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Abstract
We prove some higher dimensional generalizations of
the slope inequality originally due to G. Xiao, and to
M. Cornalba and J. Harris. We give applications to fam-
ilies of KSB-stable and K-stable pairs, as well as to
the study of the ample cone of the moduli space of
KSB-stable varieties. Our proofs rely on the study of
theHarder–Narasimhan filtration, and some generaliza-
tions of Castelnuovo’s and Noether’s inequalities.
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INTRODUCTION

The first slope inequality was proven at the same time by G. Xiao in [51] and by M. Cornalba and
J. Harris in [18]. They were looking at a non-constant morphism 𝑓∶ 𝑆 → 𝑇 from a smooth pro-
jective minimal surface to a smooth projective irreducible curve, whose general fiber has genus g
at least 2. They showed that

𝐾2
𝑆∕𝑇

⩾ 4
g − 1

g
deg 𝑓∗𝑆(𝐾𝑆∕𝑇) . (0.1)

Since then, the name slope inequalities has been used for inequalities of the form

𝐿𝑛+1 ⩾ 𝐶 deg 𝑓∗𝑋(𝐿)
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2 CODOGNI et al.

where 𝑓∶ (𝑋, 𝐿) → 𝑇 is a polarized family over a projective curve satisfying convenient
hypotheses, and 𝐶 is a constant which depends just on the general fiber of 𝑓.
In the present work, we prove some new slope inequalities andwe give some applications to the

study of the ample cone of moduli spaces. Before presenting our main results, let us comment on
the motivations and techniques used in the above mentioned works [51] and [18], and that served
as inspiration for this paper.
The two original papers about the slope inequality (0.1) had rather different motivations and

proofs. M. Cornalba and J. Harris were interested in showing the ampleness of some natural line
bundles on the moduli space of stable curves (so interpreted 𝑓 as a family of curves), a program
that was completed in [17] (see also [1] for somemodern developments). They deduced their result
from the GIT stability of the fiber of 𝑓, by reducing the slope inequality to the non-negativity of a
Hilbert–Mumford weight. Let us stress that pluricanonical smooth curves are GIT stable and that
the moduli space of stable curves can be constructed using GIT on the Hilbert or Chow scheme
of pluricanonical curves. From [18], we retain the motivation, that is, applying slope inequalities
to produce ample line bundle on moduli spaces, and the idea that slope inequalities should hold
under the same stability assumption used to construct moduli spaces.
G. Xiao’s goal was to understand the geometry of surfaces fibered over a curve. From his work,

we retain the scheme of proof, which we now briefly recall. He starts off considering the Harder–
Narasimhan filtration {∙} of the push-forward 𝑓∗𝑆(𝐾𝑆∕𝑇), and bounds the degree of 𝐾2

𝑆∕𝑇
using

the slopes of the filtration. As 𝑓∗𝑆(𝐾𝑆∕𝑇) is nef, all the slopes are non-negative, and he uses this
non-negativity to handle the above mentioned bound. Restricting one 𝑖 to a fiber, Xiao obtains a
linear subsystemof the canonical linear system.He applies Clifford’s theorem to this linear system
to compare its degree with its rank, and ultimately get the desired slope inequality. Among the
novelties that we introduce in this paper, in Section 2, we prove various generalizations of Noether
and Castelnuovo inequalities that are then used in place of Clifford’s theorem.
We now present the main results that we obtain in this paper, and that can be divided

in three categories: slope inequalities for families of KSB-stable (canonically polarized) pairs,
slope inequalities for families of K-stable (log Fano) pairs, and slope inequalities for arbitrary
polarized families.

Slope inequalities for KSB-stable families

In this subsection, we collect the slope inequalities that we prove on families of KSB-stable pairs,
that is, pairs with slc singularities and ample log-canonical divisor.
Our first result is a general existence result, which says that the slope of KSB-stable families

is bounded away from zero by a constant that only depends on the relative dimension and the
coefficient set of the boundary.

TheoremA (Existence of slope inequalities). Fix an integer 𝑛 ⩾ 1 and a subset 𝐼 of [0, 1] satisfying
the DCC (=descending chain condition). Then there exists a constant 𝑠(𝑛, 𝐼) > 0 such that

(𝐾𝑋∕𝑇 + Δ)𝑛+1 ⩾ 𝑠(𝑛, 𝐼) deg 𝑓∗𝑋(𝐾𝑋∕𝑇 + Δ)

for every KSB-stable family 𝑓∶ (𝑋, Δ) → 𝑇 over a smooth, irreducible, projective curve 𝑇 such that
the relative dimension of 𝑓 is 𝑛 and the coefficients of Δ belong to 𝐼.

 1460244x, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12512 by U

niversidad D
e C

oim
bra, W

iley O
nline L

ibrary on [13/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 3

The above Theorem A is a special case of Corollary 5.7 where the same result is proved more
generally for generic slc families (i.e., such that𝐾𝑋∕𝑇 + Δ isℚ-Cartier and the general fiber (𝐹, Δ𝐹)

is slc, see setup 5.1) such that𝐾𝑋∕𝑇 + Δ is 𝑓-semiample and 𝑓-big. Let us stress that, even though 𝑛
and 𝐼 are fixed, the volume of the fibers of the families are not fixed, hence the fibers of the families
considered in the statement vary in an unbounded set. As explained in the proof of Corollary 5.7,
the constant 𝑠(𝑛, 𝐼) can be taken equal to

𝑠(𝑛, 𝐼) =
1

𝑏(𝑛, 𝐼)𝑛
,

where 𝑏(𝑛, 𝐼) > 0 is the constant, whose existence is guaranteed by Hacon-McKernen-Xu [25],
such that 𝑏(𝑛, 𝐼)(𝐾𝑍 + Δ𝑍) gives a birational map for all lc pairs (𝑍, Δ𝑍) such that the dimension
of 𝑍 is 𝑛, the coefficients of Δ𝑍 belong to 𝐼, and 𝐾𝑍 + Δ𝑍 is big. Example 8.2.3 shows that the
constant 𝑠(𝑛, ∅) decays at least double exponentially in 𝑛.
The second result provides some explicit lower bounds on the slope of KSB-stable families,

depending on the geometry of the family (such as the volume of the irreducible components or
the Cartier index of the general fiber).

TheoremB. Let𝑓∶ (𝑋, Δ) → 𝑇 be aKSB-stable family over a a smooth, irreducible, projective curve
𝑇 and denote by (𝐹, Δ𝐹) the general fiber of 𝑓.

(1) Assume that there exists𝑚 ∈ ℕ>0 such that at least one of the following conditions hold true
∙ 𝑚(𝐾𝑋∕𝑇 + Δ) is Cartier and 𝑓-globally generated;
∙ Δ is a reduced Weil divisor and𝑚(𝐾𝐹 + Δ𝐹) is Cartier and globally generated.
Let 𝑤 ∈ ℚ>0 such that the volume of the pull-back of 𝐾𝐹 + Δ𝐹 to any irreducible component of
the normalization of 𝐹 is at least 𝑤. Then

𝑚𝑛+1(𝐾𝑋∕𝑇 + Δ)𝑛+1 ⩾
2𝑤𝑚𝑛

𝑤𝑚𝑛 + 𝑛
deg

(
𝑓∗𝑋(𝑚(𝐾𝑋∕𝑇 + Δ))

)
.

(2) Fix𝑚 ∈ ℕ>0 such that𝑚(𝐾𝑋∕𝑇 + Δ) is Cartier and 𝑓-globally generated. Then

𝑚𝑛+1(𝐾𝑋∕𝑇 + Δ)𝑛+1 ⩾ deg 𝑓∗𝑋(𝑚(𝐾𝑋∕𝑇 + Δ)).

(3) Assume thatΔ is a reducedWeil divisor and let𝑚, 𝑞 ∈ ℕ>0 such that at least one of the following
conditions holds true
∙ 𝜙𝑚𝑞(𝐾𝐹+Δ𝐹)

is generically finite;
∙ 𝑚𝑞(𝐾𝐹 + Δ𝐹) is Cartier.
Then

𝑚𝑛+1(𝐾𝑋∕𝑇 + Δ)𝑛+1 ⩾
deg 𝑓∗𝑋(𝑚(𝐾𝑋∕𝑇 + Δ))

𝑞𝑛
.

(4) Assume that𝐾𝑋∕𝑇 + Δ is nef and let 𝑞 ∈ ℕ>0 such that either 𝑞(𝐾𝐹 + Δ𝐹) is Cartier or 𝜙𝑞(𝐾𝐹+Δ𝐹)

is generically finite. Then

(𝐾𝑋∕𝑇 + Δ)𝑛+1 ⩾
deg

(
𝑓∗𝑋(𝐾𝑋∕𝑇 + Δ)

)
𝑞𝑛

.
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4 CODOGNI et al.

The above Theorem B is a special case of Theorem 5.6 that proves similar slope inequalities
for generic slc families (i.e., such that 𝑋 is deminormal, 𝐾𝑋∕𝑇 + Δ is ℚ-Cartier and the general
fiber (𝐹, Δ𝐹) is slc, see setup 5.1). Theorem 5.6 is reduced, by taking the normalization of 𝑋, to
Proposition 5.5 in which we prove similar slope inequalities for generic lc families 𝑓∶ (𝑋, Δ) → 𝑇

(i.e., such that 𝑋 is normal, 𝐾𝑋∕𝑇 + Δ is ℚ-Cartier and the general fiber (𝐹, Δ𝐹) is lc, see setup
5.1). We use the condition of being generic lc family through the results of O. Fujino [21] (see also
Theorem 5.2 and Corollary 5.3), which guarantee the nefness of the relative log-canonical bundle
and of the push-forwards of pluri-log-canonical bundles.
As an application of our slope inequalities for KSB-stable families, we can describe a portion of

the ample cone of the proper DM-stack𝑛,𝑣 (which, by definition, is equal to the ample cone of
its projective coarse moduli space𝑀𝑛,𝑣) of 𝑛-dimensional KSB varieties of volume 𝑣. We denote
by 𝜆𝐶𝑀 the Chow-Mumford ℚ-divisor, which is ample by [45], and by 𝜆𝑚 the 𝑚-th determinant
ℚ-divisor, which are nef for any 𝑚 big and divisible enough by [21] (the definitions are recalled
in Section 5.2). The following result describes infinitely many two-dimensional subcones of the
ample cone of𝑛,𝑣.

Theorem C (Ample cone of KSB moduli spaces). Fix 𝑛 ∈ ℕ>0 and 𝑣 ∈ ℚ>0.

(1) Consider a positive integer𝑚 such that𝑚𝐾𝑉 is Cartier and globally generated for any𝑉 ∈ 𝑛,𝑣

and let𝑤 ∈ ℚ>0 such that the volume of the pull-back of𝐾𝐹 to any irreducible component of the
normalization of 𝑉 is at least 𝑤. Then the ℚ-divisor

𝜆𝐶𝑀 − 𝜀𝜆𝑚

is ample on𝑛,𝑣 for every rational number 𝜀 in [0, 1

𝑚𝑛+1

2𝑤𝑚𝑛

𝑤𝑚𝑛+𝑛
).

(2) Consider two positive integers𝑚 and 𝑞 such that, for every 𝑉 ∈ 𝑛,𝑣 , either𝑚𝑞𝐾𝑉 is Cartier or
𝜙𝑚𝑞𝐾𝑉

is generically finite. Then the ℚ-divisor

𝜆𝐶𝑀 − 𝜀𝜆𝑚

is ample on𝑛,𝑣 for every rational number 𝜀 in [0, 1

𝑞𝑛𝑚𝑛+1 ).

TheoremC follows from the ampleness of 𝜆𝐶𝑀 together with the nefness of the divisors consid-
ered in Theorem 5.11. We also establish a variant of Theorem 5.11, namely Theorem 5.9, in which
we prove that some divisors of𝑛,𝑣 are “nef away from the boundary”, that is, it intersects non-
negatively all the projective integral curves of𝑛,𝑣 whose generic point parametrizes a normal
KBS-stable variety.
In dimension 𝑛 = 1 (in which case1,2g−2 is themoduli stack of stable curves of genus g ⩾ 2),

some of the divisors appearing in Theorem 5.11 are nef but not ample, which implies that the right
extremes of the intervals appearing in above Theorem are sharp. More precisely, part (1) is sharp
if𝑚 = 𝑤 = 1 and part (2) is sharp if𝑚 = 𝑞 = 1 (see Remark 5.12).
At the end of Section 5, we introduce the lambda nef coneNefΛ(𝑛,𝑣) as the intersection of the

nef coneNef(𝑛,𝑣)with linear subspace of the rationalNeron–Severi vector space spanned by the
Chow–Mumford line bundle 𝜆𝐶𝑀 and the classes 𝜆𝑚 for any𝑚 ⩾ 1, and we ask for which moduli
spaces 𝑣,𝑛, Theorem C, together with the nefness of 𝜆𝑚, is sufficient to describe NefΛ(𝑛,𝑣).
This is indeed the case in dimension 𝑛 = 1 (see Remark 5.12), and it was one of the original
motivation of Cornalba–Harris’s paper [18].
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 5

Slope inequalities for K-stable families

In this subsection, we collect the slope inequalities that we prove on families of K-(semi-,poly-)
stable log Fano pairs.
Recall thatK-polystability is a stability condition for log Fano pairs equivalent to the existence of

a Kähler–Einstein metric; it also allows the construction of projective moduli spaces. It is worth
recalling that the study of the Harder–Narasimhan filtration, so important for the proof of our
slope inequalities, plays also a crucial role in the proof of the projectivity of this moduli space, see
[14, 15, 46, 53].
In this case, as opposite to the KSB-stable case, the push-forward of the pluri-anti-canonical

bundle is not nef, see Remark 6.3. Its negativity can be however bounded in terms of the stability
threshold 𝛿(𝐹, Δ𝐹) of the generic fiber of the family. This threshold is a numerical invariant which
measure the stability of a log Fano pair: it is the first time that such an invariant plays a role in a
slope inequality.
Let us recall here one of our inequalities, which holds just when the general fiber is K-stable,

referring to Section 6 for the notations and some variants.
The result is formulated in terms of an auxiliary line bundle𝐻𝐶 ; using the projection formula as

shown after the statement of Theorem 6.4 one can get the slope inequality for the anti-canonical
line bundle.

Theorem D (see Theorem 6.4). Let 𝑓∶ (𝑋, Δ) → 𝑇 be a fibration from a normal projective irre-
ducible variety𝑋 of dimension 𝑛 + 1 to a smooth projective irreducible curve 𝑇 such that−𝐾𝑋∕𝑇 − Δ

is ℚ-Cartier and 𝑓-ample.
Assume that the there exists a K-stable geometric fiber (𝐹, Δ𝐹), i.e. 𝛿(𝐹, Δ𝐹) > 1. Let 𝑣 ∶= (−𝐾𝐹 −

Δ𝐹)
𝑛 = ((−𝐾𝑋∕𝑇 − Δ)|𝐹)𝑛. For any rational number 𝐶 > 1 consider the ℚ-Cartier ℚ-divisor on 𝑋

𝐻𝐶 ∶= −𝐾𝑋∕𝑇 − Δ + 𝐶
𝛿(𝐹, Δ𝐹)

(𝛿(𝐹, Δ𝐹) − 1)𝑣(𝑛 + 1)
𝑓∗𝜆𝐶𝑀(𝑋∕𝑇).

(1) Let 𝑞 ⩾
1

𝐶−1
be a positive integer such that 𝑞𝐻𝐶 is Cartier. Then

𝑞𝑛+1𝐻𝑛+1
𝐶

⩾ deg 𝑓∗𝑋(𝑞𝐻𝐶).

(2) Let 𝑞 ⩾
1

𝐶−1
be a positive integer such that 𝑞𝐻𝐶 is Cartier and −𝑞(𝐾𝐹 + Δ𝐹) gives a generically

finite map. Then

𝑞𝑛+1𝐻𝑛+1
𝐶

⩾ 2
ℎ0(𝐹, 𝑞(−𝐾𝐹 − Δ𝐹)) − 𝑛

ℎ0(𝐹, 𝑞(−𝐾𝐹 − Δ𝐹))
deg 𝑓∗𝑋(𝑞𝐻𝐶).

(3) Let 𝑞 ⩾
1

𝐶−1
be a positive integer such that 𝑞𝐻𝐶 is Cartier and−𝑞(𝐾𝐹 + Δ𝐹) is globally generated.

Then

𝑞𝑛+1𝐻𝑛+1
𝐶

⩾ 2
𝑞𝑛𝑣

𝑞𝑛𝑣 + 𝑛
deg 𝑓∗𝑋(𝑞𝐻𝐶) .

When the generic fiber is K-polystable but not K-stable, we show in Theorem 6.7 the statement
of Theorem D holds true up to a finite base change and a birational modification (which does not
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6 CODOGNI et al.

change the general fiber) of the original family and up to replacing 𝛿(𝐹, Δ𝐹) with the 𝕋-twisted
stability threshold 𝛿𝕋(𝐹, Δ𝐹), for some maximal torus 𝕋 ⊆ Aut(𝐹, Δ𝐹). In Example 6.8, we show
that such a birational modification is necessary.
In Theorem 6.9, we apply the slope inequality of TheoremD in order to prove that some divisors

on the moduli stack𝐾
𝑛,𝑣 of K-semistable Fano varieties with dimension 𝑛 and volume 𝑣 are nef

away from the strictly K-polystable locus, that is, they intersect non-negatively the curves that
are generically contained in the open Deligne–Mumford substack

𝐾,𝑠
𝑛,𝑣 ⊆ 𝐾

𝑛,𝑣 parameterizing
K-stable Fano varieties.

Slope inequality for arbitrary divisors

All the previous results follow from some general slope inequalities for a ℚ-Cartier ℚ-divisor
𝐿 on the total space of a family of 𝑛-dimensional varieties 𝑓∶ 𝑋 → 𝑇 (with dim𝑇 = 1), as in
setup 3.1. In this case, we do not assume any stability condition, but we rather make some
semi-positivity assumptions: namely the nefness of 𝐿 and 𝑓∗𝑋(𝐿). This semi-positivity is usu-
ally implied by a suitable stability condition, for example, KSB-stability or K-stability. For
these results, we need to assume that the total space 𝑋 is normal, contrary to the KSB case
where deminormality is enough. Note that for the applications to families of KSB-stable or K-
stable varieties, it is crucial to work with ℚ-Cartier ℚ-divisors, rather than just Cartier or Weil
divisors.
The first type slope inequalities that we prove in this general context involve the numerical

invariants of the polarized general fiber (𝐹, 𝐿𝐹), and more specifically either 𝐿𝑛𝐹 or ℎ
0(𝐹, 𝐿𝐹).

Theorem E (see Corollaries 4.2, 4.3, 4.7, and 4.8). Let 𝑓 ∶ 𝑋 → 𝑇 be a fibration , where 𝑋 is a
normal projective variety of dimension 𝑛 + 1 and 𝑇 is a smooth projective curve, and let 𝐹 be the
general fiber of 𝑓.
Let 𝐿 be a ℚ-Cartier ℚ-divisor on 𝑋; denote by 𝐿𝐹 its restriction to 𝐹 and by 𝜙𝐿𝐹 the rational map

induced by 𝐿𝐹 . Assume that 𝐿 and 𝑓∗𝑋(𝐿) are nef.

(1) If 𝜙𝐿𝐹 is generically finite, then

𝐿𝑛+1 ⩾

⎧⎪⎪⎨⎪⎪⎩
4
ℎ0(𝐹,𝐿𝐹)−𝑛

ℎ0(𝐹,𝐿𝐹)
deg 𝑓∗𝑋(𝐿) if either dim𝐹 ⩾ 2 and 𝜅(𝐹) ⩾ 0,

or dim𝐹 = 1 and 𝐿𝐹 is special,
2
ℎ0(𝐹,𝐿𝐹)−𝑛

ℎ0(𝐹,𝐿𝐹)
deg 𝑓∗𝑋(𝐿) otherwise.

(2) If 𝐿𝐹 is Cartier, globally generated and big, then

𝐿𝑛+1 ⩾

⎧⎪⎪⎨⎪⎪⎩
4

𝐿𝑛
𝐹

𝐿𝑛
𝐹
+2𝑛

deg 𝑓∗𝑋(𝐿) if either dim𝐹 ⩾ 2 and 𝜅(𝐹) ⩾ 0,

or dim𝐹 = 1 and 𝐿𝐹 is special,

2
𝐿𝑛
𝐹

𝐿𝑛
𝐹
+𝑛

deg 𝑓∗𝑋(𝐿) otherwise.
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 7

(3) Suppose that 𝜙𝐿𝐹 is birational and 𝑛 ⩾ 2. Assume that the singularities of the general fiber 𝐹 are
canonical and let 𝑠 ∈ ℕ such that 𝐾𝐹 − 𝑠𝐿𝐹 ⩾ 0. Then

𝐿𝑛+1 ⩾ 2(𝑛 + 𝑠)
ℎ0(𝐹, 𝐿𝐹) − 𝑛 − 2

ℎ0(𝐹, 𝐿𝐹)
deg 𝑓∗𝑋(𝐿).

(4) Suppose that 𝐿𝐹 is Cartier, globally generated, 𝜙𝐿𝐹 is birational and 𝑛 ⩾ 2. Assume that the
singularities of the general fiber 𝐹 are canonical and let 𝑠 ∈ ℕ such that 𝐾𝐹 − 𝑠𝐿𝐹 ⩾ 0. Then

𝐿𝑛+1 ⩾ 2(𝑛 + 𝑠)
𝐿𝑛
𝐹

𝐿𝑛
𝐹
+ (𝑛 + 𝑠)(𝑛 + 2)

deg 𝑓∗𝑋(𝐿).

Note that both part (1) and (2) reduce to (0.1) if 𝑛 = 1 and 𝐿 = 𝐾𝑋∕𝑇 , under the further assump-
tion that the total space is smooth and the general fiber 𝐹 has genus at least two. However, while
the inequality (0.1) is sharp (see also Remark 4.4), we do not know if the above inequalities in
Theorem E are sharp for 𝑛 ⩾ 2 (see also Remark 4.5).
Moreover, the special cases of part (1) and (2) for 𝑛 = 2 and 𝐿 = 𝐾𝑋∕𝑇 were proved by, respec-

tively, Ohno [43, Prop. 2.1(1)] andHu-Zhang [29, Thm. 1.7], with the further assumption that𝑋 has
terminal singularities (which implies that 𝐹 is smooth of general type) but without assuming that
𝜙𝐾𝐹

is generically finite (see Remark 4.5). Notice, however, that if 𝐹 is singular the assumption
that 𝜙𝐾𝐹

is generically finite cannot be dropped, see Example 8.2.5.
The second type slope inequalities that we prove in this general context are independent of the

numerical invariants of the polarized general fiber (𝐹, 𝐿𝐹).

Theorem F (see Theorem 4.9). Let 𝑓 ∶ 𝑋 → 𝑇 be a fibration as in Theorem E and let 𝐿 be a ℚ-
Cartier ℚ-divisor on 𝑋. Assume that 𝐿 and 𝑓∗𝑋(𝐿) are nef.

(1) Assume that there exists a 𝑞 ∈ ℕ>0 such that at least one of the following two conditions holds
true
∙ 𝜙𝑞𝐿𝐹 is generically finite;
∙ 𝑞𝐿𝐹 is Cartier and big.
Then

𝐿𝑛+1 ⩾
deg 𝑓∗𝑋(𝐿)

𝑞𝑛
.

(2) Assume that there exists a 𝑞 ∈ ℕ>0 such that 𝜙𝑞𝐿𝐹 is generically finite, and either 𝑛 = dim𝐹 ⩾ 2

and 𝜅(𝐹) ⩾ 0 or dim𝐹 = 1 and ⌊𝑞𝐿𝐹⌋ is special. Then
𝐿𝑛+1 ⩾

2 deg 𝑓∗𝑋(𝐿)

𝑞𝑛
.

In particular, if the assumptions of either item (1) or item (2) hold and deg 𝑓∗𝑋(𝐿) > 0, then 𝐿

is big.

The proof of the above Theorem is inspired by [4, Page 69, Claim] (see however Remark 4.10).
In Examples 4.11 and 8.1, we show that the inequalities in Theorem F are sharp, at least for 𝑞 = 1.
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8 CODOGNI et al.

Plan of the paper

The paper is organized as follows.
In Section 1, we discuss some technicalities on rational maps associated to ℚ-divisors (not

necessarily integral nor Cartier) on normal or deminormal varieties.
In Section 2, we establish several Noether type inequalities (Propositions 2.1, 2.3, 2.7, and 2.9)

and Castelnuovo type inequalities (Propositions 2.13 and 2.14), which are crucial in proving our
slope inequalities and also interesting in their own (as we believe).
In Section 3, we study the Harder–Narasimhan filtration of 𝑓∗𝑋(𝐿) and the properties of the

induced chains of sub-divisors of 𝐿 (see Propositions 3.5 and 3.6). Moreover, we prove the numer-
ical Lemma 3.7 (see also Corollary 3.8 and Remark 3.9) that is used to bound from below the top
self-intersection of 𝐿.
In Section 4, we prove the slope inequalities stated in subsection “Slope inequality for arbitrary

divisors” for an arbitrary ℚ-Cartier ℚ-divisor 𝐿 on the total space of a family of 𝑛-dimensional
varieties. Note that Theorem E is a consequence of Theorems 4.1 and 4.6, which establish some
slope inequalities for the relatively globally generated part 𝑀𝓁 of 𝐿. We think that this result is
interesting on its own.
Section 5 is divided in two subsections: in subsection 5.1, we apply the results of Section 4 to

get slope inequalities for the relative log canonical divisor on families which are generically lc
or slc, for example, families of KSB-stable pairs (see Proposition 5.5 and Theorem 5.6); in subsec-
tion 5.2, we interpret the slope inequalities for families of KSB-stable varieties as the nefness (or
nefness away from the boundary) of suitable ℚ-divisors on the moduli stack𝑛,𝑣 of KSB-stable
varieties of dimension 𝑛 and volume 𝑣 (see Theorems 5.9 and 5.11). We end subsection 5.2 with
some speculations on the structure of the lambda nef cone NefΛ(𝑛,𝑣) of𝑛,𝑣.
Section 6 is divided in two subsections: in subsection 6.1, we prove the slope inequality for ℚ-

Gorenstein families of anti-canonically polarized pairs with general fiber which is K-stable (see
Theorem 6.4) or K-polystable (see Theorem 6.7); in subsection 6.2, we apply the slope inequal-
ities for families of generically K-stable varieties to prove the nefness, away from the strictly
K-polystable locus, of some divisors on themoduli stack𝐾

𝑛,𝑣 of K-semistable Fano varieties with
dimension 𝑛 and volume 𝑣 (see Theorem 6.9).
In Section 7, we survey andmake some comments on a positivity notion introduced and studied

by M. Barja and L. Stoppino ([8–10, 47]), namely the 𝑓-positivity (see Definition 7.1), which is
the strongest slope inequality one can hope for (see Proposition 7.3) and that it holds if either
the general polarized fiber (𝐹, 𝐿𝐹) is GIT-stable (see Theorem 7.5) or 𝑓∗𝑋(𝐿) is semistable (see
Theorem 7.6).
In Section 8, we compute the slope of some natural divisors on interesting families of polarized

varieties, namely families of varieties of minimal degree and polarized hyperelliptic varieties (see
§8.1) and families of hypersurfaces in weighted projective spaces (see § 8.2), and we show that
some of our slope inequalities are sharp.

CONVENTIONS

We always work over an algebraically closed field 𝑘 of characteristic zero. By variety we mean a
reduced scheme of finite type over 𝑘, not necessarily irreducible.
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 9

1 SOME PRELIMINARY RESULTS ON ℚ-DIVISORS

We briefly collect some facts and notations which are standard for Cartier divisors, but slightly
less standard for Weil divisors or ℚ-divisors.

1.1 Normal case

Given a normal projective variety𝑊 and a divisor (sometimes called Weil divisor or ℤ-divisor or
integral divisor) 𝐷, we define the coherent sheaf 𝑊(𝐷) by

𝑊(𝐷)(𝑈) = {𝑓 ∈ 𝐾(𝑈) | ((𝑓) + 𝐷)|𝑈 ⩾ 0} for any open 𝑈 ⊆ 𝑋.

Note that 𝑊(𝐷) is a rank one reflexive sheaf and it is invertible if and only if 𝐷 is Cartier.
The global non-zero sections𝐻0(𝑊,𝑊(𝐷)) (which we will also denote by𝐻0(𝑊,𝐷)) modulo

scalars form the complete linear system |𝐷|, which can be identified with the projective space of
effective divisors linearly equivalent to 𝐷. Note that the non-Cartier locus of 𝐷 is always included
in the base locus of |𝐷|: indeed if 𝑝 is a point of 𝐷 such that there exists a divisor 𝐸 linearly
equivalent to 𝐷 that does not pass through 𝑝, the difference 𝐷 − 𝐸 is Cartier (as it is the divisor of
a rational function), and since 𝐸 is trivial around 𝑝, 𝐷 is Cartier at 𝑝.
Whenever ℎ0(𝑊,𝑊(𝐷)) ⩾ 1, we can consider the rational map associated to 𝐷

𝜙𝐷 ∶ 𝑊 ⤏ ℙ𝐻0(𝑊,𝑊(𝐷))∨ =∶ ℙ

𝑝 ↦ [𝑓 ↦ 𝑓(𝑝)]
(1.1)

The above definitions can be extended to a ℚ-divisor 𝐷 on 𝑊 by setting 𝑊(𝐷) = 𝑊(⌊𝐷⌋),|𝐷| = |⌊𝐷⌋| and 𝜙𝐷 = 𝜙⌊𝐷⌋, where ⌊𝐷⌋ is the round down of 𝐷. We denote by {𝐷} ∶= 𝐷 − ⌊𝐷⌋
the fractional part of 𝐷, which is always an effective ℚ-divisor.
Assume now that 𝐷 is a ℚ-Cartier ℚ-divisor. We can extend the rational map 𝜙𝐷 over the

codimension 1 points, and then take a resolution of indeterminacy 𝜇∶ 𝑉 → 𝑊 of 𝜙𝐷 , that is, a
birational projective morphism 𝜇∶ 𝑉 → 𝑊 such that the composition 𝜙𝐷 ∶= 𝜙𝐷 ◦𝜇 ∶ 𝑉 → ℙ is
a regular morphism.
We want to compare the pull-back 𝜇∗(𝐷), which is a well-defined ℚ-Cartier ℚ-divisor on 𝑉,

with the pull-back 𝐻 via 𝜙𝐷 of any hyperplane divisor on ℙ, which is Cartier and base point free
divisor on 𝑉 (well-defined up to linear equivalence).

Lemma 1.1. Keep the above notation.

(i) The natural map 𝑊(𝐷) → 𝜇∗𝑉(𝜇
∗𝐷) is an isomorphism. In particular, we have an

isomorphism 𝜇∗ ∶ 𝐻0(𝑊,𝑊(𝐷))
≅
F→ 𝐻0(𝑉,𝑂𝑉(𝜇

∗𝐷)), which implies that 𝜙𝐷 = 𝜙𝜇∗𝐷 .
(ii) We have a decomposition

|𝜇∗𝐷| = |𝐻| + 𝐹,

with 𝐹 an effective divisor. In particular, 𝜙𝐷 = 𝜙𝐻 and we have that

𝜇∗𝐷 ∼ 𝐻 + 𝐸,

where 𝐸 = 𝐹 + {𝜇∗(𝐷)} is an effective ℚ-Cartier ℚ-divisor.
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10 CODOGNI et al.

Proof. Part (i) is [41, Lemma 2.11], so we only prove (ii).
By (i) the map associated to |𝜇∗𝐷| is a morphism and so we have a decomposition

|𝜇∗𝐷| = |𝐻| + 𝐹

where 𝐹 is an effective divisor which is the fixed part of |𝜇∗𝐷|. We conclude that
𝜇∗𝐷 = ⌊𝜇∗𝐷⌋ + {𝜇∗𝐷} ∼ 𝐻 + 𝐹 + {𝜇∗𝐷} = 𝐻 + 𝐸. □

1.2 Deminormal case

Let 𝑋 be a deminormal (i.e., 𝑆2 and nodal in codimension one) variety. Let 𝐷 be ℚ-divisor on
𝑋 such that the support of 𝐷 contains no irreducible component of the conductor. Then there
exists a closed subset 𝑍 ⊂ 𝑋 of codimension at least 2 such that 𝑋0 = 𝑋 ⧵ 𝑍 contains only reg-
ular and normal crossing points, and ⌊𝐷⌋|𝑋0 = ⌊𝐷|𝑋0⌋ is a Cartier divisor. The sheaf 𝑋(𝐷) =

𝑖∗𝑋0(𝐷|𝑋0) is reflexive, where 𝑖 ∶ 𝑋0 ↪ 𝑋 is the inclusion (see [33, Section 5.6]), and it induces a
map 𝜙𝐷 .
Let 𝜂 ∶ 𝑊 → 𝑋 be the normalization of 𝑋, and set 𝑊0 = 𝑊 ⧵ 𝜂−1𝑍. Note that 𝜂−1𝑍 has

codimension at least 2 in𝑊, as 𝜂 is finite. We have a natural injection

𝐻0(𝑋0, ⌊𝐷|𝑋0⌋) ↪ 𝐻0(𝑊0, 𝜂∗⌊𝐷|𝑋0⌋)
induced by pull-back of sections.
Assume that 𝐷 is ℚ-Cartier and let 𝑗 ∶ 𝑊0 ↪ 𝑊 be the inclusion. Then 𝑊(𝜂∗𝐷) =

𝑗∗𝑊0(𝜂∗(𝐷|𝑋0)) (they are both reflexive sheaves and they coincide on𝑊0) and so

𝐻0(𝑋,𝐷) = 𝐻0(𝑋0, 𝐷|𝑋0) ↪ 𝐻0(𝑊0, 𝜂∗(𝐷|𝑋0)) = 𝐻0(𝑊, 𝜂∗𝐷).

We conclude that 𝜙𝐷 ◦ 𝜂 factors through 𝜙𝜂∗𝐷 . In particular, the following holds.

Lemma 1.2. If 𝜙𝐷 is generically finite, then 𝜙𝜂∗𝐷 is generically finite.

2 NOETHER AND CASTELNUOVO INEQUALITIES

2.1 Noether inequalities

Noether’s inequality states that, on a smooth minimal projective surface of general type 𝑆, one
has

𝐾2
𝑆 ⩾ 2ℎ0(𝑆, 𝐾𝑆) − 4 .

In this section, we prove a number of generalizations of this formula, which we will later apply to
the fibers of our families of varieties.
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 11

Proposition 2.1 (Noether inequality I).Let𝐹 be anormal irreducible projective variety of dimension
𝑛 ⩾ 2 such 𝜅(𝐹) ⩾ 0. Suppose that we are given

(i) a nef ℚ-Cartier ℚ-divisors𝐻 such that dim𝜙𝐻(𝐹) = 𝑘 for some 0 ⩽ 𝑘 ⩽ 𝑛;
(ii) nef ℚ-Cartier ℚ-divisors 𝐿𝑘+1, … , 𝐿𝑛 such that dim𝜙𝐿𝑖 (𝐹) ⩾ 𝑖 (for any 𝑘 + 1 ⩽ 𝑖 ⩽ 𝑛).

