) is an algebraic torus,
which by [CKV15, Remark 5.9] is naturally isomorphic to

Aut(I) = TΓ :=
∏

v∈V (Γ)

Gm . (8.6)

The automorphism group Aut(C, I) acts naturally on Def(C,I) (see [CKV15, Definition 3.4]);
hence it acts also on the tangent space T Def(C,I), and this action clearly preserves the exact
sequence (8.2). Therefore, we get a natural linear action of Aut(C, I) on R(C,I) which preserves
the decomposition of R(C,I) given in (8.4). It follows from [CKV15, § 5] that the induced action

of the subgroup Aut(I) is trivial on k[T∨Def l.t.
(C,I)] and coincides with the action of TΓ on B(Γ)

given by (6.1) after the identification of Remark 6.1. Explicitly, an element λ = (λv)v∈V (Γ) ∈ TΓ

acts on the generators of B(Γ) as

λ ·Xe = λs(e)λ
−1
t(e)Xe , λ · Ye = λ−1

s(e)λt(e)Ye , and λ · Te = Te . (8.7)

The subring R
Aut(C,I)
(C,I) ⊆ R(C,I) of invariants for the action of Aut(C, I) on R(C,I) can be

computed in two steps. We first take the subring R
Aut(I)
(C,I) ⊂ R(C,I) of invariants for the subgroup

Aut(I). Then, we take the invariants for the induced action of the finite group StabC(I) on

R
Aut(I)
(C,I) . By Theorem 6.2, the ring of invariants with respect to Aut(I) is equal to

R
Aut(I)
(C,I) = U(Γ)⊗k k

[
T∨Def l.t.

(C,I)

]
, (8.8)

where U(Γ) is the cographic toric ring associated with Γ. Therefore, the subring of invariants
with respect to Aut(C, I) is given by

R
Aut(C,I)
(C,I) =

(
R

Aut(I)
(C,I)

)StabC(I)
=
(
U(Γ)⊗k k

[
T∨Def l.t.

(C,I)

])StabC(I)
. (8.9)

Next, we show that the completion of the invariant subring (8.9) at the maximal ideal m0 ∩
R

Aut(C,I)
(C,I) gives a description of the completed local ring ÔJ̄d,g ,(C,I) of the universal compactified

Jacobian J̄d,g at (C, I).

Theorem 8.1. We use the same notation as above. Assume that StabC(I) does not contain

elements of order equal to p = char(k). The completion of the invariant subring R
Aut(C,I)
(C,I) at

the maximal ideal m0 ∩ RAut(C,I)
(C,I) is isomorphic to the completed local ring ÔJ̄d,g ,(C,I) of the

compactified universal Jacobian J̄d,g at (C, I).

Proof. The linear action of Aut(C, I) on R(C,I) described above induces a unique action on the

completion R̂(C,I) of R(C,I) at the maximal ideal m0. Since Aut(C, I) is a linearly reductive
group (by our assumption on StabC(I)), the formation of Aut(C, I)-invariants commutes with
completion (see, for example, [CKV15, Lemma 6.7]); in symbols,(

R
Aut(C,I)
C,I

)̂ ∼= (R̂(C,I)

)Aut(C,I)
, (8.10)

where on the right-hand side, the completion is taken with respect to the maximal ideal m0

of R̂(C,I) generated by T∨Def(C,I) and on the left the completion is taken with respect to the

maximal ideal m0 ∩RAut(C,I)
(C,I) .

As observed before, the ring R̂(C,I) is the mini-versal deformation ring of the functor Def(C,I),
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which means that there is a formally smooth natural transformation of functors

Φ: Spf R̂(C,I) → Def(C,I) , (8.11)

whose associated map on tangent spaces

TΦ: T Spf R̂(C,I) → T Def(C,I) (8.12)

is an isomorphism. Explicitly, the isomorphism TΦ is obtained by first identifying the tangent
space of Spf R̂(C,I) with the tangent space Tm0R(C,I) = (m0/m

2
0)∨ of the ring R(C,I) at m0 and

then identifying Tm0R(C,I) with T Def(C,I) using the definition (8.3) of R(C,I).

Now, observe that our specified linear action of Aut(C, I) on R(C,I) is defined in such a
way that the isomorphism TΦ becomes Aut(C, I)-equivariant. By Rim’s arguments [Rim80], the
Aut(C, I)-equivariance of TΦ implies that Φ is also Aut(C, I)-equivariant; hence the specified
action of Aut(C, I) on R̂(C,I) is the unique action that makes Φ equivariant, according to Rim’s
theorem (see [CKV15, Fact 5.4]). Therefore, we can apply [CKV15, Theorem 6.1(ii)] in order to
conclude that

ÔJ̄d,g ,(C,I) ∼= R̂
Aut(C,I)
(C,I) . (8.13)

The proof of the theorem follows by combining (8.10) and (8.13).

8.2 The local structure of the morphism π : J̄d,g → Mg

The aim of this subsection is to study the local structure of the morphism π : J̄d,g →Mg around
a point (C, I) ∈ J̄d,g, where we assume as usual that I is polystable with respect to ωC .

First of all, there is a natural forgetful morphism Π: Def(C,I) → DefC , from the deformation
functor of the pair (C, I) to the deformation functor of C, which is equivariant with respect to
the group homomorphism Aut(C, I)→ Aut(C) and the natural actions of Aut(C, I) on Def(C,I)

and of Aut(C) on DefC (see [CKV15, Definition 3.4]). The forgetful morphism Π fits into the
diagram

Def l.t.
(C,I)

//

��

Def(C,I)
//

Π

��

∏
e∈Σ

Def(Ce,Ie) = Def loc
(C,I)

��

DefΣ,l.t.
C

// DefC //
∏
e∈Σ

DefCe = DefΣ,loc
C ,

(8.14)

where DefΣ,loc
C is the local deformation functor of C at the nodes Σ = Σ(C,I) of C where I is

not invertible and DefΣ,l.t.
C is the subfunctor of DefC parametrizing deformations of C that are

locally trivial around the nodes of Σ. Passing to the tangent spaces, we get the following diagram
with exact rows:

0 // T Def l.t.
(C,I)

//

TΠl.t.

��

T Def(C,I)
//

TΠ

��

T Def loc
(C,I)

//

TΠloc

��

0

0 // T DefΣ,l.t.
C

// T DefC // T DefΣ,loc
C

// 0 .

(8.15)

Observe that the map TΠl.t. is surjective and its kernel can be naturally identified with the
tangent space T DefL of the deformation functor DefL, where L is the line bundle on the partial
normalization g : CΣ → C at the nodes of Σ = Σ(C,L) such that g∗(L) = I (see [CKV15,
Lemma 3.16]).
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Fixing a splitting of the second row of (8.15), we define the k-algebra

RC := k
[
T∨DefC

]
= k

[
T∨DefΣ,loc

C

]
⊗k k

[
T∨DefΣ,l.t.

C

]
=
⊗
e∈Σ

k[Te]⊗k k
[
T∨DefΣ,l.t.

C

]
, (8.16)

where the variable Te corresponds to the smoothing of C at e. Observe that the finite group
Aut(C) acts linearly on RC , via its natural action on T DefC . The diagram (8.15), after choosing
compatible splittings of the horizontal rows and of the left vertical column, gives rise to an
injective morphism of k-algebras

RC =
⊗
e∈Σ

k[Te]⊗k k[T∨DefΣ,l.t.
C ] ↪→ R(C,I) =

⊗
e∈Σ

k[Xe, Ye, Te]

(XeYe − Te)
⊗k k[T∨Def l.t.

(C,I)] =

=
⊗
e∈Σ

k[Xe, Ye, Te]

(XeYe − Te)
⊗k k[T∨DefΣ,l.t.

C ]⊗k k[T∨DefL].

(8.17)
Now, consider the action of Aut(I) on R(C,I) as in Section 8.1. From (8.7), it follows that each Te
is invariant under the action of Aut(I), so that the inclusion (8.17) factors through

RC =
⊗
e∈Σ

k[Te]⊗k k[T∨DefΣ,l.t.
C ] ↪→ R

Aut(I)
(C,I) = U(Γ)⊗k k[T∨DefΣ,l.t.

C ]⊗k k[T∨DefL]. (8.18)

Note that the finite subgroup StabC(I) acts in a compatible way on both rings in (8.18), while
the bigger finite group Aut(C) acts only on the ring on the left.

