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Tropicalizing vs. compactifying
the Torelli morphism

Filippo Viviani

Abstract. In this paper, we compare the compactified Torelli morphism t̄g
(as defined by V. Alexeev) and the tropical Torelli map ttrg (as defined by the
author in a joint work with S. Brannetti and M. Melo, and furthered studied by
M. Chan). Our aim is twofold: on one hand, we will review the construction
and main properties of t̄g and ttrg , focusing in particular on the description
of their fibers achieved by the author in joint works with L. Caporaso; on
the other hand, we will clarify the relationship between t̄g and ttrg via the
introduction of the reduction maps and the tropicalization maps.

1. Introduction

The Torelli morphism (or map) tg : Mg → Ag (for g ≥ 2) is the morphism
from the moduli stack Mg of connected smooth projective curves of genus g to
the moduli stack Ag of principally polarized (or p.p. for short) abelian varieties of
dimension g, sending a curve into its Jacobian. The Torelli morphism tg has played
a central role since the early developments of classical algebraic geometry since it
establishes a bridge between the two most studied moduli stacks, namely Mg and
Ag. We just want to mention two classical results on the Torelli morphism: the
Torelli theorem which says that tg is injective (on geometric points); the Schottky
problem which asks for a characterization of the image of tg.

In this paper, we are interested in two other maps that have been recently
defined starting from the Torelli morphism: the compactified Torelli morphism t̄g
(defined in [6] based upon the work [5]) and the tropical Torelli map ttrg (defined in
[11] based upon the work [14], and furthered studied in [18]). Our aim is twofold:
on one hand, we will review the definitions and main properties of the above maps,
focusing in particular on the description of their fibers achieved in [14,15]; on the
other hand, we will explain and better clarify the relationship between t̄g and ttrg .
Before we can state the results of this paper, we need to briefly recall the definitions
of t̄g and ttrg .

The moduli stacks Mg and Ag are irreducible and separated but not proper.
However, they both admit a modular compactification: Mg is an open and dense
substack of the Deligne –Mumford [21] moduli stackMg of stable curves (which we
review in §2.1); Ag is an open and dense substack of the main irreducible component
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Ag of the Alexeev [5] moduli stack of p.p. stable semi-abelic pairs (which we review
in §3.2).

V. Alexeev has shown in [6] that the Torelli morphism tg extends to a modular
morphism tg :Mg → Ag, called the compactified Torelli morphism, which sends
a stable curve into its compactified Jacobian of degree g − 1; see §4.2 for more
details. The fibers of the compactified Torelli morphism t̄g have been described by
Caporaso –Viviani in [15]. In particular, it turns out that t̄g is injective on the
open subset of Mg consisting of stable curves that do not have separating edges
nor separating pairs of edges or, in other words, stable curves whose dual graph
is 3-edge-connected (see Corollary 4.2.11). We recall the precise description of the
fibers of t̄g in §4.2.4, where we also point out a new interesting relationship with
the image of the canonical morphism (see Theorem 4.2.13).

On the tropical side of the picture, Brannetti –Melo – Viviani [11] (based on the
work of Caporaso –Viviani in [14]) constructed the moduli space M tr

g of tropical
curves of genus g and the moduli space Atr

g of tropical p.p. abelian varieties of
dimension g. The spaces M tr

g and Atr
g are constructed in loc. cit. as stacky fans, i.e.,

connected topological spaces obtained by gluing in a suitable way cones quotiented
out by finite automorphism groups. In particular, M tr

g and Atr
g are endowed with a

natural topology, which we call the Euclidean topology, with respect to which they
are Hausdorff spaces, as proved by L. Caporaso [13] for M tr

g and by M. Chan [18]
for Atr

g . We refer the reader to §2.3 for more details on M tr
g and to §3.1 for more

details on Atr
g .