Then

𝐿𝑛 ⋯𝐿𝑘+1 ⋅𝐻
𝑘 ⩾ 2ℎ0(𝐹, ⌊𝐻⌋) − 2𝑘 ⩾ 2.

Recall that the Kodaira dimension 𝜅(𝐹) of 𝐹 is defined as the Kodaira dimension of any
projective smooth model of 𝐹.

Proof. The last inequality follows from the fact that if 𝜙𝐻(𝐹) ⊆ ℙ(𝐻0(𝐹, ⌊𝐻⌋)∨) has dimension 𝑘

then it must hold that ℎ0(𝐹, ⌊𝐻⌋) ⩾ 𝑘 + 1. Let us focus now on the first inequality.
First of all, we make the following
Reduction:wemay assume that𝐹 is smooth and𝐻, 𝐿𝑘+1, … , 𝐿𝑛 are base point free (Cartier) divi-

sors.
In fact, take a common resolution 𝜋 ∶ 𝐹′ → 𝐹 of 𝜙𝜋∗𝐻 and 𝜙𝜋∗𝐿𝑖

(for any 𝑘 + 1 ⩽ 𝑖 ⩽ 𝑛) with 𝐹′

smooth. By Lemma 1.1, we can write

𝜋∗𝐻 ∼ 𝐻′ + 𝐷 and 𝜋∗𝐿𝑖 ∼ 𝐿′𝑖 + 𝐸𝑖,

where𝐻′ and 𝐿′
𝑖
are base point free Cartier divisors and 𝐷 and 𝐸𝑖 are effective ℚ-divisors, in such

a way that 𝜙𝐻 ◦𝜋 = 𝜙𝜋∗𝐻 = 𝜙𝐻′ and 𝜙𝐿𝑖 ◦𝜋 = 𝜙𝜋∗𝐿𝑖
= 𝜙𝐿′

𝑖
. In particular, we have that

dim𝜙𝐻′(𝐹′) = dim𝜙𝐻(𝐹) = 𝑘 and dim𝜙𝐿′
𝑖
(𝐹′) = dim𝜙𝐿𝑖 (𝐹) ⩾ 𝑖. (2.1)

Moreover, Lemma 1.1 gives also that the pull-back via 𝜋 gives an isomorphism

𝜋∗ ∶ 𝐻0(𝐹, ⌊𝐻⌋) ≅
F→ 𝐻0(𝐹′,𝐻′). (2.2)

Finally, we compute

𝐿𝑛 ⋯𝐿𝑘+1 ⋅𝐻
𝑘 =𝜋∗𝐿𝑛 ⋯𝜋∗𝐿𝑘+1 ⋅ 𝜋

∗(𝐻)𝑘 = (𝐿′𝑛 + 𝐸𝑛)⋯ (𝐿′
𝑘+1

+ 𝐸𝑘+1) ⋅ (𝐻
′ + 𝐷)𝑘 (2.3)

⩾𝐿′𝑛 ⋯𝐿′
𝑘+1

⋅ (𝐻′)𝑘

where the last inequality follows by the fact that 𝐷 and 𝐸𝑖 are effective and 𝜋∗𝐻 and 𝜋∗𝐿𝑖 are nef
(see also [13, Prop 2.3]). Combining (2.1), (2.2), and (2.3), if we prove the result for the base point
free Cartier divisors 𝐻′ and 𝐿′

𝑖
on 𝐹′, then the result follows for the nef ℚ-Cartier ℚ-divisors 𝐻

and 𝐿𝑖 on 𝐹. Hence, the reduction is complete.
We now distinguish two cases.
I Case: 𝑘 = 𝑛.
We proceed by induction on 𝑛 ⩾ 2. The base case 𝑛 = 2 is proved by Shin in [49, Theorem 2].

Assume that the result is true in dimension 𝑛 − 1 and let us prove it in dimension 𝑛. Let 𝐷 ⊂ 𝐹

be a general divisor of |𝐻|. Observe that 𝐷 is a smooth irreducible variety of dimension 𝑛 − 1 (by
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12 CODOGNI et al.

Bertini theorem), and the restriction 𝐻|𝐷 is base point free with the property that dim𝜙𝐻|𝐷 (𝐷) =
𝑛 − 1, which follows fromour assumptions on𝐻 and the fact that𝐷 is general. As𝑚𝐾𝐷 = (𝑚𝐾𝑋 +

𝑚𝐻)|𝐷 by adjunction,𝑚𝐾𝐹 is effective for𝑚 >> 0 (since 𝜅(𝑋) ⩾ 0 by hypothesis) and𝐷 is general
in |𝐻|, we also have 𝜅(𝐷) ⩾ 0. By the induction hypothesis, we have that

𝐻𝑛 = (𝐻|𝐷)𝑛−1 ⩾ 2ℎ0(𝐷,𝐻|𝐷) − 2(𝑛 − 1). (2.4)

From the exact sequence

0 → 𝐻(−𝐷) = 𝑋

⋅𝐷
FF→ 𝐻 → 𝐻|𝐷 → 0,

we deduce that

ℎ0(𝐷,𝐻|𝐷) ⩾ ℎ0(𝐹,𝐻) − ℎ0(𝐹,𝐹) = ℎ0(𝐹,𝐻) − 1. (2.5)

We conclude by putting together (2.4) and (2.5).
II Case: 0 ⩽ 𝑘 < 𝑛.
Consider themorphism𝜙𝐻 ∶ 𝐹 ↠ 𝐵 ⊆ ℙ𝑟 ≅ ℙ(𝐻0(𝐹,𝐻)∨), where 𝑟 = ℎ0(𝐹,𝐻) − 1. The image

of a complete base point free linear system is a non-degenerate integral variety and hence we have
(see, e.g., [20])

deg 𝐵 ⩾ 𝑟 − dim𝐵 + 1 = ℎ0(𝐹,𝐻) − 𝑘. (2.6)

Let 𝜙𝐻 ∶ 𝐹
𝜓
F→ �̃�

𝜋
F→ 𝐵 be the Stein factorization of 𝜙𝐻 , where 𝜓 ∶ 𝐹 → �̃� has connected fibers and

𝜋 ∶ �̃� → 𝐵 is a finite map and let 𝐺 be a general fiber of 𝜓. Note that

𝐿𝑛 ⋯𝐿𝑘+1 ⋅𝐻
𝑘 = deg(𝜋) deg(𝐵)(𝐿𝑛)|𝐺 ⋯ (𝐿𝑘+1)|𝐺. (2.7)

The general fiber 𝐺 of 𝜓 is smooth (by Bertini’s theorem), connected, of dimension 𝑛 − 𝑘 ⩾ 1

and, for any 𝑘 + 1 ⩽ 𝑖 ⩽ 𝑛, the divisor 𝐿𝑖 |𝐺 is base point free with dim𝜙𝐿𝑖 |𝐺 (𝐺) = dim𝜙𝐿𝑖 (𝐹) − 𝑘 ⩾

𝑖 − 𝑘, as it follows from the assumption that dim𝜙𝐿𝑖 (𝐹) ⩾ 𝑖 and the fact that the fibers of 𝜓 cover
the entire variety 𝐹 (and 𝐺 is a general fiber of 𝜓). Moreover, as 𝐺 is general, it is not contained
in the base locus of𝑚𝐾𝐹 with𝑚 any fixed integer; hence, the hypothesis 𝜅(𝐹) ⩾ 0, together with
the adjunction formula 𝑚𝐾𝐷 = (𝑚𝐾𝑋 +𝑚𝐻)|𝐷 , implies that 𝜅(𝐺) ⩾ 0. Now, Lemma 2.2 below
implies that

(𝐿𝑛)|𝐺 ⋯ (𝐿𝑘+1)|𝐺 ⩾ 2. (2.8)

We conclude by combining (2.6), (2.7), and (2.8). □

Lemma 2.2. Let𝐺 be a smooth projective irreducible variety of dimension𝑚 ⩾ 1 such that 𝜅(𝐺) ⩾ 0.
Let 𝐿1, … , 𝐿𝑚 be base point free divisors such that dim𝜙𝐿𝑖 (𝐺) ⩾ 𝑖 for any 𝑖 = 1, … ,𝑚. Then we have
that

𝐿𝑚 ⋯𝐿1 ⩾ 2.
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 13

Proof. The proof is by induction on𝑚 ⩾ 1.
If𝑚 = 1, then deg 𝐿1 ⩾ 2, for otherwise𝐺 would be isomorphic toℙ1 via 𝜙𝐿1 , which contradicts

the assumption that 𝜅(𝐺) ⩾ 0.
Assumenow that𝑚 ⩾ 2 and that the statement is true in dimension𝑚 − 1. Let𝐷 be a connected

component of a general element of |𝐿1|, which is smooth by Bertini’s theorem. As𝐷 is general, it is
not contained in the base locus of𝑚𝐾𝐺 with𝑚 any fixed integer; hence, the hypothesis 𝜅(𝐺) ⩾ 0,
together with the adjunction formula 𝑚𝐾𝐷 = (𝑚𝐾𝐺 +𝑚𝐷)|𝐷 , implies that 𝜅(𝐷) ⩾ 0. Moreover,
since the elements of |𝐿1| cover 𝑋 and dim𝜙𝐿𝑖 (𝐺) ⩾ 𝑖, we have that dim𝜙𝐿𝑖 |𝐷 (𝐷) ⩾ 𝑖 − 1 for any
𝑖 = 2, … ,𝑚 − 1. Hence, we can apply induction to the variety𝐷 and the divisors 𝐿2|𝐷,… , 𝐿𝑚|𝐷 and
we get

𝐿𝑚 ⋯𝐿1 = (𝐿𝑚)|𝐷 ⋯ (𝐿2)|𝐷 ⩾ 2. □

Proposition 2.3 (Noether inequality Ibis). Let 𝐹 be a normal irreducible projective variety of
dimension 𝑛 ⩾ 1. Let 𝑘 and ℎ two natural numbers such that ℎ + 𝑘 ⩽ 𝑛. Suppose that we are given

(i) a nef ℚ-Cartier ℚ-divisor𝐻 such that dim𝜙𝐻(𝐹) = 𝑘;
(ii) nef ℚ-Cartier ℚ-divisors 𝐿𝑘+1, … , 𝐿𝑘+ℎ such that dim𝜙𝐿𝑖 (𝐹) ⩾ 𝑖 for any 𝑘 + 1 ⩽ 𝑖 ⩽ 𝑘 + ℎ;
(iii) a nef and big Cartier divisor𝑀.

Then

𝑀𝑛−𝑘−ℎ ⋅ 𝐿𝑘+ℎ ⋯𝐿𝑘+1 ⋅𝐻
𝑘 ⩾ ℎ0(𝐹, ⌊𝐻⌋) − 𝑘.

Proof. First of all, with the same proof of the reduction step in Proposition 2.1, we can make
the following
Reduction: we may assume that 𝐹 is smooth, 𝐻, 𝐿𝑘+1, … , 𝐿𝑘+ℎ are base point free (Cartier)

divisors and𝑀 is a big and nef (Cartier) divisor.
Consider the morphism 𝜙𝐻 ∶ 𝐹 ↠ 𝐵 ⊆ ℙ𝑟 ≅ ℙ(𝐻0(𝐹,𝐻)∨), where 𝑟 = ℎ0(𝐹,𝐻) − 1. Since the

image of 𝜙𝐻 is a non-degenerate integral variety, then we have (see, e.g., [20])

deg 𝐵 ⩾ 𝑟 − dim𝐵 + 1 = ℎ0(𝐹,𝐻) − 𝑘. (2.9)

Let 𝜙𝐻 ∶ 𝐹
𝜓
F→ �̃�

𝜋
F→ 𝐵 be the Stein factorization of 𝜙𝐻 , where 𝜓 ∶ 𝐹 → �̃� has connected fibers and

𝜋 ∶ �̃� → 𝐵 is a finite map and let 𝐺 be a general fiber of 𝜓. Note that

𝑀𝑛−𝑘−ℎ ⋅ 𝐿𝑘+ℎ ⋯𝐿𝑘+1 ⋅𝐻
𝑘 ⩾ deg(𝜋) deg(𝐵)(𝑀|𝐺)𝑛−𝑘−ℎ ⋅ (𝐿𝑘+ℎ)|𝐺 ⋯ (𝐿𝑘+1)|𝐺. (2.10)

If 𝑘 = 𝑛 then we conclude using (2.9) and (2.10). If 𝑘 < 𝑛 then consider the general fiber 𝐺 of 𝜓
which is smooth (by Bertini’s theorem), connected (and hence irreducible) of dimension 𝑛 − 𝑘 ⩾

1. Using the fact that the fibers of 𝜓 cover the entire variety 𝐹 (and 𝐺 is a general fiber of 𝜓), we
have that

∙ for any 𝑘 + 1 ⩽ 𝑖 ⩽ 𝑘 + ℎ, the divisor 𝐿𝑖 |𝐺 is base point free with
dim𝜙𝐿𝑖 |𝐺 (𝐺) = dim𝜙𝐿𝑖 (𝐹) − 𝑘 ⩾ 𝑖 − 𝑘,

∙ 𝑀|𝐺 is nef and big.
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14 CODOGNI et al.

Now, Lemma 2.4 below implies that

(𝑀|𝐵)𝑛−𝑘−ℎ ⋅ (𝐿𝑘+ℎ)|𝐵 ⋯ (𝐿𝑘+1)|𝐵 ⩾ 1. (2.11)

We conclude by combining (2.9), (2.10) and (2.11). □

Lemma 2.4. Let 𝐺 be a smooth projective irreducible variety of dimension𝑚 ⩾ 0. Let 𝐿1, … , 𝐿ℎ be
base point free divisors, for some 0 ⩽ ℎ ⩽ 𝑚, such that dim𝜙𝐿𝑖 (𝐺) ⩾ 𝑖 for any 𝑖 = 1, … , ℎ and let𝑀
be a nef and big divisor. Then we have that

𝑀𝑚−ℎ ⋅ 𝐿ℎ ⋯𝐿1 ⩾ 1.

Proof. The proof is by induction on𝑚 ⩾ 1.
If𝑚 = 1, thenwe conclude since either deg 𝐿1 ⩾ 1 (because 𝜙𝐿1 is generically finite) or deg𝑀 ⩾

1 (because𝑀 is big).
Assume now that 𝑚 ⩾ 2 and that the statement is true in dimension 𝑚 − 1. If ℎ = 0 then we

have

𝑀𝑚 ⩾ 1

since 𝑀 is a nef and big divisor. If ℎ ⩾ 1, then we let 𝐷 to be a connected component of a gen-
eral element of |𝐿1|, which is smooth by Bertini’s theorem. Moreover, since the elements of |𝐿1|
cover 𝑋, we will have that 𝐿𝑖 |𝐷 is base point free with dim𝜙𝐿𝑖 |𝐷 (𝐷) ⩾ 𝑖 − 1 for any 𝑖 = 2, … , ℎ

and that 𝑀|𝐷 is nef and big. Hence, we can apply induction to the variety 𝐷 and the divisors
𝐿2|𝐷,… , 𝐿ℎ|𝐷,𝑀|𝐷 and we get

𝑀𝑚−ℎ ⋅ 𝐿ℎ ⋯𝐿1 = 𝑀(𝑚−1)−(ℎ−1)|𝐷 ⋅ (𝐿ℎ)|𝐷 ⋯ (𝐿2)|𝐷 ⩾ 1. □

Corollary 2.5. Let 𝐹 be a normal irreducible projective variety of dimension 𝑛 and let 𝐻 be a nef
ℚ-Cartier ℚ-divisor on 𝐹 such that 𝜙𝐻 is generically finite.

(i) We have that

𝐻𝑛 ⩾ ℎ0(𝐹, ⌊𝐻⌋) − 𝑛.

(ii) If, furthermore, 𝑛 = dim𝐹 ⩾ 2 and 𝜅(𝐹) ⩾ 0, then

𝐻𝑛 ⩾ 2ℎ0(𝐹, ⌊𝐻⌋) − 2𝑛 ⩾ 2.

Special cases of the above Corollary for 𝐻 an integral Cartier divisor are known: part (i) is
classical (see [20]); part (ii) was proved by Kobayashi in [31, Proposition 2.1] under the stronger
assumption that 𝑝g (𝐹) > 0 and by Shin in [49, Theorem 2] for 𝑛 = 2.

Proof. Part (i) follows Proposition 2.3 with 𝑘 = 𝑛 and ℎ = 0; part (ii) follows from Proposition 2.1
with 𝑘 = 𝑛. □
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 15

Remark 2.6. The inequalities in Corollary 2.5 are sharp and the cases where equalities holds are
classified, at least if𝐻 is an integral Cartier divisor. Indeed:

(i) If (𝐹,𝐻) is a pair as in Corollary 2.5 with𝐻 integral and Cartier for which𝐻𝑛 = ℎ0(𝐹,𝐻) − 𝑛

then 𝐻 is base point free and the image of 𝐹 under 𝜙𝐻 is a a non-degenerate normal
irreducible 𝑛-dimensional projective variety 𝑍 ⊆ ℙℎ0(𝐹,𝐿)−1 of minimal degree, i.e. deg𝑍 =

ℎ0(𝑍,𝑍(1)) − 𝑛 (see [20]).
(ii) Kobayashi proved in [31, Prop. 2.2] that if (𝐹,𝐻) is a pair as in Corollary 2.5 with 𝐻 integral

and Cartier for which𝐻𝑛 = 2ℎ0(𝐹,𝐻) − 2𝑛 then𝐻 is base point free and one of the following
two conditions are satisfied:
(a) 𝜙𝐻 is birational;
(b) 𝜙𝐻 is a generically finite double cover of a non-degenerate normal irreducible 𝑛-

dimensional projective variety 𝑍 ⊆ ℙℎ0(𝐹,𝐿)−1 of minimal degree.
Both cases do indeed occur (see [31, Ex. 2.3]): case (iia) occurs for example if 𝐹 is a K3 sur-
face and 𝐻 is a non-hyperelliptic big and nef divisor (we are not aware of similar examples
in higher dimensions); case (iib) includes the hyperelliptic polarized varieties studied by T.
Fujita in [22].

Proposition 2.7 (Noether inequality II). Let 𝐹 be a normal irreducible projective variety of
dimension 𝑛 = dim𝐹 ⩾ 1. Let 𝐿 and𝑀 two Cartier divisors on 𝐹 such that

∙ 𝐿 is base point free (hence nef) and 𝜙𝐿 is generically finite;
∙ 𝑀 is nef;
∙ 𝐿 −𝑀 is effective and 𝐿𝑛 − 𝐿𝑛−1 ⋅𝑀 ⩾ 1.

Then we have that

𝐿𝑛−1 ⋅𝑀 ⩾

{
2ℎ0(𝐹,𝑀) − 2 if dim𝐹 ⩾ 2 and 𝜅(𝐹) ⩾ 0;

ℎ0(𝐹,𝑀) − 1 otherwise.

Proof. We first make the following
Reduction: we may assume that 𝐹 is smooth.
In fact, let 𝜋 ∶ 𝐹′ → 𝐹 be a resolution of singularities. Then 𝜋∗𝐿 and 𝜋∗𝑀 are nef Cartier

divisors on𝐹′ such that𝜋∗𝐿 is base point free and𝜋∗𝐿 − 𝜋∗𝑀 is effective.Moreover,𝜙𝜋∗𝐿 is gener-
ically finite and ℎ0(𝐹′, 𝜋∗𝑀) = ℎ0(𝐹,𝑀) (cf. the reduction step in the proof of Proposition 2.1).
Since (𝜋∗𝐿)𝑛 = 𝐿𝑛 and (𝜋∗𝐿)𝑛−1 ⋅ 𝜋∗𝑀 = 𝐿𝑛−1 ⋅𝑀, the reduction is complete.
The proof is now by induction on 𝑛. The base cases are 𝑛 = 2 for the first case and 𝑛 = 1 for the

second case. We need to distinguish the base cases from the inductive step.
Base case for the second inequality: 𝑛 = 1

If 𝐹 is a curve, then we have that ℎ0(𝐹,𝑀) ⩽ deg𝑀 + 1 (see, e.g., [28, Exercise IV.1.5]).
Base case for the first inequality: 𝑛 = 2

Consider a general divisor 𝐷 ∈ |𝐿|. By Bertini theorem (using that 𝐿 is base point free
and dim𝜙𝐿(𝐹) = 2 > 1), we get that 𝐷 is a smooth and connected curve. From the exact
sequence

0 → 𝐹(𝑀 − 𝐷)
⋅𝐷
FF→ 𝐹(𝑀) → 𝐷(𝑀𝐷) → 0
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16 CODOGNI et al.

and the fact that 𝑀 −𝐷 ∼ 𝑀 − 𝐿 is non effective (since 𝐿𝑛−1 ⋅ (𝑀 − 𝐿) < 0 and 𝐿 is nef by
assumption), we deduce that

ℎ0(𝐷,𝑀𝐷) ⩾ ℎ0(𝐹,𝑀). (2.12)

Consider now the divisor 𝑀𝐷 on 𝐷 that has degree deg𝑀𝐷 = 𝑀 ⋅ 𝐿 ⩾ 0. If 𝑀𝐷 is special, then
Clifford’s theorem gives

𝑀 ⋅ 𝐿 = deg𝑀𝐷 ⩾ 2ℎ0(𝐷,𝑀𝐷) − 2. (2.13)

If𝑀𝐷 is not special, then, using Riemann–Roch and the adjunction formula, we compute

ℎ0(𝐷,𝑀𝐷) = 1 + 𝐿 ⋅𝑀 − g(𝐷) = 1 + 𝐿 ⋅𝑀 − 1 −
𝐿2 + 𝐾𝐹 ⋅ 𝐿

2
⩽

𝐿 ⋅𝑀
2

=
deg𝑀𝐷

2
, (2.14)

where in the inequality we used that 𝐾𝐹 ⋅ 𝐿 ⩾ 0 since 𝐾𝐹 is ℚ-effective and 𝐿 is nef, and 𝐿2 =

𝐿 ⋅ (𝑀 + (𝐿 −𝑀)) ⩾ 𝐿 ⋅𝑀 since 𝐿 −𝑀 ⩾ 0 and 𝐿 is nef.
We now conclude using (2.12) and either (2.13) or (2.14).
Inductive step
Assume that the statement is true in dimension 𝑛 − 1 (which is at least 2 in the first case and

at least 1 in the second case) and let us prove it in dimension 𝑛. Take a general element 𝐷 ∈ |𝐿|,
which is a smooth connected variety of dimension 𝑛 − 1 by Bertini’s theorem (using that 𝐿 is base
point free and dim𝜙𝐿(𝐹) = 𝑛 > 1). Since 𝐷 is general, the restrictions 𝐿𝐷 and𝑀𝐷 will satisfy the
same assumptions of 𝐿 and 𝑀. Moreover, if 𝜅(𝐹) ⩾ 0, then 𝜅(𝐷) ⩾ 0. Hence, we can apply the
induction hypothesis to the line bundles𝑀𝐷 and 𝐿𝐷 on 𝐷 in order to deduce that

𝐿𝑛−1 ⋅𝑀 = 𝐿𝑛−2𝐷 ⋅𝑀𝐷 ⩾

{
2ℎ0(𝐷,𝑀𝐷) − 2 if 𝜅(𝐹) ⩾ 0;

ℎ0(𝐷,𝑀𝐷) − 1 otherwise.
(2.15)

We conclude using this and observing that (2.12) holds true also in the present case (with the same
proof). □

Remark 2.8. Both the inequalities in Proposition 2.7 are sharp, as we now show for any 𝑛 ⩾ 2 (for
𝑛 = 1 it is obvious).

(A) Let𝐹 = ℙ1 × ℙ𝑛−1 (with𝑛 ⩾ 2) and denote by𝑝1 and𝑝2 the two projections. Given a divisor𝐷
on ℙ1 of positive degree, set𝑀 ∶= 𝑝∗

1
𝐷 ⩽ 𝐿 ∶= 𝑝∗

1
𝐷 + 𝑝∗

2
𝐻 where 𝐻 is a hyperplane divisor

on ℙ𝑛−1. Then𝑀 is base point free (and hence nef), 𝐿 is very ample and we have that

𝐿𝑛 = 𝑛 deg𝐷 > 𝐿𝑛−1 ⋅𝑀 = deg𝐷 = ℎ0(ℙ1, 𝐷) − 1 = ℎ0(𝐹,𝑀) − 1.

(B) Let 𝜋 ∶ 𝐹 → ℙ1 × ℙ𝑛−1 (with 𝑛 ⩾ 2) be a finite double cover ramified along a smooth divisor
in |2(𝑚1𝑝

∗
1
(𝑝) + 𝑚2𝑝

∗
2
(𝐻))|, with 𝑚1 ⩾ 3 and 𝑚2 ⩾ 𝑛 + 1, where 𝑝 is a point of ℙ1 and 𝐻 is

a hyperplane divisor on ℙ𝑛−1 and 𝑝1 and 𝑝2 are the two projections of ℙ1 × ℙ𝑛−1. Note that

𝐾𝐹 = 𝜋∗(𝐾ℙ1×ℙ𝑛−1 + 𝑚1𝑝
∗
1(𝑝) + 𝑚2𝑝

∗
2(𝐻)) = (𝑚1 − 2)𝜋∗

1𝑝 + (𝑚2 − 𝑛)𝜋∗
2𝐻,
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 17

where 𝜋𝑖 = 𝑝𝑖 ◦𝜋 for 𝑖 = 1, 2. This shows that 𝐾𝐹 is ample, so that 𝐹 is a variety of general
type. Given a divisor 𝐷 on ℙ1 of positive degree, set𝑀 ∶= 𝜋∗

1
𝐷 ⩽ 𝐿 ∶= 𝜋∗

1
𝐷 + 𝜋∗

2
𝐻. Then𝑀

is base point free (and hence nef), 𝐿 is ample and base point free and we have that

𝐿𝑛 = 2𝑛 deg𝐷 > 𝐿𝑛−1 ⋅𝑀 = 2deg𝐷 = 2[ℎ0(ℙ1, 𝐷) − 1] = 2[ℎ0(𝐹,𝑀) − 1].

The above two examples will be generalized in Example 8.1.

The following result is not used in the current manuscript as it does not cover the case 𝐿𝑛 −
𝐿𝑛−1𝑀 = 1, but we believe it is interesting and can be applied in situations similar to the one of
this work.

Proposition 2.9 (Noether inequality III). Let 𝐹 be a normal projective irreducible variety of
dimension 𝑛 ⩾ 2 with 𝜅(𝐹) ⩾ 0.
Let 𝐿 and 𝑀 be nef Cartier divisors on 𝐹 such that |𝑀| is base point free. Assume that 𝜙𝐿 is

generically finite and that 𝐿 −𝑀 is effective. Then

𝐿𝑛−1 ⋅𝑀 ⩾

{
2ℎ0(𝐹,𝑀) − 2 if 𝐿𝑛 − 𝐿𝑛−1 ⋅𝑀 ⩾ 2,

2ℎ0(𝐹, 𝐿) − 2𝑛 if 𝐿𝑛 − 𝐿𝑛−1 ⋅𝑀 = 0.

Proof. We distinguish two cases.

First case: 𝐿𝑛 − 𝐿𝑛−1 ⋅𝑀 ⩾ 2.
Since 𝐿 and𝑀 are nef and 𝐿 ⩾ 𝑀, we have the following inequalities

𝐿𝑛 ⩾ 𝑀 ⋅ 𝐿𝑛−1 ⩾ 𝑀2 ⋅ 𝐿𝑛−2 ⩾ … ⩾ 𝑀𝑛−1 ⋅ 𝐿 ⩾ 𝑀𝑛. (2.16)

The Hodge index theorem [11, Prop. 2.5.1] says that (for any 𝑘 = 1,…𝑛 − 1)

(𝑀𝑘 ⋅ 𝐿𝑛−𝑘)2 ⩾ (𝑀𝑘+1 ⋅ 𝐿𝑛−𝑘−1)(𝑀𝑘−1 ⋅ 𝐿𝑛−𝑘+1),

or in other words that the intersection numbers in (2.16) form a log-concave sequence.
Let 0 ⩽ 𝑐 ∶= dim𝜙𝑀(𝐹) ⩽ 𝑛.
Note 𝑐 = 0 implies𝑀 ∼ 0 and so

𝑀 ⋅ 𝐿𝑛−1 = 0 = 2ℎ0(𝐹,𝑀) − 2,

and we are done. Hence, in what follows, we can assume that 𝑐 ⩾ 1.
By applying Proposition 2.1 to 𝐿 and𝑀 (using 𝑛 ⩾ 2), we get

𝑀𝑐 ⋅ 𝐿𝑛−𝑐 ⩾ 2ℎ0(𝐹,𝑀) − 2𝑐 ⩾ 2. (2.17)

By applying Lemma 2.10 to the log-concave sequence (2.16) truncated up to the term𝑀𝑐 ⋅ 𝐿𝑛−𝑐 ⩾ 2

and using the assumptions 𝐿𝑛 − 𝐿𝑛−1 ⋅𝑀 ⩾ 2 and 𝑐 ⩾ 1, we get

𝑀 ⋅ 𝐿𝑛−1 ⩾ 𝑀𝑐 ⋅ 𝐿𝑛−𝑐 + 2(𝑐 − 1). (2.18)

We now conclude putting together (2.17) and (2.18).
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18 CODOGNI et al.

Second case: 𝐿𝑛 = 𝐿𝑛−1 ⋅𝑀. By applying Proposition 2.1 to 𝐿 (using 𝑛 ⩾ 2), we get

𝐿𝑛−1 ⋅𝑀 = 𝐿𝑛 ⩾ 2ℎ0(𝐹, 𝐿) − 2𝑛. □

The following elementary lemma about log-concave sequences was used in the above proof.

Lemma 2.10. Let

𝑑𝑛 ⩾ 𝑑𝑛−1 ⩾ … ⩾ 𝑑0 ⩾ 2

be a sequence of positive integers such that 𝑛 ⩾ 2 and 𝑑2
𝑖
⩾ 𝑑𝑖+1𝑑𝑖−1 for any 0 < 𝑖 < 𝑛. If 𝑑𝑛 − 𝑑𝑛−1 ⩾

2, then 𝑑𝑖 − 𝑑𝑖−𝑖 ⩾ 2 for any 1 ⩽ 𝑖 ⩽ 𝑛. In particular,

𝑑𝑛−1 ⩾ 𝑑0 + 2(𝑛 − 1).

Notice that the above Lemma is false without the assumption that 𝑑0 ⩾ 2, e.g. 𝑑2 = 4 > 𝑑1 =

2 > 𝑑0 = 1.

Proof. The proof is by descending induction on 𝑖. Assume by contradiction that 𝑑𝑖 − 𝑑𝑖−1 ⩽ 1 for
some 𝑖 ∈ {1, … , 𝑛 − 1}. Then

𝑑2𝑖 ⩾ 𝑑𝑖+1𝑑𝑖−1 ⩾ (𝑑𝑖 + 2)(𝑑𝑖 − 1) = 𝑑2𝑖 + 𝑑𝑖 − 2,

which gives 𝑑𝑖 = 2 (since 𝑑𝑖 ⩾ 2 for any 𝑖). We then have 4 ⩾ 4𝑑𝑖−1 and so 𝑑𝑖−1 = 1, which
contradicts 𝑑0 ⩾ 2. □

2.2 Castelnuovo inequalities

Let 𝐶 be an irreducible non-degenerate curve in ℙ𝑁 of degree 𝑑. Catelnuovo inequality says that

𝑝g (𝐶) ⩽

(
𝐴

2

)
(𝑁 − 1) + 𝐴𝜀, (2.19)

where

𝐴 =

⌊
𝑑 − 1

𝑁 − 1

⌋
and 0 ⩽ 𝜀 = 𝑑 − 1 − 𝐴(𝑁 − 1) < 𝑁 − 1. (2.20)

Building on this classical result, we are going to prove some new inequalities that we will later
apply to the fibers of our families.

Lemma 2.11. Let 𝐶 be a smooth irreducible curve and let 𝐿 be a Cartier divisor on 𝐶 such that 𝜙𝐿 is
birational. Let 𝑝 ∈ ℕ such that 𝐾𝐶 − 𝑝𝐿 ⩾ 0. Then

deg 𝐿 ⩾ (𝑝 + 1)(ℎ0(𝐶, 𝐿) − 2) + 2.

Note that the above inequality is sharp (at least) in the following cases: (1) if 𝑝 = 0, 𝐶 is an
elliptic curve and 𝐿 is a line bundle on 𝐶 of degree at least 3 (so that 𝜙𝐿(𝐶) ⊂ ℙdeg 𝐿−1 is an
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 19

elliptic normal curve); if 𝑝 = 1, 𝐶 is a non-hyperelliptic curve and 𝐿 = 𝐾𝐶 ; if 𝑝 = 2 and 𝐿 is a
theta-characteristic on 𝐶 such that g(𝐶) = 3[ℎ0(𝐶, 𝐿) − 1] (such a theta characteristic exists on
any hyperelliptic curve 𝐶 of genus g divisible by 3 by [40, p. 191]).

Proof. Consider the map 𝜙𝐿 ∶ 𝐶 → ℙ𝑁 , where𝑁 = ℎ0(𝐶, 𝐿) − 1. Since 𝜙𝐿 is birational, the degree
𝑑 of 𝜙𝐿(𝐶) in ℙ𝑁 is at most deg 𝐿. Hence, it is enough to prove that

𝑑 ⩾ (𝑝 + 1)(𝑁 − 1) + 2. (2.21)

Using the assumption 𝐾𝐶 − 𝑝𝐿 ⩾ 0 and (2.19), we get that

𝑝𝑑

2
+ 1 ⩽

𝑝 deg 𝐿

2
+ 1 ⩽

deg𝐾𝐶

2
+ 1 = 𝑝g (𝐶) ⩽

(
𝐴

2

)
(𝑁 − 1) + 𝐴𝜀. (2.22)

Substituting 𝑑 = 𝐴(𝑁 − 1) + 𝜀 + 1 into (2.22), we arrive at the inequality

𝑝 + 2 ⩽ 𝐴(𝑁 − 1)(𝐴 − 1 − 𝑝) + (2𝐴 − 𝑝)𝜀. (2.23)

Assume now by contradiction that (2.21) does not hold, i.e. that 𝑑 < (𝑝 + 1)(𝑁 − 1) + 2, which
in terms of (2.20) is equivalent to

either 𝐴 ⩽ 𝑝 or 𝐴 = 𝑝 + 1 and 𝜀 = 0. (2.24)

In the first case𝐴 ⩽ 𝑝, the inequality (2.23), together with the fact that 2𝐴 − 𝑝 ⩽ 𝐴 and 0 ⩽ 𝜀 <

𝑁 − 1, gives that

𝑝 + 2 ⩽ 𝐴(𝑁 − 1)(𝐴 − 1 − 𝑝) + (2𝐴 − 𝑝)𝜀 ⩽ −𝐴(𝑁 − 1) + 𝐴𝜀 = 𝐴(𝜀 − 𝑁 + 1) ⩽ 0,

which is absurd. In the second case 𝐴 = 𝑝 + 1 and 𝜀 = 0, the inequality (2.23) gives the same
absurd 𝑝 + 2 ⩽ 0.
Hence, the inequality (2.21) must hold, and we are done. □

The following inequality generalizes the bound obtained by J. Harris in [26, Page 44].

