
A support theorem for Hilbert schemes of
planar curves, II

Luca Migliorini, Vivek Shende and Filippo Viviani

Compositio Math. 157 (2021), 835–882.

doi:10.1112/S0010437X20007745

https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0010437X20007745
Downloaded from https://www.cambridge.org/core. Roma Tre University, on 29 Apr 2021 at 10:56:42, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1112/S0010437X20007745
https://crossmark.crossref.org/dialog?doi=10.1112/S0010437X20007745&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0010437X20007745
https://www.cambridge.org/core


Compositio Math. 157 (2021) 835–882
doi:10.1112/S0010437X20007745

A support theorem for Hilbert schemes of
planar curves, II

Luca Migliorini, Vivek Shende and Filippo Viviani

Abstract

We study the cohomology of Jacobians and Hilbert schemes of points on reduced and
locally planar curves, which are however allowed to be singular and reducible. We
show that the cohomologies of all Hilbert schemes of all subcurves are encoded in
the cohomologies of the fine compactified Jacobians of connected subcurves, via the
perverse Leray filtration. We also prove, along the way, a result of independent interest,
giving sufficient conditions for smoothness of the total space of the relative compactified
Jacobian of a family of locally planar curves.
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INdAM.
This journal is c○ Foundation Compositio Mathematica 2021.

https://doi.org/10.1112/S0010437X20007745
Downloaded from https://www.cambridge.org/core. Roma Tre University, on 29 Apr 2021 at 10:56:42, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

http://www.compositio.nl/
http://www.ams.org/msc/
http://www.compositio.nl/
https://doi.org/10.1112/S0010437X20007745
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


L. Migliorini, V. Shende and F. Viviani

Appendix A 875
Appendix B 877
References 879

1. Introduction

Given an effective divisor D on a nonsingular algebraic variety C, one can form the associated
line bundle OC(D), thus defining a map from the space of effective divisors to the space of line
bundles

A : Eff(C) =
∐
n≥0

C(n) → Pic(C)

D �→ OC(D).

For singular spaces, various changes must be made. The spaces Eff(C) and Pic(C) still make
sense, but the map does not. Two problems can already be seen when C is a nodal curve: the
sheaf of functions with one pole at the node is not a line bundle, and the sheaf of functions with
double pole at the node has degree 3.

When C is proper, reduced, and irreducible, there are natural substitutes [D’S79, AIK77,
AK80, AK79]. The space of line bundles is extended to the space Pic(C) of rank-1, torsion-
free sheaves. The space of divisors is replaced by a space Syst(C) of generalized divisors –
rank-1, torsion-free sheaves equipped with injective sections. There is an evident forgetful map
Syst(C)→ Pic(C).

When C is proper of dimension 1 and locally planar, e.g. it lies on a smooth surface,these
spaces behave in many ways like their classical counterparts, Pic(C) is reduced and irreducible
of dimension equal to the arithmetic genus of C, the space Syst(C) can be identified with the
Hilbert scheme, and the above forgetful map is identified with the map sending a subscheme to
the dual of its ideal sheaf

A :
∐
n≥0

C[n] → Pic(C)

D �→ HomC(ID,OC).

Reducibility introduces additional subtleties. Consider the curve consisting of two rational
curves glued together at two points. The space of line bundles on this curve is Z× Z copies of
Gm, where the discrete data gives the degrees of the line bundle on each component. The ability
to ‘take the (0, 0) piece’ is lost in the compactification – the torsion-free sheaves coming from
the nodes serve to glue together the various components of degree (a, d− a).

The problem can be bounded by an appropriate choice of stability condition [Gie77, Ses82,
Sim94]. For locally planar curves, it is known that a generic choice leads to a fine moduli space,
called a fine compactified Jacobian [Est01, MV12, MRV17], and, moreover, that both its derived
category [MRV19b] and the topological cohomology (see Theorem 1.8) of the space do not depend
on the choice of stability condition. These naturally furnish invariants of the singular curve; we
will be interested here in investigating the latter.

We begin with a nodal curve C. For simplicity in this introduction we assume all varieties
are defined over the complex field. We write J̄C for the fine compactified Jacobian determined
by a fixed but unspecified generic stability condition. In the introduction, we restrict ourselves
to the case where all components of C are rational; for topological purposes, the general case
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differs from this only by the product of the Jacobians of the components. We write ΓC for the
graph whose vertices are the irreducible components of C and whose edges are the nodes joining
them.

The space J̄C is a union of toric varieties glued along toric divisors, by combinatorial rules
which can be given in terms of ΓC [OS79, Ale04, MV12]. In particular, the zero-dimensional
torus orbits are in bijection with spanning trees of Γ. In terms of curves, a spanning tree is a
connected partial normalization of arithmetic genus zero. That is,

χ(J̄C) = #{genus zero connected partial normalizations of a nodal curve C}.
We will write this number as n0(Γ).

A version of the above equality for irreducible curves was used by Yau, Zaslow and Beauville
to count curves on K3 surfaces [YZ96, Bea99]. It has a certain physical meaning, further elab-
orated by Gopakumar and Vafa – the right-hand side has to do with topological string theory,
and the left hand side has to do with BPS D-branes; both are degenerations of some M-theoretic
setup, so should be equal [GV98]. They also explained that this reasoning explains how to gen-
eralize this formula to higher genus, by promoting the right-hand side to the number ng(Γ) of
genus g connected spanning subgraphs of Γ, or equivalently, the number of genus g connected
partial normalizations of the corresponding curve.

There are two ways to generalize the left-hand side. The first speaks only of the Jacobian, but
introduces a filtration on its cohomology. Let P iH∗(J̄C, Q) be the local perverse Leray filtration,
as defined in [MS13, MY14], on the cohomology of the Jacobian, coming from spreading out over
any versal deformation of C. Let L = Q(−1) be the class of the affine line.

Theorem 1.1. Let C be a connected nodal curve over C with rational components, and let

Γ be its dual graph. Then we have the following equality in the Grothendieck group of Hodge

structures: ∑
n

qnGrn
P H∗(J̄C, Q) =

∑
h

nh(Γ) · (qL)g(Γ)−h((1− q)(1− qL))h. (1.1)

In fact, the original Gopakumar–Vafa prediction spoke only of the specialization L = 1; we
are giving a refined version. This result follows from Corollary 3.10 combined with Theorem 1.8.
Note also that Theorem 1.8 implies that the graded pieces Grn

P H∗(J̄C, Q) of the local perverse
Leray filtration P iH∗(J̄C, Q) do not depend neither on the chosen fine compactified Jacobian J̄C

of C nor on the versal deformation of C that is used to define the above filtration.
The second generalization of χ(J̄C) introduces new spaces instead of a cohomological filtra-

tion. In general, these spaces should be the Syst(C) above, or as Pandharipande and Thomas
call them, Pairs(C) [PT09]. When C is Gorenstein, and in particular in the locally planar case
to which we confine ourselves here, these are isomorphic to the Hilbert schemes. Unlike the
Jacobians, the enumerative information contained in these spaces is most naturally related to
counting disconnected curves; the two are conjecturally related by an exponential. The pairs
spaces were introduced to study enumerative geometry on 3-folds [PT09, PT10]; but more rele-
vant to our present work on locally planar curves are their uses in studying curves on surfaces
[She12, KST11, KT14, KS13, GS14, GS15], knot invariants [OS12, ORS18, GORS14, DSV13,
DHS12, Mau16], and the geometry of the Hitchin system [CDP14].

We introduce some notation. Form the group ring Z[[Zvertices]], i.e. the power series ring
Z[[Qv1 , Qv2 , . . .]] on the vertices of the graph. This is where curve counting really happens, but
as we count only reduced curves, we pass to the quotient by the ideal (Q2v1 , Q2v2 , . . .). On this
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quotient ring, we define an exponential

Exp : (Qv1 , Qv2 , . . .)/(Q2v1 , Q2v2 , . . .)→ Z[[Qv1 , Qv2 , . . .]]/(Q2v1 , Q2v2 , . . .)

by sending Exp(Qv) = 1 + Qv, and requiring that sums go to products.
For any subgraph Γ′ < Γ, let QΓ′

:=
∏

v∈Γ′ Qv. The Hilbert scheme version of the formula is
as follows.

Theorem 1.2. Let C be a connected nodal curve with rational components, with dual graph Γ.

Then we have the following equality in the Grothendieck group of Hodge structures:∑
Γ′<Γ

QΓ′
(qL)1−g(Γ′)

∞∑
n=0

qnH∗(C [n]
Γ′ , Q) = Exp

(∑
Γ′<Γ

QΓ′∑
h

nh(Γ′) ·
(

qL

(1− q)(1− qL)

)1−h)
.

(1.2)
Recall that, by definition, nh(Γ′) vanishes when Γ′ is disconnected.

Remark 1.3. The [MNOP06] conjectures assert a matching between Gromov–Witten invari-
ants (curve counting) and Donaldson–Thomas type invariants (Euler characteristics of stable
pair moduli spaces) in the setting of three-dimensional Calabi–Yau varieties. The result of
Theorem 1.2 is similar: the left-hand side is cohomology of stable pair moduli, and the nh on the
right-hand side is just the count of all possible genus h normalizations of the curve in question;
moreover, the formula in question is the truncation of the [MNOP06] change of variables. It
differs in several ways: first, it is a truncation of the ‘full’ MNOP prescription to nonmultiply
covered curves; second, it is cohomological rather than speaking merely of Euler characteris-
tics; third, the equation concerns the contribution of a single geometric curve, rather than the
summed contribution of all curves; and fourth, the Behrend weighting function does not appear.
Regarding the last point, note however that since we are working with curves on a surface, it
may happen that the total pairs space is smooth (e.g. as is the Hilbert scheme over the versal
family), in which case one would not expect the appearance of the Behrend function, beyond
introducing a sign convention.

The result with Q̄� coefficients can be deduced by combining Theorem 1.1 with Corollary 1.12.
The result as stated follows by observing that the mixed Hodge structures in (1.2) are of
Hodge–Tate type.

Remark 1.4. We do not know a formula for the Betti numbers of J̄C. Finding such is nontrivial:
while the space is built of toric varieties and carries the action of a torus with finitely many fixed
points, the cohomology is not equivariantly formal – in particular, there is cohomology in odd
degrees.

We turn now to the more general setting of reduced planar curves. Here, the nh(C) are more
mysterious. The closest statement we know to a combinatorial interpretation operates only at
the level of Euler characteristics, and asserts that χ(nh(C)) is multiplicity of the loci of genus h

in a versal deformation of C [She12]. A conjectural description of the refined invariants in terms
of a real structure on the curve can be found in [GS14], where we also gave formulas in the case
where C is a curve with an ADE singularity [GS14]. From these it can be seen that nh(C) is
a nontrivial Hodge structure, although we know of no example in which it is not a polynomial
in L.
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Nonetheless, we can at least ask for a relation between the analogues of the left-hand sides
of Theorems 1.1 and 1.2.

In the case of a single smooth curve C, the cohomologies of the Hilbert schemes C [n] (in this
case, just the symmetric products) and the Jacobian J(C) can both be built from H1(C, Q).
Explicitly, we have

∞⊕
n=0

qn ·H∗(C [n], Q) =
⊕

qi ·∧iH1(C, Q)[−i]
(1− q)(1− qL)

=
⊕

qiH i(J(C), Q)[−i]
(1− q)(1− qL)

,

where L := [−2](−1).
The formula works in families: given a smooth family of curves πsm : C → Bsm, we have that

∞⊕
n=0

qn ·Rπ
[n]
sm∗Q =

⊕
qi ·∧iR1πsm∗Q[−i]
(1− q)(1− qL)

=
⊕

qi ·RiπJ
sm∗Q[−i]

(1− q)(1− qL)
.

Now consider a family π♥ : C → B♥ of reduced, irreducible locally planar curves. We can
form the relative Hilbert scheme π

[n]
♥ : C[n] → B♥, and the relative compactified Jacobian πJ

♥ :
J̄C → B♥. If all the relative Hilbert schemes have nonsingular total space, then the same is true
for the relative compactified Jacobian. In [MY14, MS13], the families of cohomologies Rπ

[n]
♥∗Q

and RπJ
♥∗Q were shown to enjoy the following relation:

∞⊕
n=0

qn ·Rπ
[n]
♥∗Q ∼=

⊕
qi · IC

(∧iR1πsm∗Q
)
[−i]

(1− q)(1− qL)
=

⊕
qi · pRiπJ

♥∗Q[−i]
(1− q)(1− qL)

.

Here, IC denotes the intersection cohomology sheaf extending the given local system and pRif∗ :=
pHi(Rf∗) means the ith perverse cohomology sheaf of the derived pushforward. We take the
convention that intersection cohomology complexes ‘begin in degree 0’, so K is perverse in our
sense if K[dimB] is perverse in the sense of [BBD82], see § 2.2.

We recall a few ideas from the proof. It follows from the ‘decomposition theorem’ of [BBD82]
that the middle term above is a direct summand both on the right and the left, and any other
summands must have positive codimensional support, so it remains only to show that there
are no such summands. On the right-hand side, hence on the left-hand side for n� 0 via the
Abel–Jacobi map, this is a consequence of the ‘support theorem’ of [Ngô10]. In [MY14], this is
bootstrapped to an argument for the left-hand side by constructing correspondences between
the Hilbert schemes. In [MS13], we take a different approach, suitable for both the left-hand side
and right-hand side, to reduce checking to the nodal locus, where it may be done explicitly. We
have since abstracted this method into the theory of higher discriminants [MS18]. Yet another
approach to similar results can be found in [Ren18].

Our present goal is to establish such a comparison over the locus of reduced curves, i.e.
to treat the reduced but not necessarily irreducible case. As we already mentioned, there are
already subtleties in the definition of the compactified Jacobian, but so long as the curves lie
in a fixed surface or fixed family of surfaces or we are working étale locally over the base, we
can choose compatible stability conditions over the whole base and consider the relative fine
compactified Jacobian πJ : J̄C → B (see Theorem 2.12). Due to the above stability issues, there
is no Abel–Jacobi map directly relating the Hilbert schemes and the Jacobians. As the example
below shows, it is no longer true in general that smoothness of J̄C guarantees the absence of
summands of RπJ∗Q with positive codimensional supports.
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Example 1.5. Consider a one-parameter family of elliptic curves degenerating to a cycle consist-
ing of at least two projective lines. This family is its own relative fine compactified Jacobian
[MRV17, Proposition 7.3], but evidently RπJ∗Q has a summand supported at the special point
to account for its extra H2.

Nonetheless, over sufficiently big families, this phenomenon does not occur.

Definition 1.6. We say π : C → B is H-smooth if all relative Hilbert schemes C[n] have smooth
total space. Note this includes C[0] = B.

Example 1.7. Over any field, a versal family of reduced curves with locally planar singularities
is H-smooth, see § 4 for the general discussion of the condition of H-smoothness, based on the
results in [She12].

Theorem 1.8. Let π : C → B be H-smooth. Then no summand of RπJ∗Q has positive codimen-

sional support and hence pRiπJ∗Q ∼= IC(
∧iR1πsm∗Q).

In particular, the stalk at [C] of pRiπJ∗Q does not depend neither on the choice of the

H-smooth family C nor on the relative fine compactified Jacobian πJ : J̄C → B.

In some cases, this follows from the work of Chaudouard and Laumon [CL10]. To prove
the result, we use the method of higher discriminants [MS18], plus the following smoothness
criterion, to reduce the result to the case of irreducible curves, where it is known [MS13].

Theorem 1.9. Let π : (C, C)→ (S, b) be a projective flat family of connected locally planar

curves, with distinguished special fibre C = Cb. Let kloc
π,b : TbS → TDef loc(C) be the induced map

to the first-order deformation of the singularities of C. Let γ(C) be the number of connected

components of C, and δ(C) its cogenus.

If Im(kloc
π,b) is a generic subspace of TDef loc(C) of dimension at least δ(C) + 1− γ(C), then

the relative compactified Jacobian J̄C is regular along the special fibre J̄C.

A more precise version of Theorem 1.9 can be found as Theorem 4.11.
On the other hand, even for versal families, there are many summands of Rπ

[n]
∗ Q which

are supported in positive codimension. In fact, at a reducible curve [C] ∈ B, there is such a
summand for every splitting of C into connected subcurves. The simplest example is given by
a one-dimensional family of nonsingular conics degenerating to a reducible one. The family is
versal, and already Rπ

[1]
∗ Q has a summand supported at the central point. Nonetheless, we will

establish various analogues of the main result of [MY14, MS13], both at a single curve, and
globally for what we call independently broken H-smooth families, see § 5.14 for the definition.