In [11], the authors also construct a map ttrg : M tr
g → Atr

g , called the tropical
Torelli map, which sends a tropical curve into its tropical Jacobian. In loc. cit., it
is shown that ttrg is a map of stacky fans; in particular, it is a continuous map. The
fibers of the tropical Torelli map ttrg have been described by Caporaso – Viviani in
[14]. In particular, it turns out that ttrg is injective on the locally closed subset of
M tr

g consisting of tropical curves whose underlying graph is 3-vertex-connected and
has genus g (see Corollary 4.1.16). We recall the precise description of the fibers of
ttrg in §4.1.8 (see Fact 4.1.15).

The main motivation of this work is the following natural

Question. What is the relationship between the compactified Torelli mor-
phism t̄g and the tropical Torelli map ttrg ?

In order to answer the above question, let us fix a complete DVR (= discrete
valuation ring) R with maximal ideal m and assume that its residue field k := R/m
is algebraically closed. Let K be the quotient field of R and val : K → Z ∪ {∞}
the associated valuation. Note that the valuation val induces a topology on K,
which is called the non-Archimedean topology (see §1.0.2). The sets Mg(K) and
Ag(K) of K-valued points of, respectively, Mg and Ag inherit a topology from the
topology on K, which we also call non-Archimedean topology. The classical Torelli
morphism tg : Mg → Ag induces a continuous map Mg(K) → Ag(K) which, by a
slight abuse of notation, we also denote by tg.

On the other hand, the compactified Torelli morphism t̄g induces a mapMg(k)
→ Ag(k) between the k-valued points of, respectively,Mg and Ag (which we also
denote by t̄g by a slight abuse of notation); moreover this map is continuous with
respect to the Zariski topologies onMg(k) and on Ag(k).
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After these preliminaries, we can state the first main result of this note, which
can be seen as an answer to the above Question.

Theorem A. There is a commutative diagram of sets

(1.1)

Mg(k)

t̄g

��

Mg(K)

tg

��

red�� trop �� M tr
g

ttrg

��
Ag(k) Ag(K)red�� trop �� Atr

g

where the vertical maps are continuous if we put the Zariski topology on the spaces
on the left-hand side, the non-Archimedean topology on the spaces in the middle
and the Euclidean topology on the spaces on the right-hand side.

The spaces appearing on the left and on the right hand sides of the above
diagram (1.1) admit natural stratifications into locally closed subsets and our second
main result concerns the compatibility of these stratifications with respect to the
above reduction maps red and tropicalization maps trop. Let us briefly review how
these stratifications are defined.

On one hand, to every stable weighted graph (Γ, w) of genus g, we associate
two locally closed subsets

Mg(Γ, w) ⊂Mg(k),
M tr

g (Γ, w) ⊂ M tr
g ,

whereMg(Γ, w) consists of all stable curves X ∈Mg(k) whose dual graph is (Γ, w)
and M tr

g (Γ, w) consists of all tropical curves C ∈ M tr
g whose underlying combina-

torial type is (Γ, w). As observed already in [11, [§6.3]], the above stratifications of
Mg(k) and of M tr

g enjoy the following duality property with respect to the inclusions
among the closures of strata:

(1.2) Mg(Γ, w) ⊆Mg(Γ′, w′) ⇐⇒ M tr
g (Γ, w) ⊇ M tr

g (Γ′, w′).

We refer the reader to §2 for more details.
On the other hand, to every equivalence class of Delaunay decompositions [Δ]

of Rg, we associate two locally closed subsets

Ag([Δ]) ⊂ Ag(k),
Atr

g ([Δ]) ⊂ Atr
g ,

where Ag([Δ]) consists of all p.p. stable semi-abelic pairs whose associated Delaunay
decomposition is [Δ] and Atr

g ([Δ]) consists of all tropical p.p. abelian varieties whose
associated Delaunay decomposition is [Δ]. Also the stratifications of Ag(k) and of
Atr

g enjoy a similar duality property:

(1.3) Ag([Δ]) ⊆ Ag([Δ′]) ⇐⇒ Atr
g ([Δ]) ⊇ Atr

g ([Δ′]).

We refer the reader to §3 for more details.