Lemma 2.12. Let 𝐹 be a smooth irreducible variety of dimension 𝑛 ⩾ 1 and 𝐿 a Cartier divisor on
𝐹 such that 𝜙𝐿 is birational. Let 𝑝 ∈ ℕ such that 𝐾𝐹 − 𝑝𝐿 ⩾ 0. Then

𝐿𝑛 ⩾ (𝑛 + 𝑝)(ℎ0(𝐹, 𝐿) − 1 − 𝑛) + 2. (2.25)

Proof. Up to resolving the map 𝜙𝐿 we can assume that 𝐿 is base point free.
Let 𝐶 be the curve obtained intersecting 𝑛 − 1 general element of |𝐿|. Then 𝐶 is a smooth

irreducible curve and 𝐾𝐶 = (𝐾𝐹 + (𝑛 − 1)𝐿)|𝐶 . In particular 𝐾𝐶 − (𝑝 + 𝑛 − 1)𝐿𝐶 ⩾ 0. Since 𝜙𝐿𝐶
is birational (because 𝐶 is general), Lemma 2.11 implies that

𝐿𝑛 = deg 𝐿𝐶 ⩾ (𝑛 + 𝑝)(ℎ0(𝐶, 𝐿𝐶) − 2) + 2.

The conclusion follows from the fact that ℎ0(𝐶, 𝐿𝐶) ⩾ ℎ0(𝐹, 𝐿) − (𝑛 − 1). □
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20 CODOGNI et al.

Proposition 2.13. Let 𝐹 be a smooth irreducible projective variety of dimension 𝑛 ⩾ 2. Let 𝐿 and𝑀
two nef Cartier divisors on 𝐹 such that

∙ 𝜙𝐿 is birational;
∙ 𝑀 is base point free and dim𝜙𝑀(𝐹) = 𝑘 < 𝑛;
∙ 𝐾𝐹 − 𝑝𝐿 ⩾ 0 for some 𝑝 ∈ ℕ.

Then we have that

𝐿𝑛−𝑘 ⋅𝑀𝑘 ⩾ (𝑛 + 𝑝 − 𝑘 + 2)(ℎ0(𝐹,𝑀) − 𝑘).

Proof. Consider themorphism𝜙𝑀 ∶ 𝐹 ↠ 𝐵 ⊆ ℙ𝑟 ≅ ℙ(𝐻0(𝐹,𝑀)∨), where 𝑟 = ℎ0(𝐹,𝑀) − 1. Since
the image of 𝜙𝑀 is a non-degenerate irreducible variety of dimension 𝑘, then we have (see, e.g.,
[20])

deg 𝐵 ⩾ 𝑟 − 𝑘 + 1 = ℎ0(𝐹,𝑀) − 𝑘. (2.26)

Let 𝜙𝑀 ∶ 𝐹
𝜓
F→ �̃�

𝜋
F→ 𝐵 be the Stein factorization of 𝜙𝑀 , where 𝜓 ∶ 𝐹 → �̃� has connected fibers

and 𝜋 ∶ �̃� → 𝐵 is a finite map and let 𝐺 be a general fiber of 𝜓.
Using (2.26), we get that

𝐿𝑛−𝑘 ⋅𝑀𝑘 ⩾ deg(𝜋) deg(𝐵) ⋅ 𝐿𝑛−𝑘
𝐺

⩾ 𝐿𝑛−𝑘
𝐺

(ℎ0(𝐹,𝑀) − 𝑘). (2.27)

Since 𝐺 is a smooth irreducible variety of dimension 𝑛 − 𝑘 > 0 with 𝐾𝐺 − 𝑝𝐿𝐺 ⩾ 0 and 𝜙𝐿𝐺 is
birational, by Lemma 2.12 we obtain that

𝐿𝑛−𝑘
𝐺

⩾ (𝑛 − 𝑘 + 𝑝)(ℎ0(𝐺, 𝐿𝐺) − 1 − (𝑛 − 𝑘)) + 2. (2.28)

Moreover, since 𝜙𝐿𝐺 is birational (onto its image) and 𝐺 is not rational because 𝐾𝐺 ⩾ 𝑝𝐿𝐺 ⩾ 0,
we have

ℎ0(𝐺, 𝐿𝐺) ⩾ 𝑛 − 𝑘 + 2. (2.29)

The conclusion follows by putting together (2.27), (2.28), and (2.29). □

Proposition 2.14. Let 𝐹 be a smooth irreducible projective variety of dimension 𝑛 = dim𝐹 ⩾ 2. Let
𝐿 and𝑀 be two base point free Cartier divisors on 𝐹 such that

∙ 𝜙𝐿 is birational;
∙ 𝐿 −𝑀 is effective and 𝐿𝑛 − 𝐿𝑛−1 ⋅𝑀 ⩾ 1;
∙ 𝐾𝐹 − 𝑝𝐿 ⩾ 0 for some 𝑝 ∈ ℕ.

Then we have that

𝐿𝑛−1 ⋅𝑀 ⩾ (𝑛 + 𝑝)(ℎ0(𝐹,𝑀) − 2) + 2.

Proof. If dim𝜙𝑀(𝐹) = 0, then ℎ0(𝐹,𝑀) = 1 and the statement is trivial.
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 21

If dim𝜙𝑀(𝐹) = 1, then by Proposition 2.13 we have

𝐿𝑛−1 ⋅𝑀 ⩾ (𝑛 + 𝑝 + 1)(ℎ0(𝐹,𝑀) − 1)

⩾ (𝑛 + 𝑝)(ℎ0(𝐹,𝑀) − 2) + (𝑛 + 𝑝) ⩾ (𝑛 + 𝑝)(ℎ0(𝐹,𝑀) − 2) + 2.

Assume dim𝜙𝑀(𝐹) ⩾ 2 and let 𝐶 be the smooth irreducible curve obtained as intersection of
𝑛 − 1 general elements of |𝐿|.
We show by induction on 𝑛 that 𝜙𝑀𝐶

is birational. Assume first 𝑛 = 2. In this case 𝜙𝑀 is generi-
cally finite. Let {𝑝1, … , 𝑝𝑘} be a generic fiber of𝜙𝑀 , and suppose that𝐶 contains𝑝𝑖 for some 𝑖. Then
𝐶 does not contain any other point 𝑝𝑗 because 𝜙𝐿 is birational hence a generic section which van-
ish at 𝑝𝑖 does not vanish at 𝑝𝑗 . To treat the inductive step, we have to show that dim𝜙𝑀(𝐷) ⩾ 2 for
a generic section𝐷 of 𝐿. As 𝜙𝐿 is birational, a generic section of 𝐿 will intersect properly a generic
fiber of 𝜙𝑀 , hence the generic fiber of 𝜙𝑀 restricted to 𝐷 will have dimension one less than the
generic fiber of 𝜙𝑀 .
Therefore, using that

𝐾𝐶 − (𝑛 + 𝑝 − 1)𝑀𝐶 = (𝐾𝐹 + (𝑛 − 1)𝐿)|𝐶 − (𝑛 + 𝑝 − 1)𝑀𝐶 ⩾ (𝑛 + 𝑝 − 1)(𝐿𝐶 −𝑀𝐶) ⩾ 0,

we can apply Lemma 2.11 to𝑀𝐶 and conclude that

𝐿𝑛−1 ⋅𝑀 = deg𝑀𝐶 ⩾ (𝑝 + 𝑛)(ℎ0(𝐹,𝑀𝐶) − 2) + 2.

The result follows from the above inequality and the fact that ℎ0(𝐶,𝑀𝐶) ⩾ ℎ0(𝐹,𝑀), which one
can prove using inductively the exact sequence

0 → 𝐹(𝑀 − 𝐷)
⋅𝐷
FF→ 𝐹(𝑀) → 𝐷(𝑀𝐷) → 0

and the fact that 𝑀 −𝐷 ∼ 𝑀 − 𝐿 is non effective (since 𝐿𝑛−1 ⋅ (𝑀 − 𝐿) < 0 and 𝐿 is nef by
assumption). □

3 HARDER–NARASIMHAN FILTRATION

Assume we are in the following

Setup 3.1.

∙ Let 𝑇 be a smooth projective irreducible 𝑘-curve, 𝑋 a normal projective irreducible 𝑘-variety of
dimension 𝑛 + 1 and 𝑓∶ 𝑋 → 𝑇 a fibration, that is, a (projective) morphism with 𝑓∗𝑋 = 𝑇 .
In particular, 𝑓 is flat and with connected fibers. We denote by 𝐹 a general fiber of 𝑓 (i.e., the
fiber over a closed point of a conveniently small open subset of 𝑇), which is a normal projective
irreducible 𝑘-variety of dimension 𝑛.

∙ Let 𝐿 be a ℚ-Cartier ℚ-Weil divisor on 𝑋, and we denote by 𝑋(𝐿) its associated reflexive sheaf
as discussed in Section 1.Wewill always assume that the sheaf 𝑓∗𝑋(𝐿) (which is always locally
free since 𝑇 is a smooth curve) is non zero.
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22 CODOGNI et al.

Consider the Harder–Narasimhan (=HN) filtration of 𝑓∗𝑋(𝐿):

0 = 0 ⊊ 1 ⊊ 2 ⊊ … ⊊ 𝓁 = 𝑓∗𝑋(𝐿), (3.1)

where 𝓁 ⩾ 1 is the length of the filtration. Note that 𝓁 = 1 if and only if 𝑓∗𝑋(𝐿) is semi-stable.
For any 1 ⩽ 𝑖 ⩽ 𝓁, we denote by 𝜇𝑖 ∶= 𝜇(𝑖∕𝑖−1) ∈ ℚ the slope of the semistable locally free

sheaf 𝑖∕𝑖−1 and by 𝑟𝑖 ∶= rk(𝑖) ∈ ℕ the rank of 𝑖 .
By definition of the HN filtration, we have

𝜇+(𝑓∗𝑋(𝐿)) ∶= 𝜇1 > … > 𝜇𝓁 ∶= 𝜇−(𝑓∗𝑋(𝐿)) (3.2)

0 =∶ 𝑟0 < 𝑟1 < … < 𝑟𝓁 . (3.3)

By Hartshorne’s theorem on the characterization of nef vector bundles on smooth, projective
irreducible curves [36, Thm. 6.4.15] (which requires char(𝑘) = 0), it follows that

𝑖 is nef ⇔ 𝜇𝑖 ⩾ 0. (3.4)

By generic base change, the rank of 𝑓∗𝑋(𝐿) is equal to

ℎ0(𝐹,𝑋(𝐿)|𝐹) = rk 𝑓∗𝑋(𝐿) = 𝑟𝓁 . (3.5)

Lemma 3.2. For a general fiber 𝐹, we have

𝑋(𝐿)|𝐹 = 𝐹(𝐿𝐹). (3.6)

where 𝐹 is a general fiber of 𝑓 and 𝐿𝐹 is the restriction of 𝐿 to 𝐹 as ℚ-Cartier divisor.

Proof. Both reflexive sheaves and divisors are determined by their restrictions to codimension
one points, hence we can prove the statement after removing a codimension two subscheme from
𝑋. As the total space 𝑋 is normal, its singularities are in codimension two and we can therefore
assume that both 𝑋 and the general fibers are smooth. After this reduction, it is enough to show
that restricting 𝐿 to a general fiber commutes with taking the round down. Write 𝐿 =

∑
𝑎𝑖𝐷𝑖 ,

where 𝑎𝑖 are rational numbers and 𝐷𝑖 are prime divisors. By Bertini Theorem, the restriction of
every 𝐷𝑖 to a general fiber is reduced, hence restriction commutes with round down. □

The degree of 𝑓∗𝑋(𝐿) is determined by the numbers 𝜇𝑖 ’s and 𝑟𝑖 ’s as in the following

Lemma 3.3. With the notation as above (and the convention that 𝜇𝓁+1 = 0), we have that

𝓁∑
𝑖=1

𝑟𝑖(𝜇𝑖 − 𝜇𝑖+1) =

𝓁∑
𝑖=1

𝜇𝑖(𝑟𝑖 − 𝑟𝑖−1) = deg 𝑓∗𝑋(𝐿).

Proof. The first equality is just a rearrangement of the terms using that 𝑟0 = 0 and 𝜇𝓁+1 = 0.
The second equality follows from the fact that 𝜇𝑖(𝑟𝑖 − 𝑟𝑖−1) is the degree of 𝑖∕𝑖−1 and that

deg 𝑓∗𝑋(𝐿) =

𝓁∑
𝑖=1

deg(𝑖∕𝑖−1). □
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 23

Variants of the following construction have appeared in many papers, for instance, under the
assumption that 𝐿 is Weil and ℚ-Cartier, it is discussed in [43, Lemma 1.1]. For any 1 ⩽ 𝑖 ⩽ 𝓁,
the morphism 𝑓∗𝑖 ↪ 𝑓∗𝑓∗𝑋(𝐿) → 𝑋(𝐿) induces a rational map 𝜓𝑖 ∶ 𝑋 ⤏ ℙ𝑇(𝑖) over 𝑇. By
Hironaka’s theorem on resolution of singularities (since char(𝑘) = 0), we can pick a birational
morphism 𝜇 ∶ 𝑋 → 𝑋 with 𝑋 a smooth projective irreducible 𝑘-variety in such a way that 𝜓𝑖 ∶=

𝜓𝑖 ◦𝜇 ∶ 𝑋 → ℙ𝑇(𝑖) is a regular morphism. On 𝑋, we define the Cartier divisor

𝑀𝑖 ∶= 𝜓∗
𝑖 𝐿𝑖 ,

where 𝐿𝑖 is any tautological divisor on ℙ𝑇(𝑖), i.e. any divisor such thatℙ𝑇(𝑖 )
(𝐿𝑖 ) = ℙ𝑇(𝑖 )

(1).
As the sheaf𝑋(𝐿) equals𝑋(⌊𝐿⌋), the divisor𝑀𝑖 depends only on the round down ⌊𝐿⌋. If this

round down is Cartier, then𝑀𝓁 is the relative free part of the liner system; if it is just Weil, then
𝑀𝓁 is some Cartier divisor smaller than ⌊𝜇∗𝐿⌋.
The inclusion 𝑖 ⊂ 𝑖+1 implies that 𝑀𝑖+1 −𝑀𝑖 is effective. To summarize, we have a

non-decreasing chain of divisors

𝑀1 ⩽ 𝑀2 ⩽ … ⩽ 𝑀𝓁 ⩽ ⌊𝜇∗𝐿⌋ ⩽ 𝜇∗(𝐿) , (3.7)

and a non-increasing chain of effective integral divisors

𝑍1 ⩾ 𝑍2 ⩾ … ⩾ 𝑍𝓁 ⩾ 0. (3.8)

such that

𝑀𝑖 ∼ℚ 𝜇∗(𝐿) − 𝑍𝑖 for every 𝑖 = 1, … ,𝓁. (3.9)

Remark 3.4 (Relative base loci). Each piece 𝑖 of the Harder–Narasimhan filtration of 𝑓∗𝑋(𝐿)

defines a relative base locus 𝐵𝑖 . The resolution𝑋makes this base loci divisorial. During the proofs
of Section 4, we will intersect this divisorial base loci with nef line bundles, and then just discard
them (these computation are often carried out using Lemma 3.7 and its corollaries). It would be
interesting to study the features of these relative base loci, and let them playing amore prominent
role in the slope inequality via asymptotic invariants similar to the 𝜇-invariant introduced in [53,
Definition 4.1].

We will denote by 𝑓 ∶= 𝑓 ◦𝜇 ∶ 𝑋 → 𝑇 the induced fibration. A general fiber 𝐹 of 𝑓 is a smooth
projective irreducible 𝑘-variety of dimension 𝑛, and it is endowed with a birational (projective)
morphism 𝜇𝐹 ∶= 𝜇|𝐹 ∶ 𝐹 → 𝐹 onto a general fiber of 𝑓, which is a resolution of singularities.
We will consider the Cartier divisors 𝑃𝑖 ∶= (𝑀𝑖)|𝐹 on 𝐹 (well-defined up to linear equivalence),

which, by (3.7), form a non-decreasing chain

𝑃1 ⩽ 𝑃2 ⩽ … ⩽ 𝑃𝓁 ⩽ 𝜇∗(𝐿)|𝐹 = 𝜇∗
𝐹
(𝐿𝐹). (3.10)

We collect the properties of the divisors𝑀𝑖 and their restrictions 𝑃𝑖 in the following

Proposition 3.5. Let 1 ⩽ 𝑖 ⩽ 𝓁.

(i) The divisor𝑀𝑖 is 𝑓-globally generated. In particular, 𝑃𝑖 is globally generated.
(ii) The restriction of 𝑖 to 𝑡 induces a sub-linear series of |𝑃𝑖| on 𝐹; in particular we have that

ℎ0(𝐹, 𝑃𝑖) ⩾ 𝑟𝑖 .
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24 CODOGNI et al.

(iii) If 𝑖 is nef, then𝑀𝑖 is nef.
(iv) The pull-back along 𝜇𝐹 induces an isomorphism

𝜇∗
𝐹
∶ 𝐻0(𝐹, 𝐿𝐹)

≅
F→ 𝐻0(𝐹, 𝑃𝓁), (3.11)

In particular, ℎ0(𝐹, 𝑃𝓁) = 𝑟𝓁 and 𝜙𝑃𝓁 = 𝜙𝐿𝐹 ◦𝜇𝐹 .
(v) If 𝐿𝐹 is Cartier and globally generated, then 𝑃𝓁 = (𝜇𝐹)

∗(𝐿𝐹) (up to linear equivalence). In
particular, 𝑃𝑛

𝓁 = 𝐿𝑛
𝐹
.

Proof. By the definition of𝑀𝑖 , we have the following commutative diagram

(3.12)

and 𝑋(𝑀𝑖) = 𝜓∗
𝑖
ℙ𝑇(𝑖 )

(1) = 𝜓∗
𝑖
ℙ𝑇(𝑖 )

(𝐿𝑖 ).
Part (i) follows from the fact that ℙ𝑇(𝑖 )

(1) is 𝑝𝑖
-globally generated.

Part (ii): by the definition of 𝑀𝑖 , it follows that we have an inclusion of torsion-free coherent
sheaves on ℙ𝑇(𝑖):

ℙ𝑇(𝑖 )
(1) ↪ (𝜓𝑖)∗(𝜓

∗
𝑖 (ℙ𝑇(𝑖 )

(1))) = (𝜓𝑖)∗(𝑋(𝑀𝑖)).

By taking the push-forward via 𝑝𝑖
we get the inclusion of locally free sheaves on 𝑇

𝑖 = (𝑝𝑖
)∗(ℙ𝑇(𝑖 )

(1)) ↪ (𝑝𝑖
)∗((𝜓𝑖)∗(𝑀𝑖)) = 𝑓∗(𝑋(𝑀𝑖)). (3.13)

By taking ranks, we get

𝑟𝑖 ∶= rk(𝑖) ⩽ rk(𝑓∗𝑋(𝑀𝑖)) = ℎ0(𝐹, 𝑃𝑖).

Part (iii): by the definition of the𝑀𝑖 , we have a surjection of locally free sheaves on 𝑋

𝑓∗𝑖 ↠ 𝑋(𝑀𝑖),

from which the conclusion follows.
Part (iv): since𝑀𝓁 ∼ℚ 𝜇∗(𝐿) − 𝑍𝓁 and 𝑍𝓁 ⩾ 0 by (3.9) and (3.8), we have an injection

𝑋(𝑀𝓁) ↪ 𝑋(𝜇
∗(𝐿)).

By taking the pushforward along 𝑓 = 𝑓 ◦𝜇, we get

𝑓∗𝑋(𝑀𝓁) ↪ 𝑓∗𝑋(𝜇
∗(𝐿)) = 𝑓∗𝑋(𝐿), (3.14)

where in the last equality we used that 𝜇∗𝑋(𝜇
∗(𝐿)) = 𝑋(𝐿), which follows from [41, Lemma

2.11].
Recalling that 𝓁 = 𝑓∗𝑋(𝐿), by combining (3.13) and (3.14) we deduce that

𝑓∗𝑋(𝑀𝓁) = 𝑓∗𝑋(𝐿).
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 25

By generic base change and (3.6), we conclude that we have the isomorphism (3.11), which implies
the last two assertions.
Part (v): by assumption, and using the generic base-change and Lemma 3.2, one has that the

evaluation morphism 𝑓∗𝓁 = 𝑓∗𝑓∗𝑋(𝐿) → 𝑋(𝐿) is surjective over 𝐹 and 𝑋(𝐿)|𝐹 = 𝐹(𝐿𝐹) is
line bundle. This implies that the induced rational map 𝜓𝓁 ∶ 𝑋 ⤏ ℙ𝑇(𝓁) is regular over 𝐹, and
hence that (up to linear equivalence)

𝑃𝓁 = (𝑀𝓁)|𝐹 = 𝜓∗
𝓁(𝐿𝓁 )|𝐹 = 𝜇∗

𝐹
((𝜓𝓁 |𝐹)∗(𝐿𝓁 )) = 𝜇∗

𝐹
(𝐿𝐹).

The last assertion follows from the projection formula. □

We now want to show that the slopes of the HN filtration of 𝑓∗𝑋(𝐿) bound the nefness
threshold of 𝑀𝑖 with respect to a general fiber 𝐹. More precisely, consider the (ℚ-Cartier) ℚ-
divisors 𝑁𝑖 ∶= 𝑀𝑖 − 𝜇𝑖𝐹 (for 1 ⩽ 𝑖 ⩽ 𝓁) on 𝑋. By (3.2) and (3.7), the ℚ-line bundles 𝑁𝑖 form a
non-decreasing chain

𝑁1 ⩽ 𝑁2 ⩽ … ⩽ 𝑁𝓁 . (3.15)

Note that (3.4) implies that

𝑖 is nef ⇔ 𝑁𝑖 ⩽ 𝑀𝑖. (3.16)

Note that (𝑁𝑖)|𝐹 = (𝑀𝑖)|𝐹 = 𝑃𝑖 (up to linear equivalence).

Proposition 3.6. For any 1 ⩽ 𝑖 ⩽ 𝓁, the ℚ-divisor𝑁𝑖 is nef.

Proof. Observe that, up to linear equivalence, 𝑁𝑖 is the pull-back via 𝜓𝑖 of the ℚ-divisor 𝐿𝑖 −
𝜇𝑖𝑝

−1
𝑖
(𝑡) on ℙ𝑇(𝑖), where 𝑡 is a general point of 𝑇 (see diagram (3.12)). Hence, it is enough to

show that 𝐿𝑖 − 𝜇𝑖𝑝
−1
𝑖
(𝑡) is nef on ℙ𝑇(𝑖).

This follows from the Miyaoka’s lemma (see, e.g., [24, Lemma 2.1]). For the reader’s
convenience, we also include a direct elementary proof.
Let 𝜏∶ 𝑇′ → 𝑇 be finite cover whose degree is a multiple of rk(𝑖∕𝑖−1). By e.g. [36, Lemma

6.4.12], the HN filtration of 𝜏∗𝑖 is the pull-back of the HN filtration of 𝑖 , i.e.

0 ⊊ 0 ⊊ 1 ⊊ … ⊊ 𝑖−1 ⊊ 𝑖 ,

and the slopes get multiplied by deg(𝜏). In particular, using that the nefness of a ℚ-divisor can
be checked after a finite cover, we can assume, up to replacing 𝑇 with 𝑇′, that 𝜇𝑖 = 𝜇(𝑖∕𝑖−1) =

𝜇−(𝑖) is an integer. The divisor 𝐿𝑖 − 𝜇𝑖𝑝
−1
𝑖
(𝑡) is now Cartier, and the corresponding sheaf is a

quotient of the locally free sheaf 𝑝∗
𝑖
𝑖(−𝜇𝑖𝑡). Since

𝜇−(𝑖(−𝜇𝑖𝑡)) = 𝜇−(𝑖) − 𝜇𝑖 = 0,

the sheaf 𝑖(−𝜇𝑖𝑡) is nef on 𝑇 by Hartshorne’s theorem [36, Thm. 6.4.15]. We conclude that also
𝐿𝑖 − 𝜇𝑖𝑝

−1
𝑖
(𝑡) is nef . □

We now prove some numerical inequalities that will be crucial in what follows.
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26 CODOGNI et al.

Lemma 3.7. Fix the above notation. Assume that we have chosen a nef ℚ-divisor𝑁𝓁+1 on 𝑋 and a
rational number𝜇𝓁+1 such that𝑍𝓁+1 ∶= 𝜇∗(𝐿) − 𝑁𝓁+1 − 𝜇𝓁+1𝐹 ⩽ 𝑍𝓁 . Set𝑃𝓁+1 ∶= (𝑁𝓁+1)|𝐹 . Then
for any 𝑞 ∈ {1, … ,𝓁} and any two sequences of integers

⎧⎪⎨⎪⎩
1 ⩽ 𝑠1 < … < 𝑠𝑞 < 𝑠𝑞+1 = 𝓁 + 1,

1 = 𝑚0 ⩽ 𝑚1 ⩽ … ⩽ 𝑚𝑛 ⩽ 𝑚𝑛+1 = 𝑞 + 1,

we have that

𝑁𝑛+1
𝓁+1 ⩾

𝑛∑
𝑖=0

𝑚𝑖+1−1∑
𝑗=𝑚𝑖

(
𝑖∑

𝑘=0

𝑃𝑘
𝑠𝑗
𝑃𝑖−𝑘
𝑠𝑗+1

)(
𝑃𝑠𝑚𝑖+1

…𝑃𝑠𝑚𝑛

)
(𝜇𝑠𝑗 − 𝜇𝑠𝑗+1).

In the above result, if 𝑚𝑖+1 − 1 < 𝑚𝑖 and hence 𝑗 belongs to the empty set, by convention the
sum is zero. Note that Lemma 3.7 is a generalization of [35, Lemma 2.2] and [4, Prop. 1.11], which
in turn build on [51, Lemma 2].

Proof. We are going to use several times that the ℚ-divisors {𝑁ℎ}
𝓁+1
ℎ=1

are nef, which follow from
Proposition 3.6 if 1 ⩽ ℎ ⩽ 𝓁 and from the assumption on 𝑁𝓁+1 if ℎ = 𝓁 + 1.
The Lemma is obtained by summing the following numerical inequalities for any 0 ⩽ 𝑖 ⩽ 𝑛

(
𝑁𝑖+1

𝑠𝑚𝑖+1
− 𝑁𝑖+1

𝑠𝑚𝑖

)
⋅
(
𝑁𝑠𝑚𝑖+1

…𝑁𝑠𝑚𝑛

)
( ⩾

𝑚𝑖+1−1∑
𝑗=𝑚𝑖

𝐹 ⋅

(
𝑖∑

𝑘=0

𝑁𝑘
𝑠𝑗
𝑁𝑖−𝑘

𝑠𝑗+1

)
⋅
(
𝑁𝑠𝑚𝑖+1

…𝑁𝑠𝑚𝑛

)
(𝜇𝑠𝑗 − 𝜇𝑠𝑗+1)

=

𝑚𝑖+1−1∑
𝑗=𝑚𝑖

(
𝑖∑

𝑘=0

𝑃𝑘
𝑠𝑗
𝑃𝑖−𝑘
𝑠𝑗+1

)
⋅
(
𝑃𝑠𝑚𝑖+1

…𝑃𝑠𝑚𝑛

)
(𝜇𝑠𝑗 − 𝜇𝑠𝑗+1),

(3.17)
and using that 𝑁𝑠𝑚0

…𝑁𝑠𝑚𝑛
⩾ 0 because the divisors {𝑁ℎ} are nef.

The inequality (3.17) follows, using that {𝑁𝑠𝑚𝑖+1
, … ,𝑁𝑠𝑚𝑛

} are nef, by the following inequality of
(𝑖 + 1)-codimension cycles on 𝑋

(
𝑁𝑖+1

𝑠𝑚𝑖+1
− 𝑁𝑖+1

𝑠𝑚𝑖

)
⩾

𝑚𝑖+1−1∑
𝑗=𝑚𝑖

𝐹 ⋅

(
𝑖∑

𝑘=0

𝑁𝑘
𝑠𝑗
𝑁𝑖−𝑘

𝑠𝑗+1

)
(𝜇𝑠𝑗 − 𝜇𝑠𝑗+1) (3.18)

The previous inequality (3.18) follows in turn by summing the following inequalities of (𝑖 + 1)-
codimension cycles on 𝑋 for𝑚𝑖 ⩽ 𝑗 ⩽ 𝑚𝑖+1 − 1

𝑁𝑖+1
𝑠𝑗+1

− 𝑁𝑖+1
𝑠𝑗

⩾ 𝐹 ⋅

(
𝑖∑

𝑘=0

𝑁𝑘
𝑠𝑗
𝑁𝑖−𝑘

𝑠𝑗+1

)
(𝜇𝑠𝑗 − 𝜇𝑠𝑗+1). (3.19)

In order to prove inequality (3.19), we write

𝑁𝑖+1
𝑠𝑗+1

− 𝑁𝑖+1
𝑠𝑗

= (𝑁𝑠𝑗+1
− 𝑁𝑠𝑗

) ⋅

(
𝑖∑

𝑘=0

𝑁𝑘
𝑠𝑗
𝑁𝑖−𝑘

𝑠𝑗+1

)
. (3.20)
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 27

Observe that we have

𝑁ℎ ∼ℚ 𝜇∗(𝐿) − 𝑍ℎ − 𝜇ℎ𝐹 for any 1 ⩽ ℎ ⩽ 𝓁 + 1, (3.21)

which follows from the definition𝑁ℎ ∶= 𝑀ℎ − 𝜇ℎ𝐹 and (3.9) if 1 ⩽ ℎ ⩽ 𝓁, and from the definition
of 𝑍𝓁+1 if ℎ = 𝓁 + 1. By taking the differences of the relations (3.21) for ℎ = 𝑠𝑗+1 and for ℎ = 𝑠𝑗 ,
we get that

𝑁𝑠𝑗+1
− 𝑁𝑠𝑗

∼ℚ (𝑍𝑠𝑗
− 𝑍𝑠𝑗+1

) + (𝜇𝑠𝑗 − 𝜇𝑠𝑗+1)𝐹. (3.22)

Combining (3.20) and (3.22) and using that 𝑍𝑠𝑗
⩾ 𝑍𝑠𝑗+1

(by (3.8), and the assumption 𝑍𝓁+1 ⩽ 𝑍𝓁)
and that {𝑁𝑠𝑗

, 𝑁𝑠𝑗+1
} are nef, we get the inequality of cycles (3.19), and we are done. □

We now collect in the following result some special cases of the above Lemma.

Corollary 3.8. Notation as in Lemma 3.7.

(1) For any sequence of integers 1 = 𝑚0 ⩽ 𝑚1 ⩽ … ⩽ 𝑚𝑛 ⩽ 𝑚𝑛+1 = 𝓁 + 1, we have that

𝑁𝑛+1
𝓁+1 ⩾

𝑛∑
𝑖=0

𝑚𝑖+1−1∑
𝑗=𝑚𝑖

(
𝑖∑

𝑘=0

𝑃𝑘
𝑗 𝑃

𝑖−𝑘
𝑗+1

)(
𝑃𝑚𝑖+1

…𝑃𝑚𝑛

)
(𝜇𝑗 − 𝜇𝑗+1).

In particular, we have that
(A) 𝑁𝑛+1

𝓁+1 ⩾
∑𝓁

𝑗=1(𝑃𝑗 + 𝑃𝑗+1)𝑃
𝑛−1
𝓁+1(𝜇𝑗 − 𝜇𝑗+1);

(B) 𝑁𝑛+1
𝓁+1 ⩾

∑𝓁
𝑗=1(

∑𝑛
𝑘=0 𝑃

𝑘
𝑗
𝑃𝑛−𝑘
𝑗+1

)(𝜇𝑗 − 𝜇𝑗+1).
(2) For any sequence of integers 1 ⩽ 𝑠1 < … < 𝑠𝑞 < 𝑠𝑞+1 = 𝓁 + 1 with 1 ⩽ 𝑞 ⩽ 𝓁, we have that

𝑁𝑛+1
𝓁+1 ⩾

𝑞∑
𝑗=1

(𝑃𝑠𝑗 + 𝑃𝑠𝑗+1)𝑃
𝑛−1
𝓁+1(𝜇𝑠𝑗 − 𝜇𝑠𝑗+1).

Note that (2) is a special case of [43, Lemma 1.2] (which generalizes [51, Lemma 2] from 𝑛 = 1

to an arbitrary 𝑛 ⩾ 1).

Proof. Part (1) follows fromLemma 3.7 by setting 𝑞 = 𝓁, which then forces 𝑠𝑗 = 𝑗 for every 1 ⩽ 𝑗 ⩽

𝓁 + 1. Part (1A) follows from (1) by setting 1 = 𝑚0 = 𝑚1 < 𝑚2 = ⋯ = 𝑚𝑛+1 = 𝓁 + 1, while part
(1B) follows from (1) by setting 1 = 𝑚0 = ⋯ = 𝑚𝑛 < 𝑚𝑛+1 = 𝓁 + 1.
Part (2) follows from Lemma 3.7 by setting 1 = 𝑚0 = 𝑚1 < 𝑚2 = ⋯ = 𝑚𝑛 = 𝑞 + 1. □

Remark 3.9. The inequalities in Lemma 3.7 and Corollary 3.8 depend upon the choice of a nef ℚ-
divisor 𝑁𝓁+1 on 𝑋 and a rational number 𝜇𝓁+1 subject to the condition 𝑍𝓁+1 ∶= 𝜇∗(𝐿) − 𝑁𝓁+1 −

𝜇𝓁+1𝐹 ⩽ 𝑍𝓁 . Some natural choices of (𝑁𝓁+1, 𝜇𝓁+1) are as follows:

(i) 𝑁𝓁+1 ∶= 𝑁𝓁 (which is nef by Proposition 3.6) and 𝜇𝓁+1 = 𝜇𝓁 , which implies that 𝑍𝓁+1 = 𝑍𝓁 ;
(ii) under the assumption that 𝐿 is nef:𝑁𝓁+1 ∶= 𝜇∗(𝐿) and 𝜇𝓁+1 = 0, which implies that 𝑍𝓁+1 =

0;
(iii) under the assumption that 𝑓∗𝑋(𝐿) is nef:𝑁𝓁+1 ∶= 𝑀𝓁 (which is nef by Proposition 3.5(iii))

and 𝜇𝓁+1 = 0, which implies that 𝑍𝓁+1 = 𝑍𝓁 .
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28 CODOGNI et al.

Many of our slope inequalities will depend on the nefness of 𝐿, together with the nefness of
𝑓∗𝑋(𝐿) (see the previous Remark 3.9). In the following result, we give a criterion that guarantees
the nefness of 𝐿 together with a numerical consequence of the nefness of 𝐿 and of 𝑓∗𝑋(𝐿).