Theorem 8.2. We use the same notation as above. Assume that Aut(C) does not contain
elements of order equal to p = char(k). The inclusion of complete local rings

ÔM̄g ,C ↪→ ÔJ̄d,g ,(C,I)

induced by the surjective morphism π : J̄d,g →Mg coincides with the completion of the inclusion

R
Aut(C)
C ↪→ R

Aut(C,I)
(C,I) =

(
R

Aut(I)
(C,I)

)StabC(I)
(8.19)

induced by (8.18) at the maximal ideals m0 ∩RAut(C)
C and m0 ∩RAut(C,I)

(C,I) , respectively.

Proof. The assumption on the order of the elements of Aut(C) implies that Aut(C) and Aut(C, I)
are linearly reductive groups. Since the formation of invariants under the action of a linear reduc-
tive group commutes with completion (see, for example, [CKV15, Lemma 6.7]), the completion
of the inclusion (8.19) is equal to the inclusion

R̂
Aut(C)
C ↪→ R̂

Aut(C,I)
(C,I) , (8.20)

where the completions, done with respect to the maximal ideals m0 ∩ RC and m0, respectively,
are acted upon naturally by Aut(C) and Aut(C, I), respectively.

From the discussion in [CKV15, § 3], it follows that the inclusion R̂C ↪→ R̂(C,I) induces, by
passing to the formal spectrum, a diagram

Spf R̂(C,I)
Φ //

��

Def(C,I)

Π

��
Spf R̂C

Φ // DefC ,

(8.21)
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where Φ realizes R̂(C,I) as the mini-versal deformation ring of the functor Def(C,I) (as discussed

in the proof of Theorem 8.1) and Φ realizes R̂C as the universal deformation ring of DefC .
Moreover, Φ is Aut(C, I)-equivariant (as discussed in the proof of Theorem 8.1), Φ is clearly
Aut(C)-equivariant (being an isomorphism of functors), and the two vertical maps in (8.21) are
equivariant with respect to the group homomorphism Aut(C, I)→ Aut(C).

Therefore, as an application of Luna’s slice theorem (see [CKV15, § 6]), we get a commutative
diagram

R̂
Aut(C,I)
(C,I) ÔJ̄d,g ,(C,I)

∼=oo

R̂
Aut(C)
C

?�

OO

ÔM̄g ,C ,
?�

OO

∼=oo

(8.22)

which concludes the proof.

Now, consider the graph Γ = Γ(C,I) obtained from the dual graph of C by contracting the
edges corresponding to nodes of C where I is locally free, as in Section 8.1. It follows from the

above discussion that the inclusions RC ↪→ R
Aut(I)
(C,I) ↪→ R(C,I) are given, up to smooth factors, by

the following inclusions of k-algebras (with the notation of Section 6):

k[Te : e ∈ E(Γ)] ↪→ U(Γ) = B(Γ)TΓ ↪→ B(Γ) = k
[
X→
e

:
→
e ∈

→
E(Γ)

]
,

Te 7→ X→
e
·X←

e
,

(8.23)

where we have used that X→
e
· X←

e
∈ B(Γ) is invariant under the action of TΓ given in (6.1).

Therefore, we get the surjective morphism of varieties

SpecB(Γ) = Spec k
[
X→
e

:
→
e ∈

→
E(Γ)

] f
� XΓ = SpecU(Γ)

g
� Spec k[Te : e ∈ E(Γ)] . (8.24)

These morphisms are toric morphisms of affine toric varieties, which can be described using toric
geometry as follows. With the notation of Section 4, consider the injective linear maps

R〈e〉e∈E(Γ) → H1(Γ,R) = kerD→ C1(Γ,R) ,∑
e∈E(Γ)

ae · e 7→
∑

e∈E(Γ)

ae
(→
e +

←
e
)
,

which clearly preserve the integral lattices. By taking duals, we get the surjective lattice-preser-
ving linear maps

C1(Γ,R)∨
l
� H1(Γ,R)∨

h
� R〈e∨〉e∈E(Γ) . (8.25)

The three vectors spaces in (8.25) are endowed with standard scalar products that will be denoted
with the same symbol ( , ) (see Sections 2.2 and 4). Inside the vector space H1(Γ,R)∨, we have
the cone σ := σ∨Γ introduced in Section 4. The rational polyhedral fan formed by σ and all its
faces corresponds to the toric variety XΓ. Using Lemma 5.1(i), it follows that σ is equal to

σ = conv〈(·,→e )〉→
e∈
→
E(Γ)

,

where conv denotes the convex hull. Set

σ̂ := conv〈(·,→e )〉→
e∈
→
E(Γ)

⊂ C1(Γ,R)∨ ,

σ̃ := conv〈(·, e)〉e∈E(Γ) = R>0〈e∨〉e∈E(Γ) ⊂ R〈e∨〉e∈E(Γ) .
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Clearly, the cones σ̂ and σ̃ gives rise to the toric varieties Spec k[X→
e

:
→
e ∈

→
E(Γ)] and Spec k[Te :

e ∈ E(Γ)], respectively. Moreover, the lattice-preserving linear maps (8.25) are such that l(σ̂) = σ

and h(σ) = σ̃; hence, they induce morphisms Spec k[X→
e

:
→
e ∈

→
E(Γ)] � XΓ � Spec k[Te : e ∈

E(Γ)] which are easily seen to coincide with the morphisms f and g of (8.24).

8.3 Singularities of Mg

We recall the following result of Harris–Mumford and Ludwig.

Theorem 8.3 ([HM82, Theorem 2], [Lud07, Proposition 4.2.5, Corollary 4.2.6]). Let g > 4,
C ∈ Mg, and φ ∈ Aut(C). Set RC to be a mini-versal space for C. If φ acts as a pseudo-
reflection on SpecRC or SpecRC/〈φ〉 does not have canonical singularities, then the following
hold:

(i) The curve C has an elliptic tail E ⊂ C, that is, an irreducible subcurve of arithmetic genus
one that meets the complementary subcurve Ec := C \ E in one point p, and φ is an elliptic tail
automorphism, that is, φ|Ec = idEc .

(ii) The restriction φ|E is an automorphism of E, fixing p, with order n = 2, 3, 4, or 6. If n = 4,
then E is smooth with j-invariant equal to 1728, and if n = 3 or 6, then E is smooth with
j-invariant equal to 0.

(iii) If E is a singular elliptic curve, then φ|E has order n = 2 and is given as follows: Denote by
ν : Eν → E the normalization of E and identify Eν with P1 in such a way that ν−1 =∞ = (1, 0)
and ν−1(q) = {(1, 1), (−1, 1)}. Then φ|E is induced by the involution of P1 sending (x, y) into
(−x, y).

Moreover, let g > 4, let C ∈ Mg be a curve with an elliptic tail E, and let φ ∈ Aut(C) be
an elliptic tail automorphism (with respect to E). Let {t1, . . . , t3g−3} be coordinates of T DefC
such that t1 corresponds to the smoothing of C at the node p and t2 corresponds, if E is smooth,
to a coordinate for T(E,p)(M1,1) (corresponding to the j-invariant of E) and if E is singular, to
the smoothing of C at q. Then the action of φ on T DefC on these coordinates is given by the
following matrix (depending on the choice of the primitive nth root of unity ζ):

M(φ) =



ζ
1

ζ0

I

 if n = 2 ,

ζ
1

ζ2

I

 or

ζ
3

ζ2

I

 if n = 4 ,

ζ
1

ζ2

I

 or

ζ
2

ζ1

I

 if n = 3 ,

ζ
5

ζ4

I

 or

ζ
1

ζ2

I

 if n = 6 ,

(8.26)

where I is the suitable identity matrix.
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8.4 Singularities of J̄d,g

The aim of this subsection is to prove that J̄d,g has canonical singularities if g > 4 and char(k) = 0.

Theorem 8.4. Assume char(k) = 0 and g > 4. Then the compactified universal Jacobian J̄d,g
has canonical singularities for any d ∈ Z.