Theorem B. (i) For any stable weighted graph (Γ, w) of genus g, it holds
that

red−1(
Mg(Γ, w)

)
= trop−1(

M tr
g (Γ, w)

)
.
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(ii) For any equivalence class of Delaunay decompositions [Δ] of Rg, it holds
that

red−1(
Ag([Δ])

)
= trop−1(

Atr
g ([Δ])

)
.

We have observed in Theorem A that the vertical maps appearing in diagram
(1.1) are continuous with respect to the topologies specified in loc. cit. What about
the continuity properties of the reduction maps red and of the tropicalization maps
trop? For the reduction maps red, we can prove the following

Theorem C. In the diagram (1.1), the reduction maps red are anticontinuous
(i.e., the inverse image of a closed subset is open).

Indeed, we prove more generally that for any stack X proper over SpecR the
natural reduction map X (K) → X (k) is anticontinuous (see Corollary 5.0.4).

As far as the tropicalization maps trop are concerned, we make the following

Conjecture. In the diagram (1.1), the tropicalization maps trop are contin-
uous.

Note that a positive answer to the above Conjecture, together with Theorem C,
could be regarded as a conceptual explanation of the duality (1.2) among the strati-
fications of M tr

g and ofMg(k) as well as of the duality (1.3) among the stratifications
of Atr

g and of Ag(k).
While this work was been completed, we heard from [28] of a work in progress

of M. Baker and J. Rabinoff, where they will prove the commutativity of the right
square of diagram (1.1) in greater generality, namely working over an arbitrary non-
Archimedean (not necessarily discrete) valued field K and replacing the topological
spaces in the middle with the (bigger) Berkovich analytifications of Mg and of Ag.

Moreover, while this paper was under the refereeing process, the interesting
preprint [3] by D. Abramovich, L. Caporaso and S. Payne was posted on arXiv. In
[3, Theorem 1.2.1(1)], the authors prove that the compactification M tr

g of M tr
g con-

structed by L. Caporaso in [13, §3.3] is isomorphic to the skeleton of the Berkovich
analytificationMan

g ofMg. Moreover, they show in [3, Theorem 1.2.2(2)] that the
tropicalization map trop: Mg(K) → M tr

g of Theorem A extends to a continuous,
proper and surjective map Trop:Man

g → M tr
g . As a corollary, one gets that the

tropical map trop: Mg(K) → M tr
g is continuous, thus providing a positive partial

answer to the above conjecture.
We conclude this introduction with an outline of the paper and with the nota-

tions we are going to use throughout the paper.
1.0.1. Outline of the paper. In §2, we review the definition and main properties

of the moduli stackMg of Deligne – Mumford stable curves (§2.1) and of the moduli
space M tr

g of tropical curves (§2.3). Moreover, we define the reduction map curves
in §2.2.6, the tropicalization map for curves in §2.4, and we prove Theorem B(i) at
the end of the section.

In §3, we review the definition and main properties of the moduli space Atr
g of

tropical p.p. abelian varieties (§3.1) and of the main component Ag of the mod-
uli stack of Alexeev p.p. stable semiabelic pairs (§3.2). Moreover, we define the
tropicalization map for abelian varieties in §3.1.7, the reduction map for abelian
varieties in §3.2.6 and we prove Theorem B(ii) at the end of the section.
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Section 4 is devoted to the two Torelli maps ttrg and t̄g. In §4.1, we review
the definition of the tropical Torelli map ttrg and we prove the second half of The-
orem A, i.e., that the tropicalization maps commute with the Torelli maps (see
Theorem 4.1.7). Moreover, we recall the description obtained in [14] of the fibers
of ttrg in §4.1.8. In §4.2, we review the definition of the compactified Torelli mor-
phism t̄g and we prove the first half of Theorem A, i.e., that the reduction maps
commute with the Torelli maps (see Theorem 4.2.3). Moreover, we recall the de-
scription obtained in [15] of the fibers of t̄g in §4.2.4. Section 4 ends with a new
description of the fibers of t̄g on the locus of curves free from separating nodes and
not hyperelliptic in terms of their canonical morphisms (see Theorem 4.2.13).