Lemma 3.10. Assume that 𝑓∗𝑋(𝐿) is nef.

(i) Assume that 𝐿 is Cartier, 𝑓-nef and generically 𝑓-globally generated (i.e. 𝐿𝐹 is globally
generated), then 𝐿 is nef.

(ii) If 𝐿 is nef, then 𝐿𝑛+1 ⩾ 𝑀𝑛+1
𝓁 .

Proof. Part (i): as 𝐿 is 𝑓-nef, it is enough to show that given a horizontal integral curve 𝐶, we have
𝐿 ⋅ 𝐶 ⩾ 0. Let 𝑝 be the restriction of 𝑓 to𝐶. As 𝐿 is generically 𝑓-globally generated, the evaluation
map

ev𝐶 ∶ 𝑝∗𝑓∗𝑋(𝐿) → 𝑋(𝐿)|𝐶
is generically surjective, so we can write 𝐿|𝐶 = 𝑄 + 𝐸, where 𝐶(𝑄) is a quotient of 𝑝∗𝑓∗𝑋(𝐿)

and 𝐸 is effective. As 𝑓∗𝑋(𝐿) is nef, 𝑄 is nef and hence 𝐿|𝐶 is nef, that is 𝐿 ⋅ 𝐶 ⩾ 0.
Part (ii): first of all, note that 𝐿𝑛+1 = (𝜇∗𝐿)𝑛+1. As 𝜇∗𝐿 ∼ℚ 𝑀𝓁 + 𝑍𝓁 with 𝑍𝓁 effective by (3.9)

and (3.8), 𝐿 (and hence also 𝜇∗𝐿) is nef by assumption and𝑀𝓁 is nef by Proposition 3.5(iii) (using
the assumption that 𝑓∗𝑋(𝐿) is nef), we have that (see also [13, Prop 2.3])

(𝜇∗𝐿)𝑖 ⋅𝑀𝑛+1−𝑖
𝓁 = (𝜇∗𝐿)𝑖−1 ⋅ (𝑀𝓁 + 𝑍𝑙) ⋅𝑀

𝑛+1−𝑖
𝓁 ⩾ (𝜇∗𝐿)𝑖−1 ⋅𝑀𝑛+2−𝑖

𝓁 for every 1 ⩽ 𝑖 ⩽ 𝑛 + 1.

We conclude by putting together all the above inequalities for every 1 ⩽ 𝑖 ⩽ 𝑛 + 1. □

4 SLOPE INEQUALITIES

In this section, we assume that we are in the set-up (3.1), and our goal is to prove some slope
inequalities, that is, inequalities of the form

𝐿𝑛+1 ⩾ 𝐶 deg 𝑓∗𝑋(𝐿) ,

for some positive constant 𝐶, which depends just on the polarized general fiber of 𝑓. In all our
results, we will need to assume that 𝑓∗𝑋(𝐿) and 𝐿 are both nef, so both 𝐿𝑛+1 and deg 𝑓∗𝑋(𝐿)

are non-negative.
Moreover, depending on the different slope inequalities that we get, we will need tomake some

extra assumptions that can be of two types.
The first kind of assumptions concerns the 𝑞-th multiple of the ℚ-Cartier divisor 𝐿𝐹 on 𝐹 (for

some integer 𝑞 ⩾ 1) and its associated rational morphism 𝜙𝑞𝐿𝐹 ∶ 𝐹 ⤏ ℙ(𝐻0(𝐹, 𝑞𝐿𝐹)
∗) (we refer

to [41, Chapter II] or § 1 for basic properties of morphisms associated to ℚ-divisors which are not
Cartier), and they assume the following possible forms

(𝐴𝑞) 𝑞𝐿𝐹 is Cartier, globally generated and𝜙𝑞𝐿𝐹 is generically finite, or equivalently 𝑞𝐿𝐹 is Cartier,
globally generated and big;

(𝐵𝑞) 𝜙𝑞𝐿𝐹 is generically finite;
(𝐶𝑞) 𝑞𝐿𝐹 is Cartier and big.

Note that (𝐴𝑞) implies (𝐵𝑞) and (𝐶𝑞), while (𝐵𝑞) and (𝐶𝑞) are independent of each other.

 1460244x, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12512 by U

niversidad D
e C

oim
bra, W

iley O
nline L

ibrary on [13/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 29

The other kind of assumptions is on a general fiber 𝐹 and they assume the following possible
forms

(𝑎) A general fiber 𝐹 of 𝑓 has dimension 𝑛 ⩾ 2 and 𝜅(𝐹) ⩾ 0, that is, it has non-negative Kodaira
dimension.

(𝑏𝑞) A general fiber 𝐹 of 𝑓 has dimension 𝑛 = 1 and ⌊𝑞𝐿𝐹⌋ is special, that is, ℎ1(𝐹, ⌊𝑞𝐿𝐹⌋) ≠ 0.

The assumption (𝑎) is relevant in order to apply some of the Noether inequalities of § 2, while the
assumption (𝑏𝑞) will allow to apply Clifford’s theoremwhich says that deg 𝑞𝐿𝐹 ⩾ 2ℎ0(𝐹, ⌊𝑞𝐿𝐹⌋) −
2.
The first slope inequality that we prove involves the numerical invariants of the polarized gen-

eral fiber (𝐹, 𝐿𝐹), and more specifically either 𝐿𝑛𝐹 or ℎ
0(𝐹, 𝐿𝐹), under the assumption that 𝜙𝐿𝐹 is

generically finite.

Theorem 4.1. Assume we are in the setup (3.1) and suppose that 𝑓∗𝑋(𝐿) is nef and that 𝜙𝐿𝐹 is
generically finite, then we have that

𝑀𝑛+1
𝓁 ⩾ 2

𝑃𝑛
𝓁

𝑃𝑛
𝓁 + 𝑛

deg 𝑓∗𝑋(𝐿) ⩾ 2
ℎ0(𝐹, 𝑃𝓁) − 𝑛

ℎ0(𝐹, 𝑃𝓁)
deg 𝑓∗𝑋(𝐿). (4.1)

If 𝑛 ⩾ 2 and the first inequality is an equality, then 𝜇−(𝑓∗𝑋(𝐿)) = 0, and hence 𝑓∗𝑋(𝐿) is
not ample.
Suppose moreover that one of the following two conditions are satisfied:

∙ dim𝐹 ⩾ 2 and 𝜅(𝐹) ⩾ 0, that is, (𝑎) holds true;
∙ dim𝐹 = 1 and ⌊𝐿𝐹⌋ is special (which implies that 𝜅(𝐹) = 1 since 𝜙𝐿𝐹 is generically finite), that is,
(𝑏1) holds true.

Then we also have that

𝑀𝑛+1
𝓁 ⩾ 4

𝑃𝑛
𝓁

𝑃𝑛
𝓁 + 2𝑛

deg 𝑓∗𝑋(𝐿) ⩾ 4
ℎ0(𝐹, 𝑃𝓁) − 𝑛

ℎ0(𝐹, 𝑃𝓁)
deg 𝑓∗𝑋(𝐿). (4.2)

If 𝑛 ⩾ 2 and the first inequality is an equality, then 𝜇−(𝑓∗𝑋(𝐿)) = 0, and hence 𝑓∗𝑋(𝐿) is
not ample.

Proof. First of all, note that the (Cartier) divisor 𝑃𝓁 on 𝐹 is globally generated (and hence nef)
by Proposition 3.5(i) and with generically finite associated morphism 𝜙𝑃𝓁 by Proposition 3.5(iv)
together with assumption that 𝜙𝐿𝐹 is generically finite. Therefore, the second inequality in (4.1)
follows from the inequality

𝑃𝑛
𝓁 ⩾ ℎ0(𝐹, 𝑃𝓁) − 𝑛 , (4.3)

which holds by Corollary 2.5(i). Similarly, the second inequality in (4.2) is a consequence of the
inequality

𝑃𝑛
𝓁 ⩾ 2ℎ0(𝐹, 𝑃𝓁) − 2𝑛, (4.4)

which follows from Corollary 2.5(ii) if dim𝐹 ⩾ 2 and 𝜅(𝐹) ⩾ 0, and from Clifford’s theorem if
dim𝐹 = 1 and ⌊𝐿𝐹⌋ is special (using that 𝑃𝓁 ⩽ ⌊𝐿𝐹⌋).
Let us focus on the first inequalities in (4.1) and (4.2).
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30 CODOGNI et al.

We first apply Corollary 3.8(1A) with 𝑁𝓁+1 ∶= 𝑁𝓁 = 𝑀𝓁 − 𝜇𝓁𝐹 and 𝜇𝓁+1 = 𝜇𝓁 , and we get

𝑁𝑛+1
𝓁 = 𝑀𝑛+1

𝓁 − (𝑛 + 1)𝜇𝓁𝑃
𝑛
𝓁 ⩾

𝓁∑
𝑖=1

(𝑃𝑖 + 𝑃𝑖+1)𝑃
𝑛−1
𝓁 (𝜇𝑖 − 𝜇𝑖+1) =

𝓁−1∑
𝑖=1

(𝑃𝑖 + 𝑃𝑖+1)𝑃
𝑛−1
𝓁 (𝜇𝑖 − 𝜇𝑖+1).

(4.5)
This inequality implies that

𝑀𝑛+1
𝓁 ⩾

𝓁−1∑
𝑖=1

(𝑃𝑖 + 𝑃𝑖+1)𝑃
𝑛−1
𝓁 (𝜇𝑖 − 𝜇𝑖+1) + 2𝜇𝓁𝑃

𝑛
𝓁 , (4.6)

with the equality that can occur only if either 𝑛 = 1 or 𝑛 ⩾ 2 and 𝜇𝓁 = 0.
In order to give a lower bound on the right hand side of (4.6), we define

𝑝 ∶= min{𝑖 ∈ {1, … ,𝓁} | 𝑃𝑛
𝓁 − 𝑃𝑛−1

𝓁 ⋅ 𝑃𝑖 = 0}.

Observe that, since the intersection numbers

𝑃𝑛
𝓁 − 𝑃𝑛−1

𝓁 ⋅ 𝑃𝑖 = 𝑃𝑛−1
𝓁 ⋅ (𝑍𝑖 − 𝑍𝓁)|𝐹

are non-increasing in 𝑖 (because 𝑃𝓁 is nef by Proposition 3.5(i), 𝑍𝑖 − 𝑍𝑖+1 ⩾ 0 by (3.8), and 𝐹 is a
general fiber of 𝑓), we have that

⎧⎪⎨⎪⎩
𝑃𝑛
𝓁 − 𝑃𝑛−1

𝓁 ⋅ 𝑃𝑖 ⩾ 1 if 𝑖 < 𝑝,

𝑃𝑛
𝓁 − 𝑃𝑛−1

𝓁 ⋅ 𝑃𝑖 = 0 if 𝑝 ⩽ 𝑖.
(4.7)

In order to treat the two inequalities (4.1) and (4.2) simultaneously, we define

𝜖 ∶=

{
2 if either dim𝐹 ⩾ 2 and 𝜅(𝐹) ⩾ 0, or dim𝐹 = 1 and ⌊𝐿𝐹⌋ is special.
1 otherwise.

Claim. We have that

𝑃𝑛−1
𝓁 ⋅ 𝑃𝑖 ⩾

{
𝜖[ℎ0(𝐹, 𝑃𝑖) − 1] ⩾ 𝜖[𝑟𝑖 − 1] if 1 ⩽ 𝑖 < 𝑝,

𝜖[ℎ0(𝐹, 𝑃𝓁) − 𝑛] ⩾ 𝜖[𝑟𝑖 − 𝑛 + (𝓁 − 𝑖)] if 𝑝 ⩽ 𝑖 ⩽ 𝓁.
(4.8)

Indeed, if 𝑝 ⩽ 𝑖 ⩽ 𝓁, which implies that 𝑃𝑛
𝓁 − 𝑃𝑛−1

𝓁 ⋅ 𝑃𝑖 = 0 by (4.7), then (4.3) and (4.4) give

𝑃𝑛−1
𝓁 ⋅ 𝑃𝑖 = 𝑃𝑛

𝓁 ⩾ 𝜖[ℎ0(𝐹, 𝑃𝓁) − 𝑛].

If, instead, 1 ⩽ 𝑖 < 𝑝, which implies that 𝑃𝑛
𝓁 − 𝑃𝑛−1

𝓁 𝑃𝑖 ⩾ 1 by (4.7), then we get

𝑃𝑛−1
𝓁 ⋅ 𝑃𝑖 ⩾ 𝜖[ℎ0(𝐹, 𝑃𝑖) − 1],

by applying

∙ when (𝑎) holds true: Proposition 2.7 with 𝐿 ∶= 𝑃𝓁 which is nef and with generically finite asso-
ciated map 𝜙𝑃𝓁 and 𝑀 ∶= 𝑃𝑖 which is nef by Proposition 3.5(i) and such that 𝑃𝓁 − 𝑃𝑖 ⩾ 0 by
(3.7);

∙ when (𝑏1) holds true: Clifford theorem to 𝑃𝑖 which is special since 𝑃𝑖 ⩽ 𝑃𝓁 ⩽ ⌊𝐿𝐹⌋.
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 31

We conclude in both cases using that ℎ0(𝐹,𝑀𝑖|𝐹) ⩾ 𝑟𝑖 by Proposition 3.5(ii) and (for the second
case) the fact that 𝑟𝑖+1 ⩾ 𝑟𝑖 + 1 by (3.3).
By substituting the inequalities given by the above Claim into (4.6) and dividing out by 𝜖, we

get

𝑀𝑛+1
𝓁

𝜖
⩾

𝑝−2∑
𝑖=1

(𝑟𝑖 − 1 + 𝑟𝑖+1 − 1)(𝜇𝑖 − 𝜇𝑖+1) + (𝑟𝑝−1 − 1 + 𝑟𝑝 − 𝑛 + (𝓁 − 𝑝))(𝜇𝑝−1 − 𝜇𝑝)

+

𝓁−1∑
𝑖=𝑝

(𝑟𝑖 − 𝑛 + (𝓁 − 𝑖) + 𝑟𝑖+1 − 𝑛 + (𝓁 − 𝑖 − 1))(𝜇𝑖 − 𝜇𝑖+1) + 2(𝑟𝓁 − 𝑛)𝜇𝓁

⩾
⏟⏟⏟

𝑟𝑖+1⩾𝑟𝑖+1

𝑝−2∑
𝑖=1

(2𝑟𝑖 − 1)(𝜇𝑖 − 𝜇𝑖+1) + (2𝑟𝑝−1 − 𝑛 + 𝓁 − 𝑝)(𝜇𝑝−1 − 𝜇𝑝)

+ 2

𝓁−1∑
𝑖=𝑝

(𝑟𝑖 − 𝑛 + (𝓁 − 𝑖))(𝜇𝑖 − 𝜇𝑖+1) + 2(𝑟𝓁 − 𝑛)𝜇𝓁

=
⏟⏟⏟

Lemma 3.3

2 deg 𝑓∗𝑋(𝐿) − 𝜇1 + 𝜇𝑝−1 + (−𝑛 + 𝓁 − 𝑝)(𝜇𝑝−1 − 𝜇𝑝)

+ 2(−𝑛 + 𝓁 − 𝑝)𝜇𝑝 − 2𝜇𝑝+1 − … − 2𝜇𝓁

= 2deg 𝑓∗𝑋(𝐿) − 𝜇1 + (1 − 𝑛 + 𝓁 − 𝑝)𝜇𝑝−1 + (−𝑛 + 𝓁 − 𝑝)𝜇𝑝 − 2𝜇𝑝+1 − … − 2𝜇𝓁

⩾
⏟⏟⏟
𝜇𝑖⩾𝜇𝑖+1

2 deg 𝑓∗𝑋(𝐿) − 𝜇1 + (1 − 𝑛)𝜇1 + (𝓁 − 𝑝)𝜇𝑝−1 + (−𝑛 + 𝓁 − 𝑝)𝜇𝑝 − 2(𝓁 − 𝑝)𝜇𝑝

= 2 deg 𝑓∗𝑋(𝐿) − 𝑛𝜇1 − 𝑛𝜇𝑝 + (𝓁 − 𝑝)(𝜇𝑝−1 − 𝜇𝑝) ⩾
⏟⏟⏟

𝜇𝑝−1⩾𝜇𝑝

2 deg 𝑓∗𝑋(𝐿) − 𝑛(𝜇1 + 𝜇𝑝).

(4.9)

Note that in the above inequalities we have used that 𝜇𝓁 ⩾ 0 by (3.4) and the assumption that
𝑓∗𝑋(𝐿) is nef.
We next apply Corollary 3.8(2) with𝑁𝓁+1 ∶= 𝑁𝓁 = 𝑀𝓁 − 𝜇𝓁𝐹, 𝜇𝓁+1 = 𝜇𝓁 , and either 𝑞 = 2 and

𝑠1 = 1 < 𝑠2 = 𝑝 < 𝑠3 = 𝓁 + 1 if 1 < 𝑝, or 𝑞 = 1 and 𝑠1 = 1 = 𝑝 < 𝑠2 = 𝓁 + 1 if 𝑝 = 1:

𝑁𝑛+1
𝓁 = 𝑀𝑛+1

𝓁 − (𝑛 + 1)𝜇𝓁𝑃
𝑛
𝓁 ⩾ 𝑃𝑛−1

𝓁

[
(𝑃1 + 𝑃𝑝)(𝜇1 − 𝜇𝑝) + (𝑃𝑝 + 𝑃𝓁)(𝜇𝑝 − 𝜇𝓁)

]
(4.10)

= 𝑃𝑛−1
𝓁 𝑃1(𝜇1 − 𝜇𝑝) + 𝑃𝑛

𝓁(𝜇1 + 𝜇𝑝 − 2𝜇𝓁) ⩾ 𝑃𝑛
𝓁(𝜇1 + 𝜇𝑝 − 2𝜇𝓁),

where we used in the second equality that 𝑃𝑛−1
𝓁 𝑃𝑝 = 𝑃𝑛

𝓁 by the definition of 𝑝, and in the last
inequality that 𝑃𝑛−1

𝓁 𝑃1(𝜇1 − 𝜇𝑝) ⩾ 0 since 𝑃𝓁 and 𝑃1 are nef by Proposition 3.5(i) and 𝜇1 ⩾ 𝜇𝑝 by
(3.2). The inequality (4.10) implies that

𝑀𝑛+1
𝓁 ⩾ 𝑃𝑛

𝓁(𝜇1 + 𝜇𝑝), (4.11)

with the equality that can occur only if either 𝑛 = 1 or 𝑛 ⩾ 2 and 𝜇𝓁 = 0.
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32 CODOGNI et al.

Now we conclude as follows:

∙ if

𝜇1 + 𝜇𝑝 ⩽
2𝜖 deg 𝑓∗𝑋(𝐿)

𝑃𝑛
𝓁 + 𝜖𝑛

then the conclusion follows from (4.9);
∙ if

𝜇1 + 𝜇𝑝 ⩾
2𝜖 deg 𝑓∗𝑋(𝐿)

𝑃𝑛
𝓁 + 𝜖𝑛

then the conclusion follows from (4.11). □

Corollary 4.2. Suppose that 𝐿 and 𝑓∗𝑋(𝐿) are nef, and that 𝜙𝐿𝐹 is generically finite. Then

𝐿𝑛+1 ⩾

⎧⎪⎪⎨⎪⎪⎩
4
ℎ0(𝐹,𝐿𝐹)−𝑛

ℎ0(𝐹,𝐿𝐹)
deg 𝑓∗𝑋(𝐿) if either dim𝐹 ⩾ 2 and 𝜅(𝐹) ⩾ 0,

or dim𝐹 = 1 and ⌊𝐿𝐹⌋ is special,
2
ℎ0(𝐹,𝐿𝐹)−𝑛

ℎ0(𝐹,𝐿𝐹)
deg 𝑓∗𝑋(𝐿) otherwise.

For 𝑛 ⩾ 2, if the above inequalities are equalities, then 𝜇−(𝑓∗𝑋(𝐿)) = 0 and hence 𝑓∗𝑋(𝐿) is
not ample.

Proof. This follows from the second inequality in Theorem 4.1, using that 𝐿𝑛+1 ⩾ 𝑀𝑛+1
𝓁 by

Lemma 3.10(ii) and that ℎ0(𝐹, 𝐿𝐹) = ℎ0(𝐹, 𝑃𝓁) by Proposition 3.5(iv). □

Corollary 4.3. Suppose that 𝐿 and 𝑓∗𝑋(𝐿) are nef, and that 𝐿𝐹 is Cartier, globally generated and
big. Then

𝐿𝑛+1 ⩾

⎧⎪⎪⎨⎪⎪⎩
4

𝐿𝑛
𝐹

𝐿𝑛
𝐹
+2𝑛

deg 𝑓∗𝑋(𝐿) if either dim𝐹 ⩾ 2 and 𝜅(𝐹) ⩾ 0,

or dim𝐹 = 1 and ⌊𝐿𝐹⌋ is special,

2
𝐿𝑛
𝐹

𝐿𝑛
𝐹
+𝑛

deg 𝑓∗𝑋(𝐿) otherwise.

For 𝑛 ⩾ 2, if the above inequalities are equalities, then 𝜇−(𝑓∗𝑋(𝐿)) = 0 and hence 𝑓∗𝑋(𝐿) is
not ample.

Proof. This follows from the first inequality in Theorem 4.1, using that 𝐿 is nef, and hence that
𝐿𝑛+1 ⩾ 𝑀𝑛+1

𝓁 by Lemma 3.10(ii), and that 𝐿𝑛
𝐹
= 𝑃𝑛

𝓁 by Proposition 3.5(v). □

Note that the assumptions of Corollary 4.3 are stronger than the assumptions of Corollary 4.2
but, at the same time, the conclusion is also stronger by Corollary 2.5.

Remark 4.4. If 𝑓 ∶ 𝑋 → 𝑇 is a family of curves such that a general fiber 𝐹 is a smooth projective
irreducible curve of genus g ⩾ 2 and 𝐿 = 𝐾𝑋∕𝑇 , both Corollaries 4.2 and 4.3 reduces to the Xiao–
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 33

Cornalba–Harris inequality (see [51, Thm. 2] or [18, Prop. 4.3]†)

𝐾2
𝑋∕𝑇

⩾
4g − 4

g
deg 𝑓∗𝑋(𝐾𝑋∕𝑇). (4.12)

Moreover, the slope inequality (4.12) is sharp since it is attained for non-isotrivial families
of hyperelliptic stable curves such that every node of each fiber of 𝑓 is non-separating (and
indeed these are the only families of stable curves attaining the equality in (4.12)), see [18,
Thm. 4.12].

Remark 4.5. In the special case 𝑛 = 2 and 𝐿 = 𝐾𝑋∕𝑇 , and under the assumptions that𝑋 has termi-
nal singularities (and hence isolated singularities since dim𝑋 = 3) and a general fiber 𝐹 (which
is automatically smooth) is of general type, then

(i) the slope inequality in Corollary 4.2 was proved by Ohno [43, Prop. 2.1] without the
assumption that 𝜙𝐾𝐹

is generically finite;
(ii) the slope inequality in Corollary 4.3 was proved by Hu-Zhang [29, Thm. 1.7] without the

assumption that 𝐾𝐹 is globally generated, using methods of positive characteristics (and
indeed [29, Thm. 1.7] holds also in positive characteristics).

Moreover, in this special case, Ohno proved in [43, Prop. 2.1] that the equality in Corollary 4.2
cannot occur unless 𝑓 is isotrivial, see Proposition 5.5(1) for a generalization.

The second slope inequality that we prove is a refinement (at least for 𝑛 ⩾ 3) of the one
obtained in Theorem 4.1, under the stronger assumption that 𝐿𝐹 gives a birational map and it
is subcanonical (on a resolution of singularities).

Theorem 4.6. Assume we are in the set-up (3.1) and suppose that 𝑓∗𝑋(𝐿) is nef, 𝜙𝐿𝐹 is birational
and 𝑛 ⩾ 2. Let 𝑠 ∈ ℕ such that 𝐾�̃� − 𝑠𝑃𝓁 ⩾ 0. Then

𝑀𝑛+1
𝓁 ⩾ 2(𝑛 + 𝑠)

𝑃𝑛
𝓁

𝑃𝑛
𝓁 + (𝑛 + 𝑠)(𝑛 + 2)

deg 𝑓∗𝑋(𝐿) ⩾ 2(𝑛 + 𝑠)
ℎ0(𝐹, 𝑃𝓁) − 𝑛 − 2

ℎ0(𝐹, 𝑃𝓁)
deg 𝑓∗𝑋(𝐿).

(4.13)
If 𝑛 ⩾ 2 and the first inequality is an equality, then 𝜇−(𝑓∗𝑋(𝐿)) = 0 and hence 𝑓∗𝑋(𝐿) is
not ample.

Proof. First of all, note that the (Cartier) divisor 𝑃𝓁 on 𝐹 is globally generated (and hence nef)
by Proposition 3.5(i) and with birational associated morphism 𝜙𝑃𝓁 by Proposition 3.5(iv) together
with assumption that 𝜙𝐿𝐹 is birational. Therefore, the second inequality in (4.13) follows from the
inequality

𝑃𝑛
𝓁 ⩾ (𝑛 + 𝑠)(ℎ0(𝐹, 𝑃𝓁) − 𝑛 − 1) + 2, (4.14)

which holds by Lemma 2.12.

† This result is stated in [18, Prop. 4.3] under the further assumption that 𝑓 is a family of stable curves. However, the proof
can be easily adapted to the general case of a fibration with normal total space.
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34 CODOGNI et al.

We first apply Corollary 3.8(1A) with 𝑁𝓁+1 ∶= 𝑁𝓁 = 𝑀𝓁 − 𝜇𝓁𝐹 and 𝜇𝓁+1 = 𝜇𝓁 , and we get

𝑁𝑛+1
𝓁 = 𝑀𝑛+1

𝓁 − (𝑛 + 1)𝜇𝓁𝑃
𝑛
𝓁 ⩾

𝓁∑
𝑖=1

(𝑃𝑖 + 𝑃𝑖+1)𝑃
𝑛−1
𝓁 (𝜇𝑖 − 𝜇𝑖+1) =

𝓁−1∑
𝑖=1

(𝑃𝑖 + 𝑃𝑖+1)𝑃
𝑛−1
𝓁 (𝜇𝑖 − 𝜇𝑖+1).

(4.15)

This inequality implies that

𝑀𝑛+1
𝓁 ⩾

𝓁−1∑
𝑖=1

(𝑃𝑖 + 𝑃𝑖+1)𝑃
𝑛−1
𝓁 (𝜇𝑖 − 𝜇𝑖+1) + 2𝜇𝓁𝑃

𝑛
𝓁 , (4.16)

with the equality that can occur only if either 𝑛 = 1 or 𝑛 ⩾ 2 and 𝜇𝓁 = 0.
In order to give a lower bound on the right hand side of (4.16), we define

𝑝 ∶= min{𝑖 ∈ {1, … ,𝓁} | 𝑃𝑛
𝓁 − 𝑃𝑛−1

𝓁 ⋅ 𝑃𝑖 = 0}.

Observe that, since the intersection numbers

𝑃𝑛
𝓁 − 𝑃𝑛−1

𝓁 ⋅ 𝑃𝑖 = 𝑃𝑛−1
𝓁 ⋅ (𝑍𝑖 − 𝑍𝓁)

are non-increasing in 𝑖 (because 𝑃𝓁 is nef by Proposition 3.5(i), 𝑍𝑖 − 𝑍𝑖+1 ⩾ 0 by (3.8), and 𝐹 is a
general fiber of 𝑓), we have that

⎧⎪⎨⎪⎩
𝑃𝑛
𝓁 − 𝑃𝑛−1

𝓁 ⋅ 𝑃𝑖 ⩾ 1 if 𝑖 < 𝑝,

𝑃𝑛
𝓁 − 𝑃𝑛−1

𝓁 ⋅ 𝑃𝑖 = 0 if 𝑝 ⩽ 𝑖.
(4.17)

Claim. We have that

𝑃𝑛−1
𝓁 ⋅ 𝑃𝑖 ⩾

⎧⎪⎨⎪⎩
(𝑛 + 𝑠)(ℎ0(𝐹, 𝑃𝑖) − 2) + 2 ⩾ (𝑛 + 𝑠)(𝑟𝑖 − 2) + 2 if 1 ⩽ 𝑖 < 𝑝,

(𝑛 + 𝑠)(ℎ0(𝐹, 𝑃𝓁) − 𝑛 − 1) + 2 ⩾ (𝑛 + 𝑠)[𝑟𝑖 + (𝓁 − 𝑖) − 𝑛 − 1] + 2 if 𝑝 ⩽ 𝑖 ⩽ 𝓁.

(4.18)

Indeed, if 𝑝 ⩽ 𝑖 ⩽ 𝓁, which implies that 𝑃𝑛
𝓁 − 𝑃𝑛−1

𝓁 ⋅ 𝑃𝑖 = 0 by (4.17), then (4.14) gives

𝑃𝑛−1
𝓁 ⋅ 𝑃𝑖 = 𝑃𝑛

𝓁 ⩾ (𝑛 + 𝑠)(ℎ0(𝐹, 𝑃𝓁) − 𝑛 − 1) + 2.

If, instead, 1 ⩽ 𝑖 < 𝑝, which implies that 𝑃𝑛
𝓁 − 𝑃𝑛−1

𝓁 𝑃𝑖 ⩾ 1 by (4.7), then we get

𝑃𝑛−1
𝓁 ⋅ 𝑃𝑖 ⩾ (𝑛 + 𝑠)(ℎ0(𝐹, 𝑃𝑖) − 2) + 2,

by applying Proposition 2.14. We conclude in both cases using that ℎ0(𝐹,𝑀𝑖|𝐹) ⩾ 𝑟𝑖 by
Proposition 3.5(ii) and (for the second case) the fact that 𝑟𝑖+1 ⩾ 𝑟𝑖 + 1 by (3.3).
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 35

By substituting the inequalities given by the above Claim into (4.6), we get

𝑀𝑛+1
𝓁 ⩾

𝑝−2∑
𝑖=1

[(𝑛 + 𝑠)(𝑟𝑖 − 2 + 𝑟𝑖+1 − 2) + 4](𝜇𝑖 − 𝜇𝑖+1)

+[(𝑛 + 𝑠)(𝑟𝑝−1 − 2 + 𝑟𝑝 + 𝓁 − 𝑝 − 𝑛 − 1) + 4](𝜇𝑝−1 − 𝜇𝑝)

+

𝓁−1∑
𝑖=𝑝

[(𝑛 + 𝑠)(𝑟𝑖 − 𝑛 − 1 + (𝓁 − 𝑖) + 𝑟𝑖+1 − 𝑛 − 1

+(𝓁 − 𝑖 − 1)) + 4](𝜇𝑖 − 𝜇𝑖+1) + 2[(𝑛 + 𝑠)(𝑟𝓁 − 𝑛 − 1) + 2]𝜇𝓁

⩾
⏟⏟⏟

𝑟𝑖+1⩾𝑟𝑖+1

𝑝−2∑
𝑖=1

[(𝑛 + 𝑠)(2𝑟𝑖 − 3) + 4](𝜇𝑖 − 𝜇𝑖+1)

+[(𝑛 + 𝑠)(2𝑟𝑝−1 − 1 + 𝓁 − 𝑝 − 𝑛 − 1) + 4](𝜇𝑝−1 − 𝜇𝑝)

+2

𝓁−1∑
𝑖=𝑝

[(𝑛 + 𝑠)(𝑟𝑖 − 𝑛 − 1 + 𝓁 − 𝑖) + 2](𝜇𝑖 − 𝜇𝑖+1) + 2[(𝑛 + 𝑠)(𝑟𝓁 − 𝑛 − 1) + 2]𝜇𝓁

=
⏟⏟⏟

Lemma 3.3

2(𝑛 + 𝑠) deg 𝑓∗𝑋(𝐿) − [3(𝑛 + 𝑠) − 4](𝜇1 − 𝜇𝑝−1)

+[(𝑛 + 𝑠)(𝓁 − 𝑝 − 𝑛 − 2) + 4](𝜇𝑝−1 − 𝜇𝑝) +

+2[(𝑛 + 𝑠)(𝓁 − 𝑝 − 𝑛 − 1) + 2]𝜇𝑝 − 2(𝑛 + 𝑠)𝜇𝑝+1 − … − 2(𝑛 + 𝑠)𝜇𝓁

⩾ (𝑛 + 𝑠)[2 deg 𝑓∗𝑋(𝐿) − 3𝜇1 + 3𝜇𝑝−1 + (𝓁 − 𝑝 − 𝑛 − 2)𝜇𝑝−1 − (𝓁 − 𝑝 − 𝑛 − 2)𝜇𝑝

+2(𝓁 − 𝑝 − 𝑛 − 1)𝜇𝑝 − 2𝜇𝑝+1 − … − 2𝜇𝓁]

= (𝑛 + 𝑠)[2 deg 𝑓∗𝑋(𝐿) − 3𝜇1 + (𝓁 − 𝑝 − 𝑛 + 1)𝜇𝑝−1 + (𝓁 − 𝑝 − 𝑛)𝜇𝑝 − 2𝜇𝑝+1 − … − 2𝜇𝓁]

⩾
⏟⏟⏟
𝜇𝑖⩾𝜇𝑖+1

(𝑛 + 𝑠)[2 deg 𝑓∗𝑋(𝐿) − 3𝜇1 + (−𝑛 + 1)𝜇𝑝−1 + (𝓁 − 𝑝)𝜇𝑝 + (𝓁 − 𝑝 − 𝑛)𝜇𝑝 − 2(𝓁 − 𝑝)𝜇𝑝]

= (𝑛 + 𝑠)[2 deg 𝑓∗𝑋(𝐿) − 3𝜇1 + (−𝑛 + 1)𝜇𝑝−1 − 𝑛𝜇𝑝]

⩾
⏟⏟⏟

𝜇1⩾𝜇𝑝−1⩾𝜇𝑝

(𝑛 + 𝑠)[2 deg 𝑓∗𝑋(𝐿) − (𝑛 + 2)(𝜇1 + 𝜇𝑝)]. (4.19)

Note that in the above inequalities we have used that 𝜇𝓁 ⩾ 0 by (3.4) and the assumption that
𝑓∗𝑋(𝐿) is nef.
We next apply Corollary 3.8(2) with𝑁𝓁+1 ∶= 𝑁𝓁 = 𝑀𝓁 − 𝜇𝓁𝐹, 𝜇𝓁+1 = 𝜇𝓁 , and either 𝑞 = 2 and

𝑠1 = 1 < 𝑠2 = 𝑝 < 𝑠3 = 𝓁 + 1 if 1 < 𝑝, or 𝑞 = 1 and 𝑠1 = 1 = 𝑝 < 𝑠2 = 𝓁 + 1 if 𝑝 = 1:

𝑁𝑛+1
𝓁 = 𝑀𝑛+1

𝓁 − (𝑛 + 1)𝜇𝓁𝑃
𝑛
𝓁 ⩾ 𝑃𝑛−1

𝓁

[
(𝑃1 + 𝑃𝑝)(𝜇1 − 𝜇𝑝) + (𝑃𝑝 + 𝑃𝓁)(𝜇𝑝 − 𝜇𝓁)

]
(4.20)

= 𝑃𝑛−1
𝓁 𝑃1(𝜇1 − 𝜇𝑝) + 𝑃𝑛

𝓁(𝜇1 + 𝜇𝑝 − 2𝜇𝓁) ⩾ 𝑃𝑛
𝓁(𝜇1 + 𝜇𝑝 − 2𝜇𝓁),

where we used in the first equality that 𝑃𝑛−1
𝓁 𝑃𝑝 = 𝑃𝑛

𝓁 by the definition of 𝑝, and in the last equality
that 𝑃𝑛−1

𝓁 𝑃1(𝜇1 − 𝜇𝑝) ⩾ 0 since 𝑃𝓁 and 𝑃1 are nef by Proposition 3.5(i) and 𝜇1 ⩾ 𝜇𝑝 by (3.2). The
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36 CODOGNI et al.

inequality (4.20) implies that

𝑀𝑛+1
𝓁 ⩾ 𝑃𝑛

𝓁(𝜇1 + 𝜇𝑝), (4.21)

with the equality that can occur only if either 𝑛 = 1 or 𝑛 ⩾ 2 and 𝜇𝓁 = 0.
Now we conclude as follows:

∙ if

𝜇1 + 𝜇𝑝 ⩽
2(𝑛 + 𝑠) deg 𝑓∗𝑋(𝐿)

𝑃𝑛
𝓁 + (𝑛 + 𝑠)(𝑛 + 2)

then the conclusion follows from (4.19);
∙ if

𝜇1 + 𝜇𝑝 ⩾
2(𝑛 + 𝑠) deg 𝑓∗𝑋(𝐿)

𝑃𝑛
𝓁 + (𝑛 + 𝑠)(𝑛 + 2)

then the conclusion follows from (4.21). □

Corollary 4.7. Suppose that 𝐿 and 𝑓∗𝑋(𝐿) are nef, 𝜙𝐿𝐹 is birational and 𝑛 ⩾ 2. Assume that the
singularities of the general fiber 𝐹 are canonical and let 𝑠 ∈ ℕ such that 𝐾𝐹 − 𝑠𝐿𝐹 ⩾ 0. Then

𝐿𝑛+1 ⩾ 2(𝑛 + 𝑠)
ℎ0(𝐹, 𝐿𝐹) − 𝑛 − 2

ℎ0(𝐹, 𝐿𝐹)
deg 𝑓∗𝑋(𝐿).