We now describe these results, treating for simplicity only the case of a versal family of
locally planar curves. Our results hold for cohomology with Q̄� coefficients since our methods of
proof depends on reduction to positive characteristic.

Let C be a locally planar curve, let V be the set of irreducible components and let (C, C)→
(B, b) be a versal deformation of C, small enough so that there is no monodromy of the irreducible
components of C in the equigeneric stratum, see Lemma 5.7. By considering specialization to the
central fibre, the base B is stratified by the closed subsets Bλ ↪→ B, where λ is a partition of V ,
corresponding to decompositions C =

⋃
Ci into connected subcurves. For every λ we consider the

open dense subset Bλ ⊆ Bλ parameterizing nodal curves in Bλ. Over Bλ the nodes separating
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the different subcurves persist, and can therefore be normalized, thus giving a family of partial
normalizations πλ : Cλ → Bλ.

We have the dense, open subsets Bλ,reg ⊆ Bλ where the morphism

Cλ,reg := Cλ|Bλ,reg
→ Bλ,reg

is smooth. Denote by ιλ : Bλ,reg → B the natural inclusions.
We consider the associated symmetric product families

π
[r]
λ : C[r]

λ,reg → Bλ,reg,

which are still smooth, so that

Rπ
[n]
λ ∗Q̄� �

⊕
i

Riπ
[n]
λ ∗Q̄�[−i],

a direct sum of (pure, semisimple) shifted local systems on Bλ,reg. Set

F [n]
λ :=

⊕
i

((
ιλ
)
!∗R

iπ
[n]
λ ∗Q̄�

)
[−i],

a complex of sheaves supported on Bλ. Then we have the following.

Theorem 1.10. There is an isomorphism

Rπ
[n]
∗ Q̄�

∼=
⊕
λ∈P
F [n−δ(λ)]

λ [−2δ(λ)](δ(λ)),

where P is the set of partitions of V decomposing C in connected subcurves, and δ(λ) is the

number of nodes being normalized in the stratum Bλ.

In Example 5.11 this formula is made explicit for the versal deformation of a pair of incident
lines. The notion of higher discriminants of a map developed in [MS18] and the fact that nodal
curves are dense in these higher discriminants, which are determined via deformation theory
relying on [She12], reduce the proof of the theorem to nodal curves. To identify the two sides of
(5.10) for a versal deformation of a nodal curve C we pass to a family defined over a finite field
Fπ, and compute, at every point in the base, the trace of the Frobenius map and its iterates on
the stalk of the right-hand side of the equality and we compare them with the counting of points
in the fibres of π[n] over the extensions of Fπ. Then we finish by using the Grothendieck–Lefschetz
formula and Chebotarev theorem (this is why we require Q̄� coefficients). Determining the traces
for the sheaves IC(

∧iR1πsm∗Q̄l) is the essential computation, which we perform in § 3.1 using
the Cattani–Kaplan–Schmidt complex [CKS87].

To relate this result with the discussion above, especially with formula Theorem 1.2, note
that we have an ‘exponential map’ which acts on the category of sheaves on

∐
λ Bλ by

Exp(F)|Bλ
:=
⊕
μ�λ

�(F|Bμ). (1.3)

With this notation, our main theorem reads as follows.
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Theorem 1.11. Let C → B be a projective versal family of locally planar curves admitting

relative fine compactified Jacobians J̄C → B (the relative fine compactified Jacobian of a discon-

nected curve is set to be empty by definition). Let g denote the locally constant function giving

the arithmetic genus of the curves being parameterized.

Then there are isomorphisms in Db
c(
∐

Bλ)[[q]]:

(qL)1−g
∞⊕

n=0

qnRπ
[n]
∗ Q̄l

∼= Exp

(
(qL)1−g ·

⊕
qi · IC(

∧iR1πsm∗Q̄l)[−i]
(1− q)(1− qL)

)
∼= Exp

(
(qL)1−g ·

⊕
qi · pRiπJ∗ Q̄l[−i]

(1− q)(1− qL)

)
.

By taking the stalks, Theorem 1.11 has the following local corollary.

Corollary 1.12. Let C be a reduced planar curve. We write C′ < C to indicate a subcurve.

There is an isomorphism⊕
C′<C

QC′
(qL)1−g(C′)

∞⊕
n=0

qnH∗((C′)[n]; Q̄�) = Exp

( ∑
C′<C

QC′
(qL)1−g(C′)

(1− q)(1− qL)

⊕
i

qiGri
P H∗(J̄C′ ; Q̄�)

)
.

Here, Gri
P H∗(J̄C′ ; Q̄�) is by definition pRiπJ∗ Q̄�[−i]|[C′] with respect to any H-smooth family

containing C′ and J̄C′ is any fine compactified Jacobian of C ′ (with the convention that J̄C′ is

the empty set for disconnected C′).

The point of these results is that the perverse filtration appears prominently in recent studies
of the cohomology of the Hitchin system [dCHM12, CDP14] and its fibres [GORS14, OY16], but
is difficult to compute directly. On the other hand, the cohomology of the Hilbert schemes is
more directly accessible, and the theorem explains how to recover the associated graded pieces
of the perverse filtration on the Jacobian from the collection of all cohomologies of the Hilbert
schemes.

This sort of relation was in a certain sense predicted in the physics literature [GV98, KKV99,
HST01, CDP14] as a relation between refined Gopakumar–Vafa invariants (here, the Jacobians)
and the refined Donaldson–Thomas invariants (here, the Hilbert schemes).

2. Background

2.1 Notation
2.1.1 A curve is a reduced (but not necessarily geometrically irreducible) scheme of pure

dimension 1 over a perfect field k. In practice we take k to be the complex numbers (C), a finite
field (Fπ), or the algebraic closure of a finite field (F̄π).

Unless otherwise specified, a curve is meant to be projective.

2.1.2 A family of curves π : C → B is a flat and proper morphism of k-schemes all of whose
geometric fibers are curves. If π is a projective morphism, we say that the family is projective.

2.1.3 Given a curve C, we denote by Csm the smooth locus of C, by Csing its singular
locus, by ν : Cν → C the normalization morphism, and by V (C) = π0(Csm) = π0(Cν) the set of
its irreducible components: C =

⋃
v∈V (C) Cv.
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2.1.4 We employ the following names and notation for numerical invariants of a curve C.

Name Notation Formula

Number of irreducible components γ(C)
Arithmetic genus g(C) 1− χ(OC)
Geometric genus g(Cν)
Cogenus, or total delta invariant δ(C) g(C)− g(Cν)
Abelian rank gν(C) g(Cν)− 1 + γ(C)
Affine rank δa(C) δ(C) + 1− γ(C) = g(C)− gν(C)

Recall that the cogenus is equal to the sum of the local delta invariants of the singularities:

δ(C) :=
∑

q∈Csing

[k(q) : k] · δ(C, q) =
∑

q∈Csing

[k(q) : k] · length(ν∗OCν/OC)q.

The terminology ‘affine rank’ and ‘abelian rank’ will be explained in § 2.1.7. Note the abelian
rank is also equal to the sum of the genera of the connected components of the normalization.

The cogenus δ(C) and the affine rank δa(C) are upper semicontinuous in families of curves
(see [DH88, Proposition 2.4] or [GLS07, Chapter II and Theorem 2.54] in characteristic zero and
[Lau06, Proposition A.2.1] and [MRV19a, Lem. 3.2] in arbitrary characteristic). Equivalently,
the geometric genus and the abelian rank are lower semicontinuous.

2.1.5 A curve C is locally planar at p ∈ C if the completion ÔC,p of the local ring of C at p

has embedded dimension 2, i.e. ÔC,p
∼= k[[x, y]]/(f), for some reduced f = f(x, y) ∈ k[[x, y]].

A curve C is locally planar if it is locally planar at every p ∈ C. Being locally a divisor in a
smooth space, a locally planar curve is Gorenstein, i.e. the dualizing sheaf ωC is a line bundle.

2.1.6 A subcurve D of a curve C is a reduced subscheme of pure dimension 1. We say that
a sub-curve D ⊆ C is nontrivial if D 	= ∅, C.

2.1.7 Given a curve C, the generalized Jacobian of C, denoted by JC or by Pic0(C), is the
connected component of the Picard scheme Pic(C) of C containing the identity, see [BLR90,
§ 8.2 and Theorem 3] and references therein for existence theorems. The generalized Jacobian of
C is a connected commutative smooth algebraic group of dimension equal to h1(C,OC). Under
mild hypotheses such as existence of a rational k-point, or triviality of the Brauer group of k,
certainly met in the cases k = Fπ, F̄π, C, its group of k′-valued points, for k′ a finite extension
of k, parameterizes line bundles on C, defined over k′, of multidegree 0 (i.e. having degree 0 on
each irreducible component of C) with the multiplication given by the tensor product.

From the exact sequence of sheaves on C

1 −→ Gm −→ ν∗Gm −→ ν∗Gm/Gm −→ 1,

where ν : Cν → C the normalization morphism, it follows easily that the generalized Jaco-
bian JC is an extension of an abelian variety of dimension gν(C) (namely the Jacobian of the
normalization Cν) by an affine algebraic group of dimension equal to δa(C).

843

https://doi.org/10.1112/S0010437X20007745
Downloaded from https://www.cambridge.org/core. Roma Tre University, on 29 Apr 2021 at 10:56:42, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1112/S0010437X20007745
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


L. Migliorini, V. Shende and F. Viviani

2.1.8 We use L to mean ‘whatever incarnation of the Lefschetz motive is appropriate’.
That is, if we are discussing ungraded vector spaces in the presence of weights, e.g. the
K-group of mixed Hodge structures or of continuous Ẑ representations over Q̄�, we mean a
one-dimensional vector space twisted by (−1). If we are working with graded vector spaces in
the presence of weights, i.e. in the derived category of the above rather than the K-group, we
mean a one-dimensional vector space, twisted by (−1), and placed in cohomological degree 2,
e.g. L = Q̄�(−1)[−2]. In the Grothendieck ring of varieties L is the class of the affine line.

2.2 The Cattani–Kaplan–Schmid complex
In this paper we use the convention according to which the intersection cohomology complex
IC(L) of a local system L on a dense open set Z0 of a nonsingular variety Z restricts to L, as
opposed to L[dimZ]. In our convention we say K is perverse on Z if and only if K[dimZ] is
perverse in the sense of [BBD82]. Thus, given a local system L′ on a locally closed Z ′ ⊂ Z, the
complex IC(L′)[−codimZ ′] is perverse.

If L is a unipotent local system underlying a variation of pure Hodge structures of weight w

on a product of punctured polydisks (D∗)r ⊂ Dr, the paper [CKS87, § 1], gives a model for the
stalk IC(L )0 at 0 ∈ Dr of the intersection cohomology complex of L and its weight filtration (see
also [Sai90, § 3]). This model works just as well in the �-adic étale theory, and we shortly review it
here, as it plays a central role in our computations. According to our conventions the intersection
cohomology complex lives in degrees [0, . . . , dimY − 1]. Assume Y is a regular scheme over Fπ,
and D =

⋃
j∈J Dj is a normal crossing divisor. After étale localization we may assume that Y

is some Zariski neighborhood of the origin in An, with coordinate functions t1, . . . , tn, and D is
defined by the equation

∏
j∈J tj = 0, with J = {1, . . . , k}. We write j : Y \D → Y .

Let L be a ‘lisse’ unipotent sheaf on Y \D, tamely ramified along D, pointwise pure of
weight w.

Let Ψ1, . . . ,Ψk be the nearby-cycle functors associated with the functions t1, . . . , tk, and
write

Ψ = Ψ1 ◦ · · · ◦Ψk.

Thus L := Ψ(L ) is a lisse mixed sheaf on E :=
⋂

j∈JDj , endowed with commuting nilpotent
endomorphisms Nj : L→ L(−1). The weights are given in terms of the monodromy filtration of
a general element

∑
ajNj , as explained in [CKS87].

Proposition 2.1. We have the following isomorphism for the restriction of the intersection

cohomology complex to E:

i∗EIC(L ) � C•({Nj}, L ) :=
{

0→ L→
⊕
|I|=1

Im NI →
⊕
|I|=2

Im NI → · · · → Im NJ → 0
}

,

where the differentials are given by

(−1)kNi : Im Ni1 · · ·Nik → Im NiNi1 · · ·Nik if i 	= {i1, . . . , ik}.

2.3 Deformation theory of locally planar curves
We recall facts about the deformation theory of locally planar curves and their simultaneous
desingularization. These facts are well known over the complex numbers; original proofs can
be found in the papers [Tei80, DH88] and a textbook treatment in [GLS07]. They have also
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been partially extended to positive characteristic in [Lau06, MY14, MRV19a]. For maximal
accessibility, we give precise references to the book of Sernesi [Ser06] for some of the standard
deformation theoretic facts we use.

Let DefC be the deformation functor of a (reduced and projective) curve C [Ser06, § 2.4.1].
For p ∈ Csing, we denote by DefC,p the deformation functor of the complete local k-algebra ÔC,p

[Ser06, § 1.2.2]. There is a natural transformation of functors

DefC → Def loc
C :=

∏
p∈Csing

DefC,p. (2.1)

If C has locally planar singularities (or, more generally, locally complete intersection singulari-
ties), the functors DefC and Def loc

C are smooth [Ser06, Corollary 3.1.13(ii) and Example 2.4.9]
and the morphism (2.1) is smooth [Ser06, Proposition 2.3.6].

Given any deformation π : (C, C)→ (B, b) of C, i.e. a family of curves π : C → B together
with a k-point b ∈ B such that C = Cb := π−1(b), by pulling back π via the natural morphism
SpfÔB,b → B (where Spf denotes the formal spectrum), we get a formal deformation of C over
ÔB,b, which induces a morphism of functors (see [Ser06, p. 78])

ϕπ,b : hÔB,b
:= Hom(ÔB,b,−)→ DefC. (2.2)

By taking the differential of ϕπ,b, we get the Kodaira–Spencer map of the deformation π :
(C, C)→ (B, b) (see [Ser06, Theorem 2.4.1(iv) and p. 79]

kπ,b := dϕπ,b : Tb(B)→ TDefC = Ext1(ΩC,OC). (2.3)

Composing with the differential of the morphism (2.1), we get the local Kodaira–Spencer map

kloc
π,b : Tb(B)

kπ,b−→ TDefC −→ TDef loc
C = H0(C, Ext1(Ω1

C,OC)). (2.4)

In the sequel, we will be often dealing with versal deformations of a curve C and versal family
of curves, which we are now going to define (see [Ser06, Definitions 2.2.6 and 2.5.7]).

Definition 2.2. Let π : C → B be a family of curves, i.e. a flat and proper morphism of
k-schemes whose fibers are (reduced) curves.

(i) Let b be a k-point of B with fiber Cb = C. We say that π : C → B is versal at b (or that
π : (C, C)→ (B, b) is a versal deformation of C) if the morphism ϕπ,b is smooth.

(ii) We say that π : C → B is a versal family if it is versal at every k-point of B.

In the following Fact, we collect the well-known properties of versal deformations of curves,
that we are going to need in the sequel.

Fact 2.3. Let C be a (reduced and projective) curve.

(i) There exists a versal projective deformation π : (C, C)→ (B, b) of C over a connected
k-variety B (i.e. a scheme of finite type over k).

(ii) Any versal deformation π : (C, C)→ (B, b) of C over a scheme B of finite type over k is
versal over an open subset of B containing b.

(iii) Let π : (C, C)→ (B, b) be a deformation of C. Then π : (C, C)→ (B, b) is a versal deforma-
tion of C and DefC is smooth if and only if B is smooth at b and the Kodaira–Spencer map
kπ,b is surjective.
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It follows from part (iii) (and what is said above) that a deformation π : (C, C)→ (B, b) of
curve C with locally planar singularities (or, more generally, with locally complete intersection
singularities) is versal if and only if B is smooth at b and the local Kodaira–Spencer map kloc

π,b is
surjective. In particular, if π : C → B is a versal family of curves with locally complete intersection
singularities, then the base B of the family is smooth.

Proof. Part (i) follows by combining the Schlessinger’s criterion for the existence of a ver-
sal formal deformation of projective schemes (see [Ser06, Corollary 2.4.2]), the Grothendieck’s
theorem on the effectivity of formal deformations (which uses that H2(C,OC) = 0, see [Ser06,
Theorem 2.5.13]), and the Artin’s theorem on the algebraization of effective formal deformations
of projective schemes (see [Ser06, Theorem 2.5.14]).