Finally, in §5, we prove Theorem C, i.e., the anticontinuity of the reduction
maps. Indeed, we show that the same result is true for any stack proper over
SpecR (see Corollary 5.0.4).

1.0.2. Notations.
• Throughout the paper, we fix an integer g ≥ 2.
• We fix a complete1 discrete valuation ring (DVR for short) R with maximal

ideal m and we assume that its residue field k := R/m is algebraically closed. Given
an element x ∈ R, we denote by x̄ ∈ k its reduction modulo the maximal ideal m.
Let K be the quotient field of R.

• We denote by s the closed (or special) point of SpecR and by η its generic
point. In particular, the residue field of s is equal to k while the residue field of η
is equal to K.

• Let val : K → Z ∪ {∞} be the valuation associated to the discrete valuation
ring R. The valuation val induces a non-Archimedean norm |·| on K defined as

|x| := e− val(x),

where e is the Euler number (indeed for the purpose of what follows we can replace
e by any positive real number). The norm |·| induces a metric d on K defined by

d(x, y) = |x− y|.

The topology on K induced by this metric d is called the non-Archimedean topology
on K. We endow R ⊂ K with the subspace topology, which is called the non-
Archimedean topology on R. Note that the maximal ideal m ⊂ R coincides with
the open ball of radius 1 centered at 0:

m = {x ∈ R : |x| < 1} = {x ∈ R : d(0, x) < 1}.

Similarly, the product topologies on Rn and Kn are called non-Archimedean topolo-
gies.

• Given any finite extension of fields K ⊆ K ′, the valuation val on K can
be extended in a unique way to a valuation val′ on K ′ (using the fact that K is
complete with respect to val). The valuation ring of val′, also called the valuation
ring of K ′ and denoted by R′, is also equal to the integral closure of R in the field
K ′. Note that the valuation ring R′ is also a complete DVR. With a slight abuse
of notation, we denote by s the special point of SpecR′ and by η the generic point
of SpecR′.

1Indeed, everything that we are going to say in this paper can be extended to a strictly
Henselian discrete valuation ring R. However, for simplicity, we assume that R is complete.
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• A map f : X → Y between topological spaces is said to be anticontinuous
if the inverse image of any closed subset of Y is open in X, or equivalently if the
inverse image of any open subset of Y is closed in X.

2. Moduli spaces of curves

2.1. The moduli stack Mg of stable curves. The moduli stack Mg of
connected smooth projective curves of genus g ≥ 2 can be compactified by adding
stable curves.

Definition 2.1.1. A stable curve X of genus g over a field k is a connected
projective nodal curve over k of arithmetical genus g whose canonical sheaf ωX is
ample.

The following celebrated result is due to Deligne – Mumford [21].

Fact 2.1.2 (Deligne – Mumford). The stackMg of stable curves of genus g is
proper and smooth over SpecZ. Moreover, Mg is irreducible of dimension 3g − 3
and it contains Mg as a dense open substack.

2.2. The stratification of Mg(k). The setMg(k) of all stable curves of
genus g defined over k endowed with its Zariski topology admits a stratification
into locally closed subspaces, parametrized by stable weighted graphs of genus g,
whose definition we recall below.

Definition 2.2.1. A weighted graph is a couple (Γ, w) consisting of a finite
connected graph Γ (possibly with loops or parallel edges) and a function w : V (Γ) →
N, called the weight function. A weighted graph is called stable if any vertex v of
weight zero (i.e., such that w(v) = 0) has valence val(v) ≥ 3. The total weight of a
weighted graph (Γ, w) is

|w| :=
∑

v∈V (Γ)

w(v),

and the genus of (Γ, w) is equal to
g(Γ, w) := g(Γ) + |w|.

Given a weighted graph (Γ, w), the automorphism group Aut(Γ, w) of (Γ, w)
consists of all the pairs (σ, ψ) where σ is a permutation of the vertices V (Γ) of Γ
and ψ is a permutation of the edges E(Γ) of Γ such that:

• w
(
σ(v)

)
= w(v) for any v ∈ V (Γ);

• if an edge e ∈ E(Γ) is incident to a vertex v ∈ V (Γ) then ψ(e) is incident
to σ(v).