Proof. Since the property of having canonical singularities is invariant under localization and
completion (see, for example, [Mat02, Proposition 4-4-4]), it is enough to show, by Theorem 8.1,
that the affine variety

Spec
[(
R(C,I)

)Aut(C,I)
]

= Spec
[(
R

Aut(I)
(C,I)

)StabC(I)
]

= Spec
(
R

Aut(I)
(C,I)

)
/StabC(I) (8.27)

has canonical singularities for every (C, I) ∈ J̄d,g.
Roughly speaking, the outline of the argument from this point on is as follows. We take the

point (C, I) ∈ J̄d,g and consider its image C ∈Mg. Then we break the argument into two parts:
(1) Mg has canonical singularities near C and (2) Mg does not have canonical singularities
near C. In case (1), we use a generalization of the Reid–Tai criterion that can be applied to
singular toric varieties (we review this generalization of Reid–Tai in the appendix), and we

obtain that Spec
(
R

Aut(I)
(C,I)

)
/StabC(I) (and hence J̄d,g) has canonical singularities at (C, I). In

case (2), there is a short list due to Harris–Mumford of possible curves where Mg may fail to

have canonical singularities (see Section 8.3). In these cases, it will turn out that Spec
(
R

Aut(I)
(C,I)

)
is

smooth. Thus, we can apply the usual Reid–Tai criterion. From the work of Harris–Mumford and
Ludwig (see Section 8.3), one has an explicit description of the actions needed for the analysis.
In the end, for case (2) the argument is very similar to that in [BFV12] and establishes that

Spec
(
R

Aut(I)
(C,I)

)
/StabC(I) (and hence J̄d,g) also has canonical singularities at (C, I) in this case.

Technically, since we are able to focus on one automorphism of (C, I) at a time, the argument is
broken into somewhat finer pieces than just described, but this captures the main points.

We now proceed to implement this strategy.

To begin, a standard result (see Theorem A.11) says that Spec
(
R

Aut(I)
(C,I)

)
/StabC(I) has canon-

ical singularities if and only if for every φ ∈ StabC(I) ⊆ Aut(C), the quotient

Spec
(
R

Aut(I)
(C,I)

)
/〈φ〉

has canonical singularities. Thus we proceed by considering the quotients Spec
(
R

Aut(I)
(C,I)

)
/〈φ〉.

Case 1. The automorphism φ ∈ StabC(I) does not act as a pseudo-reflection on SpecRC and
SpecRC/〈φ〉 has canonical singularities.

We will show that Spec
(
R

Aut(I)
(C,I)

)
/〈φ〉 has canonical singularities. We will apply Lemma A.7,

which is essentially a variation on the Reid–Tai criterion tailored to this setting, to the following
morphism Ψ induced by (8.18):

Spec
(
R

Aut(I)
(C,I)

) Ψ // SpecRC × Spec k[T∨DefL]

Spec
(
U(Γ)⊗ k[T∨DefΣ,l.t.

C ]⊗ k[T∨DefL]
)

// Spec
(
k[Te : e ∈ Σ]⊗ k[T∨DefΣ,l.t.

C ]⊗ k[T∨DefL]
)

and the natural action of Zr = 〈φ〉. The added factor of Spec k[T∨DefL] on the right makes the
computation more tractable. Let us check the hypotheses of Lemma A.7.
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First of all, Ψ is a toric morphism of affine toric varieties that acts as the identity on the
last two factors Spec k[T∨DefΣ,l.t.

C ] and Spec k[T∨DefL] and coincides with the map g : XΓ =
SpecU(Γ) → Spec k[Te : e ∈ E(Γ)] of (8.24) on the first factor. As explained in Section 8.2, the
morphism g is induced by the lattice-preserving linear map h : H1(Γ,R)∨ → R〈e∨〉e∈E(Γ) of (8.25)
which sends the cone σ = σ∨Γ associated with the toric variety XΓ to the cone σ̃ corresponding to
the toric variety Spec k[Te : e ∈ E(Γ)]. By Lemma 5.1(iii), the extremal rays of σ∨Γ are given by

〈(·,→e )〉 := R>0 ·
→
e
∨

, as
→
e varies among the oriented edges

→
E(Γ) of Γ. As explained in Section 8.2,

the linear map h sends the extremal ray 〈(·,→e )〉 of the cone σ = σ∨Γ into the extremal ray

〈(·, e)〉 of σ̃, where e ∈ E(Γ) is the (unoriented) edge underlying
→
e ∈

→
E(Γ). Furthermore, by

Definition (8.25), it follows that h sends the primitive element (·,→e ) of the extremal ray 〈(·,→e )〉
(see Lemma 5.1(iv)) onto the primitive element (·, e) of the extremal ray 〈(·, e)〉. This shows that
hypotheses (i) and (ii) of Lemma A.7 are satisfied.

Now, consider the action of Zr = 〈φ〉 ⊂ StabC(I) on the domain and codomain of Ψ. The
action preserves the decompositions of the domain and codomain, and the toric structure on
the smooth factor Spec

(
k[T∨DefΣ,l.t.

C ] ⊗ k[T∨DefL]
)

is chosen via an eigenbasis for the action
of φ. By considering the modular interpretation of the other factors, we see that the two actions
preserve the tori inside the domain and codomain, and, moreover, as observed in Section 8.2,
the morphism Ψ is Zr-equivariant. In addition, the toric variety SpecRC × Spec k[T∨DefL] is
smooth and Zr acts on it without pseudo-reflections since, by assumption, φ already does not act
as a pseudo-reflection on SpecRC . This shows that the hypotheses (a) and (b) of Lemma A.7
are satisfied.

Finally, the quotient SpecRC/〈φ〉 has canonical singularities by assumption. Using the Reid–
Tai criterion (A.2) and the fact that φ does not act as a pseudo-reflection on SpecRC , this is
equivalent to the fact that the age of φ on SpecRC with respect to any primitive rth root of unity
is greater than or equal to 1. Of course, this remains true for the age of φ acting on the space
SpecRC × Spec k[T∨DefL], which implies that

(
SpecRC × Spec k[T∨DefL]

)
/〈φ〉 has canonical

singularities by the Reid–Tai criterion.

We can now apply Lemma A.7 in order to conclude that Spec
(
R

Aut(I)
(C,I)

)
/〈φ〉 has canonical

singularities, which concludes the proof for case 1.

Case 2. Either the automorphism φ ∈ StabC(I) ⊆ Aut(C) either acts as a pseudo-reflection on
SpecRC or SpecRC/〈φ〉 does not have canonical singularities.

The analysis we are going to perform in this case is similar to the analysis that was per-
formed in [BFV12, § 4]. However, there are two main differences: here, we use the Pandhari-
pande [Pan96] modular interpretation of J̄d,g instead of the Caporaso modular interpretation
of J̄d,g used in [Cap94]; moreover, we will not restrict ourselves to the stable locus, contrary to
[Cap94].

To begin, according to the results of Harris–Mumford and Ludwig (see Theorem 8.3), case 2
can occur only if C has an elliptic tail E ⊂ C, that is, a connected subcurve of arithmetic genus
one which meets the complementary subcurve Ec := C \ E in one point p, and φ is an elliptic
tail automorphism, that is, φ|Ec = idEc . We now consider two sub-cases:

Case 2-I: The sheaf I is not locally free at p.

Case 2-II: The sheaf I is locally free at p.
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Note that in either case, if E is a rational elliptic tail with one node q, then I could be locally
free, or not, at q.

Now, consider the ring R
Aut(I)
(C,I) as in (8.8). As usual, denote by Γ = Γ(C,I) the graph obtained

from the dual graph of C by contracting all the edges corresponding to nodes of C where I is
locally free. Moreover, denote by ΓE and ΓEc the graphs obtained from the dual graphs of E
and Ec by contracting all the edges corresponding to the nodes of E and Ec, respectively, where
I is locally free.

In case 2-II, the graph Γ is obtained by joining the graphs ΓE and ΓEc along a common
vertex, and in case 2-I by means of a separating edge corresponding to the node p. Therefore,
from the explicit presentation of U(Γ) ∼= D(Γ) given in Theorem 4.6 (see also Lemma 5.3), it
follows that

U(Γ) =

{
U(ΓEc)⊗k U(ΓE)⊗k k[Tp] (case 2-I) ,

U(ΓEc)⊗k U(ΓE) (case 2-II) .
(8.28)

The graph ΓE consists of a vertex with a loop if E is a rational elliptic tail with one node q and I
is not locally free at q; otherwise, ΓE has one vertex and no edges. Therefore, using Theorem 6.2
(and, say, Example 3.2), we easily compute

U(ΓE) = D(ΓE) =

{
k[Xq, Yq] if E has a node q and I is not locally free at q ,

k otherwise .
(8.29)

Now, consider the automorphism φ ∈ StabC(I). Clearly, φ acts on U(Γ) by preserving the de-
composition (8.28), and, moreover, since φEc = idEc by assumption, φ acts trivially on U(ΓEc).
Therefore, we have

Spec(R
Aut(I)
(C,I) )/〈φ〉 =

{
SpecU(ΓEc)× Spec

(
U(ΓE)⊗k k[Tp]⊗k k[T∨Def l.t.