If 𝑛 ⩾ 2 and the inequality is an equality, then 𝜇−(𝑓∗𝑋(𝐿)) = 0 and hence 𝑓∗𝑋(𝐿) is not ample.

Proof. By Equation (3.10) we know that 𝑍 ∶= 𝜇∗𝐿𝐹 − 𝑃𝓁 is effective. Since the singularities of 𝐹
are canonical, we get

𝐾�̃� − 𝑠𝑃𝓁 = 𝜇∗𝐾𝐹 + 𝐸 − 𝑠(𝜇∗𝐿𝐹 − 𝑍) = 𝜇∗(𝐾𝐹 − 𝑠𝐿𝐹) + 𝐸 + 𝑠𝑍 ⩾ 0.

We can hence apply Theorem 4.6, using that 𝐿𝑛+1 ⩾ 𝑀𝑛+1
𝓁 by Lemma 3.10(ii) and that

ℎ0(𝐹, 𝐿𝐹) = ℎ0(𝐹, 𝑃𝓁) by Proposition 3.5(iv). □

Corollary 4.8. Suppose that 𝐿 and 𝑓∗𝑋(𝐿) are nef, 𝐿𝐹 is Cartier, globally generated, 𝜙𝐿𝐹 is bira-
tional and 𝑛 ⩾ 2. Assume that the singularities of the general fiber𝐹 are canonical and let 𝑠 ∈ ℕ such
that 𝐾𝐹 − 𝑠𝐿𝐹 ⩾ 0. Then

𝐿𝑛+1 ⩾ 2(𝑛 + 𝑠)
𝐿𝑛
𝐹

𝐿𝑛
𝐹
+ (𝑛 + 𝑠)(𝑛 + 2)

deg 𝑓∗𝑋(𝐿).

If 𝑛 ⩾ 2 and the inequality is an equality, then 𝜇−(𝑓∗𝑋(𝐿)) = 0 and hence 𝑓∗𝑋(𝐿) is not ample.

Proof. Since the singularities of the 𝐹 are canonical, we can apply Theorem 4.6 (see the proof
of Corollary 4.7), using that 𝐿 is nef, and hence that 𝐿𝑛+1 ⩾ 𝑀𝑛+1

𝓁 by Lemma 3.10(ii), and that
𝐿𝑛
𝐹
= 𝑃𝑛

𝓁 by Proposition 3.5(v). □

The third (and last) slope inequality that we prove is independent of the numerical invariants
of the polarized general fiber (𝐹, 𝐿𝐹), and it is contained in the following
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 37

Theorem 4.9. Assume we are in the set-up (3.1) and suppose that 𝐿 and 𝑓∗𝑋(𝐿) are nef.

(1) Assume there exists a 𝑞 ∈ ℕ>0 such that at least one of the following two conditions holds true
∙ 𝜙𝑞𝐿𝐹 is generically finite, that is, condition (𝐵𝑞) holds true;
∙ 𝑞𝐿𝐹 is Cartier and big, that is, condition (𝐶𝑞) hods true.
Then

𝐿𝑛+1 ⩾
deg 𝑓∗𝑋(𝐿)

𝑞𝑛
.

(2) Assume that there exists a 𝑞 ∈ ℕ>0 such that 𝜙𝑞𝐿𝐹 is generically finite (i.e., condition (𝐵𝑞) holds
true), and either 𝑛 = dim𝐹 ⩾ 2 and 𝜅(𝐹) ⩾ 0 (i.e., condition (𝑎) holds true) or dim𝐹 = 1 and
𝑞𝐿𝐹 is special (i.e., condition (𝑏𝑞) holds true), then

𝐿𝑛+1 ⩾ 2
deg 𝑓∗𝑋(𝐿)

𝑞𝑛
.

In particular, if the assumptions of either item (1) or item (2) hold and deg 𝑓∗𝑋(𝐿) > 0, then 𝐿

is big.

The proof of the above Theorem is inspired by [4, Page 69, Claim] (see however Remark 4.10).

Proof. With the notation of § 3, we define a partition of the set [𝓁] ∶= {1, … ,𝓁} as it follows

𝐴𝑖 ∶= {𝑗 ∈ [𝓁] ∶ dim𝜙𝑃𝑗 (𝐹) = 𝑖} for any 0 ⩽ 𝑖 ⩽ 𝑛.

Define the sequence of integers 1 = 𝑚0 ⩽ 𝑚1 ⩽ … ⩽ 𝑚𝑛 ⩽ 𝑚𝑛+1 ∶= 𝓁 + 1 by

𝑚𝑖 ∶=

{
min{𝑗 ∈ 𝐴𝑖} if 𝐴𝑖 ≠ ∅,

𝑚𝑖+1 if 𝐴𝑖 = ∅.
(4.22)

Equivalently, the above sequence of integers is such that

𝐴𝑖 = {𝑚𝑖, … ,𝑚𝑖+1 − 1} for any 0 ⩽ 𝑖 ⩽ 𝑛.

We now apply Corollary 3.8(1) to the above sequence of integers 1 = 𝑚0 ⩽ 𝑚1 ⩽ … ⩽ 𝑚𝑛 ⩽

𝑚𝑛+1 ∶= 𝓁 + 1 by choosing the nef ℚ-divisor 𝑁𝓁+1 ∶= 𝜇∗(𝐿) on 𝑋 (which implies that 𝑃𝓁+1 =
𝜇∗
𝐹
(𝐿𝐹)) and 𝜇𝓁+1 = 0 (which satisfy the assumptions of loc. cit. by Remark 3.9 since 𝐿 is nef by

hypothesis), we thus have

𝜇∗(𝐿)𝑛+1 = 𝑁𝑛+1
𝓁+1 ⩾

𝑛∑
𝑖=0

𝑚𝑖+1−1∑
𝑗=𝑚𝑖

(
𝑖∑

𝑘=0

𝑃𝑘
𝑗
𝑃𝑖−𝑘
𝑗+1

)
⋅
(
𝑃𝑚𝑖+1

⋯𝑃𝑚𝑛

)
(𝜇𝑗 − 𝜇𝑗+1). (4.23)

Note that 𝜇𝓁 ⩾ 𝜇𝓁+1 = 0 by (3.4) and the assumption that 𝑓∗𝑋(𝐿) is nef.
We now want to prove a lower bound on the right hand side of (4.23). Using that the line bun-

dles {𝑃1, … , 𝑃𝓁} are nef by Proposition 3.5(i) and they form a non-decreasing sequence by (3.10),
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38 CODOGNI et al.

we get the inequalities of cycles 𝑃𝑘
𝑗
𝑃𝑖−𝑘
𝑗+1

⩾ 𝑃𝑖
𝑗
for any 0 ⩽ 𝑘 ⩽ 𝑖, which then imply the following

inequality (
𝑖∑

𝑘=0

𝑃𝑘
𝑗
𝑃𝑖−𝑘
𝑗+1

)(
𝑃𝑚𝑖+1

⋯𝑃𝑚𝑛

)
⩾ (𝑖 + 1)𝑃𝑖

𝑗
⋅
(
𝑃𝑚𝑖+1

⋯𝑃𝑚𝑛

)
. (4.24)

We now make the following

Claim. For any𝑚𝑖 ⩽ 𝑗 ⩽ 𝑚𝑖+1 − 1 (or equivalently 𝑗 ∈ 𝐴𝑖 , i.e. dim𝜙𝑃𝑗 (𝐹) = 𝑖), we have that

𝑃𝑖
𝑗 ⋅

(
𝑃𝑚𝑖+1

⋯𝑃𝑚𝑛

)
⩾

⎧⎪⎨⎪⎩
ℎ0(𝐹,𝑃𝑗)−𝑖

𝑞𝑛
if we are in case (1) of the theorem;

2ℎ0(𝐹,𝑃𝑗)−2𝑖

𝑞𝑛
if we are in case (2) of the theorem.

(4.25)

Indeed, if we set 0 ⩽ 𝑑 ∶= dim𝜙𝑃𝓁 (𝐹) ⩽ 𝑛, then it follows from the definition (4.22) of the
integers𝑚𝑖 that

⎧⎪⎨⎪⎩
dim𝜙𝑃𝑚𝑖

(𝐹) ⩾ 𝑖 if 𝑖 ⩽ 𝑑,

𝑃𝑚𝑖
= 𝑃𝑚𝑛+1

= 𝑃𝓁+1 = 𝜇∗
𝐹
(𝐿𝐹) if 𝑖 > 𝑑.

(4.26)

Therefore, if 𝑑 = 𝑛 (which happens precisely when 𝜙𝐿𝐹 is generically finite by Proposi-
tion 3.5(iv)), we get that

𝑃𝑖
𝑗 ⋅

(
𝑃𝑚𝑖+1

⋯𝑃𝑚𝑛

)
⩾

⎧⎪⎨⎪⎩
2ℎ0(𝐹, 𝑃𝑗) − 2𝑖 if either dim𝐹 ⩾ 2 and 𝜅(𝐹) ⩾ 0,

or dim𝐹 = 1 and ⌊𝐿𝐹⌋ is special,
ℎ0(𝐹, 𝑃𝑗) − 𝑖 otherwise.

(4.27)

by applying

∙ if dim𝐹 ⩾ 2 and 𝜅(𝐹) ⩾ 0: Proposition 2.1 with 𝑘 = 𝑖,𝐻 = 𝑃𝑗 , 𝐿𝑡 = 𝑃𝑚𝑡
for any 𝑘 + 1 = 𝑖 + 1 ⩽

𝑡 ⩽ 𝑛;
∙ if dim𝐹 = 1 and ⌊𝐿𝐹⌋ is special: Clifford’s theorem for 𝑃𝑚1

if 𝑖 = 0 or 𝑃𝑗 if 𝑖 = 1, using that
𝑃𝑚1

, 𝑃𝑗 ⩽ 𝑃𝓁 ⩽ ⌊𝐿𝐹⌋ ⩽ 𝑞⌊𝐿𝐹⌋ are special;
∙ otherwise: Proposition 2.3 with 𝑘 = 𝑖, ℎ = 𝑛 − 𝑖,𝐻 = 𝑃𝑗 , 𝐿𝑡 = 𝑃𝑚𝑡

for any 𝑘 + 1 = 𝑖 + 1 ⩽ 𝑡 ⩽ 𝑛

(and any big and nef Cartier divisor𝑀).

On the other hand, if 𝑑 < 𝑛 (i.e. if 𝜙𝐿𝐹 is not generically finite), then using (4.26), we get that

𝑃𝑖
𝑗 ⋅

(
𝑃𝑚𝑖+1

⋯𝑃𝑚𝑛

)
= 𝑃𝑖

𝑗 ⋅
(
𝑃𝑚𝑖+1

⋯𝑃𝑚𝑑

)
⋅ 𝜇∗

𝐹
(𝐿𝐹)

𝑛−𝑑 =
𝑃𝑖
𝑗
⋅
(
𝑃𝑚𝑖+1

⋯𝑃𝑚𝑑

)
⋅ 𝜇∗

𝐹
(𝑞𝐿𝐹)

𝑛−𝑑

𝑞𝑛−𝑑
.

(4.28)
We can now apply

∙ if dim𝐹 ⩾ 2 and 𝜅(𝐹) ⩾ 0: Proposition 2.1 with 𝑘 = 𝑖,𝐻 = 𝑃𝑗 , 𝐿𝑡 = 𝑃𝑚𝑡
for any 𝑘 + 1 = 𝑖 + 1 ⩽

𝑡 ⩽ 𝑑 and 𝐿𝑠 = 𝜇∗
𝐹
(𝑞𝐿𝐹) for any 𝑑 + 1 ⩽ 𝑠 ⩽ 𝑛;

∙ if dim𝐹 = 1 and ⌊𝑞𝐿𝐹⌋ is special: Clifford’s theorem for ⌊𝜇∗
𝐹
(𝑞𝐿𝐹)⌋ = ⌊𝑞𝐿𝐹⌋;
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 39

∙ Proposition 2.3 with 𝑘 = 𝑖, ℎ = 𝑑 − 𝑖,𝐻 = 𝑃𝑗 , 𝐿𝑡 = 𝑃𝑚𝑡
for any 𝑘 + 1 ⩽ 𝑡 ⩽ 𝑘 + ℎ = 𝑑 and𝑀 =

𝑞𝜇∗
𝐹
(𝐿𝐹) = 𝜇∗

𝐹
(𝑞𝐿𝐹), if 𝑞𝐿𝐹 is Cartier and big;

∙ Proposition 2.3 with 𝑘 = 𝑖, ℎ = 𝑛 − 𝑖, 𝐻 = 𝑃𝑗 , 𝐿𝑡 = 𝑃𝑚𝑡
for any 𝑘 + 1 ⩽ 𝑡 ⩽ 𝑑 and 𝐿𝑡 =

𝑞𝜇∗
𝐹
(𝐿𝐹) = 𝜇∗

𝐹
(𝑞𝐿𝐹) for any 𝑑 + 1 ⩽ 𝑡 ⩽ 𝑛, if 𝜙𝑞𝐿𝐹 is generically finite;

in order to get that

𝑃𝑖
𝑗 ⋅

(
𝑃𝑚𝑖+1

⋯𝑃𝑚𝑑

)
⋅ 𝜇∗

𝐹
(𝐿𝐹)

𝑛−𝑑 ⩾

⎧⎪⎪⎨⎪⎪⎩
2
ℎ0(𝐹,𝑃𝑗)−𝑖

𝑞𝑛−𝑑
⩾ 2

ℎ0(𝐹,𝑃𝑗)−𝑖

𝑞𝑛
if either dim𝐹 ⩾ 2 and 𝜅(𝐹) ⩾ 0,

or dim𝐹 = 1 and ⌊𝑞𝐿𝐹⌋ is special,
ℎ0(𝐹,𝑃𝑗)−𝑖

𝑞𝑛−𝑑
⩾

ℎ0(𝐹,𝑃𝑗)−𝑖

𝑞𝑛
otherwise.

(4.29)
By putting together (4.27), (4.28), and (4.29), the Claim follows.

Finally, observe that for any𝑚𝑖 ⩽ 𝑗 ⩽ 𝑚𝑖+1 − 1 (or equivalently 𝑗 ∈ 𝐴𝑖), we have that

(𝑖 + 1)[ℎ0(𝐹, 𝑃𝑗) − 𝑖] = ℎ0(𝐹, 𝑃𝑗) + 𝑖[ℎ0(𝐹, 𝑃𝑗) − 𝑖 − 1] ⩾ ℎ0(𝐹, 𝑃𝑗) ⩾ 𝑟𝑗, (4.30)

where the first inequality follows from the fact that dim𝜙𝑃𝑗 (𝐹) = 𝑖 (since 𝑗 ∈ 𝐴𝑖) and the second
inequality follows from Proposition 3.5(ii).
We are now ready to conclude. If we set

𝑒 =

⎧⎪⎨⎪⎩
1

𝑞𝑛
if we are in case (1) of the theorem;

2

𝑞𝑛
if we are in case (2) of the theorem.

then, by putting together the inequalities (4.23), (4.24), (4.25), and (4.30), we get

𝐿𝑛+1 =𝜇∗(𝐿)𝑛+1 ⩾

𝑛∑
𝑖=0

𝑚𝑖+1−1∑
𝑗=𝑚𝑖

(
𝑖∑

𝑘=0

𝑃𝑘
𝑗 𝑃

𝑖−𝑘
𝑗+1

)
⋅
(
𝑃𝑚𝑖+1

…𝑃𝑚𝑛

)
(𝜇𝑗 − 𝜇𝑗+1)

⩾

𝑛∑
𝑖=0

𝑚𝑖+1−1∑
𝑗=𝑚𝑖

(𝑖 + 1)𝑃𝑖
𝑗
⋅
(
𝑃𝑚𝑖+1

…𝑃𝑚𝑛

)
(𝜇𝑗 − 𝜇𝑗+1)

⩾

𝑛∑
𝑖=0

𝑚𝑖+1−1∑
𝑗=𝑚𝑖

𝑒(𝑖 + 1)[ℎ0(𝐹, 𝑃𝑖) − 𝑖](𝜇𝑗 − 𝜇𝑗+1)

⩾

𝑛∑
𝑖=0

𝑚𝑖+1−1∑
𝑗=𝑚𝑖

𝑒𝑟𝑗(𝜇𝑗 − 𝜇𝑗+1) = 𝑒

𝑙∑
𝑗=1

𝑟𝑗(𝜇𝑗 − 𝜇𝑗+1) = 𝑒 deg 𝑓∗𝑋(𝐿),

where we have used 𝜇𝑖 − 𝜇𝑖+1 ⩾ 0, 𝜇𝓁+1 = 0, and, in the last equality, Lemma 3.3. Remark that,
in particular, for 𝑖 = 𝓁, we are using that 𝜇𝓁 ⩾ 0, which is equivalent to 𝑓∗𝑋(𝐿) being nef. □

Remark 4.10. When 𝑞 = 1, Theorem 4.9(1) was asserted in [4, Page 69, Claim], without any
assumption on 𝐿𝐹 . However, consider a fibration 𝑓 ∶ 𝑋 → 𝑇 as in 3.1 such that 𝐿 is nef and 𝐿𝐹
is not big. In particular, also 𝐿 is not big, and then 𝐿𝑛+1 = 0. Let 𝐴 be an ample divisor on 𝑇 and
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40 CODOGNI et al.

consider the divisor 𝐿𝑞 = 𝐿 + 𝑞𝑓∗𝐴 for 𝑞 ∈ ℕ. Then 𝐿𝑞 is a nef divisor on𝑋, (𝐿𝑞)𝐹 = 𝐿𝐹 , 𝐿𝑛+1𝑞 = 0

and

deg 𝑓∗𝑋(𝐿𝑞) = deg 𝑓∗𝑋(𝐿) + ℎ0(𝐹, 𝐿𝐹)𝑞 deg𝐴 > 0

for 𝑞 ≫ 0, which shows that the bigness assumption on 𝐿𝐹 is necessary. In works such as [4, 5,
9, Page 69, Claim] is applied only for divisors 𝐿 which are 𝑓-ample, so the lack of convenient
assumptions on 𝐿𝐹 in [4, Page 69, Claim] does not affect the applications.

The inequalities in Theorem 4.9 are sharp in any relative dimension 𝑛 ⩾ 1. Let us first examine
the well-known case of families of curves.

Example 4.11.

(1) Let (𝑓 ∶ 𝑋 → 𝑇, 𝜎) be a normal family of stable curves of genus g = 2 (over a smooth projec-
tive irreducible curve𝑇) such that every node of each fiber of 𝑓 is non-separating and consider
𝐿 = 𝐾𝑋∕𝑇 . Then it follows from [18, Thm. 4.12] that

𝐾2
𝑋∕𝑇

=
4g − 4

g
deg 𝑓∗𝑋(𝐾𝑋∕𝑇) = 2 deg 𝑓∗𝑋(𝐾𝑋∕𝑇),

which shows that this example realizes the equality in Theorem 4.9(2).
(2) Let (𝑓 ∶ 𝑋 → 𝑇, 𝜎) be a family of stable elliptic curves (over a smooth projective irreducible

curve 𝑇), that is, 𝑓 ∶ 𝑋 → 𝑇 is a family of nodal integral curves of arithmetic genus one and
𝜎 ∶ 𝑇 → 𝑋 is a section of 𝑓 such that 𝜎(𝑠) is a smooth point of the fiber 𝑋𝑠 ∶= 𝑓−1(𝑠) for any
𝑠 ∈ 𝑇. Let 𝐷 ∶= Im(𝜎), and consider the Cartier divisor 𝐿 ∶= 𝐾𝑋∕𝑇 + 𝐷 on 𝑋. Note that 𝐿𝐹
is a divisor of degree one on a general (and indeed any) fiber 𝐹 of 𝑓, and hence 𝐿𝐹 is Cartier
and big but 𝜙𝐿𝐹 is not generically finite. As explained in [2, Chap. XIII, Example 7.11] and [2,
Chap. XIV, Cor. 5.14], both 𝐿 and 𝑓∗𝑋(𝐿) are nef and we have that

𝐿2 = deg 𝑓∗𝑋(𝐾𝑋∕𝑇) = deg 𝑓∗𝑋(𝐿) ,

which shows that this example realizes the equality in Theorem 4.9(1) for 𝑞 = 1.

Remark 4.12. The inequalities in Theorem 4.9 are sharp in any relative dimension 𝑛 ⩾ 1 (at least
for 𝑞 = 1) as it follows from Example 8.1. It would also be interesting to find examples attaining
the equality in Theorem 4.9(1) andwith the property that 𝜙𝐿𝐹 is not generically finite, generalising
Example 4.11(2) from 𝑛 = 1 to higher dimension.

Remark 4.13 (Nef sub-bundles). With the same spirit of [7, 9], the proofs of this section can be
adapted to the case where 𝑓∗𝑋(𝐿) is not nef, but it does contain some non-trivial nef subsheaf
. The slope inequalities obtained in this way will involve invariants of . We do not purse this
direction as we do not have any new geometrical application to propose.

5 CANONICALLY POLARIZED VARIETIES

5.1 Slope inequalities for generic slc families

The aim of this subsection is to obtain some slope inequalities for certain fibrations whose generic
fiber is semi-log canonical and whose relative dualizing divisor satisfies some positivity property.
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 41

A special case of such families are the families of KSB stable pairs over curves. We refer to [33] for
the definition of singularities that we are going to introduce.

Setup 5.1. Let 𝑋 be a deminormal (i.e., 𝑆2 and nodal in codimension one) projective variety of
equidimension 𝑛 + 1.
Let𝑓 ∶ 𝑋 → 𝑇 be a fibration (i.e.,𝑓∗𝑋 = 𝑇), where𝑇 is a smooth projective irreducible curve

such that every irreducible component of 𝑋 is dominant onto 𝑇. In particular, 𝑓 is projective, flat
and with connected fibers, and 𝑋 is connected. Let Δ be an effective ℚ-divisor on 𝑋 such that no
irreducible component of the support of Δ is contained in the singular locus of 𝑋.
We say that 𝑓 ∶ (𝑋, Δ) → 𝑇 is a generic lc-family (resp. generic canonical family, resp generic

klt-family) if 𝑋 is normal (hence irreducible), 𝐾𝑋∕𝑇 + Δ isℚ-Cartier, and the general fiber (𝐹, Δ𝐹)

is log canonical (resp. canonical, resp. klt).
We say that 𝑓 ∶ (𝑋, Δ) → 𝑇 is a generic slc-family if𝐾𝑋∕𝑇 + Δ isℚ-Cartier, and the general fiber

(𝐹, Δ𝐹) is semi-log canonical.
We say that 𝑓 ∶ (𝑋, Δ) → 𝑇 is aKSB-stable family if𝐾𝑋∕𝑇 + Δ isℚ-Cartier and relatively ample,

Δ does not contain any irreducible component of 𝑋𝑡 and none of the irreducible components of
𝑋𝑡 ∩ supp(Δ) is contained in the singular locus of 𝑋𝑡 for any 𝑡 ∈ 𝑇 (so that the restriction Δ𝑡 ∶=

Δ|𝑋𝑡
is well-defined for any 𝑡 ∈ 𝑇), and any fiber (𝑋𝑡, Δ𝑡) is semi-log canonical.

Note that if 𝑓 ∶ (𝑋, Δ) → 𝑇 a generic lc-family then, for a general fiber (𝐹, Δ𝐹), we have that

(𝑚(𝐾𝑋∕𝑇 + Δ))|𝐹 = 𝑚(𝐾𝐹 + Δ𝐹) for any𝑚 ∈ ℕ. (5.1)

Indeed, the above equality holds on the smooth locus of 𝑋, and then it extends to 𝑋 since 𝑋

is normal.
For generic slc families, there are powerful results of Fujino [21], which determine the nefness

of the push-forward of the powers of the relative dualizing sheaf.

Theorem 5.2 [21, Theorems 1.10 and 1.11]. Let 𝑓∶ (𝑋, Δ) → 𝑇 be a generic slc-family as in 5.1.

(1) Assume that Δ is a reduced Weil divisor. Then 𝑓∗𝑋(𝐾𝑋∕𝑇 + Δ) is nef.
(2) Assume that Δ is a reduced Weil divisor and that 𝐾𝑋∕𝑇 + Δ is 𝑓-semiample. Then

𝑓∗𝑋(𝑚(𝐾𝑋∕𝑇 + Δ)) is nef for all integers𝑚 ⩾ 1.
(3) Assume that𝑚(𝐾𝑋∕𝑇 + Δ) is Cartier and 𝑓-globally generated for some positive integer𝑚. Then

𝑓∗𝑋(𝑚(𝐾𝑋∕𝑇 + Δ)) is nef.

Corollary 5.3.

(1) Let 𝑓∶ (𝑋, Δ) → 𝑇 be a generic lc-family as in 5.1. Then 𝑓∗𝑋(𝐾𝑋∕𝑇 + Δ) is nef.
(2) Let 𝑓∶ (𝑋, Δ) → 𝑇 be a generic slc-family as in 5.1 such that 𝐾𝑋∕𝑇 + Δ is 𝑓-semiample. Then

𝐾𝑋∕𝑇 + Δ is nef.

Proof. Proof of (1). When Δ is integral and reduced, this is exactly Theorem 5.2(1). An easy case is
when 𝐾𝑋∕𝑇 + ⌊Δ⌋ is ℚ-Cartier restricted to the generic fiber and the coefficients of Δ are at most
1: in this case, 𝑓∶ (𝑋, ⌊Δ⌋) → 𝑇 is a generic lc family, and we can apply Theorem 5.2(1) to prove
that 𝑓∗𝑋(𝐾𝑋∕𝑇 + ⌊Δ⌋) is nef. This last sheaf is equal to 𝑓∗𝑋(𝐾𝑋∕𝑇 + Δ) as 𝐾𝑋∕𝑇 is integral. We
now give an argument to reduce the general case to Theorem 5.2(1).
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42 CODOGNI et al.

Firstwe reduce to the casewhere all coefficients ofΔ are atmost one.As the family is generically
lc, the divisor Δ>1 is vertical. We thus have an inclusion

𝑓∗𝑋(𝐾𝑋 + Δ⩽1) ↪ 𝑓∗𝑋(𝐾𝑋 + Δ) ,

which is an isomorphism on an open dense subset of 𝑇. By the well-know [21, Lemma 2.2], if the
left hand side is nef, the right hand side is nef too, so we can assume without loss of generality
that all the coefficients of Δ are smaller than or equal to one.
Let ℎ∶ 𝑍 → 𝑋 be a log-resolution of (𝑋, Δ) so that Δ𝑍 ∶= ℎ−1∗ Δ + 𝐸 is simple normal crossing,

where 𝐸 is the reduced exceptional divisor of ℎ. Let 𝑈 be the open dense subset of 𝑇 over which
(𝑋, Δ) is lc. We have a natural inclusion

𝑖 ∶ 𝑓∗ℎ∗𝑍(𝐾𝑍∕𝑇 + ⌊Δ𝑍⌋) ↪ 𝑓∗𝑋(𝐾𝑋∕𝑇 + ⌊Δ⌋)
which is an isomorphism over 𝑈 by [33, Proposition 2.18].
Since (𝑍, Δ𝑍) → 𝑇 is a generic lc-family, we can apply Theorem 5.2(1) to conclude that

𝑓∗ℎ∗𝑍(𝐾𝑍∕𝑇 + ⌊Δ𝑍⌋) is nef.
Proof of (2). Let 𝑘 be a positive integer such that𝑋(𝑘(𝐾𝑋∕𝑇 + Δ)) is a locally free and𝑓-globally

generated. Then the evaluation map 𝑓∗𝑓∗𝑋(𝑘(𝐾𝑋∕𝑇 + Δ)) → 𝑋(𝑘(𝐾𝑋∕𝑇 + Δ)) is surjective.
Since 𝑓∗𝑋(𝑘(𝐾𝑋∕𝑇 + Δ)) is nef by Theorem 5.2(3), we conclude that 𝐾𝑋∕𝑇 + Δ is nef. □

Under a stronger assumption on the singularities, we also have the following positivity result.

Theorem 5.4 [44, Theorem 7.1]. Let 𝑓∶ (𝑋, Δ) → 𝑇 be a generic klt family as in 5.1. If 𝑓 is not
isotrivial, then, for all sufficiently divisible positive integers𝑚, the vector bundle𝑓∗𝑋(𝑚(𝐾𝑋∕𝑇 + Δ))

is ample†, i.e. 𝜇−(𝑓∗𝑋(𝑚(𝐾𝑋∕𝑇 + Δ))) > 0.

Theorem 5.4 is false if one replaces klt with lc, see [44, Examples 7.5, 7.6 and 7.7].
We now combine the results of Section 4 with the above nefness results of Fujino in order to

obtain some slope inequalities for generic lc families.

Proposition 5.5. Let 𝑓∶ (𝑋, Δ) → 𝑇 be a generic lc-family as in 5.1.

(1) Assume that there exists𝑚 ∈ ℕ>0 such that at least one of the following conditions holds true
∙ 𝑚(𝐾𝑋∕𝑇 + Δ) is Cartier, 𝑓-globally generated and 𝑓-big;
∙ 𝐾𝑋∕𝑇 + Δ is 𝑓-semiample, Δ is a reduced Weil divisor and 𝑚(𝐾𝐹 + Δ𝐹) is Cartier, globally
generated and big.

Then

𝑚𝑛+1(𝐾𝑋∕𝑇 + Δ)𝑛+1

⩾

⎧⎪⎨⎪⎩
4𝑚𝑛(𝐾𝐹+Δ𝐹)

𝑛

𝑚𝑛(𝐾𝐹+Δ𝐹)
𝑛+2𝑛

deg 𝑓∗𝑋(𝑚(𝐾𝑋∕𝑇 + Δ)) if either dim𝐹 ⩾ 2 and 𝜅(𝐹) ⩾ 0,

or dim𝐹 = 1 and Δ𝐹 = 0,
2𝑚𝑛(𝐾𝐹+Δ𝐹)

𝑛

𝑚𝑛(𝐾𝐹+Δ𝐹)
𝑛+𝑛

deg 𝑓∗𝑋(𝑚(𝐾𝑋∕𝑇 + Δ)) otherwise.

† The statement of [44, Theorem 7.1] claims bigness rather than ampleness. The definition of big vector bundles used in
loc. cit. is sometimes referred to as V-bigness, or Viehweg-bigness in the literature. On a curve, V-big is is equivalent to
ample, that is, V-big is equivalent to the strict positivity of all the slopes of the Harder–Narasimhan filtration.
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 43

If 𝑛 ⩾ 2, the family is generically klt, and one of the above inequalities is an equality for all 𝑚
divisible enough, then 𝑓 is isotrivial.

(2)
(a) Assume that there exist𝑚, 𝑞 ∈ ℕ>0 such that𝐾𝑋∕𝑇 + Δ is 𝑓-semiample, Δ is a reducedWeil

divisor and 𝜙𝑚𝑞(𝐾𝐹+Δ𝐹)
is generically finite. Then

𝑚𝑛+1(𝐾𝑋∕𝑇 + Δ)𝑛+1 ⩾

⎧⎪⎪⎨⎪⎪⎩
2
deg 𝑓∗𝑋(𝑚(𝐾𝑋∕𝑇+Δ))

𝑞𝑛
if either dim𝐹 ⩾ 2 and 𝜅(𝐹) ⩾ 0,

or dim𝐹 = 1 and Δ𝐹 = 0,
deg 𝑓∗𝑋(𝑚(𝐾𝑋∕𝑇+Δ))

𝑞𝑛
otherwise.

(b) Assume that there exists𝑚, 𝑞 ∈ ℕ>0 such that at least one of the following conditions holds
true
∙ 𝑚(𝐾𝑋∕𝑇 + Δ) is Cartier, 𝑓-globally generated and 𝑓-big;
∙ 𝐾𝑋∕𝑇 + Δ is 𝑓-semiample, Δ is a reduced Weil divisor and 𝑚𝑞(𝐾𝐹 + Δ𝐹) is Cartier,
globally generated and big.

Then

𝑚𝑛+1(𝐾𝑋∕𝑇 + Δ)𝑛+1 ⩾
deg 𝑓∗𝑋(𝑚(𝐾𝑋∕𝑇 + Δ))

𝑞𝑛
.

(3) Assume that 𝐾𝑋∕𝑇 + Δ is nef.
(a) If 𝑞 ∈ ℕ>0 is such that 𝜙𝑞(𝐾𝐹+Δ𝐹)

is generically finite then

(𝐾𝑋∕𝑇 + Δ)𝑛+1 ⩾

⎧⎪⎪⎨⎪⎪⎩
2
deg 𝑓∗𝑋(𝐾𝑋∕𝑇+Δ)

𝑞𝑛
. if either dim𝐹 ⩾ 2 and 𝜅(𝐹) ⩾ 0,

or dim𝐹 = 1 and Δ𝐹 = 0,
deg 𝑓∗𝑋(𝐾𝑋∕𝑇+Δ)

𝑞𝑛
otherwise.