To every stable curve X of genus g it is naturally associated a stable weighted
graph of genus g, called its dual weighted graph, which captures the combinatorics
of the stable curve.

Definition 2.2.2. The dual weighted graph of a stable curve X of genus g is
the weighted graph (ΓX , wX) defined as it follows.

The vertices V (ΓX) of the graph ΓX are in bijection with the irreducible com-
ponents of X while the edges E(ΓX) of X are in bijection with the nodes of X. An
edge e ∈ E(ΓX) corresponding to a node ne of X links the (possibly equal) vertices
v1 and v2 corresponding to the (possibly equal) irreducible components Cv1 and
Cv2 which contain the node ne.
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The weight function wX : V (ΓX) → N assigns to every vertex v of ΓX the
geometric genus of the irreducible component Cv corresponding to the vertex v.

It is easy to check that the dual weighted graph (ΓX , wX) of a stable curve X
of genus g is stable and of genus g.

To every stable weighted graph (Γ, w) of genus g, we associate the following
subset ofMg(k):

(2.1) Mg(Γ, w) := {X ∈Mg(k) : (ΓX , wX) = (Γ, w)}.

As (Γ, w) varies among all stable weighted graphs of genus g, we get a stratification
of Mg(k) into disjoint locally closed subsets. In order to describe the inclusion
relations between the closures of these strata, we introduce the following order
relation among all stable weighted graphs of genus g.

Definition 2.2.3. Given two weighted graphs (Γ, w) and (Γ′, w′), we say that
(Γ, w) dominates (Γ′, w′), and we write (Γ, w) ≥ (Γ′, w′), if Γ′ is obtained from Γ
by contracting some of its edges and the weight function w′ is obtained from the
weight function w by an iteration of the following rule:

• If Γ′ is obtained from Γ by contracting an edge e that joins two distinct
vertices v1 and v2, then the vertex ṽ of Γ′ which is the image of the two vertices v1
and v2 has weight w′(ṽ) = w(v1) + w(v2).

• If Γ′ is obtained from Γ by contracting a loop e around the vertex v, then
the vertex ṽ of Γ′ which is the image of v has weight w′(ṽ) = w(v) + 1.

It is easy to see that if (Γ, w) ≥ (Γ′, w′) then g(Γ, w) = g(Γ′, w′) and moreover,
if (Γ, w) is stable, then (Γ′, w′) is stable.

We can now describe the inclusion relation among the closures of the strata of
Mg.

Fact 2.2.4. The spaceMg(k) admits a stratification into disjoint locally closed
subsets

Mg(k) =
∐

(Γ,w)

Mg(Γ, w),

as (Γ, w) varies among all stable weighted graphs of genus g.
Given two stable weighted graphs (Γ, w) and (Γ′, w′) of genus g, we have that

Mg(Γ, w) ⊆Mg(Γ′, w′) ⇐⇒ (Γ, w) ≥ (Γ′, w′).

Proof. This is well-known, see, e.g., [7, Chapter XII, §10; 13, §4.2]. �

Remark 2.2.5. Indeed, the stratification of the topological space Mg(k) de-
scribed in Fact 2.2.4 is induced by a stratification of the stackMg into locally closed
substacks. We refer to [7, Chapter XII] for more details.

2.2.6. The reduction map red: Mg(K) → Mg(k). We are now ready to define
the reduction map red: Mg(K) →Mg(k) appearing in the diagram (1.1). Since
the stackMg is proper, the valuative criterion of properness for stacks gives that
for any map f : SpecK → Mg ⊆Mg there exists a finite extension K ′ of K with
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valuation ring R′ and a unique map φ : SpecR′ → Mg such that the following
diagram is commutative

SpecR′

φ

������
�����

�����
�����

�����
����

SpecK ′ ��

��

SpecK
f �� Mg

� � ��Mg.