Part (ii) is the so called openness of versality (see [Fle81]).
Part (iii) follows from [Ser06, Proposition 2.5.8(ii)]. �

Given a versal family of curves π : C → B, the base scheme B admits a stratification (called
the equigeneric stratification) into locally closed subsets according to the cogenus of the geometric
fibers of the family π. More precisely, using the notation introduced in § 2.1.1, consider the
cogenus function

δ : B −→ N,

t �→ δ(Ct̄),
(2.5)

where Ct̄ := π−1(t)×k(t) k(t) is a geometric fiber of π over the point t ∈ B.
We call the strata of constant cogenus the equigeneric strata, and write, for any d ≥ 0,

Bδ=d := {t ∈ B : δ(Ct̄) = d}, (2.6)

Bδ≥d := {t ∈ B : δ(Ct̄) ≥ d}. (2.7)

By the upper semicontinuity of δ (see § 2.1.4), we have Bδ≥d = Bδ=d.
The main properties of the equigeneric strata for versal family of curves with locally planar

singularities are contained in the following result, due originally to Teissier and to Diaz and
Harris if k = C (see [GLS07, Chapter II]), and subsequently extended to fields of big charac-
teristics in [MY14, Proposition 3.5] and then to fields of arbitrary characteristics in [MRV19a,
Theorem 3.3].

Fact 2.4. Let π : C → B be a versal family of curves with locally planar singularities. Then we
have the following (for any d ≥ 0).

(i) The closed subset Bδ≥d ⊆ B has codimension at least equal to d.
(ii) Each generic point η of Bδ≥d is such that Cη̄ is a nodal curve.

On the normalization of each equigeneric stratum of B, the pull-back of the family π : C → B

admits a simultaneous normalization. More precisely we have the following result which was
originally proved in [Tei80, 1.3.2] if k = C and then extended to arbitrary fields in [Lau06,
Proposition A.2.1].

Fact 2.5. Let π : C → B be a versal family of curves with locally planar singularities. For any
d ≥ 0, consider the normalization B̃δ=d of the equigeneric stratum with cogenus d and denote
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by πd : Cδ=d → B̃δ=d the pull-back of the universal family π : C → B. Then the normalization
νd : C̃δ=d → Cδ=d is a simultaneous normalization of the family πd, i.e. we have the following.

(i) The composition νd : C̃δ=d νd−→ Cδ=d πd−→ B̃δ=d is smooth.
(ii) The morphism νd induces the normalization morphism on each geometric fiber of πd.

2.4 Fine compactified Jacobians
We collect results on fine compactified Jacobians of connected (reduced projective) curves with
locally planar singularities and their families.

2.4.1 Fine compactified Jacobians. Throughout this subsubsection, we fix a connected (geo-
metrically reduced and projective) curve C over a field k and we set C̄ := C ⊗k k̄. Moreover,
given a sheaf I on C, we denote by Ī its pull-back to C̄.

Fine compactified Jacobians of C will parametrize certain sheaves on C, which we now
introduce.

Definition 2.6. A coherent sheaf I on a curve C is said to be:

(i) rank -1 if Ī has generic rank 1 at every irreducible component of C̄;
(ii) torsion-free (or pure of dimension 1) if Supp(Ī) = C̄ and every nonzero subsheaf J ⊆ I is

such that dim Supp(J ) = 1.

Note that any line bundle on C is a rank-1, torsion-free sheaf.
The construction of fine compactified Jacobians of a reducible curve C will depend on the

choice of a general polarization on C, which we now introduce. We follow the notation of [MRV17].

Definition 2.7. (i) A polarization on a curve C is a collection of rational numbers m = {mCi
},

one for each irreducible component Ci of C̄, such that |m| :=∑i mCi
∈ Z. We call |m| the total

degree of m. Given any subcurve D ⊆ C̄, we set mD :=
∑

Ci⊆D mCi
.

(ii) A polarization m is called integral at a subcurve D ⊆ C̄ if mE ∈ Z for any connected
component E of D and of Dc. A polarization is called general if it is not integral at any nontrivial
subcurve D ⊂ C̄.

Given a polarization m on C, we can define a (semi)stability condition for torsion-free, rank-1
sheaves on C. To this aim, for each subcurve D of C̄ and each torsion-free, rank-1 sheaf I on
C, we denote by ĪD the quotient of the restriction Ī|D of Ī to D modulo its biggest torsion
subsheaf. It is easily seen that ĪD is torsion-free, rank-1 sheaf on D.

Definition 2.8. Let m be a polarization on C. Let I be a torsion-free rank-1 sheaf on C of
degree d = |m|.

(i) We say that I is semistable with respect to m (or m-semistable) if for every nontrivial
subcurve D ⊂ C̄, we have that

χ(ĪD) ≥ mD, (2.8)

where χ denotes the Euler–Poincaré characteristic.
(ii) We say that I is stable with respect to m (or m-stable) if it is semistable with respect

to m and if the inequality (2.8) is always strict.
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General polarizations on C can be also characterized more geometrically.

Lemma 2.9 [MRV17, Lemmas 2.14 and 5.13]. Let m be a polarization on a curve C. If m is

general then every rank-1 torsion-free sheaf which is m-semistable is also m-stable. The converse

implication is true if C̄ has locally planar singularities.

Fine compactified Jacobians were constructed in full generality by Esteves in [Est01].

Theorem 2.10 (Esteves). Let C be a geometrically connected curve and m be a general polar-

ization on C. There exists a projective scheme J̄C(m), called the fine compactified Jacobian
of C with respect to the polarization m, which is a fine moduli space for torsion-free, rank-1,

m-semistable sheaves on C.

Since m is general, sheaves in J̄C(m) are m-stable, hence geometrically simple, by Lemma 2.9.
This is the reason why J̄C(m) is a fine moduli scheme. Observe also that, clearly, we have that
J̄C(m)⊗k k̄ ∼= J̄C̄(m).

We denote by JC(m) the open subset of J̄C(m) parametrizing line bundles on C. Note that
JC(m) is isomorphic to the disjoint union of a certain number of copies of the generalized Jacobian
JC = Pic0(C) of C.

If C has locally planar singularities and k = k̄, its fine compactified Jacobians enjoy the
following properties (see [MRV17, Theorem A]).

Theorem 2.11. Let C be a connected curve with locally planar singularities over k = k̄ and m

a general polarization on C. Then we have the following.

(i) The compactified Jacobian J̄C(m) is a connected reduced projective scheme with locally

complete intersection singularities and trivial dualizing sheaf.

(ii) The compactified Jacobian JC(m) is the smooth locus of J̄C(m). In particular, JC(m) is

dense in J̄C(m) and J̄C(m) has pure dimension equal to the arithmetic genus g(C) of C.

(iii) The number of irreducible components of J̄C(m) depends only on the curve C and not on

the polarization m.

Therefore, the number of irreducible components of any fine compactified Jacobian of a
connected curve C with locally planar singularities over k = k̄ is an invariant of C, which is
usually called the complexity of C and denoted by c(C). We refer the reader to [MRV17, § 5.1]
for an explicit formula for c(C) in terms of the intersection numbers between the subcurves of
C. We just mention that if C is nodal, then c(C) is given by the complexity of its dual graph,
i.e. the number of its spanning trees.

The above Theorem 2.11 implies that any two fine compactified Jacobians of a curve C with
locally planar singularities over k = k̄ are birational Calabi–Yau (singular) varieties. However, in
[MRV17, § 3], the authors constructed some nodal reducible curves which do have non isomorphic
(and even nonhomeomorphic if k = C) fine compactified Jacobians. Despite this, Theorem 1.8
implies that any two fine compactified Jacobians of a curve C with locally planar singularities
have the same Betti numbers if k = C, recovering in particular Theorem 2.11(iii). It is shown in
[MRV19a] and [MRV19b] that all fine compactified Jacobians are derived equivalent.

2.4.2 Relative fine compactified Jacobians. Given a projective family π : C → B of geometri-
cally connected (and geometrically reduced) curves, i.e. a projective and flat morphism π whose
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geometric fiber Cb̄ := π−1(b)⊗k(b) k(b) over any point b ∈ B is a connected (and reduced) curve, a
relative fine compactified Jacobian for π is a scheme πJ : J̄C → B projective over B, such that the
geometric fiber (J̄C)b̄ := (πJ)−1(b)⊗k(b) k(b) over any point b ∈ B is a fine compactified Jacobian
for the curve Cb̄.

In what follows, we will need the following result of the existence of relative fine compactified
Jacobians for families of geometrically connected (geometrically reduced and projective) curves.

Theorem 2.12. Let π : C → B be a projective family of geometrically connected curves.

(i) Up to passing to an étale cover of B, there exists a relative fine compactified Jacobian

πJ : J̄C → B for π.

(ii) Fix a point b ∈ B and a general polarization m on the fiber Cb over b. Then, up to replacing

B with an étale neighborhood of b, there exists a family of fine compactified Jacobians πJ :
J̄C(m)→ B such that J̄C(m)b = J̄Cb(m). Moreover, we have the following (up to replacing

B with an open neighborhood of b).

(a) If Cb̄ has locally planar singularities and B is geometrically unibranch (e.g. normal) and

reduced at b, then πJ is flat with geometric fibers of pure dimension g(Cb̄).
(b) If Cb̄ has locally planar singularities and π is versal at b, then J̄C(m) is regular.

Proof. The proof is similar to the one of [MRV17, Theorems 5.4 and 5.5] (which deals with
the effective semiuniversal deformation family of a curve C), building upon the work of Esteves
[Est01]. We omit the details. �

3. Nodal curves

In this section we express the counting function of the Hilbert scheme of a nodal curve defined
over a finite field as a sum of trace-functions of Cattani–Kaplan–Schmid complexes. This is the
most important step in the proof of Theorem 5.10.

Throughout this section, we always consider the following.

Setup 3.1. Let Co be a nodal curve defined over a finite field k := Fπ and Γ = ΓC is the dual
graph of C = Co ×Fπ Fπ. Let πo : Co → Bo be a versal family of nodal curves with central fibre
the curve Co = Cob and assume, up to localizing at b, that Bo is smooth and irreducible. Denote
by π : C → B the base change of the family πo to the algebraic closure k̄ = Fπ. The discriminant
locus Δ of π is a normal crossing divisor on B which has a component Δe for each node e of C.
We set Breg := B\Δ.

Sometimes we will need to assume that the cardinality of the base field Fπ is big enough
(compared to the cogenus δ(C) of C), which is enough for our applications since the families
πo : Co → Bo we will be considering arise from the reduction of families defined over the complex
numbers.

3.1 The dual graph of a nodal curve and cohomology
3.1.1 The dual graph. We write Γ = ΓC for the dual graph of the curve C: its vertices v ∈ V

correspond to the irreducible components of C, and its edges e ∈ E correspond to the nodes of

C. We will also be considering the set
→
E of oriented edges of Γ and we will denote by

→
e and

←
e

the two oriented edges corresponding to an (unoriented) edge e of Γ. Note that, since we do not
assume Co geometrically connected, Γ may be disconnected.
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The Galois group Gal(k̄/k), which is topologically generated by the Frobenius automorphism,

acts on the graph Γ, and in particular on the sets
→
E and V. The action of Frobenius on the vertex

set V corresponds to the action of Frobenius on the irreducible components of C. The action of

Frobenius on the set
→
E of oriented edges is determined by the types of the nodes of Co as we

now explain. A node of Co is identified by one integer r and one ‘sign’ ε = ±1. By this we mean
the following.

(i) The split case: (r, +) is analytically isomorphic to SpecFπr [[X, Y ]]/(X2 − Y 2) as a Fπ

scheme, i.e. the point correspond to r geometric points with rational tangents. In this case
the normalization is Spec(Fπr [[X]]× Fπr [[Y ]]) = Spec(Fπr [[X]])

∐
Spec(Fπr [[Y ]]).

(ii) The nonsplit case: (r,−) is analytically isomorphic to SpecFπr [[X, Y ]]/(X2 − aY 2) as a
Fπ scheme, with a /∈ F2

πr i.e. the point correspond to r geometric points with nonra-
tional tangents (a further quadratic extension is needed). In this case the normalization
is Spec(Fπ2r [[X]]).

Frobenius acts on the set of 2r oriented edges {→e 1, . . . ,
→
e r,
←
e 1, . . . ,

←
e r} corresponding to the

r nodes of C that lie over the node of Co: in the first case, one can number and orient the edges
so that Fr(

→
e i) =

→
e i+1 for i < r and Fr(

→
e r) =

→
e 1, and similarly with the

←
e i’s so that there are

two orbits of r elements each, whereas in the second case Fr(
→
e i) =

→
e i+1 for i < r, Fr(

→
e r) =

←
e 1

and Fr(
←
e i) =

←
e i+1, so that there is just one orbit.

We write V = VΓ := C0(Γ, Q̄�) and E = EΓ := C1(Γ, Q̄�) for the Gal(k̄/k)-modules of zero-
and one-simplicial chains on Γ. Explicitly, V is the Q̄�-vector space of Q̄�-linear combination
of vertices of Γ and E is the Q̄�-vector space of Q̄�-linear combination of oriented edges of Γ
modulo the relation

→
e = −←e , where

→
e and

←
e denote the two oriented edges corresponding to an

(unoriented) edge e of Γ. The actions of Gal(k̄/k) on V and E are induced by the action on V and
→
E so that V is a permutation representation while E is only a signed permutation representation
(because the Galois action can reverse the oriented edges of Γ, as explained above). The homology
of the graph Γ is defined via the following exact sequence

0→ H1(Γ, Q̄�)→ E
∂−→ V→ H0(Γ, Q̄�)→ 0, (3.1)

where ∂ is the boundary map which sends an oriented edge into the difference between its target
and its source.

We write V∗ = C0(Γ, Q̄�) and E∗ = C1(Γ, Q̄�) for the dual Gal(k̄/k)-modules of zero- and
one-simplicial cochains on Γ. Since V and E are both signed permutation representations, there
are isomorphisms of Gal(k̄/k)-modules E ∼= E∗ and V ∼= V∗. The cohomology of Γ is defined by
mean of the following exact sequence

0→ H0(Γ, Q̄�)→ V∗ ∂∗−→ E∗ → H1(Γ, Q̄�)→ 0, (3.2)

where ∂∗ is the dual of the map ∂.
Since the Gal(k̄/k) action on E, V, E∗, V∗, H0(Γ, Q̄�), H1(Γ, Q̄�), H0(Γ, Q̄�), H1(Γ, Q̄�) factors

through a finite group, all these spaces are pure of weight zero.

3.1.2 Geometric interpretation of the cohomology of the dual graph. The homology and
cohomology groups of the dual graph Γ of C arise geometrically from curves related to C by
normalization and deformation.
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Cohomology of the graph Γ comes from the normalization ν : Cν → C. The sequence of
sheaves

0→ Q̄� → ν∗Q̄� → ν∗Q̄�/Q̄� → 0

yields, by taking cohomology,

0→ H0(C, Q̄�)→ H0(Cν , Q̄�)→ H0(C, ν∗Q̄�/Q̄�)→ H1(C, Q̄�)→ H1(Cν , Q̄�)→ 0.

We have defined V∗, E∗ so as to have canonical, Gal(k̄/k)-equivariant identifications

V∗ = H0(Cν , Q̄�),

E∗ = H0(C, ν∗Q̄�/Q̄�).

Substituting in H1(Γ, Q̄�) = Cok(H0(Cν , Q̄�)→ H0(C, ν∗Q̄�/Q̄�)), we find the short exact
sequence

0→ H1(Γ, Q̄�)→ H1(C, Q̄�)→ H1(Cν , Q̄�)→ 0, (3.3)

which, since H1(Γ, Q̄�) is pure of weight zero and H1(Cν , Q̄�) is pure of weight one, gives the
weight filtration of H1(C, Q̄�).

On the other hand, homology of the graph comes from a one-parameter smoothing σ : C → D

of C, with special fibre C0 = C and geometric generic fibre Cη̄. The cohomology of the nearby-
vanishing sequence gives

0→ H1(C, Q̄�)→ H1(Cη̄, Q̄�)→ H1(C, ΦσQ̄�)→ H2(C, Q̄�)→ H2(Cη̄, Q̄�)→ 0. (3.4)

By Poincaré duality we have

H2(C, Q̄�) = H2(Cν , Q̄�) ∼= H0(Cν , Q̄�)∗ ⊗ L = V⊗ L

and, likewise,
H2(Cη̄, Q̄�) ∼= H0(Cη̄, Q̄�)∗ ⊗ L ∼= H0(C, Q̄�)∗ ⊗ L.

Finally, we have by the Picard–Lefschetz formula [Mil80, p. 207],

H1(C, ΦσQ̄�) ∼= E⊗ L.