(C,I)]
)
/〈φ〉 (case 2-I) ,

SpecU(ΓEc)× Spec
(
U(ΓE)⊗k k[T∨Def l.t.

(C,I)]
)
/〈φ〉 (case 2-II) .

(8.30)
Since SpecU(ΓEc) has canonical (and even terminal) singularities by Theorem 5.5, it is enough to
prove that Spec

(
U(ΓE)⊗k k[Tp]⊗k k[T∨Def l.t.

(C,I)]
)
/〈φ〉 and Spec

(
U(ΓE)⊗k k[T∨Def l.t.

(C,I)]
)
/〈φ〉

have canonical singularities. Taking into account (8.29), we see that in both cases we are deal-
ing with finite quotient singularities, so that we can apply the classical Reid–Tai criterion (see
Theorem A.1) to check canonicity.

Before applying the criterion, recall from (8.17) the splitting

k
[
T∨Def l.t.

(C,I)

] ∼= k
[
T∨DefΣ,l.t.

C

]
⊗k k

[
T∨DefL

]
,

where L is the unique line bundle on the partial normalization g : CΣ → C of C at the nodes
Σ = Σ(C,I) with the property that g∗(L) = I. We now want to choose a suitable basis of the
vector space

V :=

{
TU(ΓE)⊕ Tk[Tp]⊕ T DefΣ,l.t.

C ⊕T DefL (case 2-I) ,

TU(ΓE)⊕ T DefΣ,l.t.
C ⊕T DefL (case 2-II) ,

(8.31)

and compute the matrix R(φ) of φ in terms of the chosen basis.

First, observe that in both case 2-I and case 2-II, the upper-left 2 × 2 submatrix of M(φ)
from (8.26) appears as a block factor of the matrix R(φ). Indeed, in case 2-I, we can choose the
coordinate t1 of T DefC corresponding to the smoothing of C at the node p as a coordinate of
Tk[Tp], and in case 2-II, we can choose t1 as one of the coordinates of T DefΣ,l.t.

C . Moreover, if

379



S. Casalaina-Martin, J. L. Kass and F. Viviani

n > 2 (which implies that E is smooth), then we can choose the coordinate t2 of T DefC coming

from T(E,p)(M1,1) as one of the coordinates of T DefΣ,l.t.
C .

We now focus our attention on the action of φ on T DefL. Denote by EcΣ and EΣ the nor-
malizations of Ec and E, respectively, at the nodes belonging to Σ. The curve CΣ is the disjoint
union of EcΣ and EΣ in case 2-I, while it is obtained by joined EcΣ and EΣ at the separating
point p in case 2-II. In any case, L is completely determined by its restrictions L|Ec

Σ
and L|EΣ

,
and, moreover, we have a decomposition

T DefL = T DefL|EΣ
⊕T DefL|Ec

Σ
. (8.32)

Since φ|Ec = idEc by assumption, φ acts trivially on T DefL|Ec
Σ

.

At this point, we have established what we need from the breakdown of case 2 into cases 2-I
and 2-II. In short, in all of case 2, the upper-left 2×2 submatrix of M(φ) from (8.26) will appear
as a block factor of the matrix R(φ), and the action on T DefL is determined by the action on
T DefL|EΣ

∼= TL|EΣ
(Pic(EΣ)).

Let us now examine the action of φ on T DefL|EΣ
. For this we consider three new sub-cases

of case 2:

Case 2-i: E is smooth.

Case 2-ii: E is a rational elliptic curve with one node q and I is locally free at q.

Case 2-iii: E is a rational elliptic curve with one node q and I is not locally free at q.

We now proceed with a case by case analysis.

Case 2-i. We are assuming that E is smooth. Consequently, EΣ = E and L|EΣ
= IE ∈

PicdE (E). We can identify E with PicdE (E), sending r ∈ E into OE(r + (dE − 1)p) ∈ PicdE (E).
Since φ acts on PicdE (E) via pull-back, if the action of φ on Tp(E) is given by the multi-
plication by a root of unity ζ, then the action of φ on TIE (PicdE (E)) is given by the multi-
plication by ζ−1. In other words, if the primitive nth root of unity ζ is chosen for the ma-
trix M(φ) from (8.26), then here, the action is given by the primitive nth root of unity ζ−1.
Therefore, the matrix N(φ) of φ with respect to the decomposition (8.32) is equal to (with
respect to the same choice of the primitive nth root of unity ζ as in the above matrix M(φ))

N(φ) =



(
ζ1

I

)
if n = 2 ,(

ζ3

I

)
or

(
ζ1

I

)
if n = 4 ,(

ζ2

I

)
or

(
ζ1

I

)
if n = 3 ,(

ζ1

I

)
or

(
ζ5

I

)
if n = 6 ,

(8.33)

where I is the suitable identity matrix. Note that the first matrix in each row above cor-
responds to the first matrix in the corresponding row of (8.26). The matrix R(φ) describ-
ing the action of φ on the vector space V (8.31) contains the upper-left 2 × 2 submatrix
of M(φ) from (8.26) and the upper-left 1 × 1 submatrix of N(φ) from (8.33) as block fac-
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tors. An easy inspection of the matrices M(φ) and N(φ) reveals that the condition (A.2) of
the Reid–Tai criterion is satisfied, which shows that V/〈φ〉 has canonical singularities, as we
wanted.

Case 2-ii. In this case, we are assuming that E is a rational elliptic curve with one node q
and that I is locally free at q. Then, also in this case, EΣ = E and L|EΣ

= IE ∈ PicdE (E).

Moreover, we have PicdE (E) ∼= Gm. Explicitly, if we consider the normalization morphism
ν : Eν ∼= P1 → E and let ν−1(q) = {u, v}, then any λ ∈ Gm determines a unique line
bundle Lλ ∈ PicdE (E) whose local sections are the local sections s of OP1(dE) such that
s(u) = λs(v). Since, as observed before, φ|E is induced by an involution of Eν that exchanges u

and v, clearly φ will send Lλ into Lλ−1 . This implies that the action of φ on TIE (PicdE (E)) is
given by multiplication by −1; hence, also in this case, the matrix N(φ) is given by (8.33) with
n = 2.

Therefore, the matrix R(φ) describing the action of φ on the vector space V contains the
upper-left 2×2 submatrixM(φ) from (8.26) and the upper-left 1×1 submatrix ofN(φ) from (8.33)
as block factors, and we conclude as in the previous case that V/〈φ〉 has canonical singularities,
as we wanted.

Case 2-iii. In this case, E is a rational elliptic tail with one node q, and I is not lo-
cally free at q. Observe that in this case EΣ = P1, so that T DefL|EΣ

= 0 and hence the
action of φ on T DefL is trivial. To proceed in this case, we consider instead the action of
φ on TU(ΓE), which is a two-dimensional k-vector space since U(ΓE) = k[Xq, Yq] by (8.29).
Geometrically, the variables Xq and Yq correspond to deforming the sheaf I at q along the
two branches of q (see [CKV15, § 3] for more details). Since, as observed before, φ|E is in-
duced by an involution of the normalization ν : Eν → E that exchanges the two branches
above q, the morphism φ acts on U(ΓE) = k[Xq, Yq] by exchanging Xq with Yq. Therefore,
we can diagonalize the action of φ on TU(ΓE) = 〈X∨q , Y ∨q 〉 by choosing the basis {X∨q −
Y ∨q , X

∨
q + Y ∨q } in such a way that the matrix P (φ) describing the action of φ is equal to

P (φ) =

(
−1 0
0 1

)
. (8.34)

Therefore, since the matrix R(φ) describing the action of φ on the vector space V contains the
upper-left 2 × 2 submatrix of M(φ) from (8.26) with n = 2 and the matrix P (φ) of (8.34) as
block factors, an easy inspection of the matrices M(φ) and P (φ) reveals that the condition (A.2)
of the Reid–Tai criterion is also satisfied in this case, which shows that V/〈φ〉 has canonical
singularities, as we wanted.

Theorem 8.4 was proved by Bini–Fontanari–Viviani in [BFV12] under the assumption that
gcd(d+ 1− g, 2g − 2) = 1, which is exactly the numerical condition on d and g that guarantees
that J̄d,g has finite quotient singularities. When this happens, one can prove Theorem 8.4 by
a direct application of the Reid–Tai criterion (see [BFV12, Theorem 4.8]).