In other words, given a connected smooth projective curve X ∈ Mg(K), up to a
finite extension K ⊆ K ′ with valuation ring R′, there exists a unique family of
stable curves X ′ → SpecR′, called the stable reduction of X with respect to the
extension K ⊆ K ′, such that its generic fiber X ′

η′ := X×SpecR′SpecK ′ is isomorphic
to XK′ := X ×K K ′. Note that the residue field of R′ is equal to k, since k was
assumed to be algebraically closed.

Lemma-Definition 2.2.7. The reduction map
red: Mg(K) →Mg(k)

is defined by sending X ∈ Mg(K) to the central fiber X ′
s ∈ Mg(k) of a stable

reduction X ′ → SpecR′ of X with respect to some finite field extension K ⊆ K ′

with valuation ring R′. The isomorphism class of X ′
s ∈Mg(k) does not depend on

the chosen field extension K ⊂ K ′ and is denoted by red(X).

Proof. Let K ′ and K ′′ two finite field extensions of K, with valuation rings
respectively R′ and R′′, such that X admits a stable reduction X ′ → SpecR′ with
respect to K ′ and a stable reduction X ′′ → SpecR′′ with respect to K ′′. Choose
an algebraic closure K of K that contains K ′ and K ′′ and consider, inside K, the
smallest field extension K ⊆ L that contains K ′ and K ′′. Clearly, L is a finite field
extension of K and we denote by S its valuation ring. The base change of each
of the two families X ′ → SpecR′ and X ′′ → SpecR′′ to SpecS is clearly a stable
reduction with respect to the extension K ⊆ L. By the uniqueness of the stable
reduction, these two pull-backs must be isomorphic and in particular their central
fibers must be isomorphic. However, since k is assumed to be algebraically closed,
the central fibers of these two pull-backs are equal to X ′

s and X ′′
s ; hence we must

have that X ′
s
∼= X ′′

s . �
2.3. The moduli space M tr

g of tropical curves. Recall the definition of
tropical curves introduced in [11], generalizing slightly the original definition of
Mikhalkin-Zharkov in [25].

Definition 2.3.1. A tropical curve C is the datum of a triple (Γ, w, l) consisting
of a stable weighted graph (Γ, w), called the combinatorial type of C, and a function
l : E(Γ) → R>0, called the length function. The genus g(C) of C is the genus of its
combinatorial type.

Given a stable weighted graph (Γ, w) of genus g, we define M tr
g (Γ, w) to be the

set of tropical curves of combinatorial type equal to (Γ, w). Note that a tropical
curve C ∈ M tr

g (Γ, w) is determined by a length function l : E(Γ) → R>0. However,
different length functions can give rise to the same tropical curve if they differ
by an automorphism of the weighted graph (Γ, w). Therefore, we have a natural
identification
(2.2) M tr

g (Γ, w) = R
E(Γ)
>0 /Aut(Γ, w).
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These spaces can indeed by glued together along their boundaries in order to obtain
a topological space M tr

g , called the moduli space of tropical curves of genus g, whose
points are in bijection with tropical curves of genus g (see [11]). In loc. cit., the
space M tr

g is endowed with the structure of a stacky fan. Here, for simplicity, we
treat it simply as a topological space. We summarize all the known properties of
M tr

g in the following

Fact 2.3.2. (i) There exists a topological space M tr
g whose points are in

natural bijection with tropical curves of genus g. Moreover, the topological space
M tr

g is normal (hence Hausdorff ), locally compact, paracompact, locally contractible,
metrizable and second countable.

(ii) The topological space M tr
g admits a stratification into disjoint locally closed

subsets
M tr

g =
∐

(Γ,w)

M tr
g (Γ, w),

as (Γ, w) varies among all stable weighted graphs of genus g.
(iii) Given two stable weighted graphs (Γ, w) and (Γ′, w′) of genus g, we have

that
M tr

g (Γ, w) ⊇ M tr
g (Γ′, w′)iff(Γ, w) ≥ (Γ′, w′).