Substituting in (3.4) we find

0→ H1(C, Q̄�)→ H1(Cη̄, Q̄�)→ H1(Γ, Q̄�)⊗ L→ 0. (3.5)

The (monodromy-)weight filtration on H1(Cη̄, Q̄�) is

W0H
1(Cη̄, Q̄�) = H1(Γ, Q̄�),

W1H
1(Cη̄, Q̄�) = H1(C, Q̄�),

W2H
1(Cη̄, Q̄�) = H1(Cη̄, Q̄�),

with associated graded pieces

GrW
0 H1(Cη̄, Q̄�) = H1(Γ, Q̄�),

GrW
1 H1(Cη̄, Q̄�) = H1(Cν , Q̄�),

GrW
2 H1(Cη̄, Q̄�) = H1(Γ, Q̄�)⊗ L.
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3.1.3 Subgraphs and partial normalizations. For every subset I ⊂ E, we factor the normal-
ization map

Cν νI→ CI νI→ C,

where νI : CI → C is the partial normalization of the nodes of the subset I, and νI : Cν → CI

for the remaining normalization.
We have sequences

0→ H0(C, Q̄�)→ H0(CI , Q̄�)→ H0(C, νI∗Q̄�/Q̄�)→ H1(C, Q̄�)→ H1(CI , Q̄�)→ 0

and

0→ H0(CI , Q̄�)→ H0(Cν , Q̄�)→ H0(CI , νI
∗Q̄�/Q̄�)→ H1(CI , Q̄�)→ H1(Cν , Q̄�)→ 0.

The dual graph of the partial normalization CI is the graph Γ\I, which is obtained from Γ = ΓC

by deleting the edges corresponding to I. As in § 3.1.2, we have canonical identifications E∗Γ\I =
H0(CI , νI∗Q̄�/Q̄�) and V∗Γ\I = H0(Cν , Q̄�) = V∗Γ = V∗. Moreover, we set E∗I = H0(C, νI∗Q̄�/Q̄�)
so that we have a canonical splitting E∗ = E∗Γ = E∗Γ\I ⊕ E∗I .

We now introduce a collection of subsets of E which will play an important role in what
follows.

Definition 3.2. We write C (Γ) for the collection of subsets of E whose removal disconnects no
component of Γ, i.e. a subset I ⊆ E belongs to C (Γ) if and only if Γ\I has the same number of
connected components of Γ.

We set ni(Γ) := #{I ∈ C (Γ) | dim H1(Γ\I) = i}.

Note that n0(Γ), i.e. the cardinality of the set of maximal elements of C (Γ), is also equal to
the complexity c(Γ) of Γ, i.e. the number of spanning forests of Γ.

An alternative characterization of the elements of C (Γ) is provided by the following.

Lemma 3.3. A subset I ⊆ E belongs to C (Γ) if and only if the composition E∗I → E∗ →
H1(Γ, Q̄�) is injective. In that case, the following sequence is exact:

0→ E∗I → H1(Γ, Q̄�)→ H1(Γ\I, Q̄�)→ 0.

Proof. The inclusion of graphs Γ\I ↪→ Γ induces a pull-back map from the sequence (3.2) to the
analogous sequence for Γ\I. Applying the snake lemma to this map of sequences and using that
V∗Γ\I = V∗Γ, we get the exact sequence

0→ H0(Γ, Q̄�)→ H0(Γ\I, Q̄�)→ E∗I → H1(Γ, Q̄�)→ H1(Γ\I, Q̄�)→ 0.

By Definition 3.2, the subset I belongs to C (Γ) if and only if the map H0(Γ, Q̄�)→ H0(Γ\I, Q̄�)
is an isomorphism. By the above exact sequence, this happens precisely when the map E∗I →
H1(Γ, Q̄�) is injective and in that case we get the required short exact sequence. �

Remark 3.4. It follows from Lemma 3.3 that C (Γ) is the collection of all subsets of E whose
images under the map E∗ → H1(Γ, Q̄�) remain linearly independent. Thus C (Γ) is the collection
of independent elements of a (representable) matroid – in particular, a simplicial complex –
which is usually called the cographic matroid of the graph Γ.
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Fixing orientations of each edge e ∈ E of Γ and an ordering on E determines, for all I ⊂ E,
‘volume’ elements e∗I ∈ ∧|I|E∗I , well defined up to a sign. Lemma 3.3 may be reformulated as the
assertion that I ∈ C (Γ) if and only if the image of e∗I in ∧|I|H1(Γ, Q̄�) is nonzero. Indeed, even
more is true as the following lemma shows.

Lemma 3.5. If I ∈ C (Γ), there is an injective map, well defined up to a sign,

∧e∗I :
∧i−|I|

H1(Γ\I, Q̄�)→
∧i

H1(Γ, Q̄�).

Proof. The map is defined by lifting η ∈ ∧i−|I|H1(Γ\I, Q̄�) arbitrarily to an element in∧i−|I|H1(Γ, Q̄�), and then wedging by e∗I . This is well defined because the ambiguity in the
lift is killed by ∧e∗I . �

3.2 Determination of IC(ΛiR1πsm∗Q̄�)
In Setup 3.1, consider the local system V 1 := R1π∗Q̄�|Breg

on Breg, which, defines (see § 2.2)
a local system V 1⋂

eΔe
:= Ψ(V 1) on

⋂
eΔe � b, endowed with |E| commuting twisted nilpotent

endomorphisms

Ne : V 1⋂
eΔe
→ V 1⋂

eΔe
⊗ L.

We also have the local systems V i :=
∧iV 1, and corresponding sheaves V i⋂

eΔe
:= Ψ(V i) on⋂

eΔe, endowed with commuting twisted nilpotent endomorphisms

N (i)
e : V i⋂

eΔe
→ V i⋂

eΔe
⊗ L.

It is known that the local system V 1, and therefore also its exterior powers V i, are tamely ram-
ified [Abb00, Theorem 1.5]. As we are interested in pointwise computations, we may consider
a normal slice so we assume

⋂
eΔe = {b} and identify V 1⋂

eΔe

∼= H1(Cη̄, Q̄�), where Cη̄ is a geo-
metric generic fiber of a one-parameter smoothing of C. Remark that the monodromy filtration
is independent of the one-parameter smoothing that we choose as it coincides with the weight
filtration. The monodromy-weight filtration of V 1⋂

eΔe
is hence identified with that of H1(Cη̄, Q̄�)

described in § 3.1.2.
It follows immediately from weights considerations that the map

Ne : H1(Cη̄, Q̄�)→ H1(Cη̄, Q̄�)⊗ L

factors as

H1(Γ, Q̄�)⊗ L = GrW
2 H1(Cη̄, Q̄�)→ GrW

0 H1(Cη̄, Q̄�)⊗ L = H1(Γ, Q̄�)⊗ L, (3.6)

and it is easily seen to be given by

H1(Γ, Q̄�) ↪→ E
t�→〈
e ∗,t〉·
e ∗
−−−−−−−→ E∗ � H1(Γ, Q̄�), (3.7)

where �e is an orientation of the edge e and �e ∗ is its dual element in E∗ (note that the above is
independent of the orientation of e). Similarly, for the exterior powers, we have the identification
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V i⋂
eΔe

∼= ∧iH1(Cη̄, Q̄�) under which the operators N
(i)
e become

N (i)
e =

∧i
H1(Cη̄, Q̄�)→

∧i
H1(Cη̄, Q̄�)⊗ L

c1 ∧ · · · ∧ ci �→
i∑

k=1

c1 ∧ · · · ∧Ne(ck) ∧ · · · ∧ ci.

For I ⊂ E we write

N
(i)
I :=

∏
e∈I

N (i)
e :

∧i
H1(Cη̄, Q̄�)→

∧i
H1(Cη̄, Q̄�)⊗ L|I|.

The stalk of IC(V i) at {b} =
⋂

eΔe is quasi-isomorphic to the following complex of
continuous Q̄�-representations of Gal(k̄/k):

0→
∧i

H1(Cη̄, Q̄�)→
⊕

I⊆E,|I|=1

Im N
(i)
I →

⊕
I⊆E,|I|=2

Im N
(i)
I → · · · (3.8)

where the first term
∧iH1(Cη̄, Q̄�) is in homological degree 0. Omitting, for brevity of notation,

to indicate the nilpotent endomorphisms, we denote this complex by C•(
∧iH1(Cη̄, Q̄�)).

We also define operators by restricting the above to the even weight pieces of the associated
graded pieces, H1(Cη̄, Q̄�)ev := H1(Γ, Q̄�)⊕H1(Γ, Q̄�)⊗ L, i.e.

N̂e : H1(Γ, Q̄�)⊕H1(Γ, Q̄�)⊗ L→ H1(Γ, Q̄�)⊗ L⊕H1(Γ, Q̄�)⊗ L2,

and similarly for the operators N̂
(i)
e and N̂

(i)
I .

We want now to describe the image of the maps N̂
(i)
I . Recall from Lemma 3.5 that if I ∈

C (Γ), then there is an injective map ∧e∗I :
∧i−|I|H1(Γ\I, Q̄�)→

∧iH1(Γ, Q̄�). Using the natural
injection H1(Γ\I, Q̄�) ↪→ H1(Γ, Q̄�) coming from the inclusion of graphs Γ\I ⊂ Γ, we get an
injective map

∧e∗I :
∧i−|I|(

H1(Γ\I, Q̄�)⊕H1(Γ\I, Q̄�)⊗ L
)

↪→
∧i(

H1(Γ, Q̄�)⊕H1(Γ, Q̄�)⊗ L
)
. (3.9)

Lemma 3.6 (The main calculation). The image of N̂
(i)
I is zero unless I ∈ C (Γ), and in this case,

it is equal to the image of the map (3.9) twisted by L|I|.

Proof. We recall how the choice of a spanning forest of Γ (i.e. a spanning tree on each connected
component of Γ) gives rise to dual bases for H1(Γ) := H1(Γ, Q̄�) and H1(Γ) := H1(Γ, Q̄�). Let
J ⊆ E be a maximal element of C (Γ) so that Γ\J is a spanning forest of Γ. Then on one hand,
for each e ∈ J , we have the corresponding �e ∗ ∈ E∗, and their images in H1(Γ) give a basis. On
the other hand, for each e ∈ J , there is unique loop in Γ\(J\e) which gives rise to an element of
H1(Γ) denoted by e; this again gives a basis. We have 〈�e ∗i , ej〉 = ±δij for each ei, ej ∈ E.

We return to the problem at hand. By induction on |I| and the obvious compatibility of Ne

with the analogous operator on the complex associated to a subgraph Γ\e′, it suffices to consider
the case when I = {e}. Let Γe be the component of Γ containing e. If the removal of the edge
e disconnects Γe, then certainly no cycle t ∈ H1(Γ) can contain the edge e, hence 〈�e ∗, t〉 = 0 for
any t, and so Ne ≡ 0.

854

https://doi.org/10.1112/S0010437X20007745
Downloaded from https://www.cambridge.org/core. Roma Tre University, on 29 Apr 2021 at 10:56:42, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1112/S0010437X20007745
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


A support theorem for Hilbert schemes

Otherwise, there exists some maximal e ∈ J ∈ C (Γ). Let {e = e1, e2, . . .} and {�e ∗ =
�e ∗1 , �e ∗2 , . . .} be the corresponding dual bases. Observe that J\e ∈ C (Γ\e) is again maximal, and
the resulting dual bases of H1(Γ\e) and H1(Γ\e) are {e2, . . .} and {�e ∗2 , . . .}.

We compute the action of N̂
(i)
e :

N̂ (i)
e (�e ∗a1

∧ · · · ∧ �e ∗ad
∧ eb1 ∧ · · · ∧ ebi−d

)

=
i−d∑
r=1

�e ∗a1
∧ · · · ∧ �e ∗ad

∧ eb1 ∧ · · · ∧ N̂e(ebr
) ∧ · · · ∧ ebi−d

=
( i−d∑

r=1

±δ1,br · �e ∗a1
∧ · · · ∧ �e ∗ad

∧ eb1 ∧ · · · ∧ êbr
∧ · · · ∧ ebi−d

)
∧ �e ∗.

If any of the ai = 1, then this sum vanishes. In any case, the sum has at most one nonvanishing
term, that of br = 1. Assuming without loss of generality that a1 < a2 < · · · and b1 < b2 < · · · ,
the sum vanishes unless a1 > 1 and b1 = 1; and

N̂ (i)
e (�e ∗a1>1 ∧ · · · ∧ �e ∗ad

∧ e ∧ eb2>1 ∧ · · · ∧ ebi−d
) = ±�e ∗ ∧ (�e ∗a1>1 ∧ · · · ∧ �e ∗ad

∧ eb2>1 ∧ · · · ∧ ebi−d

)
.

This completes the proof. �

Remark 3.7. In particular, if i < |I| or h1(Γ) < |I| then N̂
(i)
I vanishes. This is true also for the

map

N
(i)
I :

∧i
H1(Cη̄, Q̄�)→

∧i
H1(Cη̄, Q̄�)⊗ L|I|.

Indeed, if i < |I| then N
(i)
I vanishes because the weights of the source go from 0 to 2i while those

of the target from 2|I| to 2|I|+ 2i. Moreover, if h1(Γ) < |I| then the map N
(i)
I vanishes because

of the factorization (3.6).

3.3 The Hilbert scheme of a nodal curve
In this subsection, we will be using the following.

Notation 3.8. (i) Equalities in this section are in the counting sense, as we now explain. To any
element

∑
i λiXo,i of the Grothendieck ring K0(VarFπ) of varieties over Fπ, it is associated the

counting function

r ∈ N �→
∑

i

λiXo,i(Fπr).

And to any element
∑

i λiWi of the K-ring K0(Rep(Fr)) of (finite dimensional) Q̄�-vector spaces
with an action of Frobenius Fr, it is associated the counting function

r ∈ N �→
∑

i

λiTr(Frr : W i →W i).

Two objects belonging to either K0(VarFπ) or K0(Rep(Fr)) are said to be equal if they have the
same counting function. And two formal power series in q with coefficients in either K0(VarFπ)
or K0(Rep(Fr)) are said to be equal if each of their coefficients has the same counting function.
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For example, if Co is a geometrically connected, nonsingular projective curve, the
Grothendieck–Lefschetz trace formula is written as the equality

Co = H0(C)−H1(C) + H2(C) = 1−H1(C) + L,

where C = Co ×Fπ
Fπ, and H i(C) denotes the ith étale cohomology group of C with coefficients

in Q̄�, endowed with the action of Frobenius.
(ii) Given a variety Co over Fπ, we denote by ZH(Co, q) its Hilbert zeta function:

ZH(Co, q) :=
∞∑

n=0

C[n]
o · qn ∈ K0(VarFπ)[[q]].

Note that this formal power series is invertible since it starts with 1.
(iii) Given a Q̄�-vector space W with an action of Frobenius, we denote by Λ∗(−qW ) the

generating series of its exterior powers:

Λ∗(−qW ) :=
∑

k

(−q)k
∧k

W ∈ K0(Rep(Fr))[[q]]. (3.10)

This formal power series satisfies the identity

Λ∗(−q(W1 + W2)) = Λ∗(−qW1)Λ∗(−qW2). (3.11)

In particular, if W1, W2 are Q̄�-vector spaces with trivial Frobenius action,

Λ∗(−q(W1 + W2L)) = (1− q)dim W1(1− qL)dim W2 , (3.12)

a formula which we will often use.
Using this formalism, the classical MacDonald formula [Mac62] for a nonsingular (projective)

curve Co with r geometrically connected components which are defined over the base field Fπ

reads as

ZH(Co, q) =
Λ∗(−qH1(C))(

(1− q)(1− qL)
)r =

Λ∗(−qH1(C))
Λ∗
(−q

(
H0(C) + H2(C)L

)) . (3.13)

(iv) Let Co be a nodal curve over Fπ and let Γ = ΓC be the dual graph of C = Co ×Fπ Fπ.
For any i = 0, 1, we will set H i(ΓC) := H i(ΓC, Q̄�) and Hi(ΓC) := Hi(ΓC, Q̄�) endowed with the
action of Frobenius (see § 3.1.1).

For any I ⊆ E(ΓC) and any k ≥ 0, consider the map

N̂
(k)
I :

∧k(
H1(ΓC) + H1(ΓC)L

) −→∧k(
H1(ΓC) + H1(ΓC)L

)
L|I|

defined in § 3.1. We now set

K(Co) :=
∑
k≥0

(−q)k
∑

I⊆E(ΓC)

(−1)|I|Im N̂
(k)
I ∈ K0(Rep(Fr))[[q]].