Remark 8.5. It follows from Theorem 8.4 that J̄d,g is Q-Gorenstein. Indeed, more is true: Fonta-
nari showed in [Fon05] that J̄d,g is Q-factorial.

We end this subsection with a description of the locus where J̄d,g has finite quotient singu-
larities or is smooth.
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Proposition 8.6. Let (C, I) ∈ J̄d,g, and assume that Aut(C) does not contain elements of order
equal to p = char(k). Then, the following hold:

(i) The compactified universal Jacobian J̄d,g has finite quotient singularities at (C, I) if and
only if Γ(C,I) is tree-like, that is, it becomes a tree after removing all the loops around its vertices.

(ii) If g > 4, then J̄d,g is smooth at (C, I) if and only if Γ(C,I) is tree-like and StabC(I) = {Id}.

Proof. (i) Using the presentation of the complete local ring of J̄d,g at (C, I) given in Theorem 8.1,
it is clear that J̄d,g has finite quotient singularities at (C, I) if and only if XΓ = SpecU(Γ) has
finite quotient singularities, where Γ = Γ(C,I). Proposition 5.7 says that this is the case if and
only if Γ is tree-like, concluding the proof.

(ii) By Theorem 8.1, the smoothness of J̄d,g at (C, I) is equivalent to the smoothness of the

quotient Spec
(
R

Aut(I)
(C,I)

)
/ StabC(I). By part ((i)), we must have that Γ = Γ(C,I) is tree-like. In

this case, Spec
(
R

Aut(I)
(C,I)

)
= XΓ × Spec k[T∨Def l.t.

(C,I)] is smooth by Proposition 5.7.

Claim 8.7. The finite group StabC(I) acts on Spec
(
R

Aut(I)
(C,I)

)
without pseudo-reflections.

Proof. Indeed, consider the morphism Spec
(
R

Aut(I)
(C,I)

)
→ SpecRC of smooth varieties. If 1 6=

φ ∈ StabC(I) acts as a pseudo-reflection on Spec
(
R

Aut(I)
(C,I)

)
, then φ acts as a pseudo-reflection

on SpecRC . It is well known that this happens if and only if C has an elliptic tail E and φ
is the elliptic tail involution, that is, φ|Ec = idEc and φE is the elliptic involution on E (see
Theorem 8.3). This situation is a special case of the situation we dealt with in case II of the
proof of Theorem 8.4, where, in particular, we verified that the age of φ (with respect to its

action on Spec
(
R

Aut(I)
(C,I)

)
and any primitive root of unity) is at least one. This easily implies that

φ is not a pseudo-reflection because clearly any non-trivial pseudo-reflection has age less than
one since it has a unique eigenvalue different from one.

Proof of Proposition 8.6, continued. Using the claim, we conclude the proof using a classical
result of Prill [Pri67], which says that for a finite group G acting on a smooth variety X without
pseudo-reflections, the quotient X/G is smooth if and only if G is the trivial group.

Part ((ii)) of Proposition 8.6 generalizes [BFV12, Proposition 4.7], where the statement is
proved under the assumption that (C, I) belongs to the stable locus of J̄d,g, that is, I is stable
with respect to ωC .

Remark 8.8. From Proposition 8.6((i)), it follows that the locus where J̄d,g has finite quotient
singularities is, in general, strictly bigger than

– the stable locus of J̄d,g, which coincides with the locus of points (C, I) such that Aut(I) =
Gm or, equivalently, Γ(C,I) has a unique vertex,

– the locus where the fibers of the morphism J̄d,g → Mg have finite quotient singularities,
which coincides with the locus of points (C, I) where I fails to be locally free only at
separating nodes of C or, equivalently, where Γ(C,I) is a tree (see [CKV15, Theorem B]).

8.5 Birational geometry of J̄d,g

The Kodaira dimension of Jd,g was computed by Bini–Fontanari–Viviani in [BFV12] under the
numerical assumption that gcd(d+ 1− g, 2g− 2) = 1 (or g > 22; see Remark 8.10). However, the
only place where the authors of [BFV12] need the hypothesis that gcd(d+ 1− g, 2g−2) = 1 is to

382



The singularities and birational geometry

establish that J̄d,g has canonical singularities, as they observe in the discussion following [BFV12,
Theorem 1.4]. Therefore, as a corollary of [BFV12] and Theorem 8.4, we obtain the following
result describing the Kodaira dimension of Jd,g.

Corollary 8.9. Assume char(k) = 0. The Kodaira dimension of the universal Jacobian Jd,g is
given by

κ(Jd,g) =


−∞ if g 6 9 ,

0 if g = 10 ,

19 if g = 11 ,

3g − 3 if g > 12 .

Proof. We sketch the proof for the convenience of the reader. Verra has shown that Jd,g is
unirational for g 6 9 [Ver05, Theorem 1.2]. So let us consider the case g > 10. Let π : J̄d,g →Mg

be the natural forgetful map. Using the Grothendieck–Riemann–Roch theorem, it is shown in
[BFV12, Theorem 1.5] that for g > 4, we have KJ̄d,g

= π∗(14λ− 2δ) (= π∗KMg
+ π∗λ, agreeing

with the naive computation over M◦g ). As π has connected fibers, the Iitaka dimensions of KJ̄d,g

and 14λ−2δ are the same. The Iitaka dimension of 14λ−2δ is by now well known: κ(14λ−2δ) = 0
if g = 10, κ(14λ − 2δ) = 19 if g = 11, and κ(14λ − 2δ) = 3g − 3 if g > 12. (Recall that for
g > 13, work of Eisenbud, Harris, and Mumford [HM82, EH87] shows that the slope of Mg

satisfies s(Mg) < 7, and recent work of Cotterill [Cot12] shows that the same holds for g = 12.
For g = 10, 11, work of Tan [Tan98] and Farkas–Popa [FP05] shows that s(Mg)=7; in these
cases, κ(14λ− 2δ) is worked out directly in [BFV12, § 6].) Finally, since in Theorem 8.4 we have
shown that J̄d,g has canonical singularities, we can conclude that κ(J̄d,g) = κ(KJ̄d,g

), completing
the proof.

Remark 8.10. From general results of Ueno [Uen75, Theorem 6.12] and Kawamata [Kaw85,
Corollary 1.2], using the fact that the Kodaira dimension of an abelian variety is zero, one
obtains the estimate on the Kodaira dimension: κ(Mg) 6 κ(J̄d,g) 6 dimMg. By virtue of the
results of Harris–Mumford, Eisenbud–Harris, and Farkas that Mg is of general type for g = 22
and for g > 24, one obtains immediately that κ(J̄d,g) = κ(Mg) = 3g − 3 for g in this range.

Remark 8.11. Since the generic fiber of π : J̄d,g →Mg has trivial canonical bundle, it is interesting
to compare the Kodaira dimensions of the two spaces. For the convenience of the reader, in the
table below we compile the current state of the art on the Kodaira dimension of Mg (we refer
the reader to Farkas [Far09] for references) and compare it with the Kodaira dimension of J̄d,g.

g 6 7 8 9 10 11 12 6 g 6 16 17 6 g 6 21 22 23 24 6 g

κ(Mg) −∞ −∞ −∞ −∞ −∞ −∞ unknown 3g − 3 > 2 3g − 3

κ(J̄d,g) −∞ −∞ −∞ 0 19 3g − 3 3g − 3 3g − 3 3g − 3 3g − 3

κ(S−g ) −∞ −∞ −∞ −∞ −∞ 3g − 3 3g − 3 3g − 3 3g − 3 3g − 3

κ(S+
g ) −∞ 0 3g − 3 3g − 3 3g − 3 3g − 3 3g − 3 3g − 3 3g − 3 3g − 3

(8.35)

Remark 8.12. In recent work, Farkas–Verra [Far10, FV12, Far12, FV14] have computed the
Kodaira dimension of the moduli space of spin curves, that is, the moduli space of pairs consisting
of a curve together with a theta characteristic. For each g > 2, the space has two components,
S+
g and S−g , corresponding to the even and odd theta characteristics. Since these sit inside Jg−1,g

and are finite over Mg, we find it interesting to compare the Kodaira dimensions of these spaces;
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see (8.35). It turns out, for instance, that both J̄d,g and S−g attain “maximal” Kodaira dimension
at g = 12.