Proof. The topological space M tr
g has been constructed in [11] and further

studied in [13]. Properties (ii) and (iii) follows from [11, §3]. The topological
properties of M tr

g stated in (i) are proved in [19, §2]. �

2.4. The tropicalization map trop: Mg(K) → M tr
g . We are now ready to

define the tropicalization map trop : Mg(K) → M tr
g appearing in the diagram

(1.1). Given a connected projective smooth curve X over K, consider a finite field
extension K ⊆ K ′ with valuation ring R′ such that the base change XK′ of X to
K ′ admits a stable reduction X ′ → SpecR′, in the sense of 2.2.6. Consider now
a node n of the central fiber X ′

s of X ′ → SpecR′. Since the generic fiber of X ′ is
smooth, by the deformation theory of nodal singularities, it follows easily that a
local equation of the surface X ′ at n can be chosen to be xy = (t′)wn , where t′ is
some fixed uniformizer of R′ (i.e., a generator of the maximal ideal m′ of R′) and
wn ∈ Z>0 is some uniquely determined natural number, which we call the width of
the node n.

Lemma-Definition 2.4.1. The tropicalization map

trop: Mg(K) → M tr
g

is defined by sending X ∈ Mg(K) into the tropical curve C ′ ∈ M tr
g such that:

• the combinatorial type of C ′ is given by the dual weighted graph (ΓX ′
s
, wX ′

s
)

of the special fiber X ′
s of the stable reduction of X with respect to some finite field

extension K ⊆ K ′;
• the length of an edge e ∈ E(ΓX ′

s
) is equal to l′(e) := wne

/[K ′ : K], where wne

is the width of the node ne of X ′
s corresponding to the edge e and [K ′ : K] is the

degree of the finite field extension K ⊆ K ′.
The so-defined tropical curve C ′ ∈ M tr

g does not depend on the chosen field extension
K ⊆ K ′ and is denoted by trop(X).
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Proof. Let K ′ and K ′′ two finite field extensions of K, with valuation rings
respectively R′ and R′′, such that X admits a stable reduction X ′ → SpecR′ with
respect to K ′ and a stable reduction X ′′ → SpecR′′ with respect to K ′′. Denote
by C ′ and C ′′ the tropical curves associated to the stable reductions X ′ and X ′′

according to the above described procedure.
As in the proof of Lemma-Definition 2.2.7, we can find a finite field extension

K ⊆ L, with valuation ring S, that contains K ′ and K ′′ as subfields. In the proof
of loc. cit., we have shown that the special fibers X ′

s and X ′′
s of the two stable

reductions X ′ and X ′′ are isomorphic. This implies that the combinatorial types
of C ′ and of C ′′ are the same. It remains to show that the length function l′ on C ′

coincides with the length function l′′ on C ′′. Consider now an edge e ∈ E(ΓX ′
s
) =

E(ΓX ′′
s
) and its corresponding node n := ne ∈ X ′

s = X ′′
s . If we choose a uniformizer

z for S, then t′ := z[L:K′] is a uniformizer for R′ and t′′ := z[L:K′′] is a uniformizer
for R′′. Therefore, if the local equation of X ′ (resp. X ′′) at n is given by xy = (t′)w′

n

(resp. xy = (t′′)w′′
n ) then the local equation of the surface X ′ ×SpecR′ SpecS (resp.

X ′′ ×SpecR′′ SpecS) at n is given by xy = zw
′
n[L:K′] (resp. xy = zw

′′
n [L:K′′]). Since

X ′ ×SpecR′ SpecS ∼= X ′′ ×SpecR′′ SpecS by the uniqueness of the stable reduction,
we get that w′

n[L : K ′] = w′′
n[L : K ′′]. This implies that

l′(e) = w′
n

[K ′ : K]
= w′

n[L : K ′]
[L : K]

= w′′
n[L : K ′′]
[L : K]

= w′′
n

[K ′′ : K]
= l′′(e),

which shows that l′ is equal to l′′. �

Remark 2.4.2. Given a curve X over K, the metrized graph underlying the
tropical curve trop(X) associated to X in Lemma-Definition 2.4.1 is the reduction
(metrized) graph of X as defined in [20, p. 9 – 10]. Moreover, trop(X) is the minimal
skeleton in the Berkovich analytification Xan of X, see [9, Corollary 5.50].