(b) If 𝑞 ∈ ℕ>0 is such that 𝑞(𝐾𝐹 + Δ𝐹) is Cartier and big then

(𝐾𝑋∕𝑇 + Δ)𝑛+1 ⩾
deg 𝑓∗𝑋(𝐾𝑋∕𝑇 + Δ)

𝑞𝑛
.

Proof. Proof of (1). Note that we are in the setup 3.1 with 𝐿 = 𝑚(𝐾𝑋∕𝑇 + Δ) andwe can apply either
Theorem 5.2(2) or Theorem 5.2(3) to get that 𝑓∗𝑋(𝐿) is nef and Corollary 5.3(2) to get that 𝐿 is
nef. The conclusion follows then from Corollary 4.3, using (5.1). The equality case follows from
the above mentioned results combined with Theorem 5.4.
Proof of (2). We are in the setup 3.1 with 𝐿 = 𝑚(𝐾𝑋∕𝑇 + Δ) and we can apply either Theo-

rem 5.2(2) or Theorem 5.2(3) to get that 𝑓∗𝑋(𝐿) is nef and Corollary 5.3(2) to get that 𝐿 is nef.
The conclusion follows then from Theorem 4.9, using (5.1).
Proof of (3). We are in the set-up 3.1 with 𝐿 = 𝐾𝑋∕𝑇 + Δ and we can apply Corollary 5.3(1) to get

that 𝑓∗𝑋(𝐾𝑋∕𝑇 + Δ) is nef. The conclusion follows then from Theorem 4.9, using (5.1). □

We now extend some of the above slope inequalities from generic lc families to generic slc
families.

Theorem 5.6. Let 𝑓∶ (𝑋, Δ) → 𝑇 be a generic slc-family as in 5.1.
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44 CODOGNI et al.

(1) Assume that there exists𝑚 ∈ ℕ>0 such that at least one of the following conditions hold true
∙ 𝑚(𝐾𝑋∕𝑇 + Δ) is Cartier, 𝑓-globally generated and 𝑓-big;
∙ 𝐾𝑋∕𝑇 + Δ is 𝑓-semiample, Δ is a reduced Weil divisor and 𝑚(𝐾𝐹 + Δ𝐹) is Cartier, globally
generated and big.

Let 𝑤 ∈ ℚ>0 such that the volume of the pull-back of 𝐾𝐹 + Δ𝐹 to any irreducible component of
the normalization of 𝐹 is at least 𝑤. Then

𝑚𝑛+1(𝐾𝑋∕𝑇 + Δ)𝑛+1 ⩾
2𝑤𝑚𝑛

𝑤𝑚𝑛 + 𝑛
deg

(
𝑓∗𝑋(𝑚(𝐾𝑋∕𝑇 + Δ))

)
.

(2) Assume there exist𝑚, 𝑞 ∈ ℕ>0 such that at least one of the following conditions holds true
∙ 𝑚(𝐾𝑋∕𝑇 + Δ) is Cartier, 𝑓-globally generated and 𝑓-big.
∙ 𝐾𝑋∕𝑇 + Δ is 𝑓-semiample, Δ is a reduced Weil divisor and either 𝜙𝑞𝑚(𝐾𝐹+Δ𝐹)

is generically
finite or 𝑞𝑚(𝐾𝐹 + Δ𝐹) is Cartier, globally generated and big.

Then

𝑚𝑛+1(𝐾𝑋∕𝑇 + Δ)𝑛+1 ⩾
deg 𝑓∗𝑋(𝑚(𝐾𝑋∕𝑇 + Δ))

𝑞𝑛
.

(3) Assume that 𝐾𝑋∕𝑇 + Δ is nef and let 𝑞 ∈ ℕ>0 such that either 𝑞(𝐾𝐹 + Δ𝐹) is Cartier and big or
𝜙𝑞(𝐾𝐹+Δ𝐹)

is generically finite. Then

(𝐾𝑋∕𝑇 + Δ)𝑛+1 ⩾
deg

(
𝑓∗𝑋(𝐾𝑋∕𝑇 + Δ)

)
𝑞𝑛

.

Proof. We first make some considerations useful for all the three cases, and then we focus on the
specific inequalities.

Let 𝜈∶ 𝑌 → 𝑋 be the normalization of 𝑋 and set g ∶ 𝑌
𝜈
F→ 𝑋

𝑓
F→ 𝑇. We have that

𝜈∗(𝐾𝑋∕𝑇 + Δ) = 𝐾𝑌∕𝑇 + Δ′, (5.2)

for some boundaryℚ-divisor Δ′ on 𝑌 with the property that g ∶ (𝑌, Δ′) → 𝑇 is a disjoint union of
generic lc-families g𝑖 ∶ (𝑌𝑖, Δ𝑖) → 𝑇, see [33, Section 5.1 and Definition-Lemma 5.10]. The divisor
𝐾𝑋∕𝑇 + Δ is nef either by assumption or by Corollary 5.3(2); combining this with (5.2) we obtain
that 𝐾𝑌𝑖∕𝑇

+ Δ𝑖 is nef for every 𝑖. Moreover, if Δ is integral, Δ′ is integral too.
By (5.2) and the projection formula, we have that

(𝐾𝑋∕𝑇 + Δ)𝑛+1 = (𝐾𝑌∕𝑇 + Δ′)𝑛+1 =
∑
𝑖

(𝐾𝑌𝑖∕𝑇
+ Δ𝑖)

𝑛+1. (5.3)

Using the natural injection 𝑋 ↪ 𝜈∗𝑌 coming from the normalization map 𝜈 and (5.2), we
get the following injection of reflexive sheaves on 𝑋

𝑋(𝑚(𝐾𝑋∕𝑇 + Δ)) ↪ 𝜈∗
(
𝜈∗(𝑋(𝑚(𝐾𝑋∕𝑇 + Δ)))

)
= 𝜈∗

(
𝑌(𝑚(𝐾𝑌∕𝑇 + Δ′))

)
= 𝜈∗

(⨁
𝑖

𝑌𝑖
(𝑚(𝐾𝑌𝑖∕𝑇

+ Δ𝑖))

)
.
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 45

By taking the push-forward along 𝑓, we get the following injection of locally free sheaves on 𝑇

𝑉 ∶= 𝑓∗𝑋(𝑚(𝐾𝑋∕𝑇 + Δ)) ↪ 𝑊 ∶=
⨁
𝑖

g𝑖∗
(
𝑌𝑖

(𝑚(𝐾𝑌𝑖∕𝑇
+ Δ𝑖))

)
.

The locally free sheaf𝑊 is nef in each of the cases we are considering by either Theorem 5.2 or
Corollary 5.3(1) (see also the proof of Proposition 5.5); hence also the quotient𝑊∕𝑉 is nef and it
has non-negative degree. Therefore, by taking degrees in the previous inclusion we get that

deg 𝑓∗𝑋(𝑚(𝐾𝑋∕𝑇 + Δ)) ⩽
∑
𝑖

deg g𝑖∗
(
𝑌𝑖

(𝑚(𝐾𝑌𝑖∕𝑇
+ Δ𝑖))

)
. (5.4)

Part (1) follows now from Proposition 5.5(1) applied to the generic lc-families g𝑖 ∶ (𝑌𝑖, Δ𝑖) → 𝑇,
noting that

2𝑚𝑛(𝐾𝐹𝑖
+ Δ𝐹𝑖

)𝑛

𝑚𝑛(𝐾𝐹𝑖
+ Δ𝐹𝑖

)𝑛 + 2𝑛
⩾

2𝑚𝑛𝑤

𝑚𝑛𝑤 + 2𝑛
,

where (𝐹𝑖, Δ𝐹𝑖
) is a general fiber of g𝑖 ∶ (𝑌𝑖, Δ𝑖) → 𝑇.

Part (2) follows from Proposition 5.5(2) applied to the generic lc-families g𝑖 ∶ (𝑌𝑖, Δ𝑖) → 𝑇, and
using that if 𝜙𝑚(𝐾𝐹+Δ)

is generically finite, the same is true for 𝜙𝑚(𝐾𝐹𝑖
+Δ𝑖)

by Lemma 1.2.
Part (3) follows from Proposition 5.5(3) applied to the generic lc-families g𝑖 ∶ (𝑌𝑖, Δ𝑖) → 𝑇. □

An interesting consequence of the above results is the following

Corollary 5.7 (Existence of slope inequalities). Fix an integer 𝑛 ⩾ 1 and a subset 𝐼 of [0,1] satisfying
the DCC, then there exists a constant 𝑠(𝑛, 𝐼) > 0 (which depends only on 𝑛 and 𝐼) such that

(𝐾𝑋∕𝑇 + Δ)𝑛+1 ⩾ 𝑠(𝑛, 𝐼) deg 𝑓∗𝑋(𝐾𝑋∕𝑇 + Δ)

for every generic slc family 𝑓∶ (𝑋, Δ) → 𝑇 such that dim𝑋 = 𝑛 + 1, the coefficients of Δ⩽1 belong to
𝐼 and 𝐾𝑋∕𝑇 + Δ is 𝑓-semiample and 𝑓-big.

Proof. We can assume, without loss of generality, that 𝐼 contains 1. By [25, Theorem 1.3], there
exists a constant 𝑏(𝑛, 𝐼) > 0 (which depends only on 𝑛 and 𝐼) such that 𝑏(𝑛, 𝐼)(𝐾𝑍 + Δ𝑍) gives a
birational morphism for all lc pairs (𝑍, Δ𝑍) such that the dimension of 𝑍 is 𝑛, the coefficients of
Δ𝑍 belong to 𝐼, and 𝐾𝑍 + Δ𝑍 is big. We claim that we can take

𝑠(𝑛, 𝐼) =
1

𝑏(𝑛, 𝐼)𝑛
.

Indeed, let 𝑓∶ (𝑋, Δ) → 𝑇 be a generic slc family as in the statement. Following the construc-
tion of the first part of the proof of Theorem 5.6, consider the lc families g𝑖 ∶ (𝑌𝑖, Δ𝑖) → 𝑇 obtained
by normalising 𝑋. Since g𝑖∗(𝑌𝑖

(𝐾𝑌𝑖∕𝑇
+ Δ𝑖)) is nef by Corollary 5.3(1), by arguing as in the proof

of Theorem 5.6, we get that

deg 𝑓∗𝑋(𝐾𝑋∕𝑇 + Δ) ⩽
∑
𝑖

deg g𝑖∗
(
𝑌𝑖

(𝐾𝑌𝑖∕𝑇
+ Δ𝑖)

)
. (5.5)
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46 CODOGNI et al.

Similarly, we get that

(𝐾𝑋∕𝑇 + Δ)𝑛+1 =
∑
𝑖

(𝐾𝑌𝑖∕𝑇
+ Δ𝑖)

𝑛+1. (5.6)

As 𝑓 is a generically slc family, the coefficients of Δ>1 are vertical, hence, if we restrict Δ𝑖

to a generic fiber of g𝑖 , we obtain a boundary divisor with coefficients in 𝐼 (we had to make
sure that 1 is in 𝐼, as Δ𝑖 might contain divisors with coefficients one coming from the conduc-
tor). By assumption, 𝑏(𝑛, 𝐼)(𝐾𝑌𝑖∕𝑇

+ Δ𝑖) gives a birational morphism when restricted to a generic
fiber of g𝑖 . Moreover, 𝐾𝑌𝑖∕𝑇

+ Δ𝑖 is nef by Corollary 5.3(2) and the assumption that 𝐾𝑋∕𝑇 + Δ is
𝑓-semiample. Hence, we can apply Proposition 5.5(3) in order to get that

(𝐾𝑌𝑖∕𝑇
+ Δ𝑖)

𝑛+1 ⩾

deg g𝑖∗
(
𝑌𝑖

(𝐾𝑌𝑖∕𝑇
+ Δ𝑖)

)
𝑏(𝑛, 𝐼)𝑛

. (5.7)

We conclude by putting together (5.5), (5.6), and (5.7). □

We conclude with an application of Theorem 4.6 to generic canonical families with no
boundary.

Corollary 5.8. Let 𝑓∶ 𝑋 → 𝑇 be a generic canonical family such that 𝐾𝑋∕𝑇 is 𝑓-semiample, 𝜙𝐾𝐹
is

a birational map and 𝑛 ⩾ 2. Then

𝐾𝑛+1
𝑋∕𝑇

⩾ 2(𝑛 + 1)
ℎ0(𝐹, 𝐾𝐹) − 𝑛 − 2

ℎ0(𝐹, 𝐾𝐹)
deg 𝑓∗𝑋(𝐾𝑋∕𝑇).

If, furthermore, 𝐾𝐹 is Cartier and globally generated, then we have

𝐾𝑛+1
𝑋∕𝑇

⩾ 2(𝑛 + 1)
𝐾𝑛
𝐹

𝐾𝑛
𝐹
+ (𝑛 + 1)(𝑛 + 2)

deg 𝑓∗𝑋(𝐾𝑋∕𝑇).

Proof. The divisor 𝐾𝑋∕𝑇 and the vector bundle 𝑓∗𝑋(𝐾𝑋∕𝑇) are nef by Corollary 5.3. We conclude
by applying Corollaries 4.7 and 4.8 with 𝐿 = 𝐾𝑋∕𝑇 and 𝑠 = 1. □

5.2 Application to the moduli space of KSB stable varieties

Let 𝑛,𝑣 be the Deligne–Mumford algebraic stack of KSB stable varieties of dimension 𝑛 and
volume 𝑣, i.e. varieties 𝑉 with slc singularities, ample dualizing ℚ-divisor 𝐾𝑉 , dimension 𝑛

and volume 𝑣 ∶= 𝐾𝑛
𝑉
∈ ℚ>0. We denote by 𝑜

𝑛,𝑣 the open substack of𝑛,𝑣 parametrizing nor-
mal stable varieties. We refer to [34] for the definition and main properties of families of KSB
stable varieties.
Using the universal family 𝜋∶ 𝑛,𝑣 → 𝑛,𝑣, we can define the following ℚ-Cartier ℚ-divisors

(well-defined up to ℚ-linear equivalence) on𝑛,𝑣:

∙ the Chow–Mumford divisor 𝜆𝐶𝑀 ∶= 𝜋∗𝐾
𝑛+1
𝜋 ;

∙ the determinant divisors 𝜆𝑚 = 𝑐1(det(𝜋∗ (𝑚𝐾𝜋))) for any𝑚 ⩾ 0.

Recall that 𝜆𝐶𝑀 is ample on 𝑛,𝑣 by [45], while 𝜆𝑚 are nef on 𝑛,𝑣 for any 𝑚 big and divisi-
ble enough by [21] (see also Theorem 5.2). The nefness of 𝜆𝑚 combined with Kollár’s ampleness
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 47

lemma [32], shows that 𝜆𝑚 is ample on𝑛,𝑣 if𝑚 is big and divisible enough. Let us stress that for
low values of𝑚, 𝜆𝑚 does not need to be ample: for instance, when 𝑛 = 1, 𝜆𝑚 is ample for𝑚 ⩾ 2,
but just semi-ample for𝑚 = 1. For 𝑛 ⩾ 2, we are not aware of any effective lower bound on𝑚 that
guarantees the ampleness of 𝜆𝑚.
The aim of this section is to determine some explicit rational functions 𝑓(𝑚) ∈ ℚ(𝑚) for which

theℚ-divisor𝑚𝑛+1𝜆𝐶𝑀 − 𝑓(𝑚)𝜆𝑚 is nef on𝑛,𝑣, i.e. it intersects non-negatively all the projective
curves of𝑛,𝑣, or nef on𝑛,𝑣 away from the boundary, that is, it intersects non-negatively all the
projective curves of 𝑛,𝑣 not entirely contained in the boundary 𝜕𝑛,𝑣 ∶= 𝑛,𝑣 ⧵𝑜

𝑛,𝑣. The
same definitions can be given for any closed substack of𝑛,𝑣, for example for any irreducible or
connected component.
Let us first describe someℚ-divisors of the form𝑚𝑛+1𝜆𝐶𝑀 − 𝑓(𝑚)𝜆𝑚 that are nef on𝑛,𝑣 away

from the boundary.

Theorem 5.9. Fix 𝑛 ∈ ℕ>0 and 𝑣 ∈ ℚ>0. Let𝑚 and 𝑞 be two positive integers.

(1) Assume that𝑚𝐾𝑉 is Cartier and globally generated for any 𝑉 ∈ 𝑜
𝑛,𝑣 . Then:

∙ If either 𝑛 ⩾ 2 or 𝑛 = 𝑚 = 1 then

𝑚𝑛+1𝜆𝐶𝑀 −
4𝑣𝑚𝑛

𝑣𝑚𝑛 + 2𝑛
𝜆𝑚

is nef on𝑛,𝑣 away from the boundary;
∙ If 𝑛 = 1 and𝑚 ⩾ 2, then

𝑚𝑛+1𝜆𝐶𝑀 −
2𝑣𝑚𝑛

𝑣𝑚𝑛 + 𝑛
𝜆𝑚

is nef on𝑛,𝑣 away from the boundary
(2) If 𝜙𝑚𝑞𝐾𝑉

is generically finite for any 𝑉 ∈ 𝑜
𝑛,𝑣 and either 𝑛 ⩾ 2 or 𝑛 = 𝑞 = 𝑚 = 1, then

𝑚𝑛+1𝜆𝐶𝑀 − 2
𝜆𝑚
𝑞𝑛

is nef on𝑛,𝑣 away from the boundary.
(3) If either𝑚𝑞𝐾𝑉 is Cartier or 𝜙𝑚𝑞𝐾𝑉

is generically finite for any 𝑉 ∈ 𝑜
𝑛,𝑣 , then

𝑚𝑛+1𝜆𝐶𝑀 −
𝜆𝑚
𝑞𝑛

is nef on𝑛,𝑣 away from the boundary.

The same conclusions hold if we replace 𝑛,𝑣 by any closed substack, for example any
irreducible or connected component.

Proof. We have to prove that the degree of the given divisors are non-negative on any irreducible
smooth projective curve 𝑇 ⊂ 𝑛,𝑣 not entirely contained in 𝜕𝑛,𝑣.
Let 𝑓 ∶ 𝑋 → 𝑇 be the restriction of the universal family 𝜋 ∶ 𝑛,𝑣 → 𝑛,𝑣 to 𝑇. By assumption,

a general fiber 𝐹 of 𝑓 is normal (because it belongs to 𝑜
𝑛,𝑣), which implies, using that all the

fibers of 𝑓 are reduced, that𝑋 is normal. Moreover, the divisor𝐾𝑋∕𝑇 isℚ-Cartier by [34, Theorem
2.3]. Hence the fibration 𝑓 is a generic lc-family as in 5.1.
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48 CODOGNI et al.

Now observe that ⎧⎪⎨⎪⎩
deg(𝜆𝐶𝑀)|𝑇 = 𝐾𝑛+1

𝑋∕𝑇
,

deg(𝜆𝑚)|𝑇 = deg 𝑓∗𝑋(𝑚𝐾𝑋∕𝑇),
(5.8)

where in the second equality we have used the base change property 𝜋∗𝑛,𝑣
(𝑞𝐾𝜋)|𝑇 =

𝑓∗𝑋(𝑞𝐾𝑋∕𝑇), which follows, using the Kollár condition on families of KSB stable varieties, from
the fact that 𝜋∗𝑛,𝑣

(𝑞𝐾𝜋) is locally free (see [21, Rmk. 3.4] for 𝑞 ⩾ 2 and [34, Corollary 2.71] for
𝑞 = 1).
The results follow by applying Proposition 5.5 with Δ = 0 and using that 𝐾𝑋∕𝑇 is 𝑓-semiample

(being 𝑓-ample) and 𝐾𝐹 is big (being ample). More precisely:

∙ part (1) follows from Proposition 5.5(1);
∙ part (2) follows from Proposition 5.5(2a);
∙ part (3) follows from Proposition 5.5(2b). □

Remark 5.10. Some of the results of Theorem 5.9 are sharp for the moduli spaceg (= 1,2g−2)

of stable curves of genus g ⩾ 2. Indeed, it follows from [18, Prop. 4.3, Thm. 4.12] that

𝜆𝐶𝑀 − 𝑠𝜆1 is nef ong away from the boundary ⇔ 𝑠 ⩽
4g − 4

g
. (5.9)

This shows that if 𝑛 = 1 then

∙ Theorem 5.9(1) is sharp if𝑚 = 1 (for any volume 𝑣);
∙ Theorem 5.9(2) is sharp if𝑚 = 𝑞 = 1 and 𝑣 = 2 (i.e. genus g equal to 2).

We now describe some ℚ-divisors of the form𝑚𝑛+1𝜆𝐶𝑀 − 𝑓(𝑚)𝜆𝑚 that are nef on𝑛,𝑣.

Theorem 5.11. Fix 𝑛 ∈ ℕ>0 and 𝑣 ∈ ℚ>0. Consider two positive integers𝑚 and 𝑞.

(1) Assume that 𝑚𝐾𝑉 is Cartier and globally generated for any 𝑉 ∈ 𝑛,𝑣 and let 𝑤 ∈ ℚ>0 such
that the volume of the pull-back of𝐾𝐹 to any irreducible component of the normalization of𝑉 is
at least 𝑤. Then the ℚ-divisor

𝑚𝑛+1𝜆𝐶𝑀 −
2𝑤𝑚𝑛

𝑤𝑚𝑛 + 𝑛
𝜆𝑚

is nef on𝑛,𝑣 .
(2) If either𝑚𝑞𝐾𝑉 is Cartier or 𝜙𝑚𝑞𝐾𝑉

is generically finite for any 𝑉 ∈ 𝑛,𝑣 , then the ℚ-divisor

𝑚𝑛+1𝜆𝐶𝑀 −
𝜆𝑚
𝑞𝑛

is nef on𝑛,𝑣 .

The same conclusions hold if we replace 𝑛,𝑣 by any closed substack, for example any
irreducible or connected component.

Proof. It is enough to prove that the degree of the given divisors are non-negative on any
irreducible smooth projective curve 𝑇 ⊂ 𝑛,𝑣.
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 49

Let 𝑓 ∶ 𝑋 → 𝑇 be the restriction of the universal family 𝜋 ∶ 𝑛 → 𝑛 to 𝑇. By [34, Theorem
2.3], 𝑋 is deminormal and the divisor 𝐾𝑋∕𝑇 is ℚ-Cartier. Hence, the fibration 𝑓 is a generic slc-
family as in 5.1.
Now observe that

⎧⎪⎨⎪⎩
deg(𝜆𝐶𝑀)|𝑇 = 𝐾𝑛+1

𝑋∕𝑇
,

deg(𝜆𝑚)|𝑇 = deg 𝑓∗𝑋(𝑚𝐾𝑋∕𝑇),
(5.10)

where in the second equality we have used the base change property 𝜋∗𝑛,𝑣
(𝑞𝐾𝜋)|𝑇 =

𝑓∗𝑋(𝑞𝐾𝑋∕𝑇) (see the proof of Theorem 5.9).
The results follow by applying Theorem 5.6(1) or 5.6(3) with Δ = 0 and using that 𝐾𝑋∕𝑇 is 𝑓-

semiample (being 𝑓-ample) and 𝐾𝐹 is big (being ample). □

Remark 5.12. Some of the results in Theorem 5.11 are sharp for the moduli spaceg (= 1,2g−2)

of stable curves of genus g ⩾ 2. Indeed, it follows from [18, Prop. 4.3, Thm. 4.12] that

𝜆𝐶𝑀 − 𝑎𝜆1 is nef ong ⇔ 𝑎 ⩽ 1. (5.11)

This shows that if 𝑛 = 1 then

∙ part (1) is sharp if𝑚 = 1 and𝑤 = 1, which is also theminimumpossible value of𝑤 that satisfies
the assumptions of part (1) for𝑚 = 1, since the volume (=degree) of the canonical divisor of a
stable curve 𝐶 is 1 on any elliptic tail of 𝐶.

∙ part (2) is sharp if𝑚 = 𝑞 = 1.

Remark 5.13. For𝑚 very large, the results of Theorem 5.11 are far from being sharp. Indeed, let us
define

𝑠(𝑚) ∶= sup{𝑡 ∈ ℝ⩾0 ∶ 𝑚𝑛+1𝜆𝐶𝑀 − 𝑡𝜆𝑚 is nef on𝑛,𝑣}. (5.12)

By applying the Grothendieck–Riemann–Roch formula to the universal family 𝜋 ∶ 𝑛,𝑣 → 𝑛,𝑣,
it can be shown (see [45, Sec. 2.3] or [14, Lemma A.2]) that

𝜆𝑚 ∼ℚ

(
𝑚𝑛+1

(𝑛 + 1)!
−

𝑚𝑛

2𝑛!

)
𝜆𝐶𝑀 + 𝑃𝑛−1(𝑚) for all sufficiently divisible𝑚 ∈ ℕ, (5.13)

where 𝑃𝑛−1(𝑚) is a polynomial of degree at most 𝑛 − 1 in𝑚 with coefficients beingℚ-divisors on
𝑛,𝑣. The divisibility condition on 𝑚 is needed to guarantee that the relative canonical bundle
𝑚𝐾𝜋 is Cartier, and we do not know if it is really necessary.
Hence, from the above asymptotic formula for 𝜆𝑚, it follows that

𝑠(𝑚) ∼
2(𝑛 + 1)!𝑚

2𝑚 − (𝑛 + 1)
∼ (𝑛 + 1)! as𝑚 → ∞ and𝑚 is sufficiently divisible (5.14)

However, note that the asymptotic formula (5.14) is not effective while the results of
Theorem 5.11, although asymptotically worse, are however effective.

Let us define the lambda Neron–Severi space NSΛ
ℚ
(𝑛,𝑣) as the linear subspace of the rational

Neron–Severi vector space NSℚ(𝑛,𝑣) spanned by the Chow-Mumford line bundle 𝜆𝐶𝑀 and the
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50 CODOGNI et al.

classes 𝜆𝑚 for any 𝑚 ⩾ 1, and consider the lambda nef cone NefΛ(𝑛,𝑣) ⊂ NSΛ
ℚ
(𝑛,𝑣), which is

the closed convex cone equal to the intersection of the nef cone Nef(𝑛,𝑣) ⊂ NSℚ(𝑛,𝑣) with
NSΛ

ℚ
(𝑛,𝑣).

In the case of the moduli space of stable curves, that is, 𝑛 = 1, the following facts are well-
known:

∙ the spaceNSΛ
ℚ
(𝑛,𝑣) is two dimensional: a basis is given by 𝜆𝐶𝑀 and 𝜆1, while the other classes

are equal to (see [2, Chap. XIII, Thm. (7.6)])

𝜆𝑚 =

(
𝑚

2

)
𝜆𝐶𝑀 + 𝜆1.

∙ the two extremal rays of the two-dimensional cone NefΛ(𝑛,𝑣) are spanned by, respectively,
𝜆1, which is semi-ample and gives the map toward the Satake compactification (see [2, pages
435–437]), and 𝜆𝐶𝑀 − 𝜆1 (which is the class given by either Theorem 5.11(1) with𝑚 = 𝑤 = 1 or
Theorem 5.11(2) with 𝑚 = 𝑞 = 1), which is semi-ample and it gives the morphism toward the
moduli stack of pseudo-stable curves (see [27, Thm. 1.1]).

Let us conclude this section with the following two questions.

Question 5.14. Is the dimension of NSΛ
ℚ
(𝑛,𝑣) equal to 𝑛 + 1?

Note that, if relative canonical divisor 𝐾𝜋 of the universal family 𝜋 ∶ 𝑛,𝑣 → 𝑛,𝑣 is Cartier,
then formula (5.13) implies that NSΛ

ℚ
(𝑛,𝑣) has dimension at most 𝑛 + 1.

Question 5.15. For which values of 𝑛 and 𝑣, do the classes 𝜆𝑚 and the classes from Theorem 5.11
give all extremal rays of NefΛ(𝑛,𝑣)?

6 FANO VARIETIES

6.1 Slope inequalities for families of K-stable and K-polystable
log-Fano pairs

In this subsectionwe prove some slope inequalities for families of Fano variety.Wewill need some
stability assumption on the general member of the family.
We refer to [14, 53], to the survey [52] and the recent breakthrough [38] for background results

about K-stability, and a comprehensive bibliography, here we recall just some notations and
properties.

Setup 6.1. Let 𝑓∶ 𝑋 → 𝑇 be a fibration from a normal projective irreducible variety 𝑋 of
dimension 𝑛 + 1 to a smooth projective irreducible curve 𝑇.
Let Δ be a divisor on 𝑋 such that −𝐾𝑋∕𝑇 − Δ is ℚ-Cartier and 𝑓-ample. We say that 𝑓 is a ℚ-

Gorenstein family of anti-canonically polarized pairs of dimension 𝑛. We denote by (𝑋𝑡, Δ𝑡) the
fiber of 𝑓 over 𝑡 ∈ 𝑇, and we denote by 𝑣 ∶= (−𝐾𝑋𝑡

− Δ𝑋𝑡
)𝑛 = ((−𝐾𝑋∕𝑇 − Δ)|𝑋𝑡

)𝑛 the relative
volume of 𝑓.
If the generic fiber of 𝑓 has klt singularities, then 𝑓 is a generic ℚ-Gorenstein family of log-Fano

pairs. If all fibers of 𝑓 has klt singularities, then 𝑓 is a ℚ-Gorenstein family of log-Fano pairs.

 1460244x, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12512 by U

niversidad D
e C

oim
bra, W

iley O
nline L

ibrary on [13/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 51

The Chow-Mumford (CM) ℚ-divisor on 𝑇 is defined (up to ℚ-linear equivalence) as

𝜆𝐶𝑀(𝑋∕𝑇) ∶= −𝑓∗(−𝐾𝑋∕𝑇 − Δ)𝑛+1.

For a log-Fano pair (𝐹, Δ𝐹), we denote by 𝛿(𝐹, Δ𝐹) its stability threshold. A log-Fano pair is K-
semistable if 𝛿(𝐹, Δ𝐹) ⩾ 1, it is K-stable if 𝛿(𝐹, Δ𝐹) > 1. Both K-semistability and K-stability are
open properties in families.
K-semistability implies that the pair is klt, so a ℚ-Gorenstein family of anti-canonically

polarized pairs with K-semistable generic fiber is a genericℚ-Gorenstein family of log-Fano pairs.
If the generic fiber of 𝑓 ∶ 𝑋 → 𝑇 is K-semistable, then we have

deg 𝜆𝐶𝑀(𝑋∕𝑇) = −(−𝐾𝑋∕𝑇 − Δ)𝑛+1 ⩾ 0.

Remark 6.2. A K-semistable log-Fano pair, contrary to a KSB stable pair, is always klt and
hence normal. Therefore, a family of anti-canonically polarized pairs with reduced fibers and
K-semistable generic fiber has automatically normal total space. In other words, assuming that𝑋
is normal, we are not ruling out any ℚ-Gorenstein family of K-semistable log-Fano pairs.

Remark 6.3 (Negativity in the Fano case). Observe that, by [16, Theorem A.13], if −𝐾𝑋∕𝑇 − Δ is
nef, then 𝑓 is locally étale isotrivial. Combining this result with Lemma 3.10(i), if 𝑓 is not locally
étale isotrivial, then 𝑓∗𝑋(𝑚(−𝐾𝑋∕𝑇 − Δ)) is not nef for all 𝑚 sufficiently divisible. This means
that we do not expect to apply our results to −𝐾𝑋∕𝑇 − Δ. However, assuming K-stability of the
general fiber, we can prove some slope inequalities for convenient line bundles. The coefficients
in these inequalities involve the delta invariant 𝛿(𝐹, Δ𝐹) of (𝐹, Δ𝐹), which provides a quantitative
description of the negativity of 𝑓∗𝑋(𝑚(−𝐾𝑋∕𝑇 − Δ)).

Theorem 6.4. Let 𝑓 be a ℚ-Gorenstein family of anti-canonically polarized pairs as in the set-up
6.1, assume that a geometric fiber (𝐹, Δ𝐹) is K-stable, i.e. 𝛿 ∶= 𝛿(𝐹, Δ𝐹) > 1.
For any rational number 𝐶 > 1 consider the ℚ-Cartier ℚ-divisor on 𝑋

𝐻𝐶 ∶= −𝐾𝑋∕𝑇 − Δ + 𝐶
𝛿

(𝛿 − 1)𝑣(𝑛 + 1)
𝑓∗𝜆𝐶𝑀(𝑋∕𝑇). (6.1)

(1) Let 𝑞 ⩾
1

𝐶−1
be a positive integer such that 𝑞𝐻𝐶 is Cartier. Then

𝑞𝑛+1𝐻𝑛+1
𝐶

⩾ deg 𝑓∗𝑋(𝑞𝐻𝐶).

(2) Let 𝑞 ⩾
1

𝐶−1
be a positive integer such that 𝑞𝐻𝐶 is Cartier and −𝑞(𝐾𝐹 + Δ𝐹) gives a generically

finite map. Then

𝑞𝑛+1𝐻𝑛+1
𝐶

⩾ 2
ℎ0(𝐹, 𝑞(−𝐾𝐹 − Δ𝐹)) − 𝑛

ℎ0(𝐹, 𝑞(−𝐾𝐹 − Δ𝐹))
deg 𝑓∗𝑋(𝑞𝐻𝐶).

(3) Let 𝑞 ⩾
1

𝐶−1
be a positive integer such that 𝑞𝐻𝐶 is Cartier and−𝑞(𝐾𝐹 + Δ𝐹) is globally generated.

Then

𝑞𝑛+1𝐻𝑛+1
𝐶

⩾ 2
𝑞𝑛𝑣

𝑞𝑛𝑣 + 𝑛
deg 𝑓∗𝑋(𝑞𝐻𝐶) .
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52 CODOGNI et al.

Before giving the proof, let us remark that one could rephrase the above results as inequalities
between (−𝐾𝑋∕𝑇 − Δ)𝑛+1 and deg 𝑓∗𝑋(−𝑞(𝐾𝑋∕𝑇 + Δ)), at least if 𝑞 is sufficiently divisible, using
the following formulas

⎧⎪⎪⎨⎪⎪⎩
𝑞𝑛+1𝐻𝑛+1

𝐶
= −𝑞𝑛+1(−𝐾𝑋∕𝑇 − Δ)𝑛+1

𝛿(𝐶 − 1) + 1

𝛿 − 1
,

deg 𝑓∗𝑋(𝑞𝐻𝐶) = deg 𝑓∗𝑋(−𝑞(𝐾𝑋∕𝑇 + Δ)) − 𝐶
𝑞ℎ0(−𝑞(𝐾𝐹 + Δ𝐹))

𝑣(𝑛 + 1)

𝛿

𝛿 − 1
(−𝐾𝑋∕𝑇 − Δ)𝑛+1,

where in the second formula we assumed that 𝑞 is sufficiently divisible so that
𝑞𝐶 𝛿

(𝛿−1)𝑣(𝑛+1)
𝜆𝐶𝑀(𝑋∕𝑇) is integral (and hence Cartier since 𝑇 is smooth).