Using Lemma 3.6, it is easy to check that

K(Co) =
∑

I∈C (ΓC)

(−qL)|I|e∗IΛ
∗(−q

(
H1(ΓC\I) + H1(ΓC\I)L

))
. (3.14)

Note that the homology and cohomology groups of ΓC\I are not acted on by the Frobenius
unless the subset I is Frobenius invariant. However, the sum on the right-hand side of (3.14)
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is the sum over all the subsets of C (ΓC), and is therefore acted on by the Frobenius, hence it
belongs to K0(Rep(Fr))[[q]].

Remark 3.9. By the discussion in § 3.1 (and using Setup 3.1), the class in K0(Rep(Fr))[[q]] of∑
i

qiIC

(∧i
R1π∗Q̄�|Breg

)
b

[−i]

is equal to

Λ∗(−qH1(Cν)) ·K(Co).

Corollary 3.10. We have the following evaluations of weight polynomials:

w

(∑
i

qiIC

(∧i
R1π∗Q̄�|Breg

)
ssb[−i]

)
= (1 + qt)2g(Cν)

∑
i≥0

ni(Γ) · (qt2)h1(Γ)−i
(
(1− qt2)(1− q)

)i
.

In particular, setting q = 1, we get that

w

(∑
i

IC

(∧i
R1π∗Q̄�|Breg

)
b

[−i]
)

= (1 + t)2g(Cν)t2h1(Γ)c(Γ). (3.15)

Proof. By Remark 3.9, we have that

w

(∑
i

qiIC

(∧i
R1π∗Q̄�|Breg

)
b

[−i]
)

= w
(
Λ∗(−qH1(Cν))

) ·w(K(Co)
)
. (3.16)

By (3.10), we have that

w
(
Λ∗(−qH1(Cν))

)
=
∑

k

(−q)kw

(∧k
H1(Cν)

)
=
∑

k

(−q)k

(
2g(Cν)

k

)
(−t)k = (1 + qt)2g(Cν).

(3.17)
From (3.14) and (3.12), and substituting w(L) = t2 and w(e∗I) = (−1)|I|, we compute

w
(
K(Co)

)
=

∑
I∈C (ΓC)

(−qt2)|I|(−1)|I|
(
(1− qt2)(1− q)

)h1(Γ\I)

=
∑
i≥0

ni(Γ) · (qt2)h1(Γ)−i
(
(1− qt2)(1− q)

)i
,

(3.18)

where we used Definition 3.2 in the last equality. We finish by putting together (3.16), (3.17)
and (3.18). �

Using the above notation, we can restate the main result of [MY14, MS18] as it follows.

Theorem 3.11 (MacDonald formula for geometrical irreducible nodal curves [MY14, MS18]).
Let Co be a geometrically irreducible nodal curve over Fπ. Then the Hilbert zeta function of Co

is equal to

ZH(Co, q) =
Λ∗(−qH1(Cν)) ·K(Co)

Λ∗
(−q

(
H0(C) + H2(C)L

)) =
Λ∗(−qH1(Cν)) ·K(Co)

(1− q)(1− qL)
. (3.19)
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The aim of this subsection is to generalize the above MacDonald formula to a (reducible)
nodal curve Co defined over a finite field Fπ, under the assumption that the geometrically
irreducible components of Co are defined over the finite field Fπ.

We will first find a formula for the Hilbert zeta function of Co in terms of the (co)homology
of its spanning subgraphs.

Proposition 3.12. Let Co be a nodal curve defined over a finite field Fπ of cardinality suffi-

ciently big with respect to δ(Co). Assume that the irreducible components of C = Co ×Fπ F̄π are

defined over Fπ. Then we have the following formula for the Hilbert zeta function of Co:

ZH(Co, q) = Λ∗
(−qH1(Cν)

)( ∑
J⊆E(ΓC)

(−qL)|J |e∗J
Λ∗
(−q(H1(ΓC\J) + H1(ΓC\J)L

)
Λ∗
(−q(H0(ΓC\J) + H0(ΓC\J)L

)). (3.20)

As above, note that the homology and cohomology groups of ΓC\J are not acted on by the
Frobenius unless the subset J is Frobenius invariant. However, the sum on the right-hand side
of (3.20) belongs to K0(Rep(Fr))[[q]], being the sum over all the subsets of E(ΓC).

Proof. Since the cardinality of the finite field Fπ is big enough with respect to δ(Co) (which is
the number of nodes of C), we can find a rational curve Do with the same set of nodes of Co and
of the same type (see the description of nodes in § 3.1.1).

Denoting ν : Cν
o → Co and ν : Dν

o → Do the normalization maps, by Co,sm and Do,sm the
nonsingular sets, and by Co,× = Do,× the singular (nodal) sets, we also have

ν−1(Co,×) = ν−1(Do,×).

Recall how the Hilbert scheme of points factors into local contributions. Given a subset
S ⊂ Co, every point in C[n]

o is the union of a subscheme supported on S and a subscheme
supported off S, whence a factorization

ZH(Co, q) =
( ∞∑

n=0

qn · (Co\S)[n]

)
·
( ∞∑

n=0

qn · C[n]
S

)
= ZH(Co\S, q) ·

( ∞∑
n=0

qn · C[n]
S

)
,

where C[n]
S is the fibre of the Hilbert-Chow morphism over S.

Applying this to Co with S = Co,×, and to Cν
o with S = ν−1(Co,×), (respectively to Do with

S = Do,×, and to Dν
o with S = ν−1(Do,×)), we find that

ZH(Co, q)
ZH(Cν

o , q)
=

ZH(Co,sm, q)(
∑

(Co,×)[n]qn)
ZH(Co,sm, q)(

∑
(ν−1(Co,×))[n]qn)

=
∑

(Do,×)[n]qn∑
ν−1(Do,×)[n]qn

=

∑
D[n]

o,×qn∑
ν−1(Do,×)[n]qn

,

and similarly

ZH(Do, q)
ZH(Dν

o , q)
=

ZH

(
Do,sm, q

)(∑(
Do,×

)[n]
qn
)

ZH

(
Do,sm, q

)(∑
(ν−1(Do,×))[n]qn

) =

∑
D[n]

o,×qn∑
ν−1
(
Do,×

)[n]
qn

.

Hence we conclude that
ZH(Co, q)
ZH(Cν

o , q)
=

ZH(Do, q)
ZH(Dν

o , q)
. (3.21)

Therefore, in order to complete the proof, it remains to compute the Hilbert zeta functions
of Cν

o , Dν
o and Do.

858

https://doi.org/10.1112/S0010437X20007745
Downloaded from https://www.cambridge.org/core. Roma Tre University, on 29 Apr 2021 at 10:56:42, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1112/S0010437X20007745
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
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The curve Dν
o is smooth and rational, hence it is geometrically irreducible and with

H1(Dν) = 0. Hence the MacDonald formula (3.13) for smooth curves gives that

ZH(Dν
o , q) =

1
(1− q)(1− qL)

. (3.22)

The curve Cν
o is smooth and its geometrically irreducible components, whose number is equal

to the cardinality |V (ΓC)| of the dual graph ΓC of C, are defined over Fπ by our assumptions on
Co. Hence the MacDonald formula (3.13) for smooth curves gives that

ZH(Co, q) =
Λ∗(−qH1(C))(

(1− q)(1− qL)
)|V (ΓC)| . (3.23)

The curve Do is geometrically irreducible; hence MacDonald formula for geometrical
irreducible nodal curves (see Theorem 3.11) gives that

ZH(Do, q) =
K(Do)

(1− q)(1− qL)
. (3.24)

We are left with computing K(Do). Since taking out any subset of edges does not disconnect
ΓD, we have that C(ΓD) (see Definition 3.2) is equal to the collection of all the subsets of the
edge set E(ΓD) of ΓD. Hence (3.14) gives that

K(Do) =
∑

J⊆E(ΓD)

(−qL)|J |e∗JΛ∗
(
H1(ΓD\J) + H1(ΓD\J)L

)
. (3.25)

We now want to relate the (co)homology of the spanning subgraphs of ΓC with the ones of
ΓD. Observe that, by the construction of Do and the discussion in § 3.1.1, the dual graphs ΓD

and ΓC have the same set of oriented edges with the same Frobenius action, which implies that
EΓD

= EΓC
:= E and E(ΓC) = E(ΓD) := E. On the other hand, since Do is a rational curve, the

vertex set of ΓD is one point with the trivial Frobenius action. Hence the exact sequences (3.1)
and (3.2) applied to ΓD give that

H1(ΓD) ∼= E and H1(ΓD) ∼= E∗.

Substituting this into the exact sequences (3.1) and (3.2) applied to ΓC and passing to the
K-ring, we get the following equality in K0(Rep(Fr)):

H1(ΓD) = H1(ΓC) + V−H0(ΓC) and H1(ΓD) = H1(ΓC) + V∗ −H0(ΓC),

where V := VΓC
. Note that our assumption on the irreducible components of Co is equivalent

to the fact that the action of Frobenius on the vertex set V (ΓC) is trivial, hence the action of
Frobenius on V is trivial.

The same relations hold between the graphs ΓC\J and ΓD\J , obtained, respectively, from
ΓC and ΓD by deleting a set J ⊂ E of edges, namely

H1(ΓD\J) = H1(ΓC\J) + V−H0(ΓC\J) and H1(ΓD\J) = H1(ΓC\J) + V∗ −H0(ΓC\J).

Combining the above relations and using that V ∼= V∗, we arrive at the relation

H1(ΓD\J) + H1(ΓD\J)L = H1(ΓC\J) + H1(ΓC\J)L + V(1 + L)−H0(ΓC\J)−H0(ΓC\J)L.
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By applying the operator Λ∗(−q(−)) to the above relation and using (3.11) and (3.12) (recall
that the action of Frobenius on V is trivial), we get

Λ∗
(
H1(ΓD\J) + H1(ΓD\J)L

)
= Λ∗

(−q
(
V(1 + L)

))Λ∗(H1(ΓC\J) + H1(ΓC\J)L
)

Λ∗
(
H0(ΓC\J) + H0(ΓC\J)L

)
=
(
(1− q)(1− qL)

)|V(ΓC)|Λ∗
(
H1(ΓC\J) + H1(ΓC\J)L

)
Λ∗
(
H0(ΓC\J) + H0(ΓC\J)L

) . (3.26)

Substituting (3.26) into (3.25), we obtain

K(Do) =
(
(1− q)(1− qL)

)|V(ΓC)|
(∑

J⊆E

(−qL)|J |e∗J
Λ∗
(−q

(
H1(ΓC\J) + H1(ΓC\J)L

))
Λ∗
(−q

(
H0(ΓC\J) + H0(ΓC\J)L

))). (3.27)

We finish by putting together (3.21), (3.22), (3.23), (3.24) and (3.27). �

Now we want to express the right-hand side of (3.20) in terms of the operator K(−) applied
to some special partial normalizations of the curve Co, that we are now going to define.

Every subset I of the edge set E := E(Γ) of the dual graph Γ := ΓC defines a partition λ(I)
of the vertex set V := V(ΓC): two vertices are in the same subset of the partition if they belong
to the same connected component of the spanning subgraph Γ\I. The partitions of V obtained
this way will play a special role and we need a notation for them.

Definition 3.13. We denote by P := P(Γ) the set of partitions of the vertex set V of the form
λ(I), for some I ⊆ E.

Given λ ∈ P, we let Sλ to be the collection of subsets I ⊆ E such that λ(I) = λ. Every Sλ

has a minimal element Jλ defined as follows: an edge belong to Jλ if its end points belong to
different subsets of the partition λ. We set δ(λ) = |Jλ|. Using the minimal element Jλ, we can
give another description of Sλ: a subset I ⊆ E belongs to Sλ if and only if Jλ ⊆ I and the two
graphs Γ\I and Γ\Jλ have the same number of connected components.

For any λ ∈ P, set Cλ be the (disconnected) nodal curve obtained from C by normalizing
the nodes in Jλ. Note that ΓCλ

= ΓC\Jλ.
The next theorem is the main result of this subsection.

Theorem 3.14. Make the same assumptions as in Proposition 3.12. The Hilbert zeta function

of Co is equal to

ZH(Co, q) = Λ∗
(−qH1(Cν)

)( ∑
λ∈P(ΓC)

(qL)δ(λ) K(Cλ)
Λ∗(−q

(
H0(ΓCλ

) + H0(ΓCλ
)L
)). (3.28)

Proof. Using Proposition 3.12, we have to show that the sum in the right-hand side of (3.20) is
equal to the sum on the right-hand side of (3.28).

Note that we have a partition E(Γ) =
∐

λ∈P(Γ) Sλ, where Γ := ΓC. Moreover, for each J ∈ Sλ,
we have an inclusion of graphs Γ\J ⊆ Γ\Jλ that induces a bijection on the number of connected
components; hence we have that H0(Γ\J) = H0(Γ\Jλ) and H0(Γ\J) = H0(Γ\Jλ).
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The sum in the right-hand side of (3.20) can be written as

∑
λ∈P(Γ)

(qL)δ(λ)e∗Jλ

Λ∗(−q(H0(Γ\Jλ) + H0(Γ\Jλ)L))

(∑
J∈Sλ

(qL)|J |−δ(λ)e∗J\Jλ
Λ∗(−q(H1(Γ\J) + H1(Γ\J)L))

)
.

(3.29)

We remark that, since Jλ is canonically attached to the partition λ, and since Frobenius acts
trivially on this partition as we assumed that the geometric irreducible components of Co are
defined over Fπ, Frobenius acts trivially on e∗Jλ

. This, together with the fact that ΓCλ
= ΓC\Jλ,

implies that we can rewrite (3.29) as

∑
λ∈P

(qL)δ(λ)

Λ∗(−q(H0(ΓCλ
) + H0(ΓCλ

)L))

( ∑
J∈Sλ

(qL)|J |−δ(λ)e∗J\Jλ
Λ∗(−q(H1(ΓC\J) + H1(ΓC\J)L))

)
.

(3.30)
By the characterization of Sλ given above, we have that

C (ΓCλ
) = {J\Jλ : J ∈ Sλ}.

Moreover, for J ∈ Sλ we have ΓC\J = ΓCλ
\(J\Jλ) and |J | − δ(λ) = |J\Jλ|. Hence (3.14) gives

that

K(Cλ) =
∑

J∈Sλ

(qL)|J |−δ(λ)e∗J\Jλ
Λ∗(−q(H1(ΓC\J) + H1(ΓC\J)L)). (3.31)

Substituting (3.31) into (3.30), we conclude that the sum in right-hand side of (3.20) is equal to
the sum in the right-hand side of (3.28), and this completes the proof. �

4. Relative compactified Jacobian for nonversal families

The main result of this section, namely Theorem 4.11, gives sufficient conditions for a relative
fine compactified Jacobian of a nonversal family to be nonsingular. In particular it allows the
determination of the higher discriminants (see Definition 5.1) for the relative compactified Jaco-
bian of many families of planar curves. If a family of curves C → S contains only irreducible
curves, then the relative compactified Jacobian is nonsingular if and only if the relative Hilbert
schemes of any length are non singular [She12]. The if implication is still true for families of
reducible curves (as we will show in Corollary 4.17), but the only if implication is no longer true:
already in arithmetic genus one, the ‘banana’ curve, or a triangle of lines, give examples of fine
compactified Jacobians which can be smoothed in a one-dimensional family, whereas the Hilbert
scheme of length two of the curve needs at least a two-dimensional family. It should be clear
from the proof of Theorem 4.11 that the reason for this discrepancy is that certain torsion-free
sheaves, which, as points of the Hilbert scheme, can be smoothed only in a high-dimensional fam-
ily, cannot appear in the compactified Jacobian because of the stability condition. For instance,
in the triangle, a torsion-free sheaf is contained in a fine compactified Jacobian if and only if it
is locally free outside at most one point.

The proof of this fact, which we believe of independent interest, is based on the results of
[FGvS99] and a local duality theorem due to T. Warmt [War02], which we now review. All the
unproven facts here may be found in [War02, Chapter 4] and [FGvS99].

Fix the following data.
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(i) A planar complete local ring R = k[[x, y]]/(f), with f =
∏

a∈Λ fa and fa ∈ k[[x, y]] irre-
ducible elements. Assume that k is an algebraically closed field of arbitrary characteristic.
The set Λ is the set of branches of R, i.e. minimal prime ideals of R, and we set λ := �Λ.
The normalization R̃ of R is isomorphic to R̃ �∏a∈Λ k[[Ta]], where Ta is a parameter on
the ath branch. Observe that R̃ contains R and it is a subring of the total fraction field
Q(R) �∏a∈Λ k((Ta)).

(ii) A rank-1, torsion-free R-module M , which, up to isomorphism, we can assume to contain
R and to be contained in R̃:

R ⊆M ⊆ R̃.