In [BFV12, Propositions 6.3 and 6.5], the Iitaka fibration of the canonical class KJ̄d,g
is

established for g > 10. This provides the Iitaka fibration for Jd,g under the additional hypothesis
that J̄d,g has canonical singularities. Consequently, [BFV12] gives the Iitaka fibration for Jd,g
assuming that gcd(d + 1 − g, 2g − 2) = 1 (and also for g > 22 using a different argument; see
[BFV12, Proposition 3.2]). As a consequence of Theorem 8.4, we obtain the following result,
generalizing those of [BFV12].

Corollary 8.13. For g > 10, the Iitaka fibration of Jd,g is given as follows:

(i) For g > 12, the Iitaka fibration is the forgetful morphism π : J̄d,g →Mg.

(ii) For g = 11, the Iitaka fibration is the rational map J̄d,11 99K F11, where Fg is the moduli
space of K3 surfaces with polarization of degree 2g − 2, and the rational map takes a general
pair (C,L) to the pair (S,OS(C)), where S is the unique K3 containing C (see [Muk96]).

(iii) For g = 10, the Iitaka fibration is the structure morphism J̄d,10 → Spec k.

Proof. We sketch the proof for the convenience of the reader. For g > 12, this follows from
Theorem 8.4 and [Uen75, Theorem 6.11]. Indeed, let M̃g be a resolution of singularities of Mg,

and let J̃d,g be a resolution of singularities of the fiber product J̄d,g×Mg
M̃g. Then the morphism

π̃ : J̃d,g → M̃g of smooth projective varieties is an algebraic fiber space such that dim M̃g = κ(J̃d,g)
and the generic fiber π̃−1(C) = JdC is smooth and irreducible of Kodaira dimension zero. The
same argument works for g = 10, using a desingularization J̃d,10 of J̄d,10. For g = 11, we refer
the reader to [BFV12, Proposition 6.5], where it is shown that the rational map J̄d,11 99K F11 is
the Iitaka fibration for KJ̄d,11

. Since J̄d,g has canonical singularities by Theorem 8.4, it follows
that this rational map is the Iitaka fibration for Jd,11.

In the last section of [BFV12], the authors investigate the birational maps among the different
universal Jacobians Jd,g as d varies. Using Theorem 8.4, we can relax their hypothesis (see the
discussion at the end of [BFV12, § 7]).

Corollary 8.14. Assume char(k) = 0 and g > 12. If η : Jd,g 99K Jd′,g is a birational map, then
d′ = ±d+ n(2g − 2) and η is given by the map sending (C,L) ∈ Jd,g into (C,L±1 ⊗ ωnC) ∈ Jd′,g.
In particular, the following hold:

(i) The Jacobian Jd,g is birational to Jd′,g if and only if d′ ≡ ±d mod 2g − 2.

(ii) The group Bir(Jd,g) of birational automorphisms of Jd,g is given by

Bir(Jd,g) =

{
Z/2Z if d = n(g − 1) for some n ∈ Z ,
{Id} otherwise .

Moreover, if d = n(g − 1) for some n ∈ Z, then the generator of Bir(Jd,g) is the birational
automorphism sending (C,L) into (C,L−1 ⊗ ωnC).

Proof. We sketch the proof for the convenience of the reader. As established in Corollary 8.13,
for g > 12, the morphism π : J̄d,g → Mg is the Iitaka fibration of Jd,g. It follows that any
birational automorphism η : J̄d,g 99K J̄d′,g induces a commutative diagram of rational maps (see,
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for example, [Uen75, II, Theorem 6.11])

J̄d,g
η //

π
��

J̄d′,g

π
��

Mg
ξ //Mg .

The rational map ξ is the identity. Indeed, if C ∈Mg is very general and C ′ = ξ(C), then there
is an induced birational map JdC 99K Jd

′
C ′. As this is a birational map of abelian varieties, it is

an isomorphism, and one concludes that C ∼= C ′ using the Torelli theorem and the fact that for
a very general curve, the Neron–Severi group of the Jacobian is isomorphic to Z (see [BFV12,
Lemma 7.4] for more details). Having established that ξ is the identity, the corollary follows
from [Cap10, Proposition 3.2.2]. Again, we sketch the proof for the convenience of the reader.
Let U ⊆ M◦g be an open set over which η is defined. For each C ∈ U , there is an isomorphism

η|C : JdC → Jd
′
C. Since an isomorphism of abelian varieties is given by a translation followed by

a group automorphism and C is automorphism free, we have η|C(L) = (L⊗LC)±1 for some LC ∈
J±(d′−d)C depending only on C (see [Cap10, Lemma 3.2.3, Proposition 3.2.2] for more details).
The assignment C 7→ LC determines a rational section of J±(d′−d),g → Mg. The Franchetta
conjecture (proven in [Mes87]) asserts that the only such sections are given by pluricanonical
bundles.

Remark 8.15. It is likely that Corollary 8.14 fails for small values of g, where it is natural to
expect that Jd,g is rational for all values of d ∈ Z.

Appendix. Finite quotients of toric singularities

The aim of this appendix is to study when a finite quotient of a toric singularity is Gorenstein,
terminal, or canonical. We will work over an algebraically closed field k of characteristic zero.
The main focus is to generalize the Reid–Tai–Shepherd-Barron criterion for quotients of smooth
varieties by finite groups. We expect that these type of results are well known to the experts, but
we were unable to find a reference for the specific results we use, and so we include statements
and proofs here.

A.1 Finite quotient of smooth varieties

Let us start by recalling the case of finite quotients of smooth varieties, which is well known
and attributed to Khinich, Watanabe, Tai, Reid–Shepherd-Barron, and Reid (see, for example,
[MS84, Theorem 2.3] and the references therein).

Theorem A.1. Let G ⊆ GLn(k) be a finite subgroup, and assume that G does not contain
pseudo-reflections. Set X = Ank/G. For each g ∈ G of order r 6= 1 and each primitive rth root of
unity ζ, write the eigenvalues of g as ζa1 , . . . , ζan with 0 6 ai < r and define the age of g with
respect to ζ as

age(g, ζ) :=
1

r

n∑
i=1

ai .

(i) (Khinich and Watanabe) The quotient X is Gorenstein if and only if G ⊆ SLn(k), that is,

age(g, ζ) ∈ Z (A.1)

for each 1 6= g ∈ G and each (or, equivalently, some) primitive rth root of unity ζ.
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(ii) (Reid–Shepherd-Barron [Rei87] and Tai [Tai82]) The quotient X is canonical if and only if

age(g, ζ) > 1 (A.2)

for each 1 6= g ∈ G and each primitive rth root of unity ζ.

(iii) (Reid [Rei87]) The quotient X is terminal if and only if

age(g, ζ) > 1 (A.3)

for each 1 6= g ∈ G and each primitive rth root of unity ζ.

Remark A.2. Recall that an element 1 6= g ∈ GLn(k) is a pseudo-reflection if its fixed locus
Fix(g) := {x ∈ Ank : g · x = x} is a divisor inside Ank . Equivalently, 1 6= g ∈ GLn(k) is a pseudo-
reflection if and only if 1 is an eigenvalue of g with multiplicity equal to n − 1. In particular, if
1 6= g ∈ GLn(k) is a pseudo-reflection, then g 6∈ SLn(k). Note that:

(i) In Theorem A.1, if one removes the hypothesis that G has no pseudo-reflections, the con-
ditions (A.2) and (A.3) still imply canonical and terminal singularities, respectively.

(ii) If G ⊂ GLn(k) is a finite group, denote by Gps the normal subgroup of G generated by the
pseudo-reflections in G. Then Ank/Gps is smooth, that is, Ank/Gps

∼= Amk for some m 6 n, the
quotient group G/Gps acts linearly on Amk without pseudo-reflections, and Ank/G ∼= Amk /(G/Gps)
(see [Kol13, § 3.18]). Therefore, we can always reduce to the case of finite groups acting without
pseudo-reflections.

A.2 Notation and background results on toric varieties

We now recall some notation and background results on toric varieties, following [CLS11].

Fix a lattice N , that is, a free Z-module of finite rank, and let M = N∨ be its dual lattice.
Given a (convex, rational polyhedral) cone

σ ⊆ N ⊗Z R := NR ,

consider its dual cone (which is still convex, rational polyhedral)

σ∨ = {λ ∈MR : 〈λ, n〉 > 0, ∀n ∈ σ} ⊂M ⊗Z R =: MR .