Remark 6.5 (Stability threshold in families). The stability threshold of the fiber is a lower-
semicontinuous function on the base. A priori, it can take countably many values. This means
that, at least if the base field is uncountable, the maximum value of 𝛿 (which gives also the best
slope inequality) is obtained taking a very general fiber. If the base field is countable, to obtain
the best slope inequality, we can make a base field extension and then choose a very general fiber
over the greater field. The slope inequality obtained in this way holds true also for the family over
the original field. The recent result [38, Corollary 3.7] shows that the minimum between the sta-
bility threshold and (𝑛 + 1)∕𝑛 is constructible for families over a normal base, hence it attains
a minimum.

Proof. The ℚ-divisor 𝐻𝐶 is nef by [14, Thm 1.20] (or [53, Prop. 4.9], or [15, Thm 1.3]) and the fact
that 𝜆𝐶𝑀(𝑋∕𝑇) is nef. Moreover, from [14, Prop. 6.4] we infer that 𝑓∗𝑋(𝑞𝐻𝐶) is nef since 𝑞𝐻𝐶 is
Cartier and the divisor

𝑞𝐻𝐶 − 𝐾𝑋∕𝑇 − Δ = (𝑞 + 1)(−𝐾𝑋∕𝑇 − Δ) + 𝑞𝐶
𝛿

(𝛿 − 1)𝑣(𝑛 + 1)
𝑓∗𝜆𝐶𝑀(𝑋∕𝑇)

= (𝑞 + 1)

[
−𝐾𝑋∕𝑇 − Δ +

𝑞𝐶

𝑞 + 1

𝛿

(𝛿 − 1)𝑣(𝑛 + 1)
𝑓∗𝜆𝐶𝑀(𝑋∕𝑇)

]
is 𝑓-ample (because −𝐾𝑋∕𝑇 − Δ is 𝑓-ample) and nef by [14, Thm 1.20] (or [53, Prop. 4.9], or [15,
Thm 1.3]), using the assumption that 𝑞 ⩾

1

𝐶−1
and the fact that 𝜆𝐶𝑀(𝑋∕𝑇) is nef.

Hence, by applying Theorems 4.9(1), Corollary 4.2 and Corollary 4.3 to 𝑓 ∶ 𝑋 → 𝑇 with 𝐿 = 𝑞𝐻

we obtain, respectively, the inequalities in (1), (2) and (3). □

Remark 6.6. We do not know if items (2) and (3) of Theorem 6.4 holdswithout the assumption that
𝑞𝐻𝐶 is Cartier, and if we can replace in item (1) the assumption that 𝑞𝐻𝐶 is Cartierwith theweaker
assumption that 𝑞(−𝐾𝐹 − Δ𝐹) is Cartier or with the alternative assumption that −𝑞(𝐾𝐹 + Δ𝐹)

gives a generically finite map. We do use the assumption that 𝑞𝐻𝐶 is Cartier when we apply [14,
Prop. 6.4].

Theorem 6.4 can be extended to the case when there is a geometric fiber (𝐹, Δ𝐹) which is only
K-polystable, provided that we slightly modify the family, as we know briefly indicate.
The stability threshold of a K-polystable log-Fano pairs is always equal to one. Given a max-

imal torus 𝕋 in Aut(𝐹, Δ𝐹), we can however introduce a twisted stability threshold 𝛿𝕋(𝐹, Δ𝐹),
so that (𝐹, Δ𝐹) is K-polystable if and only if 𝛿𝕋(𝐹, Δ𝐹) > 1, see [53, Appendix A] (in loc. cit. the
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 53

authors speak about reduced uniform K-stability, which by now is known to be equivalent to K-
polystability, see [38]). K-polystable log-Fano pairs have a reductive automorphism group, so all
maximal tori are conjugate and, in for K-polystable log-Fano pair, the twisted stability threshold
does not depend on the choice of 𝕋.

Theorem 6.7. Keeping the notation as in Theorem 6.4, assuming that a geometric fiber (𝐹, Δ𝐹) is
K-polystable rather than K-stable. Let 𝕋 be a maximal torus in Aut(𝐹, Δ), and assume that 𝕋 acts
fiberwise on (𝑋, Δ). Replacing the stability threshold 𝛿 with the twisted stability threshold 𝛿𝕋 ∶=

𝛿𝕋(𝐹, Δ𝐹), the same inequalities of Theorem 6.4 hold up to a base change, and up to a birational
modification of 𝑋 which does not modify (𝐹, Δ𝐹).

Proof. Following [53, Section 5], for every one parameter subgroup 𝜉 of 𝕋, we can define a new
family 𝑓𝜉 ∶ (𝑋𝜉, Δ𝜉) → 𝑇, which is Zariski locally isomorphic to 𝑓 ∶ (𝑋, Δ) → 𝑇, and it is called
the twist of (𝑋, Δ) by 𝜉. In particular, 𝑞𝐻𝐶 remains Cartier on the new family.
From [53, Remark A.2, Proposition 4.5 and its proof], after a base change, we can see that there

exists a 𝜉 such that the Harder–Narasimhan filtration of the family twisted by 𝜉 has non-negative
𝛽𝛿𝕋 invariant (we refer to [53] for the definition of this invariant). We can now start arguing as
in the proof of Theorem 6.4. The nefness of 𝐻𝐶 , with 𝛿 replaced by 𝛿𝕋 and the original family
replaced by the twisted one, is now guaranteed by [53, Proposition 4.9] rather than [14, Theorem
1.20]. From now on, the argument is verbatim as in the proof of Theorem 6.4. □

If 𝕋 acts only on (𝐹, Δ𝐹) but not on (𝑋, Δ), arguing similarly to [37, Thm. 6], one can make a
base change and a birational modification to construct a new family as in the set-up 6.1 where 𝕋
acts on all fibers. After these operations, 𝑞𝐻𝐶 remains ℚ-Cartier but might stop being Cartier, so
one might have to increase 𝑞 before start arguing as in the proof of Theorem 6.4.
The following example shows that the conclusion of Theorem 6.4 may fail if (𝐹, Δ𝐹) is only

K-polystable but not K-stable, and that indeed the birational modification in Theorem 6.7 is
sometimes unavoidable.

Example 6.8. Consider the Hirzebruch surface 𝔽𝑒 (for 𝑒 ⩾ 0), with its natural projection 𝑓𝑒 ∶

𝔽𝑒 → ℙ1 (and take Δ = 0). The fibers of this family are isomorphic to ℙ1, which is K-polystable
but not K-stable.
For every 𝑒 ⩾ 0, we have

deg 𝜆𝐶𝑀(𝔽𝑒∕ℙ
1) = −(−𝐾𝔽𝑒∕ℙ

1)2 = 0.

In particular, for any rational 𝐶 > 1 the ℚ-divisor 𝐻𝐶 of (6.1) is equal to −𝐾𝔽𝑒∕ℙ
1 .

If 𝑒 = 0, i.e. 𝔽0 is the trivial family ℙ1 × ℙ1, then deg 𝑓∗𝑋(−𝑞𝐾𝔽𝑒∕ℙ
1) = 0 for every 𝑞 ⩾ 1, and

hence Theorem 6.7 holds true without the need of a twist.
On the other hand, if 𝑒 ⩾ 1, the degree of the locally free sheaf𝑓∗𝑋(−𝑞𝐾𝔽𝑒∕ℙ

1) is strictly greater
than zero for every 𝑞 ⩾ 1 (more precisely, fixed 𝑞, it tends to infinity when 𝑒 grows). This shows
that the twist in Theorem 6.7 is in this case necessary, and indeed 𝑓0 ∶ 𝔽0 → ℙ1 is a twist of 𝑓𝑒 ∶
𝔽𝑒 → ℙ1 for every 𝑒 ⩾ 1, see [53, Example 5.2].

6.2 Application to the moduli space of K-semistable Fano varieties

Let𝐾
𝑛,𝑣 be the algebraic stack of K-semistable Fano varieties with dimension 𝑛 and volume 𝑣.

Note that𝐾
𝑛,𝑣 is anArtin stack of finite type. Let𝜋∶ 𝑛,𝑣 → 𝐾

𝑛,𝑣 be the universal family. Define
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54 CODOGNI et al.

the Chow–Mumford (CM) ℚ-divisor (well-defined up to ℚ-linear equivalence)

𝜆𝐶𝑀 = −𝜋∗(−𝐾𝑛,𝑣∕
𝐾
𝑛,𝑣
)𝑛+1.

This ℚ-divisor is ℚ-Cartier and nef by [14, Theorem 1.1(a)].
Let 𝐾,𝑠

𝑛,𝑣 the open Deligne–Mumford substack of 𝐾
𝑛,𝑣 parametrizing K-stable Fano vari-

eties. The stability threshold is a lower semi-continuous function, strictly greater than 1 on
𝐾,𝑠
𝑛,𝑣 ,

which in principle can assume countably many values. We can however consider as invariant
the minimum between the stability threshold and (𝑛 + 1)∕𝑛. This second invariant is lower semi-
continuous and constructible for the Zariski topology by [38, Corollary 3.7], and we call 𝛿𝑛,𝑣 > 1

its minimum on
𝐾,𝑠
𝑛,𝑣 (we apply [38, Corollary 3.7] to the normalization of an atlas of

𝐾,𝑠
𝑛,𝑣).

Theorem 6.9. With the above notations, let 𝑇 be a normal projective curve in 𝑛,𝑣 intersecting


𝐾,𝑠
𝑛,𝑣 . For any rational number 𝐶 > 1 consider the ℚ-Cartier ℚ-divisor on 𝑛,𝑣

𝐶 ∶= −𝐾𝑛,𝑣∕
𝐾
𝑛,𝑣

+ 𝐶
𝛿𝑛,𝑣

(𝛿𝑛,𝑣 − 1)𝑣(𝑛 + 1)
𝜋∗𝜆𝐶𝑀.

(1) Let 𝑞 ⩾
1

𝐶−1
be a positive integer such that 𝑞𝐶 is Cartier. Then

𝑞𝑛+1𝜋∗(
𝑛+1
𝐶

) − 𝑐1𝜋∗𝑛,𝑣
(𝑞𝐶)

intersects non-negatively 𝑇.
(2) Let 𝑞 ⩾

1

𝐶−1
be a positive integer such that 𝑞𝐶 is Cartier and −𝑞𝐾𝐹 is globally generated for

any 𝐹 ∈ 
𝐾,𝑠
𝑛,𝑣 . Then

𝑞𝑛+1𝜋∗(
𝑛+1
𝐶

) − 2
𝑞𝑛𝑣

𝑞𝑛𝑣 + 𝑛
𝑐1𝜋∗𝑛,𝑣

(𝑞𝐶)

intersects non-negatively 𝑇.

Proof. Let 𝑓∶ 𝑋 → 𝑇 be the pull-back of the universal family. Note that: 𝑋 is normal since all the
fibers of 𝑓 are normal (being K-semistable Fano varieties), −𝐾𝑋∕𝑇 is ℚ-Cartier and 𝑓-ample by
the Kollár condition on families of K-semistable Fano varieties and a general fiber 𝐹 is K-stable
by the assumption that 𝑇 intersects 𝐾,𝑠

𝑛,𝑣 . Hence, the results follows from Theorem 6.4 (with
Δ = 0) using that

⎧⎪⎨⎪⎩
𝜋∗(

𝑛+1
𝐶

) ⋅ 𝑇 = 𝐻𝑛+1
𝐶

,

𝑐1𝜋∗𝑛,𝑣
(𝑞𝐶) ⋅ 𝑇 = deg 𝑓∗𝑋(𝑞𝐻𝐶),

(6.2)

In the second equality we have used the base change property 𝜋∗𝑛,𝑣
(𝑞𝐶)|𝑇 = 𝑓∗𝑋(𝑞𝐻𝐶),

which holds because all fibers of 𝜋 are Fano varieties with klt singularities and then by Kawamata
vanishing we have 𝑅𝑖𝜋∗𝑛,𝑣

(𝑞𝐶) = 0 for all 𝑖 > 0. □

The coarse moduli space of the DM stack𝐾,𝑠
𝑛,𝑣 is a quasi-projective variety that it is not proper

in general. However, if 𝑉 ⊂ 
𝐾,𝑠
𝑛,𝑣 is a proper (and hence projective) closed subscheme, then the
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 55

Chow–Mumford ℚ-divisor 𝜆𝐶𝑀 is ample on 𝑉 (see [14, Theorem 1.1] and [53, Theorem 1.1]), and
Theorem 6.9 provides new nef line bundles on 𝑉.
It is worth mentioning that 𝐾

𝑛,𝑣 has a projective good moduli space 𝑀𝐾
𝑛,𝑣, but neither

det(𝜋∗ (𝑞𝐶)) nor det(𝜋∗ (−𝑞𝐾∕𝐾
𝑛,𝑣
)) descend, in general, to ℚ-line bundles on 𝑀𝐾

𝑛,𝑣;
hence we do not see how to use slope inequalities to construct nef ℚ-line bundles on 𝑀𝐾

𝑛,𝑣. On
the other hand, the Chow-Mumford ℚ-divisor 𝜆𝐶𝑀 descends to an ample ℚ-Cartier ℚ-divisor on
𝑀𝐾

𝑛,𝑣, see [38, 53].

7 SLOPE INEQUALITIES UNDER OTHER STABILITY CONDITIONS

The aim of this section is to collect some slope inequalities that are true under GIT or slope
(semi)stability conditions. These slope inequalities are formulated in term of the following notion
of positivity for divisors on the total space of a fibration over a curve (as in the setup 3.1), which
was studied in detail by Barja and Stoppino in a series of papers [8–10].

Definition 7.1 ([8, Def. 1.3]). Assume that we are in the set-up 3.1. We say that the divisor 𝐿 is
𝑓-positive if

𝐿𝑛+1 ⩾ (𝑛 + 1)
𝐿𝑛
𝐹

ℎ0(𝐹, ⌊𝐿𝐹⌋) deg 𝑓∗𝑋(𝐿).

The above notion can be slightly rephrased if 𝑓∗𝑋(𝐿) has positive degree. More precisely, if
deg 𝑓∗𝑋(𝐿) ≠ 0, then we define the slope of 𝐿 to be

𝑠(𝐿) =
𝐿𝑛+1

deg 𝑓∗𝑋(𝐿)
.

Then, under the assumption that deg 𝑓∗𝑋(𝐿) > 0, we have that

𝐿 is f-positive ⟺ 𝑠(𝐿) ⩾ BS(𝐿𝐹) ∶= (𝑛 + 1)
𝐿𝑛
𝐹

ℎ0(𝐹, ⌊𝐿𝐹⌋) , (7.1)

where BS stands for the Barja–Stoppino invariant of the ℚ-Cartier ℚ-divisor 𝐿𝐹 on 𝐹.
Under some positivity assumption on 𝐿𝐹 , the Barja–Stoppino invariant of 𝐿𝐹 admits the follow-

ing lower bounds, which should be compared with the slope inequalities in Corollaries 4.2 and
4.3.

Remark 7.2. Assume that we are in the setup 3.1 and that 𝐿𝐹 is nef and with generically finite
associated map 𝜙𝐿𝐹 .

(1) We have that

BS(𝐿𝐹) ⩾ (𝑛 + 1)
𝐿𝑛
𝐹

𝐿𝑛
𝐹
+ 𝑛

⩾ (𝑛 + 1)
ℎ0(𝐹, ⌊𝐿𝐹⌋) − 𝑛

ℎ0(𝐹, ⌊𝐿𝐹⌋) ⩾ (𝑛 + 1)
ℎ0(𝐹, ⌊𝐿𝐹⌋) − 𝑛

𝐿𝑛
𝐹
+ 𝑛

,

with equalities if and only if 𝐿𝑛
𝐹
= ℎ0(𝐹, ⌊𝐿𝐹⌋) − 𝑛.

This follows from the fact that 𝐿𝑛
𝐹
⩾ ℎ0(𝐹, ⌊𝐿𝐹⌋) − 𝑛, see Corollary 2.5(i).
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56 CODOGNI et al.

(2) If, moreover, either dim𝐹 ⩾ 2 and 𝜅(𝐹) ⩾ 0 or dim𝐹 = 1 and 𝐿𝐹 is special, then we have that

BS(𝐿𝐹) ⩾ 2(𝑛 + 1)
𝐿𝑛
𝐹

𝐿𝑛
𝐹
+ 2𝑛

⩾ 2(𝑛 + 1)
ℎ0(𝐹, ⌊𝐿𝐹⌋) − 𝑛

ℎ0(𝐹, ⌊𝐿𝐹⌋) ⩾ 4(𝑛 + 1)
ℎ0(𝐹, ⌊𝐿𝐹⌋) − 𝑛

𝐿𝑛
𝐹
+ 2𝑛

,

with equalities if and only if 𝐿𝑛
𝐹
= 2ℎ0(𝐹, ⌊𝐿𝐹⌋) − 2𝑛.

This is a consequence of the inequality 𝐿𝑛
𝐹
⩾ 2ℎ0(𝐹, ⌊𝐿𝐹⌋) − 2𝑛, which follows from

Corollary 2.5(ii) if dim𝐹 ⩾ 2 and from Clifford’s theorem if dim𝐹 = 1.

If wemodify 𝐿 by the pull-back ofmore andmore positive divisors from the base, then the slope
of 𝐿 will become closer and closer to BS(𝐿𝐹), as we now show.

Proposition 7.3. Assume that we are in the setup 3.1 and that deg 𝑓∗𝑋(𝐿) > 0. Let𝐴 be an ample
divisor on 𝑇. Then the slopes 𝑠(𝐿 + 𝑞𝑓∗𝐴) converge monotonically to BS(𝐿𝐹) as ℕ ∋ 𝑞 → +∞.

Proof. Using that (𝑓∗𝐴)2 = 𝑓∗(𝐴2) = 0 since𝐴 is a divisor on a curve and the projection formula,
we compute

⎧⎪⎪⎨⎪⎪⎩
(𝐿 + 𝑞𝑓∗𝐴)𝑛+1 = 𝐿𝑛+1 + 𝑞(𝑛 + 1)𝐿𝑛𝐹 deg𝐴,

𝑓∗𝑋(𝐿 + 𝑞𝑓∗𝐴) = 𝑓∗𝑋(𝐿) ⊗ 𝑇(𝑞𝐴) ⇒ deg 𝑓∗𝑋(𝐿 + 𝑞𝑓∗𝐴) = deg 𝑓∗𝑋(𝐿)

+ 𝑞ℎ0(𝐹, ⌊𝐿𝐹⌋) deg𝐴.
From the above formulas we get that

⎧⎪⎪⎨⎪⎪⎩
𝑠(𝐿 + 𝑞𝑓∗𝐴) − BS(𝐿𝐹) =

deg 𝑓∗𝑋(𝐿)

deg 𝑓∗𝑋(𝐿 + 𝑞𝑓∗𝐴)
[𝑠(𝐿) − BS(𝐿𝐹)],

𝑠(𝐿 + 𝑞𝑓∗𝐴) − 𝑠(𝐿) =
𝑞 deg𝐴 ⋅ ℎ0(𝐹, ⌊𝐿𝐹⌋)
deg 𝑓∗𝑋(𝐿 + 𝑞𝑓∗𝐴)

[BS(𝐿𝐹) − 𝑠(𝐿)].

Hence, we conclude that{
𝑠(𝐿) ⩽ BS(𝐿𝐹) ⟹ 𝑠(𝐿) ⩽ 𝑠(𝐿 + 𝑞𝑓∗𝐴) ⩽ BS(𝐿𝐹),

BS(𝐿𝐹) ⩽ 𝑠(𝐿) ⟹ BS(𝐿𝐹) ⩽ 𝑠(𝐿 + 𝑞𝑓∗𝐴) ⩽ 𝑠(𝐿).
(7.2)

Formulas (7.2) imply that the sequence 𝑠(𝐿 + 𝑞𝑓∗𝐴) converges monotonically to BS(𝐿𝐹) as
𝑞 → +∞. □

Remark 7.4. The above Proposition shows that the lower bound 𝑠(𝐿) ⩾ BS(𝐿𝐹) (i.e. the𝑓-positivity
of 𝐿) is the best possible lower bound we can hope for 𝑠(𝐿) in terms of numerical invariants of the
general fiber 𝐹.
However that there are examples of fibrations 𝑓 endowed with (sufficiently positive) divisors

𝐿 that are not 𝑓-positive: for example, Hu-Zhang have constructed in [29, § 2.1, § 2.4, § 3] families
of smooth canonically polarized varieties of any dimension 𝑛 ⩾ 2 such that the relative canonical
bundle is not 𝑓-positive.
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 57

In subsection 8.1, we investigate the 𝑓-positivity for families of polarized varieties of minimal
degrees and polarized hyperelliptic varieties.

The 𝑓-positivity of 𝐿 holds true provided that either (𝐹, 𝐿𝐹) is Chow semistable (e.g., if it is
Hilbert semistable) or 𝑓∗𝑋(𝐿) is semistable.

Theorem 7.5 [12, Thm. 3.3]. Assume that we are in the set-up 3.1 and that, moreover, 𝐿 is 𝑓-nef.
If 𝐿𝐹 is a globally generated Cartier divisor and the cycle (𝜙𝐿𝐹 )∗(𝐹) ⊂ ℙ(𝐻0(𝐹, 𝐿𝐹)

∨) is Chow
semistable then 𝐿 is 𝑓-positive.

The special case of the above result when 𝐿 is𝑓-ample, 𝐿𝐹 is a very ample Cartier divisor and the
subvariety 𝜙𝐿𝐹 (𝐹) ⊂ ℙ(𝐻0(𝐹, 𝐿𝐹)

∨) is Hilbert semistable was proved earlier by Cornalba–Harris
[18, Thm. 1.1] (see also [8, Cor. 2.3])

Theorem 7.6. Assume that we are in the setup 3.1 and that, moreover, 𝐿 is 𝑓-nef and 𝐿𝐹 is Cartier
and globally generated.
If 𝑓∗𝑋(𝐿) is semistable of non-negative degree then 𝐿 is 𝑓-positive.

The above result was proved for a Cartier divisor 𝐿 in [9, Thm.1.3] under the further assumption
that either 𝐿 is 𝑓-globally generated or 𝐿 is nef.

Proof. Denote by

𝜇 ∶= 𝜇(𝑓∗𝑋(𝐿)) =
deg 𝑓∗𝑋(𝐿)

rk 𝑓∗𝑋(𝐿)
=

deg 𝑓∗𝑋(𝐿)

ℎ0(𝐹, ⌊𝐿𝐹⌋)
the slope of the locally free sheaf 𝑓∗𝑋(𝐿). Using that 𝐹2 = 0, we compute that

(𝐿 − 𝜇𝐹)𝑛+1 = 𝐿𝑛+1 − (𝑛 + 1)
𝐿𝑛
𝐹

ℎ0(𝐹, ⌊𝐿𝐹⌋) deg 𝑓∗𝑋(𝐿).

In particular

𝐿 is 𝑓-positive ⟺ (𝐿 − 𝜇𝐹)𝑛+1 ⩾ 0. (7.3)

Using the notation of § 3 (with 𝓁 = 1 since 𝑓∗𝑋(𝐿) is semistable) and the fact that 𝑓∗𝑋(𝐿) is
nef since it is semistable of non-negative degree (see (3.4)), our assumptions imply that

⎧⎪⎪⎨⎪⎪⎩
𝑀1 − 𝜇𝐹 is nef by Proposition 3.6 ⟹ 0 ⩽ (𝑀1 − 𝜇𝐹)𝑛+1 = 𝑀𝑛+1

1
− (𝑛 + 1)𝜇𝑃𝑛

1 ,

𝐿𝑛+1 ⩾ 𝑀𝑛+1
1

by Lemma 3.10(ii),

𝐿𝑛𝐹 = 𝑃𝑛
1 by Proposition 3.5(v).

(7.4)

By putting together the above formulas (7.4), we get that

(𝐿 − 𝜇𝐹)𝑛+1 ⩾ (𝑀1 − 𝜇𝐹)𝑛+1 ⩾ 0,

and hence that 𝐿 is 𝑓-positive by (7.3). □
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58 CODOGNI et al.

Remark 7.7. When 𝐿 is 𝑓-globally generated, so that 𝑀𝓁 = 𝐿, and 𝑓∗𝑋(𝐿) is semistable, the
proof of Theorem 7.6 shows that the nef threshold of 𝐿 with respect to a fiber 𝐹 is at least the
slope 𝜇(𝑓∗𝑋(𝐿)) of 𝑓∗𝑋(𝐿). It is worth recalling that [51, Remark 2, Section 4] gives an example
where 𝑓∗𝑋(𝐿) is not semistable, 𝐿 − 𝜇(𝑓∗𝑋(𝐿))𝐹 is not nef, but still the family is 𝑓-positive.

8 EXAMPLES

In this section, we will compute the slope of some natural families of polarized varieties. At the
end of each example, we will discuss why it is relevant for the purposes of this paper.

8.1 Families of varieties of minimal degree and of polarized
hyperelliptic varieties

In this subsection, we are going to compute slopes of several natural families of

∙ varieties of minimal degree, that is, polarized varieties (𝐹, 𝐿𝐹) such that 𝐿𝐹 is very ample and it
embeds 𝐹 as a (non-degenerate) variety in ℙ(𝐻0(𝐹, 𝐿𝐹)

∨) of degree deg𝐹 = codim𝐹 + 1 (see
[20]). Note that, for any such family, we have that 𝐿𝑛

𝐹
= ℎ0(𝐹, 𝐿𝐹) − 𝑛, where 𝑛 = dim𝐹, so that

all the inequalities in Remark 7.2(1) are equalities.
∙ hyperelliptic polarized varieties, that is, polarized varieties (𝐹, �̃�𝐹) such that �̃�𝐹 is base point free
and it induces a double finite cover of a variety of minimal degree (see [22]). Note that, for any
such family, we have that �̃�𝑛

𝐹
= 2ℎ0(𝐹, �̃�𝐹) − 2𝑛, where 𝑛 = dim𝐹, so that all the inequalities

in Remark 7.2(2) are equalities.

In all the examples, we will use the following notation. Given a locally free sheaf 𝐸 of rank 𝑟

on a scheme 𝑆, we will denote by 𝜋 ∶ ℙ𝑆(𝐸) → 𝑆 the projective bundle of quotients of 𝐸 and by
𝐻 = 𝐻𝐸 any tautological divisor on ℙ𝑆(𝐸), that is, any effective Cartier divisor on ℙ𝑆(𝐸) such that
ℙ𝑆(𝐸)

(𝐻𝐸) = ℙ𝑆(𝐸)
(1). With these convention, we have that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜋∗ℙ𝑆(𝐸)
(𝑑𝐻𝐸) =

⎧⎪⎨⎪⎩
Sym𝑑(𝐸) for any 𝑑 ⩾ 0,

0 for any 𝑑 < 0.

𝐻𝑟 =

𝑟∑
𝑖=1

(−1)𝑖−1𝜋∗(𝑐𝑖(𝐸))𝐻
𝑟−𝑖 ∈ 𝐴𝑟(ℙ𝑆(𝐸)).

(8.1)

Moreover, we are going to use frequently the following two nefness results. Let 𝐸 be a locally
free sheaf on an irreducible smooth and projective curve 𝑇 and denote by 𝜇−(𝐸) the lowest slope
in the Harder–Narasimhan filtration of 𝐸. Then we have that (see [24, Lemma 2.1] and [36, Thm.
6.4.15]):

𝐸 is nef on 𝑇 ⇔ 𝜇−(𝐸) ⩾ 0 [Hartshorne’s theorem],

𝑑𝐻𝐸 + 𝑓∗(𝐴) is nef on ℙ𝑇(𝐸) ⇔ 𝑑 ⩾ 0 and 𝑑𝜇−(𝐸) + deg𝐴 ⩾ 0 [Miyaoka’s theorem].
(8.2)

 1460244x, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12512 by U

niversidad D
e C

oim
bra, W

iley O
nline L

ibrary on [13/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 59

Example 8.1 (Families of projective spaces and their double covers). Let𝑇 be a smooth irreducible
projective curve and let 𝐸 be a nef locally free sheaf on 𝑇 of rank 𝑛 + 1 and of positive degree.
Family of projective spaces
Consider the projective bundle 𝑓 ∶ 𝑋 ∶= ℙ𝑇(𝐸) → 𝑇 and let 𝐿 ∶= 𝐻 be any tautological divisor

on ℙ𝑇(𝐸). Note that 𝐿 is nef since 𝐸 is nef and its restriction to a general (and indeed any) fiber
𝐹 ≅ ℙ𝑛 is a hyperplane divisor, and hence it is very ample. Using (8.1), we compute{

𝑓∗𝑋(𝐿) = 𝐸 (⇒ 𝑓∗𝑋(𝐿) is nef),

𝐿𝑛+1 = deg(𝐸),
(8.3)

from which we deduce that

𝑠(𝐿) = 1 = BS(𝐿𝐹). (8.4)

Note that this example realizes the equality in Theorem 4.9(1) with 𝑞 = 1 and also it provides an
example where the 𝑓-positivity is sharp (see (7.1)).
Double covers
Fix now an integer𝑚 ⩾ 2 and a divisor 𝐴 on 𝑇 such that

|2(𝑚𝐻 + 𝑓∗𝐴)| ≠ ∅ and the general element 𝑅 ∈ |2(𝑚𝐻 + 𝑓∗𝐴)| is smooth.
Take a general effective smooth divisor 𝑅 ∈ |2(𝑚𝐻 + g∗𝐴)| and denote by 𝜋 ∶ 𝑋 → 𝑋 = ℙ𝑇(𝐸)

the finite double cover ramified along 𝑅 and set 𝑓 ∶ 𝑋
𝜋
F→ 𝑋

𝑓
F→ 𝑇. Consider the nef divisor �̃� =

𝜋∗(𝐿) on 𝑋.
Note that a general polarized fiber (𝐹, �̃�𝐹) of 𝑓 is a double finite cover of (ℙ𝑛,𝐻ℙ𝑛) ramified

along a smooth hypersurface of degree 2𝑚 ⩾ 4, and hence

BS(�̃�𝐹) = 2BS(𝐿𝐹) = 2. (8.5)

Using (8.3), the projection formula and the formula 𝜋∗𝑋 = 𝑋 ⊕ 𝑋(−𝑚𝐻 − 𝑓∗𝐴), we
compute:

⎧⎪⎨⎪⎩
𝑓∗𝑋(�̃�) = 𝑓∗𝜋∗𝜋

∗𝑋(𝐿) = 𝑓∗(𝑋(𝐿) ⊕ 𝑋(𝐻 −𝑚𝐻 − 𝑓∗𝐴)) = 𝐸 (⇒ 𝑓∗𝑋(�̃�) is nef),

�̃�𝑛+1 = 2𝐿𝑛+1 = 2 deg𝐸,

(8.6)
from which we deduce that

𝑠(�̃�) = 2 = BS(�̃�𝐹). (8.7)

Note that example realizes the equality in Theorem 4.9(2) with 𝑞 = 1 and also it provides an
example where the 𝑓-positivity is sharp (see (7.1)).

Example 8.2 (Families of Veronese surfaces and their double covers). Let 𝑇 be a smooth
irreducible projective curve and let 𝐸 be a nef locally free sheaf on 𝑇 of rank 3 and of
positive degree.

 1460244x, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12512 by U

niversidad D
e C

oim
bra, W

iley O
nline L

ibrary on [13/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



60 CODOGNI et al.

Families of Veronese surfaces
Consider the projective bundle 𝑓 ∶ 𝑋 ∶= ℙ𝑇(𝐸) → 𝑇 and set 𝐿 ∶= 2𝐻 where 𝐻 is any tauto-

logical divisor on ℙ𝑇(𝐸). Note that 𝐿 is nef since 𝐸 is nef and a general (and indeed any) fiber
(𝐹,𝐹(𝐿𝐹)) is isomorphic to the Veronese surface (ℙ2,ℙ2(2)).
Using (8.1), we compute{

𝑓∗(𝑋(𝐿)) = Sym2(𝐸) ⇒ deg 𝑓∗(𝑋(𝐿)) = deg Sym2(𝐸) = 4 deg𝐸,

𝐿3 = (2𝐻)3 = 8 deg(𝐸),
(8.8)

from which we deduce that

𝑠(𝐿) = 2 = BS(𝐿𝐹). (8.9)

Double covers
Fix now an integer𝑚 ⩾ 3 and a divisor 𝐴 on 𝑇 such that

|2(𝑚𝐻 + 𝑓∗𝐴)| ≠ ∅ and the general element 𝑅 ∈ |2(𝑚𝐻 + 𝑓∗𝐴)| is smooth.
Take a general effective smooth divisor 𝑅 ∈ |2(𝑚𝐻 + g∗𝐴)| and denote by 𝜋 ∶ 𝑋 → 𝑋 = ℙ𝑇(𝐸)

the finite double cover ramified along 𝑅 and set 𝑓 ∶ 𝑋
𝜋
F→ 𝑋

𝑓
F→ 𝑇. Consider the nef divisor �̃� =

𝜋∗(𝐿) on 𝑋.
Note that a general polarized fiber (𝐹, �̃�𝐹) of 𝑓 is a double finite cover of (ℙ2, 2𝐻ℙ2) ramified

along a smooth hypersurface of degree 2𝑚 ⩾ 6, and hence

BS(�̃�𝐹) = 2BS(𝐿𝐹) = 4. (8.10)

Arguing as in Example 8.1 and using (8.8), we get that

⎧⎪⎨⎪⎩
𝑓∗𝑋(�̃�) = 𝑓∗𝑋(𝐿) = Sym2 𝐸,

�̃�𝑛+1 = 2𝐿𝑛+1 = 16 deg(𝐸),
⇒ 𝑠(�̃�) = 4 = BS(�̃�𝐹). (8.11)

Note that these families provide examples where the 𝑓-positivity is sharp (see (7.1)).

Example 8.3 (Families of Quadrics and their double covers). Let 𝑇 be a smooth irreducible pro-
jective curve, let 𝐸 be a nef locally free sheaf on 𝑇 of rank 𝑛 + 2 and of positive degree, and let 𝐻
be a tautological divisor on the projective bundle ℎ ∶ ℙ𝑇(𝐸) → 𝑇.
Families of Quadrics
Consider a divisor 𝐴 on 𝑇 such that

|2𝐻 + ℎ∗𝐴| ≠ ∅ and the general element in |2𝐻 + ℎ∗𝐴| is normal. (*)

Take a general divisor 𝑋 ∈ |2𝐻 + ℎ∗𝐴| and let 𝑓 ∶ 𝑋 → 𝑇 be the restriction of ℎ, which is a
fibration of quadric hypersurfaces in ℙ𝑇(𝐸). Let 𝐿 ∶= 𝐻|𝑋 which is a nef Cartier (since 𝐸 is nef)
divisor on 𝑋.
Note that a general fiber 𝐹 of 𝑓 ∶ 𝑋 → 𝑇 is a quadric inside ℙ𝑛+1 and 𝐿𝐹 is a hyperplane divisor

on 𝐹, and hence

BS(𝐿𝐹) = (𝑛 + 1)
𝐿𝑛
𝐹

ℎ0(𝐹, 𝐿𝐹)
= (𝑛 + 1)

2

𝑛 + 2
= 2 −

2

𝑛 + 2
. (8.12)
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 61

The top-self intersection of 𝐿 on 𝑋 can be compute inside ℙ𝑇(𝐸) as it follows (using also (8.1))

𝐿𝑛+1 = 𝐻𝑛+1 ⋅ 𝑋 = 𝐻𝑛+1 ⋅ (2𝐻 + ℎ∗𝐴) = 2𝐻𝑛+2 + 𝐻𝑛+1 ⋅ ℎ∗𝐴 = 2deg𝐸 + deg𝐴. (8.13)

In order to compute the degree of 𝑓∗𝑋(𝐿), consider the exact sequence of the divisor 𝑋 ⊂ ℙ𝑇(𝐸)

tensored by ℙ𝑇(𝐸)
(1):

0 → ℙ𝑇(𝐸)
(−𝐻 − ℎ∗𝐴) = ℙ𝑇(𝐸)

(1)(−𝑋) → ℙ𝑇(𝐸)
(1) → ℙ𝑇(𝐸)

(1)|𝑋 = 𝑋(𝐿) → 0.