Consider the conductor ideal of the extension R̃/R

f = Ann(R̃/R) = HomR(R̃, R) = {u ∈ R such that uR̃ ⊂ R},
which is the biggest ideal of R̃ contained in R. The delta-invariant of the ring R is defined as
δ(R) := dim R̃/R. Since R is Gorenstein by our assumptions, we have that

δ(R) = dimR/f = 1
2 dim R̃/f. (4.1)

One can associate to the module M two objects of primary importance.

• The first Fitting ideal Fit1(M) of M , defined as the ideal generated by (N − 1)-minors of a
free resolution

0←−M ←− k[[x, y]]N ←− k[[x, y]]N ←− 0

of M as a k[[x, y]]-module. Under the hypotheses above, we have that

Fit1(M) = {φ(m), for m ∈M and φ ∈ HomR(M, R)},
and f ⊆ Fit1(M), see [FGvS99, Proposition C-2 and Corollary C-3].

• The endomorphism ring of M

EndR(M) = {c ∈ R̃ : cm ∈M for all m ∈M},
which is a subring of R̃ containing R and contained in M . Notice that EndR(M) may not be
planar and not even Gorenstein.

We have the series of inclusions

f ⊆ Fit1(M) ⊆ R ⊆ EndR(M) ⊆M ⊆ R̃.

The first Fitting ideal of M is dual to the endomorphism ring of M , as stated in the following
result.

Proposition 4.1 [War02, Korollar 4.4.2(ii)]. Under the hypotheses above, the map

HomR(EndR(M), R) −→ Fit1(M)

Ψ �→ Ψ(id)

is an isomorphism.

Using the endomorphism ring of a module M , we can introduce an important numerical
invariant of M .
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Definition 4.2. Let ν = (λ1, . . . , λl(ν)) be a partition of λ = �Λ. We say that M has type ν if
EndR(M) is direct product of l(ν) local rings, the ith of which has λi branches. The type of M

is denoted by ν(M).

Given a partition ν = (λ1, . . . , λl(ν)) as above, let

I1 = {1, . . . , λ1}, I2 = {λ1 + 1, . . . , λ1 + λ2}, . . . , Il(ν) = {λ− λl(ν) + 1, . . . , λ}

and let Rν be the subring of R̃ given by

Rν =
{

(f1(T1), . . . , fλ(Tλ)) ∈
λ∏

i=1

k[[Ti]] with fk(0) = fl(0) if k, l ∈ Ij for some j

}
.

Geometrically, Rν is the disjoint union of the complete local rings at 0 of the coordinate axes
in Aλi , for i = 1, . . . , l(ν). Therefore, the rings Rν are seminormal and, indeed, they are all the
seminormal rings containing R and contained in R̃. If a partition ν ′ refines ν, then we have that
Rν ⊆ Rν′ , the two extreme case being R(1,...,1) = R̃ and R(λ,0,...,0) which is the seminormalization
of R. The delta invariant of Rν is easily seen to be equal to

dim R̃/Rν := δ(Rν) = λ− l(ν). (4.2)

From Proposition 4.1 and using that f = Fit1(R̃), we deduce that

dim Fit1(Rν)/f = λ− l(ν). (4.3)

From [Liu02, Chapter 7 and Example 5.9], we deduce the following alternative characteriza-
tion of the type of M .

Lemma 4.3. The type of M is the coarsest partition ν such that EndR(M) ⊆ Rν . Hence, Rν(M)

is the seminormalization of EndR(M).

From the above characterization of the type of M and Proposition 4.1, we deduce the
following.

Corollary 4.4. For any module as above, we have that Fit1(M) ⊇ Fit1(Rν(M)).

We now review the nonsingularity condition for a relative fine compactified Jacobian at a
given point: the reference is again [FGvS99]. A clear recollection of the results can be found in
[War02, § 4.5].

Let C be a projective reduced connected curve with planar singularities over k = k̄, Csing =
{c1, . . . , cr} its singular set, {Λ1, . . . ,Λr} the corresponding sets of branches, with cardinality
λi := �Λi.

Given a singular point ci ∈ Csing, let fi be a local equation of C at ci, so that ÔC,ci �
k[[x, y]]/(fi). We have the deformation functor Vi := DefC,ci of the local ring ÔC,ci , whose tan-
gent space TVi is the underlying vector space of the k-algebra k[[x, y]]/(fi, ∂xfi, ∂yfi). There
is the canonical subspace Vδ

i ⊂ TVi, the support of the tangent cone at ci of the equigeneric
locus. The subspace Vδ

i is the class in TVi = k[[x, y]]/(fi, ∂xfi, ∂yfi) of the conductor ideal
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fi := Ann(ÕC,ci/OC,ci). By (4.1), we have that

codimVδ
i = δ(ci) = dimk ÕC,ci/OC,ci . (4.4)

Given a partition νi of the set Λi of branches at ci, we have the partial normalization with local
ring (OC,ci)νi and the subspace Vνi

i , representing the class in TVi = k[[x, y]]/(fi, ∂xfi, ∂yfi) of
the ideal Fit1((OC,ci)νi). By (4.3), we have that

dim Vνi
i /Vδ

i = dim Fit1((OC,ci)νi)/fi = λi − l(νi). (4.5)

We set V := Def loc
C =

∏
Vi and Vδ :=

∏
Vδ

i ⊂ TV =
∏

TVi, a codimension δ(C) =
∑

δ(ci)
linear subspace. Given a multipartition ν = {νi}, where νi is a partition of λi, we have the
subspace Vν :=

∏
Vνi

i ⊂ TV and the corresponding partial normalization Cν of C, with local
ring (OC,ci)νi at the point ci ∈ C. The curve Cν is seminormal and indeed all seminormal partial
normalizations of C are of the form Cν for some unique multipartition ν = {νi}. By (4.5), we
get that

codimVν =
r∑

i=1

codimVνi
i =

r∑
i=1

(δ(ci) + l(νi)− λi) = δ(C) +
r∑

i=1

(l(νi)− λi). (4.6)

Let I be a rank-1 torsion-free sheaf on C with stalk Ii at ci. The deformation functor
Def((C, ci), Ii) of the pair (ÔC,ci , Ii) is endowed with a forgetful morphism ρi : Def((C, ci), Ii)→
Vi = DefC,ci , and we set

ρ :=
∏

ρi :
∏

Def((C, ci), Ii)→ V = Def loc
C .

Let Wi(I) = Im(dρi) and W (I) = Im(dρ) =
∏

Wi(I) be the images of the differentials.
The linear subspace Wi(I) is determined by the first Fitting ideal of Ii.

Proposition 4.5 [FGvS99, Proposition C-1]. The subspace Wi(I) is the class in k[[x, y]]/
(fi, ∂xfi, ∂yfi) of the first Fitting ideal Fit1(Ii) of the stalk Ii of I at ci.

The linear subspace W (I) allows us to characterize when a relative fine compactified Jacobian
is regular at the point I. Recall that given a family of curves π : C → B and a point b ∈ B such
that C := π−1(b) = Cb, we have the local Kodaira–Spencer map (see (2.4)):

kloc
π,b : Tb(B)→ TDef loc

C = TV.

Proposition 4.6. Given a family π : C → B, with C = Cb, a relative fine compactified Jacobian

J̄C is regular at a point I lying in the central fiber (J̄C)o = J̄C if and only if W (I) + Im(kloc
π,b) =

TV.

Proof. This is proved in [FGvS99, Corollary B-3] for a family π : C → B of integral curves. The
proof in our setting is similar and it goes as follows.

By Theorem 2.12, up to passing to an étale neighborhood of b ∈ B, we can assume that there
exists a versal deformation π̃ : (C̃, C)→ (B̃, b̃) of C and a relative fine compactified Jacobian
πJ̃ : J̄C̃ → B̃ such that π is the pull-back of π̃ via a morphism f : (B, b)→ (B̃, b̃) and the given
relative fine compactified Jacobian πJ : J̄C → B is the pull-back of πJ̃ via f . Denote by Ĩ the
image of I via the pull-back morphism J̄C → J̄C̃ . Since J̄C̃ is regular by Theorem 2.12, it follows
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that J̄C is regular at a point I if and only if the image of db(f) : Tb(B)→ Tb̃(B̃) is transversal
to the image of dĨ(π

J̃) : TĨ(J̄C̃)→ Tb̃(B̃), i.e.

Im(dĨ(π
J̃)) + Im(db(f)) = Tb̃(B̃). (4.7)

Since the local Kodaira–Spencer map kloc
π,b of π : C → B factors as

kloc
π,b : Tb(B)

dp(f)−−−→ Tb̃(B̃)
kloc

π̃,b̃−−→ TDef loc
C = TV,

where the local Kodaira–Spencer map kloc
π̃,b̃

of π̃ : C̃ → B̃ is surjective by the versality of π̃ (see the

discussion after Fact 2.3(iii)), and since we have that Im(dĨ(π
J̃)) = (kloc

π̃,b̃
)−1(W (I)) by [FGvS99,

Proposition A.1] and the fact that J̄C̃ is a relative fine compactified Jacobian, condition (4.7) is
equivalent to the condition W (I) + Im(kloc

π,b) = TV, and this completes the proof. �

Consider the endomorphism sheaf EndOC
(I) of I. It is a sheaf of finite OC-algebras such

that OC ⊆ EndOC
(I) ⊆ OCν . The sheaf I is naturally a sheaf on the partial normalization CI :=

Spec
C
(EndOC

(I)) of C; the original I being recovered by the pushforward along the partial
normalization morphism νI : CI → C. For every singular point ci of C, denote by νi(Ii) the type
of Ii at ci (see Definition 4.2) and we set ν(I) = {νi(Ii)}. It follows from Lemma 4.3 that Cν(I)

is the seminormalization of CI . The following remark is obvious and it is recorded for later use.

Remark 4.7. The sheaf I is simple if and only if CI is connected, or equivalently, if and only
Cν(I) is connected. In particular, if I belongs to some fine compactified Jacobian of C, then
Cν(I) are connected.

We want now to establish a necessary combinatorial criterion in order to check when the
partial normalization Cν is connected.

To any reduced projective curve C (not necessarily locally planar), we associate an hypergraph
HC = (V (HC), E(HC)) as follows: the vertices V (HC) correspond to the irreducible components
of C and to each singular point n ∈ Csing we associate an hyperedge en which is a multiset
of V (HC) consisting of all irreducible components that contain n, each one of which counted
with multiplicity equal to its number of branches at n. In this way, the cardinality |en| of the
hyperedge en is equal to the total number of branches of C at n. Note that if C is a nodal curve,
then the hypergraph HC is actually a graph and it coincides with the dual graph of C.

Lemma 4.8. If the curve C is connected, then

b(HC) :=
∑

e∈E(HC)

(|e| − 1)− |V (HC)|+ 1 ≥ 0.

Proof. Clearly the curve C is connected if and only if its associated hypergraph HC is connected,
i.e. there does not exist a partition of the vertex set V (HC) = V1

∐
V2 such that every hyperedge

e contains only elements of either V1 or V2. We will therefore prove more generally that if a
hypergraph H = (V (H), E(H)) is connected then b(H) ≥ 0.

In order to show this, consider the bipartite simple incidence graph ΓH constructed from
H as follows: its vertices V (ΓH) are the disjoint union of V (H) and of E(H) and its edges
are given by E(ΓH) := {(v, e) ∈ V (H)

∐
E(H) : v ∈ e}. Clearly H is connected if and only if
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ΓH is connected and, by construction, we have that |V (ΓH)| = |V (H)|+ |E(H)| and |E(ΓH)| =∑
e∈E(H) |e|. Therefore, if H is connected, then b(H) coincides with the first Betti number of

b1(ΓH) = |E(ΓH)| − |V (ΓH)|+ 1 of ΓH , which is nonnegative. �

We are now ready to prove the main result of this section, namely a sufficient criterion for
the regularity of relative fine compactified Jacobians. The criterion will be expressed in terms of
the following closed subset of TV.

Definition 4.9. Let C be a curve as above. Consider the closed locus W ⊂ TV given by the
union of the linear subspaces Vν , as ν varies among all the maximal multipartitions such that
Cν is connected.

The locus W has the following properties.

Lemma 4.10.

(i) The locus W ⊂ TV has pure codimension δa(C).
(ii) We have the inclusion Vδ ⊆W with equality if and only if C is irreducible.

(iii) If Cν is connected then Vν contains some irreducible component of W.

(iv) If I is a simple torsion-free rank-1 sheaf then W (I) contains some irreducible component

of W.

Proof. Part (i): the irreducible components of W are given by Vν , where ν is a maximal multi-
partition such that Cν is connected. Lemma 4.8 implies that b(HCν ) ≥ 0. However, due to the
maximality of ν we must have that b(HCν ) = 0, for otherwise it is easy to check that we could
find a refinement ν ′ with Cν′

still connected, violating the maximality of ν. (This argument is
the analogue for a hypergraph of the fact that every connected graph has a spanning tree.) By
the definition of Cν , it follows that if ν = {νi} with νi = ((νi)1, . . . , (νi)l(νi)) a partition of the
set Λi of branches of C at ci, then the hyperedges of HCν have cardinality (νi)j . Therefore, by
the definition of b(HCν ), we get

0 = b(HCν ) =
r∑

i=1

l(νi)∑
k=1

((νi)k − 1)− |V (HCν )|+ 1 =
r∑

i=1

(λi − l(νi))− γ(C) + 1. (4.8)

Combining (4.6) and (4.8), we deduce that

codimVν = δ(C)− γ(C) + 1 = δa(C),

which completes the proof of part (i).
Part (ii): consider the maximal multipartition νmax, i.e. the one for which each partition νi

appearing in it has the form νi = (1, . . . , 1). From the above discussion, it follows that Cνmax

is the normalization C̃ of C and that Vδ = Vνmax . Therefore, we have the inclusion Vδ ⊆W by
Propositions 4.1 and 4.5, and equality holds if and only if C̃ is connected, which holds if and
only if C is irreducible.

Part (iii): if ν is a multipartition such that Cν is connected, then as observed above we
can find a refinement ν ′ of ν such that Cν′

is connected and it is maximal with this property.
Therefore Vν′

is an irreducible component of W and Vν ⊆ Vν′
by Proposition 4.1, q.e.d.
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Part (iv): if I is a simple torsion-free rank-1 sheaf then the seminormalization Cν(I) of CI is
connected (see Remark 4.7) and we have that Vν(I) ⊆W (I) by Corollary 4.4 and Proposition 4.5.
Therefore, we complete the proof by part (iii). �

Finally we can state and prove the main result of this section.

Theorem 4.11. Let π : C → S be a projective family of connected curves, with C = Cb having

locally planar singularities, and let kloc
π,b : Tb(B)→ TDef loc

C = TV be the local Kodaira–Spencer

map (see (2.4)). Let W ⊆ TV be the locus of Definition 4.9. Then a relative fine compactified

Jacobian J̄C is regular along (J̄C)o = J̄C if Im(kloc
π,b) is transverse to each irreducible component

of W. In particular, this is the case if Im(kloc
π,b) is a generic subspace of TV of dimension at least

δa(C).

Proof. By Proposition 4.6, a relative fine compactified Jacobian J̄C is regular along (J̄C)o =
J̄C if and only if Im(kloc

π,b) is transverse to any linear subspace W (I) for any sheaf I ∈ J̄C.
By Remark 4.7 and Lemma 4.10(iv), any such linear subspace W (I) contains an irreducible
component of W; therefore, if Im(kloc

π,b) is transverse to each irreducible component of W, then
Im(kloc

π,b) is transverse to every such linear subspace W (I) and the regularity of J̄C along (J̄C)o =
J̄C follows.

Since W has pure codimension δa(C) by Lemma 4.10(i), a generic linear subspace of dimension
δa(C) is transverse to every irreducible component of W. �

Example 4.12. Let C be the banana curve. Then Def(C) is two-dimensional, since C has two
nodes. We have δa(C) = δ(C) + 1− γ(C) = 2 + 1− 2 = 1, and indeed the relative fine compact-
ified Jacobian of a general one-parameter family containing a banana curve is smooth; indeed,
it is the family itself.

Example 4.13. Let C be a nonsingular projective curve of genus g ≥ 2. Let h :M→ A be the
Hitchin fibration for Higgs bundles over C of rank n and degree d with (d, n) = 1. We have
the spectral curve family π : C → A: For every a ∈ A the fibre h−1(a) is isomorphic to the fine
compactified Jacobian of the spectral curve Ca = π−1(a), mapping n : 1 to C. Reducible spectral
curves consist of a union of curves Ci mapping ni : 1 to C, with

∑
ni = n. For such a curve, the

polarization of the corresponding Jacobian is described in Appendix A in [MRV19a]. In this case,
the loci where δa = r have exactly codimension r, that is, by Theorem 4.11, the Hitchin system
exhibits the minimal transversality to the δa loci which is allowed in order to have a smooth
total space.