The affine toric variety for the torus T := Spec k[M ] = Gm ⊗Z N associated with σ ⊂ NR is
given by

Uσ = Uσ,N := Spec k
[
σ∨ ∩M

]
,

where k[σ∨ ∩M ] is the affine semigroup k-algebra associated with the normal affine semigroup
σ∨ ∩M (by Gordon’s lemma; see [CLS11, Proposition 1.2.17]). Note that the affine toric vari-
ety Uσ,N depends both on the cone σ ⊂ NR and on the lattice N ⊂ NR.

From here on, we will use the following notation:

– We denote by σ(1) the set of one-dimensional faces of σ, that is, the extremal rays of the
cone.

– Given ρ ∈ σ(1), we set uρ = uρ,N to be the primitive element of ρ∩N . That is, uρ ∈ ρ∩N
and if u ∈ ρ ∩N , then u = nuρ for some n ∈ N.

– We denote by Πσ = Πσ,N the polytope Πσ = Conv(0, uρ,N )ρ∈σ(1), that is, the convex hull
of 0 and the primitive elements of the extremal rays of σ, with respect to the lattice N .

Note that the primitive elements associated with the rays of σ depend on the lattice N we are
considering; therefore, the polytope Πσ,N also depends upon the lattice N .
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In what follows, we will be using the following basic results on toric singularities.

Proposition A.3 (Gorenstein condition [CLS11, Propositions 8.2.12 and 11.4.11]). In the no-
tation above, the affine toric variety Uσ is Gorenstein if and only if there exists an mσ ∈M such
that

〈mσ, uρ〉 = 1 for all ρ ∈ σ(1) .

In this case, Uσ has canonical singularities.

Proposition A.4 (Q-Gorenstein condition [CLS11, Proposition 11.4.12]). In the notation above,
the following conditions are equivalent:

(i) The variety Uσ is Q-Gorenstein.

(ii) There exists an mσ ∈MQ such that 〈mσ, uρ〉 = 1 for all ρ ∈ σ(1).

(iii) The polytope Πσ has a unique facet not containing the origin.

Note that the property of Uσ,N = Uσ being Q-Gorenstein depends both on the cone σ and on
the lattice N (see Example A.10). This is not the case for the stronger property of Uσ,N = Uσ
being Q-factorial, which is equivalent to the cone σ being simplicial (see [CLS11, Theorem 11.4.8])
and hence depends only on the cone σ and not on the lattice N .

Proposition A.5 (Canonical and terminal conditions [CLS11, Proposition 11.4.12]). In the
notation above, assume that Uσ is Q-Gorenstein. Then Uσ has canonical singularities if and only
if the only non-zero lattice points in the polytope Πσ lie on the unique facet of Πσ not containing
the origin. The variety Uσ has terminal singularities if and only if the only lattice points of Πσ

are its vertices.

A.3 The case of cyclic groups

In this subsection, we will consider the special case of a cyclic group Zr := Z/rZ acting on an
affine toric variety Uσ, preserving the torus T = Spec k[M ].

After fixing a primitive rth root of unity ζ ∈ k, the action of Zr on the coordinate ring k[M ]
of T is given by a linear form λ : M → Z. It is well defined up to adding an r-multiple of a
linear form. In other words, the action is uniquely determined by an element [λ] ∈ N/rN =
HomZ(M,Z/rZ). Explicitly, if we choose a primitive rth root of unity ζ ∈ k, we can identify the
group Zr with the subgroup of k∗ generated by ζ and the action on k[M ] is given by

ζ · xm = ζλ(m)xm . (A.4)

Moreover, if we fix an isomorphism M ∼= Zn, so that k[M ] = k[x±1
1 , . . . , x±1

n ], then the action
of Zr on k[M ] is given by

ζ · xi = ζaixi for some 0 6 ai < r (i = 1, . . . , n) . (A.5)

Proposition A.6. Let N = Zn = Z〈e1, . . . , en〉, and let σ ⊆ NR be a (convex, rational poly-
hedral) cone. Let ζ be a primitive rth root of unity, and suppose that Zr = 〈ζ〉 acts on Uσ,N ,
preserving the torus T = Spec k[M ] and that the action on the ring k[M ] = k[x±1

1 , . . . , x±1
n ] is

given by

ζ · xm = ζλ(m)xm for some [λ] ∈ N/rN
or, more explicitly, by

ζ · xi = ζaixi for some 0 6 ai < r (i = 1, . . . , n) .
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Then Uσ,N/Zr is isomorphic to the affine toric variety Uσ,N ′ , where N ′ is the super-lattice of N
given by

N ⊆ N ′ = N + Z
〈

1

r
λ

〉
= Z

〈
e1, . . . , en,

n∑
i=1

aiei
r

〉
⊂ NQ .

In particular, Uσ,N/Zr is

(i) Q-Gorenstein if and only if Πσ,N ′ has a unique facet not containing the origin,

(ii) canonical if and only if Πσ,N ′ has a unique facet not containing the origin and the only
non-zero lattice points in Πσ,N ′ lie in this facet,

(iii) terminal if and only if Πσ,N ′ has a unique facet not containing the origin and the only lattice
points of Πσ,N ′ are its vertices.

Proof. Let M ′ ⊆ M be the sub-lattice of invariants; that is, k[M ′] = k[x±1
1 , . . . , x±1

n ]Zr . Clearly,
the quotient Uσ,N/Zr is the affine toric variety equal to Spec k[σ ∩ M ′]. Therefore, in order
to prove the first statement, we need to prove that after setting N ′ = N + Z

〈
1
rλ
〉
, we have

(N ′)∨ = M ′ ⊆ M . Since N ⊆ N ′, with torsion quotient, we have M = N∨ ⊇ (N ′)∨. Now, pick
an element m =

∑n
i=1mie

∨
i ∈ M (with mi ∈ Z). Since N ′ is obtained from N by adding the

element 1
rλ =

∑n
i=1 aiei/r ∈ NQ, we have

m ∈ (N ′)∨ ⇐⇒
n∑
i=1

aimi

r
∈ Z ⇐⇒

n∑
i=1

aimi ≡ 0 (mod r)

⇐⇒ xm :=
n∏
i=1

xmi
i ∈ k

[
x±1

1 , . . . , x±1
n

]Zr ⇐⇒ m ∈M ′ .

The assertions (i)–(iii) now follow from this using Propositions A.4 and A.5.

Using Proposition A.6, we can prove the following criterion that plays a crucial role in the
proof of Theorem 8.4.

Lemma A.7. For i = 1, 2, let Ni be a lattice and let σi ⊂ (Ni)R be a (convex, rational polyhedral)
cone. Let φ : Uσ1,N1 → Uσ2,N2 be a toric morphism induced by a homomorphism φ : N1 → N2 of
lattices such that

(i) ρ ∈ σ1(1)⇒ φR(ρ) ∈ σ2(1);

(ii) for every ρ ∈ σ1(1), we have φ(uρ,N1) = uφR(ρ),N2
.

Now, suppose that the cyclic group Zr acts on the Uσi,Ni , preserving the torus Ti = Gm ⊗Z Ni

for i = 1, 2 and assume that

(a) φ : Uσ1,N1 → Uσ2,N2 is Zr-equivariant,

(b) Uσ2,N2 is smooth and Zr acts on Uσ2,N2 without pseudo-reflections.

Then Uσ1,N1/Zr is Q-Gorenstein. Moreover, if Uσ2,N2/Zr has canonical singularities, then Uσ1,N1

has canonical singularities.

Proof. Using the above notation, fix a primitive rth root of unity ζ, and suppose that the
action of Zr on Uσi,Ni is determined by the element [λi] ∈ Ni/rNi. Since φ is Zr-equivariant by
condition (a), we must have φ([λ1]) = [λ2], so that the homomorphism φ : N1 → N2 extends to
a homomorphism (which we will still denote by φ)

φ : N ′1 := N1 + Z
〈

1

r
λ1

〉
−→ N ′2 := N2 + Z

〈
1

r
λ2

〉
.
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By Proposition A.6, the toric morphism φ̃ : Uσ1,N ′1
→ Uσ2,N ′2

induced by φ coincides with the
quotient map Uσ1,N1/Zr → Uσ2,N2/Zr induced by φ.