By taking the pushforward along ℎ and using that ℎ∗ℙ𝑇(𝐸)
(−𝐻 − ℎ∗𝐴) = 𝑅1ℎ∗ℙ𝑇(𝐸)

(−𝐻 −

ℎ∗𝐴) = 0, we get the isomorphism

𝐸 = ℎ∗ℙ𝑇(𝐸)
(1)

≅
F→ 𝑓∗𝑋(𝐿). (8.14)

In particular, 𝑓∗𝑋(𝐿) is nef by our assumption on 𝐸. From (8.13) and (8.14), we get that

𝑠(𝐿) = 2 +
deg𝐴

deg𝐸
. (8.15)

Note that

𝑠(𝐿) ⩾ BS(𝐿𝐹) ⇔ deg𝐴 ⩾ −2𝜇(𝐸) = −2
deg𝐸

rk𝐸
.

Double covers
Fix now an integer𝑚 ⩾ 2 and a divisor 𝐵 on 𝑇 such that

|2(𝑚𝐿 + 𝑓∗𝐵)| ≠ ∅ and the general element in |2(𝑚𝐿 + 𝑓∗𝐵)| is smooth. (**)

Take a general effective smooth divisor 𝑅 ∈ |2(𝑚𝐻 + 𝑓∗𝐵)| and denote by 𝜋 ∶ 𝑋 → 𝑋 the finite

double cover ramified along 𝑅 and set 𝑓 ∶ 𝑋
𝜋
F→ 𝑋

𝑓
F→ 𝑇. Consider the nef divisor �̃� ∶= 𝜋∗(𝐿) on

𝑋.
Note that a general polarized fiber (𝐹, �̃�𝐹) of 𝑓 is a finite double cover of (𝐹, 𝐿𝐹) ramified along

a divisor of |2𝑚𝐿𝐹| (with𝑚 ⩾ 2), and hence

BS(�̃�𝐹) = 2BS(𝐿𝐹) = 4 −
4

𝑛 + 2
. (8.16)

Arguing as in Example 8.1 and using formulas (8.13) and (8.14), we get that

⎧⎪⎨⎪⎩
𝑓∗𝑋(�̃�) = 𝑓∗𝑋(𝐿) = 𝐸,

�̃�𝑛+1 = 2𝐿𝑛+1 = 2(2 deg 𝐸 + deg𝐴),
⇒ 𝑠(�̃�) = 4 + 2

deg𝐴

deg𝐸
. (8.17)

Examples of small slopes
In order to obtain examples of small slope, we can take 𝑇 = ℙ1 and

𝐸 = 
⊕𝑛+2−𝑟

ℙ1 ⊕ ℙ1(𝑑)⊕𝑟 with 3 ⩽ 𝑟 ⩽ 𝑛 + 2 and 𝑑 ⩾ 1 and deg𝐴 = −2𝑑.

With these choices, the general element 𝑋 of

|2𝐻 + ℎ∗(𝐴)| = ℙ(𝐻0(ℙ1, Sym2(𝐸) ⊗ ℙ1(𝐴)))
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62 CODOGNI et al.

is a family of quadrics over 𝑇 of generic rank 𝑟 (and hence it is normal since 𝑟 ⩾ 3) and, using
(8.15), its slope is

𝑠(𝐿) = 2 −
2𝑑

𝑟𝑑
= 2 −

2

𝑟
⩽ 2 −

2

𝑛 + 2
= BS(𝐿𝐹),

with equality if and only if 𝑟 = 𝑛 + 2, that is, the family 𝑓 ∶ 𝑋 → ℙ1 is generically smooth. And
the same thing is true for a double finite cover 𝑓 ∶ 𝑋 → 𝑇 of 𝑓 ∶ 𝑋 → 𝑇 as above.
In particular, this example shows that Theorem 7.5 can fail without the Chow semistability of

the general fiber and that Theorem 7.6 can fail without the slope semistability of 𝑓∗𝑋(𝐿).

Example 8.4 (Families of Rational Normal Scrolls and their double covers). Let 𝑇 be a smooth
irreducible projective curve, let 𝐸 be a locally free sheaf of rank 2 on 𝑇 and denote by 𝜇−(𝐸)

the smallest slope in the Harder-Narasimhan filtration of 𝐸. Consider the projective bundle
ℎ ∶ 𝑆 ∶= ℙ𝑇(𝐸) → 𝑇 and let 𝐻𝑆 be a tautological divisor on 𝑆. Fix a 𝑛-tuple of integers 𝑑1 ⩾ … ⩾

𝑑𝑛 ⩾ 0 and an 𝑛-tuple {𝐴1, … ,𝐴𝑛} of divisors on 𝑇 of degree 𝑎𝑖 ∶= deg𝐴𝑖 subject to the following
assumptions

𝑎𝑖 + 𝑑𝑖𝜇−(𝐸) ⩾ 0 for any 1 ⩽ 𝑖 ⩽ 𝑛. (†)

Consider the projective bundle g ∶ ℙ𝑆(
⨁𝑛

𝑖=1𝑆(𝑑𝑖) ⊗ ℎ∗𝑇(𝐴𝑖)) → 𝑆 and let𝐻 be a tautological
divisor on it.
Families of rational normal scrolls
Consider the polarized family

𝑓 ∶ ℙ𝑆

(
𝑛⨁
𝑖=1

𝑆(𝑑𝑖) ⊗ ℎ∗𝑇(𝐴𝑖)

)
=∶ 𝑋

g
F→ 𝑆

ℎ
F→ 𝑇 and 𝐿 = 𝐻.

Note that 𝐿 = 𝐻 is nef on𝑋 since, for each 1 ⩽ 𝑖 ⩽ 𝑛, the line bundle𝑆(𝑑𝑖) ⊗ ℎ∗𝑇(𝐴𝑖) is nef on
𝑆 by Miyaoka’s theorem, using the assumption (†).
The general (and indeed any) fiber of 𝑓 is the rational normal scroll

𝐹 = ℙℙ1

(
𝑛⨁
𝑖=1

ℙ1(𝑑𝑖)

)

and 𝐿𝐹 is a tautological divisor on 𝐹. Hence, we have that

BS(𝐿𝐹) = (𝑛 + 1)
𝐿𝑛
𝐹

ℎ0(𝐹, 𝐿𝐹)
= (𝑛 + 1)

∑
𝑖 𝑑𝑖∑

𝑖 𝑑𝑖 + 𝑛
. (8.18)

We now compute the sheaf 𝑓∗𝑋(𝐿) using (8.1) as it follows

𝑓∗𝑋(𝐿) = ℎ∗(g∗(𝑋(𝐿))) = ℎ∗

(
𝑛⨁
𝑖=1

𝑆(𝑑𝑖) ⊗ ℎ∗𝑇(𝐴𝑖)

)
=

𝑛⨁
𝑖=1

Sym𝑑𝑖 (𝐸) ⊗ 𝑇(𝐴𝑖).

Since 𝜇−(Sym
𝑑𝑖 (𝐸) ⊗ 𝑇(𝐴𝑖)) = 𝑑𝑖𝜇−(𝐸) + 𝑎𝑖 ⩾ 0 because of the assumption (†), we conclude

that 𝑓∗𝑋(𝐿) is nef by Hartshorne’s theorem. Moreover, taking the degree in the above formula,
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 63

we get

deg 𝑓∗𝑋(𝐿) =

𝑛∑
𝑖=1

[
deg Sym𝑑𝑖 (𝐸) + (rk Sym𝑑𝑖 (𝐸)) deg𝑇(𝐴𝑖)

]
=

𝑛∑
𝑖=1

[(
𝑑𝑖 + 1

2

)
deg𝐸 + (𝑑𝑖 + 1)𝑎𝑖

]
. (8.19)

Observe that, using the above formula, the assumption (†) and the fact that deg𝐸 ⩾ 2𝜇− with
equality if and only if 𝐸 is semistable, we deduce that deg 𝑓∗𝑋(𝐿) > 0 if and only if either 𝐸 is
not semistable or one of the inequalities in (†) is strict.
Let us now compute the top self-intersection of 𝐿. The non-zero Chern classes of the locally

free sheaf 𝕍 =
⨁

𝑖 𝑆(𝑑𝑖) ⊗ ℎ∗𝑇(𝐴𝑖) on 𝑆 are

⎧⎪⎪⎨⎪⎪⎩
𝑐1(𝕍) =

𝑛∑
𝑖=1

(𝑑𝑖𝐻𝑆 + ℎ∗𝐴𝑖) ∈ 𝐴1(𝑆),

𝑐2(𝕍) =
∑

1⩽𝑖<𝑗⩽𝑛

(
𝑑𝑖𝑑𝑗 deg 𝐸 + 𝑑𝑖𝑎𝑗 + 𝑑𝑗𝑎𝑖

)
∈ ℤ ≅ 𝐴2(𝑆),

where we used the formula 𝐻2
𝑆
= deg𝐸 (see (8.1)). Using the above formulas and by applying

(8.1) first to the projective bundle g ∶ ℙ𝑆(𝕍) → 𝑆 and then to its restriction to the divisors𝐻𝑆 and
ℎ∗(𝐴𝑖) of 𝑆, we get that

𝐿𝑛+1 = 𝐻𝑛+1 = g∗(𝑐1(𝕍)) ⋅𝐻
𝑛 − g∗(𝑐2(𝕍)) ⋅𝐻

𝑛−1 =

𝑛∑
𝑖=1

[g∗(𝑑𝑖𝐻𝑆 + ℎ∗𝐴𝑖) ⋅𝐻
𝑛] − 𝑐2(𝕍)

=

𝑛∑
𝑖=1

𝑑𝑖(𝐻|g∗𝐻𝑆
)𝑛 +

𝑛∑
𝑖=1

(𝐻|g∗(ℎ∗(𝐴𝑖))
)𝑛 − 𝑐2(𝕍)

=

𝑛∑
𝑖=1

[𝑑𝑖𝑐1(𝕍) ⋅𝐻𝑆)] +

𝑛∑
𝑖=1

[𝑐1(𝕍) ⋅ ℎ
∗(𝐴𝑖))] − 𝑐2(𝕍)

=

𝑛∑
𝑖=1

[
𝑑𝑖

𝑛∑
𝑗=1

(
𝑑𝑗 deg 𝐸 + 𝑎𝑗

)]
+

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑎𝑖𝑑𝑗 −
∑

1⩽𝑖<𝑗⩽𝑛

(
𝑑𝑖𝑑𝑗 deg 𝐸 + 𝑑𝑖𝑎𝑗 + 𝑑𝑗𝑎𝑖

)
=

(
𝑛∑
𝑖=1

𝑑2𝑖 +
∑

1⩽𝑖<𝑗⩽𝑛

𝑑𝑖𝑑𝑗

)
deg𝐸 +

𝑛∑
𝑖=1

2𝑑𝑖𝑎𝑖 +
∑

1⩽𝑖≠𝑗⩽𝑛

𝑑𝑖𝑎𝑗. (8.20)

From (8.19) and (8.20), we get that (assuming deg 𝑓∗𝑋(𝐿) > 0)

𝑠(𝐿) =

(∑𝑛
𝑖=1𝑑

2
𝑖
+
∑

1⩽𝑖<𝑗⩽𝑛𝑑𝑖𝑑𝑗

)
deg𝐸 +

∑𝑛
𝑖=12𝑑𝑖𝑎𝑖 +

∑
1⩽𝑖≠𝑗⩽𝑛𝑑𝑖𝑎𝑗∑𝑛

𝑖=1

(
𝑑𝑖+1

2

)
deg𝐸 +

∑𝑛
𝑖=1(𝑑𝑖 + 1)𝑎𝑖

. (8.21)
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64 CODOGNI et al.

Double covers
Fix now two integers 𝛼, 𝛽 such that 𝛼 ⩾ 2 and 𝛼𝑑𝑛 + 𝛽 > 0, and a divisor 𝐵 on 𝑇 such that

|2(𝛼𝐿 + 𝛽g∗𝐻𝑆 + 𝑓∗𝐵)| ≠ ∅ and the general element in |2(𝛼𝐿 + 𝛽g∗𝐻𝑆 + 𝑓∗𝐵)| is smooth.
(††)

Note that the above assumption is realized by a sufficiently positive divisor 𝐵 on 𝑇 since the
divisor 𝛼𝐿 + 𝛽g∗𝐻𝑆 is 𝑓-relatively very ample under the above assumptions on 𝛼 and 𝛽 (see [22,
(5.7)]). Take a general effective smooth divisor 𝑅 ∈ |2(𝛼𝐻 + 𝛽g∗𝐻𝑆 + 𝑓∗𝐵)| and denote by 𝜋 ∶

𝑋 → 𝑋 the finite double cover ramified along 𝑅 and set 𝑓 ∶ 𝑋
𝜋
F→ 𝑋

𝑓
F→ 𝑇. Consider the nef divisor

�̃� ∶= 𝜋∗(𝐿) on 𝑋.
Note that a general polarized fiber (𝐹, �̃�𝐹) of 𝑓 is a finite double cover of (𝐹, 𝐿𝐹) ramified along

a divisor of |2(𝛼𝐿𝐹 + 𝛽(𝐻𝑆)|𝐹)|, and hence
BS(�̃�𝐹) = 2BS(𝐿𝐹) = 2(𝑛 + 1)

∑
𝑖 𝑑𝑖∑

𝑖 𝑑𝑖 + 𝑛
. (8.22)

Arguing as in Example 8.1 and using formulas (8.19), (8.20), and (8.21), we get that

⎧⎪⎨⎪⎩
𝑓∗𝑋(�̃�) = 𝑓∗𝑋(𝐿),

�̃�𝑛+1 = 2𝐿𝑛+1,
⇒ 𝑠(�̃�) = 2𝑠(𝐿). (8.23)

Special cases
Note that if either 𝑑1 = ⋯ = 𝑑𝑛 ∶= 𝑑 (which implies that (𝐹, 𝐿𝐹) is Chow stable) or deg𝐸 =

2𝜇(𝐸) and 𝑎𝑖 + 𝑑𝑖𝜇−(𝐸) = 𝐶 for some positive constant 𝐶 and any 𝑖 (which is equivalent to the
semistability of 𝑓∗𝑋(𝐿)), then we have that (for all choices of 𝑎𝑖 subject to (†))

𝑠(𝐿) = (𝑛 + 1)
𝑑

𝑑 + 1
= BS(𝐿𝐹).

In particular, we get examples where Theorem 7.5 and Theorem 7.6 are sharp. And the same
thing is true for a double finite cover 𝑓 ∶ 𝑋 → 𝑇 of 𝑓 ∶ 𝑋 → 𝑇 as above.
On the other hand, if not all the integers 𝑑𝑖 are equal among themselves then, by fixing some

numbers {𝑎2, … , 𝑎𝑛} subject to (†) and letting 𝑎1 → +∞, we get that

𝑠(𝐿)
𝑎1→+∞
FFFFFFF→

𝑑1 +
∑

𝑖 𝑑𝑖
𝑑1 + 1

< (𝑛 + 1)

∑
𝑖 𝑑𝑖∑

𝑖 𝑑𝑖 + 𝑛
= BS(𝐿𝐹),

where we used that 𝑑1 >
∑

𝑖 𝑑𝑖
𝑛

(which follows from the fact that 𝑑1 ⩾ … ⩾ 𝑑𝑛 and that not all of
the 𝑑𝑖 ’s are equal). As an extreme case, if 𝑑1 ∶= 𝑑 ⩾ 2 > 𝑑2 = ⋯ = 𝑑𝑛 = 0 and 𝑎2 = ⋯ = 𝑎𝑛 = 0

then we have that

𝑠(𝐿) =
𝑑2 deg 𝐸 + 2𝑑𝑎1(𝑑+1

2

)
deg𝐸 + (𝑑 + 1)𝑎1

= 2
𝑑

𝑑 + 1
< (𝑛 + 1)

𝑑

𝑑 + 𝑛
= BS(𝐿𝐹).

In particular, this example shows that Theorem 7.5 can fail without the Chow semistability of
the general fiber and that Theorem 7.6 can fail without the slope semistability of 𝑓∗𝑋(𝐿). And
the same thing is true for a double finite cover 𝑓 ∶ 𝑋 → 𝑇 of 𝑓 ∶ 𝑋 → 𝑇 as above.
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 65

8.2 Families of hypersurfaces in weighted projective spaces

The aim of this subsection is to compute the slope of families of hypersurfaces inside a weighted
projective space over ℙ1.
Let 𝑎 = (𝑎0, … , 𝑎𝑛+1) be a collection of positive natural numbers (for some 𝑛 ⩾ 1) and consider

the (𝑛 + 1)-dimensional weighted projective space ℙ(𝑎) ∶= Proj 𝑆(𝑎), where 𝑆(𝑎) is the graded
polynomial algebra 𝑘[𝑋0, … , 𝑋𝑛+1] such that 𝑋𝑖 has weight 𝑎𝑖 . Without loss of generality (see [19,
Sec. 1.3]), we can assume that 𝑎 is reduced (or well-formed), that is,

1 = gcd(𝑎0, … , 𝑎𝑖−1, 𝑎𝑖+1, … , 𝑎𝑛+1) for any 0 ⩽ 𝑖 ⩽ 𝑛 + 1.

Denote by 𝐻𝑎 any tautological divisor, that is, Weil ℚ-Cartier divisor such that ℙ(𝑎)(𝐻𝑎) =

ℙ(𝑎)(1). For any𝑚 ⩾ 0, denote by 𝑆(𝑎)𝑚 the (finite dimensional) 𝑘-vector space of homogeneous
elements of 𝑆(𝑎) of degree𝑚. Set |𝑎| ∶= ∑

𝑖 𝑎𝑖 .
Recall the following well-known facts (see [19, Sec. 1.4, Sec. 2.1]):

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐻𝑛+1
𝑎 =

1∏
𝑖 𝑎𝑖

,

𝐻𝑖(ℙ(𝑎),ℙ(𝑎)(𝑚)) =

⎧⎪⎪⎨⎪⎪⎩
dim𝑆(𝑎)𝑚 if 0 = 𝑖,

0 if 0 < 𝑖 < 𝑛 + 1,

dim𝑆(𝑎)−𝑚−|𝑎| if 𝑖 = 𝑛 + 1,

𝑚𝐻𝑎 is Cartier ⇔ 𝑚𝐻𝑎 is Cartier and base point free ⇔ lcm(𝑎0, … , 𝑎𝑛+1)|𝑚,

𝐾ℙ(𝑎) = −|𝑎|𝐻𝑎.

(8.24)

Consider ℙ(𝑎) × ℙ1, denote by 𝑝1 ∶ ℙ(𝑎) × ℙ1 → ℙ(𝑎) and 𝑝2 ∶ ℙ(𝑎) × ℙ1 → ℙ1 the two pro-
jections, and set 𝐻1 ∶= 𝑝∗

1
𝐻𝑎 and by 𝐻2 the pull-back of a tautological divisor on ℙ1 (i.e. a fiber

of 𝑝2). Fix integers 𝑑, 𝑒, ℎ > 0 and 𝑙 ⩾ 0 such that{
dim𝑆(𝑎)𝑒 − dim𝑆(𝑎)𝑒−𝑑 > 0,

lcm(𝑎0, … , 𝑎𝑛+1)|𝑑. (8.25)

From the second assumption in (8.25), the divisor 𝑑𝐻1 + 𝑙𝐻2 is Cartier and base point free;
hence, the general divisor in |𝑑𝐻1 + 𝑙𝐻2| is normal and connected by Bertini’s theorems. Fix
now a normal connected hypersurface 𝑋 ∈ |𝑑𝐻1 + 𝑙𝐻2|, which is endowed with the fibration
𝑓 = (𝑝2)|𝑋 ∶ 𝑋 → ℙ1. Consider the ample ℚ-Cartier Weil divisor 𝐿 ∶= (𝑒𝐻1 + ℎ𝐻2)|𝑋 on 𝑋.

Remark 8.5.

(1) The general fiber 𝐹 of 𝑓 is a normal connected 𝑛-dimensional hypersurface in ℙ(𝑎)which is a
general element of the linear system |𝑑𝐻𝑎| and the restriction of the polarization 𝐿 is equal to
𝐿𝐹 = (𝑒𝐻𝑎)|𝐹 . By our assumptions (8.25) on 𝑑, 𝐹 is well-formed [30, 6.10] and quasi-smooth
[30, Thm. 8.1]; hence by the adjunction formula for 𝐹 ⊂ ℙ(𝑎) (see [30, 6.14]) and (8.24), the
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66 CODOGNI et al.

canonical divisor of 𝐹 is equal to

𝐾𝐹 = (𝐾ℙ(𝑎) + 𝐹)𝐹 = (𝑑 − |𝑎|)(𝐻𝑎)|𝐹. (8.26)

In particular, we have the following trichotomy

⎧⎪⎪⎨⎪⎪⎩
𝐹 is Fano ⟺ 𝑑 < |𝑎|,
𝐹 is CY ⟺ 𝑑 = |𝑎|,
𝐹 is canonically polarized ⟺ 𝑑 > |𝑎|.

(2) By the adjunction formula for 𝑋 ⊂ ℙ(𝑎) × ℙ1 and (8.24), the relative canonical divisor of 𝑓 is
equal to

𝐾𝑋∕ℙ1 = (𝐾ℙ(𝑎)×ℙ1∕ℙ1 + 𝑋)|𝑋 =
(
(𝑑 − |𝑎|)𝐻1 + 𝑙𝐻2

)|𝑋. (8.27)

Hence, we have that

𝐿 = 𝐾𝑋∕ℙ1 ⟺ 𝑒 = 𝑑 − |𝑎| and ℎ = 𝑙.

In particular, in this case the general fiber 𝐹 is canonically polarized.

We now compute the numerical invariants of 𝐿, that is, 𝐿𝑛+1 and deg 𝑓∗𝑋(𝐿). Using that𝐻2
2
=

0 and𝐻𝑛+1
1

⋅𝐻2 = 𝐻𝑛+1
𝑎 and formula (8.24),we compute the top self-intersection of𝐿 as it follows

𝐿𝑛+1 = (𝑒𝐻1 + ℎ𝐻2)
𝑛+1 ⋅ (𝑑𝐻1 + 𝑙𝐻2) = [𝑒𝑛+1𝑙 + (𝑛 + 1)𝑒𝑛ℎ𝑑]𝐻𝑛+1

1
⋅𝐻2

=
𝑒𝑛+1𝑙 + (𝑛 + 1)𝑒𝑛ℎ𝑑∏

𝑖 𝑎𝑖
. (8.28)

In order to compute 𝑓∗𝑋(𝐿), we take the exact sequence of 𝑋 ⊂ ℙ(𝑎) × ℙ1, we twist by
ℙ(𝑎)×ℙ1(𝑒𝐻1 + ℎ𝐻2) and then take the reflexive hulls to get the exact sequence:

0 → ℙ(𝑎)×ℙ1((𝑒 − 𝑑)𝐻1 + (ℎ − 𝑙)𝐻2) → ℙ(𝑎)×ℙ1(𝑒𝐻1 + ℎ𝐻2)

→ ℙ(𝑎)×ℙ1(𝑒𝐻1 + ℎ𝐻2)|𝑋 = 𝑋(𝐿) → 0.

By taking the push-forward along 𝑓 of the above exact sequence, we get the following exact
sequence of locally free sheaves on ℙ1:

0 → ℙ1(ℎ − 𝑙)dim𝑆(𝑎)𝑒−𝑑 → ℙ1(ℎ)dim𝑆(𝑎)𝑒 → 𝑓∗𝐹(𝐿𝐹) → 0,

from which we deduce that

deg 𝑓∗𝑋(𝐿) = degℙ1(ℎ)dim𝑆(𝑎)𝑒 − ℙ1(ℎ − 𝑙)dim𝑆(𝑎)𝑒−𝑑

= ℎ(dim𝑆(𝑎)𝑒 − dim𝑆(𝑎)𝑒−𝑑) + 𝑙 dim𝑆(𝑎)𝑒−𝑑. (8.29)
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 67

In particular, by the assumptions (8.25), we have that deg 𝑓∗𝑋(𝐿) > 0, and the slope of 𝐿 is equal
to

𝑠(𝐿) =
𝑒𝑛+1𝑙 + (𝑛 + 1)𝑒𝑛ℎ𝑑∏

𝑖 𝑎𝑖 ⋅ [ℎ(dim𝑆(𝑎)𝑒 − dim𝑆(𝑎)𝑒−𝑑) + 𝑙 dim𝑆(𝑎)𝑒−𝑑]
. (8.30)

Remark 8.6. The divisor 𝐿 is 𝑓-positive if and only if

dim𝑆(𝑎)𝑒 ⩾

[
1 + (𝑛 + 1)

𝑑

𝑒

]
dim𝑆(𝑎)𝑒−𝑑. (8.31)

In order to show that, let us compute the Barja-Stoppino invariant of 𝐿𝐹 . The top-self
intersection of 𝐿𝐹 is equal to (using (8.24))

𝐿𝑛𝐹 = (𝑒𝐻𝑎)
𝑛 ⋅ 𝑑𝐻𝑎 =

𝑒𝑛𝑑∏
𝑖 𝑎𝑖

. (8.32)

Arguing similarly to the above computation of deg 𝑓∗𝑋(𝐿), it follows that

ℎ0(𝐹, 𝐿𝐹) = ℎ0(ℙ(𝑎),ℙ(𝑎)(𝑒)) − ℎ0(ℙ(𝑎),ℙ(𝑎)(𝑒 − 𝑑)) = dim𝑆(𝑎)𝑒 − dim𝑆(𝑎)𝑒−𝑑. (8.33)

Hence, we get that

BS(𝐿𝐹) = (𝑛 + 1)
𝐿𝑛
𝐹

ℎ0(𝐹, 𝐿𝐹)
=

(𝑛 + 1)𝑒𝑛𝑑∏
𝑖 𝑎𝑖 ⋅ [dim𝑆(𝑎)𝑒 − dim𝑆(𝑎)𝑒−𝑑]

. (8.34)

By combining the formulas (8.30) and (8.34), we get (8.31).
We finally note that Inequality (8.31) is trivially true if 𝑒 < 𝑑, while we do not know if it is always

true for 𝑒 ⩾ 𝑑.

The above formula (8.30) simplifies if we are in the following

8.2.1 Special case: 1 = 𝑒 < 𝑑

Indeed, by the first assumption in (8.25), we must have that dim𝑆(𝑎)1 ⩾ 1, which implies that
some of the weights 𝑎𝑖 must be equal to one. If we define the natural number 0 ⩽ 𝑢 ∶= {𝑖 ∶ 𝑎𝑖 =

1} − 1 ⩽ 𝑛 + 1, then we have that dim𝑆(𝑎)1 = 𝑢 + 1. Substituting into (8.30), we get that the slope
of 𝐿 in this special case is equal to

𝑠(𝐿) =
(𝑛 + 1)𝑑 + 𝑙

ℎ

(𝑢 + 1)
∏

𝑖 𝑎𝑖
. (8.35)

We now consider examples of fibrations of small slopes.
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68 CODOGNI et al.

8.2.2 Example I

Take

𝑎 = (1, 1, 𝛼, … , 𝛼) with 𝛼 ⩾ 2, 𝑑 = 𝑚𝛼 with𝑚 ⩾ 1.

Note that assumptions (8.25) hold true and that, by Remark 8.5(1), the general fiber 𝐹 is canoni-
cally polarized (resp. of non-negative Kodaira dimension) if𝑚 ⩾ 𝑛 + 2 (resp.𝑚 ⩾ 𝑛 + 1). Formula
(8.35) gives that

𝑠(𝐿) =
(𝑛 + 1)𝑚𝛼 + 𝑙

ℎ

2𝛼𝑛
FFFFFFF→
𝛼→+∞

0 if 𝑛 ⩾ 2.

This example shows that in Theorem 4.9(2) (resp. Theorem 4.9(1)) the hypothesis that 𝜙𝐿𝐹 is
generically finite (resp. or that 𝐿𝐹 is Cartier) cannot be dropped.

Remark 8.7. The construction above gives examples of families in any fixed dimension 𝑛 ⩾ 2, in
which the Gorenstein index of the general fiber goes to infinity. For simplicity, let us take 𝑚 =

𝑛 + 1. Then for any odd integer 𝛼 bigger than 2, the Cartier index of 𝐾𝐹 = (𝛼 − 2)𝐻𝑎|𝐹 is 𝛼. In
fact, on the one hand 𝛼𝐾𝐹 is Cartier and on the other hand 𝐾𝑛

𝐹
= (𝛼 − 2)𝑛∕𝛼𝑛 and we conclude

since 𝛼 and 𝛼 − 2 are coprime.

8.2.3 Example II

Consider the Sylvester sequence {𝑠𝑛}𝑛∈ℕ (see the sequence [42, A000058]) defined inductively as
𝑠𝑛 = 1 +

∏𝑛−1
𝑖=0 𝑠𝑖 with the initial condition 𝑠0 = 2. Define 𝑏𝑖 ∶=

∏
0⩽𝑗≠𝑖⩽𝑛−1 𝑠𝑗 for every 0 ⩽ 𝑖 ⩽

𝑛 − 1, and take

𝑎 = (1, 1, 3𝑏0, … , 3𝑏𝑛−1), 𝑑 = 3(𝑠𝑛 − 1) =

𝑛−1∏
𝑖=0

𝑠𝑖, 𝑒 = 1, ℎ = 𝑙 > 0.

Note that assumptions (8.25) hold true and that we have

1 + |𝑎| = 3 + 3𝑏0 +⋯ + 3𝑏𝑛−1 = 3(𝑠𝑛 − 1) = 𝑑,

which is proved by induction on 𝑛 using the formula 𝑠𝑛 = 𝑠2
𝑛−1

− 𝑠𝑛−1 + 1. By Remark 8.5(2), we
have that 𝐿 = 𝐾𝑋∕ℙ1 . Formula (8.35) gives that

𝑠(𝐾𝑋∕ℙ1) =
3(𝑛 + 1)(𝑠𝑛 − 1) + 1

2 ⋅ 3𝑛(𝑠𝑛 − 1)𝑛−1
,

which is smaller than 1 if 𝑛 ⩾ 2 and it decays double exponentially as 𝑛 → +∞ since 𝑠𝑛 grows
doubly exponentially in 𝑛 (see loc. cit.). We expect that lower slopes are possible using examples
of varieties of general type with small volume as constructed in [3] and [50].
This example shows that in Theorem 4.9(2) (resp. Theorem 4.9(1)) the hypothesis that 𝜙𝐿𝐹 is

generically finite (resp. or that 𝐿𝐹 is Cartier) cannot be dropped even under the assumption that
𝐿𝐹 = 𝐾𝐹 .
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SLOPE INEQUALITIES FOR KSB-STABLE AND K-STABLE FAMILIES 69

8.2.4 Example III

Take

𝑎 = (1, 1, … , 1, 2, 𝑛 + 3) with 𝑒 = 1, 𝑑 = 2(𝑛 + 3) and ℎ = 𝑙 > 0.

By Remark 8.5(2) we have that 𝐿 = 𝐾𝑋∕ℙ1 and the general fiber𝐹 of 𝑓 ∶ 𝑋 → ℙ1 is a canonically
polarized variety of dimension 𝑛. By (8.35) we get

𝑠(𝐿) =
1 + (𝑛 + 1)2(𝑛 + 3)

2(𝑛 + 3)𝑛
=

1

2𝑛(𝑛 + 3)
+

𝑛 + 1

𝑛
.

When 𝑛 is even, 𝑋 is smooth and this shows that for families 𝑓 ∶ 𝑋 → 𝑇 with smooth general
fiber the minimum slope tends to 1 when 𝑛 grows. In [29, Theorem 1.5] it is shown that for 𝑛 = 2

the sharp slope is 4∕3.

8.2.5 Example IV

Take

𝑎 = (1, 1, 8, 12) with 𝑒 = 2, 𝑑 = 24 and ℎ = 𝑙 > 0.

By Remark 8.5(2) we have that 𝐿 = 𝐾𝑋∕ℙ1 and the general fiber 𝐹 of 𝑓 ∶ 𝑋 → ℙ1 is a canonically
polarized (singular) surface.
Note that dim𝑆(𝑎)2 = 3 and so

4
ℎ0(𝐹, 𝐿𝐹) − 2

ℎ0(𝐹, 𝐿𝐹)
=

4

3
.

By (8.30) we obtain

𝑠(𝐿) =
23 + 3 ⋅ 22 ⋅ 24

8 ⋅ 12 ⋅ 3
= 1 +

1

36
<

4

3
.

This shows that the assumption that𝜙𝐿𝐹 is generically finite in Corollary 4.2 cannot be dropped.

8.2.6 Example IV

Take

𝑎 = (1, 1, 𝛼𝑘, 𝛽𝑘) with 𝑒 = 𝑘, 𝑑 = 𝛼𝛽𝑘 and ℎ = 𝑙 > 0.

where 𝛼, 𝛽 ⩾ 2 and 𝑘 are positive integers.
Note that dim𝑆(𝑎)𝑘 = 𝑘 + 1 and so

4
ℎ0(𝐹, 𝐿𝐹) − 2

ℎ0(𝐹, 𝐿𝐹)
=

4(𝑘 − 1)

𝑘 + 1
.
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70 CODOGNI et al.

By (8.30) we obtain

𝑠(𝐿) =
𝑘3 + 3 ⋅ 𝑘2 ⋅ 𝛼𝛽𝑘

𝛼𝛽𝑘2(𝑘 + 1)
=

𝑘

𝛼𝛽(𝑘 + 1)
+

3𝑘

𝑘 + 1
.

If 𝛼, 𝛽 and 𝑘 are pairwise coprime, then 𝐿𝐹 is Cartier. For 𝛼, 𝛽, 𝑘 ≫ 0 we have

𝑠(𝐿) < 4
ℎ0(𝐹, 𝐿𝐹) − 2

ℎ0(𝐹, 𝐿𝐹)
.

This shows that the assumption 𝜙𝐿𝐹 generically finite in Corollary 4.2 can not be dropped in
general, even if 𝐿𝐹 is Cartier.
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