Remark 4.14. The regularity criterion in Theorem 4.11 is sharp (in other words, the only if
implication is also true) if the following conjecture is true.

Conjecture 4.15. Let J̄C be a fine compactified Jacobian of a (reduced and projective)
connected curve C with planar singularities and let Cν be a connected seminormal partial nor-
malization of C that is maximal with these properties (or, even more generally, any connected
partial normalization of C). Then there exists a sheaf I ∈ J̄C such that CI = Cν .

The above conjecture is easily checked to hold if C is irreducible: in this case the unique
Cν as in the statement of the conjecture is the normalization C̃ of C and it is enough to take
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I = ν∗(L) for a line bundle L on C̃ of suitable degree. Therefore, if C is irreducible we have that
W = Vδ by Lemma 4.10(ii) and Theorem 4.11 above is sharp.

The above conjecture holds true for nodal curves by [MV12, Theorem 5.1]; in particular,
Theorem 4.11 is sharp if C is a nodal curve.

Finally we compare the nonsingularity of relative fine compactified Jacobians Theorem 4.11
with that of the relative Hilbert schemes.

Theorem 4.16. Let π : C → S be a projective family of (non necessarily connected) curves,

with C = Cb having locally planar singularities, let kloc
π,b : Tb(B)→ TDef loc

C = TV be the local

Kodaira–Spencer map (see (2.4)), and let C[d] → B be the relative Hilbert scheme of length d.

Then we have the following.

(i) The regularity of C[d] along (C[d])o = C[d] depends only on Im(kloc
π,b).

(ii) If C[d] is regular along C[d], then dim Im(kloc
π,b) ≥ min(d, δ(C)).

(iii) The relative Hilbert scheme C[d] is regular along C[d] for all d if and only if Im(kloc
π,b) is

transverse to Vδ. In particular, this is the case if Im(kloc
π,b) is a generic subspace of V of

dimension at least δ(C).

Proof. This is proved in [MS13, Theorem 8], using the results of [She12] and [FGvS99]. Note
that although [MS13, Theorem 8] is stated for families of integral curves with locally planar
singularities, its proof relies uniquely on the properties of the deformation theory of locally
planar curve singularities (recalled in § 2.3), and hence the proof of [MS13, Theorem 8] extends
to our more general setting. �

Corollary 4.17. Let π : C → S be as in Theorem 4.11. If C[d] is regular along (C[d])o = C[d] for

all d, then any relative fine compactified Jacobian J̄C is regular along (J̄C)o = J̄C.

Proof. It follows by comparing Theorem 4.11 with Theorem 4.16 and using the fact that
Vδ ⊆W. �

The implication in the above corollary can be reversed if C is irreducible because in this
case W = Vδ by Lemma 4.10(ii); if C is a reducible nodal curve this is not true, in view of
Remark 4.14, and we expect it not to be true for every reducible curve with planar singularities.
This would follow from Conjecture 5.14.

5. Support theorems for versal families

In this section, relying on the results of §§ 3 and 4, we establish Theorems 5.12 and 5.10, which
are the main results of this paper. In this section we work over an algebraically closed field.

The results of § 4 can be interpreted as determining the higher discriminants of the rela-
tive compactified jacobian and relative Hilbert scheme families. This allows us to reduce the
determination of the supports to the nodal locus, which is precisely what we did in § 3.

5.1 Higher discriminants
Higher discriminants [MS13] give an a priori bound on supports which may appear in the direct
image of the constant sheaf by a proper map.
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Definition 5.1. Let f : X → Y be a proper map between nonsingular varieties. For any i ≥ 1,
the ith discriminant Δi(f) is the locus of y ∈ Y such that there is no (i− 1)-dimensional subspace
of TyY transverse to dfx(TxX) for every x ∈ f−1(y).

Observe that the ith discriminants Δi(f) form a chain of closed subsets and, moreover, Δ1(f)
is the discriminant locus of the map f , i.e. the complement of the biggest open subset of Y where
the restriction of the morphism f is a smooth morphism.

Theorem 5.2 [MS18, Theorem 3.3]. Let f : X → Y be a projective map between algebraic vari-

eties, with X nonsingular. Let G be a summand of Rf∗Q�, and let k be the codimension of suppG.
Then

suppG ⊆ Δk(f).

In particular, if, for every k, we have that

codimΔk(f) ≥ k for all k, (5.1)

then every summand of Rf∗Q� is supported on the closure of a k-codimensional component of

Δk(f).

Notice that, over the complex numbers, it follows easily from the existence of stratifications
that the estimate (5.1) always holds. The following theorem, an easy consequence of the results
of § 4, gives a description of the higher discriminants loci of the relative Hilbert scheme and of
any relative fine compactified Jacobian for a versal family in terms of δ (respectively δa)-loci. As
a consequence, estimate (5.1) holds over any algebraically closed field for the maps πJ and π[n].

Theorem 5.3. Let π : C → B be a projective versal family of curves with locally planar singu-

larities, let πJ : J̄C → B be a relative fine compactified Jacobian (which exists after passing to

an étale cover of B by Theorem 2.12), and let π[n] : C[n] −→ B be the relative Hilbert scheme of

length n.

Then we have the following.

(i) The ith discriminant of πJ is equal to

Δi(πJ) = {b ∈ B such that δa(Cb) ≥ i}. (5.2)

Moreover, the geometric generic point of each codimension i irreducible component of

Δi(πJ) is an irreducible nodal curve.

(ii) For every n, we have

Δi(π[n]) ⊆ {b ∈ B such that δ(Cb) ≥ i}. (5.3)

Moreover, the geometric generic point of each irreducible component of Δi(πJ) and of

Δi(π[n]) is a nodal curve.

Proof. Statement (i): the first part follows from Theorem 4.11. For the second part: if Cη̄ is a
geometric generic point of a component of codimension i of Δi(πJ), then, since i ≤ δa(Cη̄) ≤
δ(Cη̄), Fact 2.4 implies that Cη is a nodal curve with δ(Cη̄) = i; hence we must also have that
δa(Cη̄) = δ(Cη̄) which implies that Cη̄ is irreducible.

Statement (ii): the first part follows from Theorem 4.16 while the second part follows from
Fact 2.4. �
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5.2 The sheaf Irr(X/Y )
We shortly discuss the sheaf of irreducible components of a family of curves. Let f : X → Y

be a proper family of geometrically reduced curves. By [Ngô06, Proposition 6.2] applied to the
restriction fsm : Xsm → Y of f to the smooth locus, there is a constructible sheaf Irr(X/Y ) of
finite sets, whose stalk Irr(X/Y )y at the point y is the set of irreducible components of the fibre
Xy = f−1(y). Let {Yα} be the stratification of Y such that Irr(X/Y )|Yα

is locally constant. Let
us fix o ∈ Y . Up to shrinking Y we may assume that every stratum contains o in its closure.

Since the fibre Xo = f−1(o) is geometrically reduced, we may find, after shrinking Y again,
a set {σv}v∈Irr(Xo) : Y → X of sections of the family such that we have the following.

• The point σv(o) belongs to the smooth locus of the irreducible component corresponding
to v.

• For every v and for every y ∈ Y , the point σv(y) lies in the smooth locus of Xy, and hence it
belongs to a unique irreducible component of Xy.

Therefore, we get a map of sets

Vy : Irr(Xo) = Irr(X/Y )o −→ Irr(X/Y )y = Irr(Xy)

v �→ irreducible component of Xy that contains σv(y),

defined for y in a neighborhood of o. By the hypothesis on the strata, this map is surjective. It
follows in particular that, on an appropriate neighborhood of every point, the restriction of the
sheaf Irr(X/Y ) to the connected components of the strata containing the point in their closure
is not only locally constant but in fact constant. More precisely, for every point y ∈ Y there is a
partition λy of Irr(Xo)

Irr(Xo) =
∐

a∈Irr(Xy)

Va

defined by Va := V−1
y (a). Let Yλ ⊆ Y be the locally closed subset of points y ∈ Y such that

λy = λ. The choice of a section in every subset of the partition gives a trivialization of the
restriction of Irr(X/Y ) to Yλ. We summarize the discussion above in the following.

Proposition 5.4. Let f : X → Y be a proper family of geometrically reduced curves, and let

Irr(X/Y ) its sheaf of irreducible components. For a point o ∈ Y , let Po be the set of partitions of

the set Irr(X/Y )o of irreducible components giving rise to a decomposition of Xo into connected
subvarieties. Then, there exists a neighborhood U of o in the étale topology endowed with a

stratification {Uλ}, indexed by Po, with the property that the restriction of the sheaf Irr(X/Y )
to every {Uλ} is a constant sheaf of sets.

Remark 5.5. The restriction on the set of partitions stems from the fact that the specialization
of an irreducible component is connected.

5.3 The families associated with a miniversal deformation
We apply the considerations of § 5.2 to versal families of curves.

Let π : (C, C)→ (B, o) be a projective versal deformation of the (reduced) curve with planar
singularities C over a connected variety B (see Fact 2.3(i)). Up to passing to an open subset of
B containing b, we can assume that π : C → B is a versal family of curves with locally planar
singularities (see Fact 2.3(ii)), which implies that B is smooth and irreducible (see the discussion
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that follows Fact 2.3). Moreover, up to passing to a further Zariski open subset of b, we can
assume that the family satisfies the conclusions in Proposition 5.4.

Let V := V (C) denote the set of irreducible components of C. By Fact 2.4, for any d, we
have that the locus Bδ≥d

× parameterizing nodal curves is open and dense in the stratum Bδ≥d.
By the discussion in § 5.2, every curve Cs of the family determines a partition λs = {Vα}α∈V (Cs)
of V (C), hence a decomposition of C into a union of connected subcurves.

Remark 5.6. The partition associated to the generic (smooth) fiber gives the partition associated
with the connected components of C; at the other extreme, the map Vs is a bijection for any
fiber Cs belonging to the equigeneric stratum (by Lemma 5.7 below), and hence it gives rise to
the identity partition. More generally, if Cs′ is a specialization of Cs, then the map Vs factors
through Vs′ , which implies that λs′ is a refinement of λs.

We start by proving the following result which is instrumental for defining the families we
need to consider.

Lemma 5.7. With the same assumptions as before, consider the equigeneric stratum of maximal

cogenus, Δ := Bδ=δ(C), and let CΔ → Δ be the restriction of the universal family π : C → B

to Δ. Then on Δ the following properties hold true.

(i) The sheaf of sets Irr(CΔ/Δ) of the irreducible components is constant.

(ii) The sheaf of sets of connected subcurves is constant along Δ.

Proof. Let us first prove (i). Consider the normalization Δ̃→ Δ and denote by CΔ̃ → Δ̃ the pull-
back of the family CΔ → Δ. According to Fact 2.5, the normalization C̃Δ̃ → CΔ̃ is a simultaneous
normalization of the family CΔ̃ → Δ̃. In particular, the sheaf of connected components of the
family C̃Δ̃ → Δ̃, which coincides with the pull-back to Δ̃ of the sheaf of irreducible components
of the family CΔ̃ → Δ̃, is locally constant on Δ̃, hence constant, in force of Proposition 5.4, since
the central point belongs to the equigeneric stratum.

Let us now prove part (ii). From (i), we have that if CΔ =
⋃N

i=1 C(i)
Δ is the decomposition into

irreducible components, then the decomposition into irreducible components of the geometric
fiber Ct̄ over any point t ∈ Δ(C) equals

⋃N
i=1 C(i)

t̄
. For each t, we have, by Hironaka’s formula

[GLS07, Lemma 3.3.2]

δ(Ct̄) =
N∑

i=1

δ(C(i)
t̄

) +
∑

1≤k<l≤N

∣∣C(k)
t̄
∩ C(l)

t̄

∣∣. (5.4)

The delta invariant and the intersection numbers of the subcurves are upper semicontinuous
functions in flat families. As the sum (5.4) is constant, we have that δ(C(i)

t̄
) and |C(k)

t̄
∩ C(l)

t̄
| do

not depend on t. Assume
⋃s

i=1 C(i) is a connected subcurve of the central fibre such that, for
some t,

⋃s
i=1 C(i)

t̄
is disconnected, namely, up to a renumbering, we have

C ′̄t
⋂
C′′̄t = ∅, with C ′̄t :=

( a⋃
i=1

C(i)
t̄

)
, and C′′̄t :=

( s⋃
i=a+1

C(i)
t̄

)
.

Denoting C′ =
⋃a

i=1 C(i) and C′′ =
⋃s

i=a+1 C(i), by the argument above we have |C′ ∩ C′′| = |C ′̄t ∩
C′′̄t | = 0. Since C′ and C′′ have no common component, their intersection number is strictly
positive unless the curves are disjoint, which would contradict the connectedness of

⋃s
i=1 C(i). �
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5.4 Main theorems
Let C be a projective curve with planar singularities, defined over C or over Fπ with big enough
cardinality. As in § 5.3, consider a versal deformation π : (C, C)→ (B, b) for C, small enough to
satisfy the conclusions of Proposition 5.4. The index ( )× applied to subsets of B denotes the
operation of intersecting with the nodal locus.

Consider any point b ∈ Δ×: by Lemma 5.7(i), V := V (C) is identified with V (Cb). For any
partition λ of V , giving a decomposition

C =
⋃

Ci

of C into connected subcurves, we also have a decomposition

Cb =
⋃
Cb,i

of Cb, whose subcurves are connected by Lemma 5.7(ii).

Notation 5.8. For b ∈ Δ× and λ a partition of the set V decomposing C in connected subcurves,
we let:

(i) Eλ be the set of nodes joining the different subcurves, i.e. Eλ =
⋃

i�=j Cb,i
⋂Cb,j , and set

δ(λ) := |Eλ|;
(ii) Bλ ⊆ B× be the set where the nodes in Eλ persist;
(iii) πλ : Cλ → Bλ be the family of reduced nodal curves obtained by normalizing these nodes

(notice that the subcurves are now disjoint);
(iv) Bλ,reg ⊆ Bλ be the open dense set where the family,

πλ : Cλ|Bλ,reg
→ Bλ,reg,

is smooth (it is the subset of B× where precisely the nodes in Eλ persist while the others
are smoothed);

(v) iλ : Bλ,reg → B be the (locally closed) embedding.

Remark 5.9. It is clear that this construction does not depend on the choice of b. Furthermore,
if a partition μ refines the partition λ, then Eλ ⊂ Eμ, hence the locus Bμ is naturally contained
in Bλ, whereas the curves in Cμ are clearly partial normalizations of those in (Cλ)|Bμ

, as they are
obtained from these latter by normalizing other nodes.

Theorem 5.10. Let π : (C, C)→ (B, b) be as above and refer to Notation 5.8. Let

π
[n]
λ : Cλ[n]

|Bλ,reg
→ Bλ,reg,

the associated relative Hilbert scheme of length n (which coincide with the nth relative symmetric

product since πλ is smooth over Bλ,reg), and set

F [n]
λ :=

⊕
i

((
ιλ
)
!∗R

iπ
[n]
λ ∗Q̄�

)
[−i].

Then we have

Rπ
[n]
∗ Q̄�

∼=
⊕
λ∈P
F [n−δ(λ)]

λ [−2δ(λ)](δ(λ)), (5.5)

where P is the set of partitions of the set V (C) decomposing C in connected subcurves.
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Proof. We descend to a family πo : Co → Bo defined over a finite, big enough field Fπ. Since
the sheaf of irreducible components is constant along the stratum Δ of maximal cogenus by
Lemma 5.7(i), we can also assume, up to passing to a bigger finite field, that the geometric
irreducible components of the closed fibers of πo are defined over the base field Fπ.

By the classical MacDonald formula (3.13), for every λ ∈ P we have∑
n

qnRπ
[n]
λ ∗Q̄� =

Λ∗(−qR1πλ∗Q̄�)
Λ∗
(−q

(
R0πλ∗Q̄�(1 + L

)) . (5.6)

Since the local system R0πλ∗Q̄� is constant on Bλ,reg, the effect of the denominator results only
in some shifts, direct sums and Tate twists, hence irrelevant to the computation of (ιλ)!∗. Using
(5.6) and applying Theorem 3.14 together with Remark 3.9, we deduce that at every point
b ∈ Bo×(Fπr) the traces of the powers of the Frobenius map on the stalks of the two sides of
(5.5) coincide. Now, applying Corollary A.4 of Appendix A we have the isomorphism (5.5) on the
whole nodal set B×. Since the nodal set is dense in every higher discriminant by Theorem 5.3(ii),
the isomorphism (5.5) holds on the entire B. �

Example 5.11. Let C be the union of pair of lines, C1, C2 which meet once and transversely.
A representative for the base B of a versal deformation of C is given by taking the com-
pactification of the map (x, y) �→ xy; in any case we denote this deformation by (C, C)→
(B, o).