Now, fix an extremal ray ρ of σ1 and look at φR(ρ), which is an extremal ray of σ2 by
property (i). Since N1 ⊆ N ′1, the two primitive elements along the ray ρ with respect to the above
lattices are related by uρ,N1 = c · uρ,N ′1 for some c ∈ Z>0. On the other hand, it follows from

condition (b) that uφR(ρ),N2
= uφR(ρ),N ′2

. Moreover, it follows from property (ii) that φ(uρ,N1) =

uφR(ρ),N2
. Finally, we will have φ(uρ,N ′1) = l · uφR(ρ),N ′2

for some l ∈ Z>0. Combining everything,

we find that

uφR(ρ),N ′2
= uφR(ρ),N2

= φ(uρ,N1) = c · φ(uρ,N ′1) = c · l · uφR(ρ),N ′2
,

from which we deduce that c = l = 1, in other words, that

uρ,N1 = uρ,N ′1 and φ(uρ,N ′1) = uφR(ρ),N ′2
. (A.6)

Now, observe that since Uσ2,N2 is smooth by condition (b), the quotient Uσ2,N2/Zr = Uσ2,N ′2
is

Q-factorial, hence in particular Q-Gorenstein. By Proposition A.4, there exists an m2 ∈ (M ′2)Q =
(M2)Q = (N∨2 )Q such that 〈m2, uτ,N ′2〉 = 1 for every extremal ray τ of σ2. From (A.6), we see

that the element m1 = (φR)∨(m2) ∈ (M ′1)Q = (M1)Q = (N∨1 )Q satisfies (for every extremal ray
ρ of σ1)

〈m1, uρ,N ′1〉 = 〈(φR)∨(m2), uρ,N ′1〉 = 〈m2, φ(uρ,N ′1)〉 = 〈m2, uφR(ρ),N ′2
〉 = 1 ,

which shows that Uσ1,N ′1
= Uσ1,N1/Zr is Q-Gorenstein.

Now, take a point 0 6= x ∈ N ′1 which belongs to Πσ1,N ′1
, that is,

x =
∑

ρ∈σ1(1)

αρ · uρ,N ′1 with αρ > 0 and 0 <
∑

ρ∈σ1(1)

αρ 6 1 .

Using (A.6), we get

φ(x) =
∑

ρ∈σ1(1)

αρ · uφR(ρ),N ′2
⇒ 0 6= φ(x) ∈ Πσ2,N ′2

.

If Uσ2,N ′2
= Uσ2,N2/Zr has canonical singularities, then Proposition A.5 implies that φ(x)

belongs to the unique facet of Πσ2,N ′2
not containing the origin. This is equivalent to the fact

that
∑

ρ∈σ1(1) αρ = 1, which then implies that x also belongs to the unique facet of Πσ1,N ′1
not

containing the origin, in other words, that Uσ1,N ′1
= Uσ1,N1/Zr has canonical singularities.

Although we will not use this, just for the sake of completeness, we prove the following
criterion for a cyclic quotient of an affine Gorenstein toric variety to be Gorenstein.

Proposition A.8. We use the same notation as in Proposition A.6. Assume furthermore that
Uσ,N is Gorenstein, so that there is an mσ ∈M such that

〈mσ, uρ〉 = 1 for all ρ ∈ σ(1) ,

where uρ is the primitive element along the ray ρ with respect to the lattice N . If λ and mσ

satisfy 1
rλ(mσ) ∈ Z, then Uσ,N/Zr is Gorenstein.

Proof. We will use the notation of the proof of Proposition A.6. The assumption 1
rλ(mσ) ∈ Z

implies that mσ ∈ M ′ = (N ′)∨. Moreover, the fact that 〈mσ, uρ〉 = 1 ensures that uρ is still a
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primitive generator of ρ ∈ σ(1) with respect to N ′: indeed, if uρ = l · ũρ for some 2 6 l ∈ N and
ũρ ∈ N ′, then

1 = 〈mσ, uρ〉 = l〈mσ, ũρ〉 ⇒ 〈mσ, ũρ〉 6∈ Z ,
which contradicts the fact that mσ ∈ (N ′)∨.

Remark A.9. If we apply Propositions A.6 and A.8 to the case Uσ,N = Ank , we get back one
direction of Theorem A.1 for finite cyclic quotients of smooth varieties.

We warn the reader that, contrary to the fact that finite quotients of Q-factorial toric singu-
larities are Q-factorial (because the factoriality of Uσ,N is equivalent to the fact that the cone σ
is simplicial), a finite quotient of a Gorenstein toric singularity need not to be Q-Gorenstein, as
the following example shows.

Example A.10. Let N = Z3 = Z〈e1, e2, e3〉, and consider the toric variety Uσ,N defined by the
cone

σ = R>0〈e1, e2, e3, e1 + e2 − e3〉 ⊆ R3 = N ⊗ R .
Now, let Z2 act by −1 on x1 and by 1 on x2 and x3. One can easily check using Propositions A.3
and A.4 that Uσ,N is Gorenstein, while Uσ,N/Z2 is not Q-Gorenstein.

A.4 Reduction to the cyclic case

In this subsection, we show that in order to detect if a finite quotient V/G of a normal k-variety
has canonical or terminal singularities, it is enough to check only that the cyclic quotients V/C
are canonical or terminal as C varies among all the cyclic subgroups of G. The result in the case
where V is smooth appears in a number of places (for example [HM82, Appendix 1 to § 1, proof
of Reid–Tai’s criterion], [Kol13, Theorem 3.21]). The argument for singular V is the same, and
while we expect that the result is well known in this case as well, we are unaware of a reference,
and so we include the proof here for the convenience of the reader.

Theorem A.11. Suppose that G is a finite group acting on V , a normal scheme of finite type
over k. Then V/G has canonical (respectively, terminal) singularities if and only if for every
cyclic subgroup C 6 G, the quotient V/C has canonical (respectively, terminal) singularities.

Proof. We will follow the proof of [Kol13, Theorem 3.21], which deals with the case V = Ank .
First, suppose that X = V/G does not have canonical (respectively, terminal) singularities.
Let X̃ → X be a resolution of singularities, and let E ⊆ X̃ be a prime divisor such that the
discrepancy satisfies a(E,X) < 0 (respectively, a(E,X) 6 0). Let p : Ṽ → X̃ be the normalization
of X̃ in the field of fractions of V , and let F ⊆ Ṽ be a prime divisor dominating E. We have a
commutative diagram

Ṽ //

p
��

V

��
X̃ // X = V/G ,

(A.7)

where the vertical morphisms are finite and the horizontal ones are birational. It is computed in
[Kol13, (2.42.4)] that the discrepancies of F and E are related by the formula

a(E,X) + 1 =
a(F, V ) + 1

|CF |
. (A.8)
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The group G acts on the field of fractions of V , and one can easily check that the action preserves
integrality, so G also acts on Ṽ and X̃ = Ṽ /G. Let CF be the subgroup of G acting as the identity
on F . Since Ṽ is generically smooth along F , the subgroup CF 6 G is cyclic. The diagram (A.7)
factors as follows:

Ṽ //

q
��

V

��
Ṽ /CF //

r
��

V/CF

��
X̃ = Ṽ /G // X = V/G ,

(A.9)

where again the vertical morphisms are finite and the horizontal ones are birational. Consider
the prime divisor E′ = q(F ), which is exceptional over V/CF . By applying formula (A.8) to the
morphism q, we get

a(E′, V/CF ) + 1 =
a(F, V ) + 1

|CF |
, (A.10)

which, together with (A.8), implies that a(E′, V/CF ) = a(E,X) < 0 (respectively, a(E,X) 6 0).
Consequently, we see that V/CF does not have canonical (respectively, terminal) singularities.

Conversely, suppose there is a cyclic group C 6 G such that V/C does not have canonical
(respectively, terminal) singularities. Let (V/C)∼ → V/C be a resolution of singularities, and
suppose that E′ is an exceptional divisor such that a(E′, V/C) < 0 (respectively, a(E′, V/C) 6 0).
Let Ṽ be the integral closure of (V/C)∼ in the field of fractions of V , and let F ⊆ Ṽ be a prime
divisor dominating E′. Again, we obtain (A.10). Now, by a result of Zariski and Abhyankar
[Kol13, Lemma 2.22] there is a diagram

Ṽ //

p
��

V

��
X̃ // X = V/G ,

(A.11)

where the bottom morphism is birational, p is the induced rational map, and F dominates a prime
divisor E of X̃. The computation of [Kol13, (2.42.4)] holds (see especially the discussion at the end
of the proof of [Kol13, Corollary 2.43)]), giving (A.8). Thus we have a(E,X) = a(E′, V/C) < 0
(respectively, a(E,X) 6 0), and it follows that X does not have canonical (respectively, terminal)
singularities.
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