We want to compute directly the left-hand side and right-hand side of Theorem 5.10.We will
just study the stalks at the point [C]. One has, e.g. from [Ran05],

[C[n]] = [(P1)[n]] +
[(

P1
∐

P1
)[n−1]] · L.

Hence, passing to the generating series, the left-hand side is given by

∞⊕
n=0

qnRπ
[n]
∗ Q̄l|[C] =

∞∑
n=0

qn

(
[Pn] + L ·

n−1∑
j=0

[Pj ][Pn−1−j ]
)

=
1

(1− q)(1− qL)
+

qL(
(1− q)(1− qL)

)2 .

On the right-hand side, we are reduced to summing over decompositions of the curve C; here
there are just two, C = C, corresponding to the partition (2), and C = C1 ∪ C2, corresponding
to the partition (1, 1). For this latter decomposition the stratum B(1,1) is just the point o and
we have that δ(1,1) = 1. All genera are zero and (hence) all fine compactified Jacobians are just
points. Thus, the contribution of the partition (2) is 1/(1− q)(1− qL) and the contribution of
the partition (1, 1) is (1/(1− q)(1− qL))2, with a term qL to account for the shifts in 5.10.

Theorem 5.12. Let π : (C, C)→ (B, b) be as above and let πJ : J̄C → B be a relative fine com-

pactified Jacobian (which exists after passing to an étale cover of B, by Theorem 2.12). Then, if

j : Breg → B, we have

RπJ
∗ Q̄� =

⊕
i

j!∗
(∧i

R1π∗Q̄�|Breg

)
[−i], (5.7)

i.e. no summand of RπJ∗ Q̄� has positive codimensional support.
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Proof. Over Breg the isomorphism RπJ∗ Q̄�|Breg
=
⊕

i

∧iR1π∗Q̄�|Breg
[−i] follows from the standard

computation of the cohomology of the Jacobian of a nonsingular curve. Hence RπJ∗ Q̄� contains
a summand isomorphic to

⊕
i j!∗
(∧iR1π∗Q̄�|Breg

)
[−i]. Assume by contradiction that there are

other summands in the decomposition theorem: these must be supported on some codimension
i > 0 irreducible component of Δi(πJ) by Theorem 5.2. Theorem 5.3(i) implies that the generic
point η of this support is such that Cη̄ is an irreducible nodal curve. Since the stalk at η of the new
summand is a complex of pure vector spaces, this would imply that the weight polynomial of the
compactified Jacobian of Cη and w

(∑
i IC

(∧iR1π∗Q̄�|Breg

)
η
[−i]

)
disagree. But both polynomials

are equal to (1 + t)2g(Cν
η̄ )t2h1(Γ), where Cν

η̄ is the normalization of the curve Cη̄ (see Corollaries
3.10 and B.4), and this is the desired absurd. �

Remark 5.13. In Appendix B we will compute the weight polynomial of a fine compactified
Jacobian of a general nodal curve, i.e. not necessarily irreducible. The comparison with (3.15)
gives an alternative proof of Theorem 5.12 which avoids the estimate on the dimension of the
higher discriminants of Theorem 5.3(i). The proof given here, though, seems more conceptual to
us, as it emphasizes the link between supports theorems and deformation theory.

5.5 Independently broken H-smooth families
In this section we consider a class of not necessarily versal families of curves.

Definition 5.14. A projective family π : C → B of curves with planar singularities is said
independently broken H-smooth if we have the following.

(i) All the relative Hilbert schemes π[n] : C[n] → B have nonsingular total space (included the
case n = 0, i.e. B is nonsingular), and there exists a relative fine compactified Jacobian.

(ii) The sheaf of irreducible components Irr(C/B) satisfies the conclusions of Proposition 5.4,
(iii) For every d, the set Bδ=d := {b ∈ B : δ(Cb) = d} contains an open dense subset Bδ=d×

parameterizing nodal curves.

Example 5.15. Let C be a projective curve with planar singularities and let π : (C, C)→ (B, b)
be a projective versal deformation of C over a variety B. Pick a subspace U ⊂ B of dimension
at least δ(C) + 1 transverse to Δ. If U is small enough, the restriction of the versal family to
U gives an independently broken H-smooth family by Theorem 4.16. Vice versa, an indepen-
dently broken H-smooth family is locally the pull-back along a smooth morphism of such a
family.

Remark that, in view of Corollary 4.17, the total space of any relative fine compactified
Jacobian for an independently broken H-smooth family is nonsingular. It is almost immediate
to notice that the two main theorems in § 5 hold for independently broken H-smooth families.
First notice that, using the constructions leading to the definitions of the loci Bλ, the families
πλ may still be done. Noticing that the higher discriminants are just the intersections of those
for the versal family we easily see the following.

Corollary 5.16. Theorems 5.12 and 5.10 hold for hold for independently broken H-smooth

families.
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Appendix A

We collect here some consequences of the results contained in § 5.3 of [BBD82] to justify our
reduction to point counting.

In this appendix, Bo denotes an algebraic variety defined over the finite field k = Fπ, and
we will be considering perverse Q̄�-sheaves (or more generally complexes of constructible Q̄�-
sheaves) on Bo that are pure in the sense of [BBD82, § 5.1]. However, recall that we use (as always
throughout this paper) a different convention on perverse sheaves with respect to [BBD82]: a
sheaf K supported on an irreducible closed subvariety Yo ⊆ Bo is perverse in our convention if
and only if K[dim Yo] is perverse in the sense of [BBD82].

We will need the following two results from [BBD82, § 5.3] on the structure of pure perverse
sheaves on Bo.

Proposition A.1 [BBD82, Theorem 4.3.1 and Proposition 5.3.9]. A pure perverse sheaf Po on

Bo admits a unique decomposition

Po =
⊕

i

Si ⊗ Eni , (A.1)

where Si are simple pure perverse sheaves on Bo and Ek is the rank k Jordan block locally

constant Q̄�-sheaf described in [BBD82, p. 138].

Moreover, each Si is of the form j!∗(Li), where j : Uo,i ↪→ Bo is a locally closed embedding,

Uo,i is smooth and irreducible, and Li is a Q̄�-sheaf lisse and irreducible on Uo,i. In particular,

the support of Si is the irreducible closed subvariety Ūo,i.

The supports of the simple pure perverse sheaves appearing in the decomposition (A.1) of Po

are called the supports of Po (note that the supports are irreducible closed subvarieties of Bo).
The semisimplification of Po is given in terms of the decomposition (A.1) as

P ss
o =

⊕
i

Sni
i .

Proposition A.2 [BBD82, Corollary 5.3.11]. If Po is a pure perverse sheaf, and j : Uo → Bo is

a dense open imbedding, then

Po = j!∗j∗Po ⊕ P ′

where P ′ is a perverse pure sheaf supported on Bo\Uo.

Using the above results, we can give the following criterion ensuring that two perverse pure
sheaves have isomorphic semisimplifications.

Proposition A.3. Let Po and Qo two pure perverse sheaves on Bo, and let {Yo,α}lα=1 be the

collection of the supports of Po and Qo. Assume that, for every α = 1, . . . , l, there is a dense open
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subset Uo,α ⊆ Yo,α, with the following property: for every x ∈ Uo,α(k′) with k′ a finite extension

of k, and for every positive integer N , we have

Tr(σN
x , Px) = Tr(σN

x , Qx)

where σx is the Frobenius conjugacy class in π1(Uo,α) associated to x. Then Po and Qo have

isomorphic semisimplifications.

In particular, the two sheaves Po and Qo have the same traces of the Frobenius everywhere,

i.e.

Tr(σN
x , Px) = Tr(σN

x , Qx),

for every point x ∈ Bo(k′) with k′ any finite extension of k, and for every positive integer N .

Proof. The proof is by induction on the number of supports. Consider a maximal support (i.e.
a support that is not contained in any other support), say Yo,1 up to renaming the supports.
Consider an open dense subset j : Uo,1 ↪→ Yo,1 as in the hypothesis. By the maximality of Yo,1

and the fact that Yo,1 is irreducible, we can assume, up to passing to a smaller open subset, that
Uo,1 is smooth and disjoint from all the supports different from Yo,1. Combining Propositions
A.1 and A.2, we can write (up to further restricting Uo,1)⎧⎪⎪⎨⎪⎪⎩

Po = j!∗(j∗(Po))⊕ P ′o with j∗(Po) =
⊕

i

Li ⊗ Eni ,

Qo = j!∗(j∗(Qo))⊕Q′o with j∗(Qo) =
⊕

i

Mi ⊗ Emi ,
(A.2)

where Li and Mi are Q̄�-sheaf lisse and irreducible on Uo,1, ni and mi are natural numbers, P ′o
and Q′o are pure perverse sheaves supported on Bo\Uo,1.

The Q̄�-sheaves j∗(Po) and j∗(Qo) are lisse on Uo,1 and they have the same traces of
Frobenius everywhere on Uo,1 by the hypothesis and the fact that Uo,1 is disjoint from all
the supports different from Yo,1. Hence we can apply the Chebotarev theorem (see [Lau87,
Theorem 1.1.2 and Proposition 1.1.2.1]) in order to conclude that j∗(Po) and j∗(Qo) have the
same semisimplification, i.e.⊕

i

Lni
i = j∗(Po)ss = j∗(Qo)ss =

⊕
i

Mmi
i . (A.3)

In particular, j!∗j∗(Po) and j!∗j∗(Qo) have the same traces of Frobenius everywhere on Ui,o = Yo,i.
This implies that the two pure perverse sheaves P ′o and Q′o verify the same hypothesis on the
traces of Frobenius with respect to their supports {Yo,α}lα=2. Hence by the induction hypothesis
on the number of supports, we have that

(P ′o)
ss = (Q′o)

ss. (A.4)

Combining (A.2), (A.3) and (A.4), we conclude that P ss
o = Qss

o . �

Corollary A.4. Let Ko and Lo two pure complexes of constructible Q̄�-sheaves on Bo such

that

Ko �
⊕

pHi(Ko)[−i], Lo �
⊕

pHi(Lo)[−i].
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Let {Yo,α}α=1,...l be the collection of the supports of pHi(Ko) and pHi(Lo). Assume that, for

every α = 1, . . . l, there is a dense open subset Uo,α ⊆ Yo,α, with the following property: for every

x ∈ Uo,α(k′) with k′ a finite extension of k, and for every positive integer N , we have

Tr(σN
x , Kx) = Tr(σN

x , Lx),

where σx is the Frobenius conjugacy class in π1(Uo,α) associated to x. Then Ko and Lo have

isomorphic semisimplifications.

Proof. We proceed by induction, starting with the open set on which Ko and Lo are isomorphic to
a direct sum of pure semisimple (shifted) lisse sheaves. Then, using the fact that every summand is
pointwise pure on an open set of its support, one can separate the different perversities according
to the absolute values of the Frobenius eigenvalues. �

Appendix B

In this appendix, we work over an algebraically closed field k = k̄. Our goal is to determine the
class of a fine compactified Jacobian of a nodal curve C in K0(Vark̄). As explained in Remark 5.13
this computation gives an alternative proof of Theorem 1.8, and in turn it is a consequence of
it. We include it for completeness, as we believe it is of independent interest.

Let us first compute the class in K0(Vark̄) of the generalized Jacobian JC of C, which is by
definition the connected component of the Picard scheme Pic(C) of C containing the identity.
The normalization morphism ν : Cν → C induces the sequence

1→ Gm → ν∗Gm → ν∗Gm/Gm → 1,

which yields, by taking cohomology,

1→ H0(C, Gm)→ H0(Cν , Gm)→ H0(C, ν∗Gm/Gm)→ H1(C, Gm)→ H1(Cν , Gm)→ 1.

(B.1)
In terms of the dual graph Γ = ΓC of C, we have

1→ H0(Γ, Z)⊗Gm → H0(Cν , Gm)→ H0(C, ν∗Gm/Gm)→ H1(Γ, Z)⊗Gm → 1.

Substituting into (B.1) and restricting to the connected component of the identity gives an
exact sequence of algebraic groups

1→ H1(Γ, Z)⊗Gm
∼= Gh1(Γ)

m → JC
ν∗→ JCν → 1, (B.2)

where h1(Γ) is the rank of the free abelian group H1(Γ, Z).
Since Gm = GL1 is a special group, the sequence (B.2) is Zariski locally trivial, hence we

have the following equality in K0(Vark̄):

JC = JCν Gh1(Γ)
m = JCν (L− 1)h1(Γ). (B.3)

In order to compute the class in K0(Vark̄) of a fine compactified Jacobian J̄C(m) of C, we
need to recall the stratification of J̄C(m) in terms of partial normalizations of C studied in
[MV12] (see also [OS79, Ale04]). Given any torsion-free, rank-1 sheaf I on C, its endomorphism
sheaf EndOC

(I) is a sheaf of finite OC-algebras such that OC ⊆ EndOC
(I) ⊆ OCν . The sheaf I is
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naturally a sheaf on the partial normalization CI := Spec
C
(EndOC

(I)) of C; the original I being
recovered by the pushforward along the partial normalization morphism νI : CI → C. Since C
is nodal, it can be checked that CI is the partial normalization of C at all the nodes where I
is not locally free and I is a line bundle on CI . This gives rise to a stratification of any fine
compactified Jacobian J̄C(m) into locally closed subsets

J̄C(m) =
∐

S⊂Csing

J̄C,S(m) :=
∐

S⊆Csing

{I ∈ J̄C(m) : CI = CS}. (B.4)

The following result describes the stratum J̄C,S(m) in terms of the graph Γ\S obtained from
the dual graph Γ = ΓC of C by deleting the edges corresponding to S.

Proposition B.1 [MV12, Theorem 5.1]. Let C be a connected nodal curve over k̄ and let

J̄C(m) be a fine compactified Jacobian. Then for every S ⊆ Csing, the stratum J̄C,S(m) is

isomorphic to a disjoint union of ĉ(Γ\S) copies of JCS , where

ĉ(Γ\S) =

{
c(Γ\S) = #{spanning trees of Γ\S} if Γ\S is connected,

0 if Γ\S is not connected.
(B.5)

We are now ready to compute the class of a fine compactified Jacobian of a nodal curve in
K0(Vark̄).

Proposition B.2. Let C be a connected nodal curve over k̄ and let J̄C be a fine compactified

Jacobian of C. Then, in K0(Vark̄), we have

J̄C(m) = JCν · c(Γ)Lh1(Γ). (B.6)

Proof. From the stratification (B.4) together with Proposition B.1 and (B.3), we get that

J̄C(m) =
∑
S⊂E

ĉ(Γ\S) · JCS = JCν

∑
S⊂E

ĉ(Γ\S) · (L− 1)h1(Γ\S).

Thus our goal is to prove

ĉ(Γ)Lh1(Γ) =
∑
S⊂E

ĉ(Γ\S) · (L− 1)h1(Γ\S).

Note that if ĉ(Γ\S) is not zero, i.e. if Γ\S is connected, then h1(Γ\S) = h1(Γ)− |S|. We substitute
x + 1 = L. Then the above required formula reads

ĉ(Γ)
h1(Γ)∑
i=0

(
h1(Γ)

i

)
xi =

∑
S⊂E

ĉ(Γ\S) · xh1(Γ)−|S|.

This holds for each coefficient of x by the following Lemma B.3. �
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Lemma B.3. For any connected graph Γ,∑
S⊆E(Γ)
|S|=i

ĉ(Γ\S) =
(

b1(Γ)
i

)
· ĉ(Γ).

Proof. The left-hand side counts the number of ways to first remove i edges from Γ, and then
find a spanning tree of Γ from what remains, whereas the right-hand side counts the number of
ways to first find a spanning tree of Γ, which amounts to removing some b1(Γ) edges, and then
decide which i of those edges you removed ‘first’. �

From the above proposition, we can compute the weight polynomial of fine compactified
Jacobians of nodal curves.

Corollary B.4. Make the same assumptions as in Proposition B.2. Then the weight polyno-

mial of J̄C(m) is equal to

w
(
J̄C(m)

)
= (1 + t)2g(Cν)t2h1(Γ)c(Γ). (B.7)

Proof. This follows from Proposition B.2 using that w(L) = t2 and that w(JCν ) = (1 + t)2gν(C)

because w(JCν ) is an abelian variety of dimension gν(C). �
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des surfaces, Lecture Notes in Mathematics, vol. 777 (Springer, 1980).
War02 T. Warmt, Gorenstein-Dualität und topologische Invarianten von Singularitäten, PhD Disser-
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