Now that we have defined the reduction map red: Mg(K) →Mg(k) and the
tropicalization map trop: Mg(K) → M tr

g , it is easy to prove the first half of The-
orem B.

Proof of Theorem B(i). By comparing Lemmas-Definitions 2.2.7 and 2.4.1,
one easily realizes that, for a smooth curve X ∈ Mg(K), the combinatorial type of
the tropical curve trop(X) ∈ M tr

g is equal to the dual weighted graph of the stable
curve red(X) ∈Mg(k). The conclusion now follows. �

3. Moduli spaces of abelian varieties

3.1. The moduli space Atr
g of tropical p.p. abelian varieties. Recall

the definition of a tropical principally polarized abelian variety introduced in [11],
generalizing slightly the original definition of Mikhalkin –Zharkov in [25].

Definition 3.1.1. A tropical p.p. (= principally polarized) abelian variety A
of dimension g is a pair (Rg/Λ, Q) consisting of a g-dimensional real torus R

g/Λ
(for a rank-g lattice Λ ⊂ R

g) and Q is a positive semi-definite quadratic form on R
g

such that the null space Null(Q) of Q is defined over Λ ⊗Q, i.e., it admits a basis
with elements in Λ ⊗ Q. Two tropical p.p. abelian varieties A = (Rg/Λ, Q) and
A′ = (Rg/Λ′, Q′) are isomorphic if there exists h ∈ GL(g,R) such that h(Λ) = Λ′

and hQht = Q′.
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Indeed, tropical p.p. abelian varieties up to isomorphism are the same thing
as positive semi-definite quadratic forms up to arithmetic equivalence, as shown in
the following

Remark 3.1.2. (i) Every tropical p.p. abelian variety A = (Rg/Λ, Q) can
be written in the form (Rg/Zg, Q′). In fact, it is enough to consider Q′ = hQht,
where h ∈ GL(g,R) is such that h(Λ) = Z

g.
(ii) (Rg/Zg, Q) ∼= (Rg/Zg, Q′) if and only if there exists h ∈ GLg(Z) such that

Q′ = hQht, i.e., if and only if Q and Q′ are arithmetically equivalent.

Before stating the main properties of the moduli space Atr
g of tropical p.p.

abelian varieties, we need a digression into Delaunay decompositions of Rg.

Definition 3.1.3. (i) A Z
g-periodic integral paving (or face-fitting decom-

position) of Rg of maximal rank g is a set Δ of integral polytopes ω ⊂ R
g satisfying:

(a) R
g =

⋃
ω∈Δ ω;

(b) Any face of ω ∈ Δ belongs to Δ;
(c) For any ω, ω′ ∈ Δ, the intersection ω∩ω′ is either empty or a common face

of ω and ω′;
(d) Δ is invariant by translation of Zg, i.e., for any ω ∈ Δ and any h ∈ Z

g the
translate ω + h belongs to Δ;

(e) #{ω mod Z
g} is finite.

A Z
g-periodic integral paving of R

g of rank 0 ≤ r ≤ g is a set Δ of polyhedra
obtained as inverse images via a linear integral projection π : Rg → R

r of the
polytopes of a Z

r-periodic integral paving Δ′ of Rr of maximal rank.
(ii) Two Z

g-periodic integral pavings Δ and Δ′ of R
g are equivalent if there

exists h ∈ GLg(Z) such that Δ′ is equal to

h · Δ := {h · ω : ω ∈ Δ}.

We denote by [Δ] the equivalence class of a paving Δ of Rg.
(iii) Given two Z

g-periodic integral pavings Δ and Δ′ of Rg, we say that Δ is
a refinement of Δ′, and we write Δ ≥ Δ′, if every polyhedron of Δ is contained in
some polyhedron of Δ′.

Similarly, we say that [Δ] is a refinement of [Δ′], and we write [Δ] ≥ [Δ′], if
there exist h, h′ ∈ GLg(Z) such that h · Δ ≥ h′ · Δ′.

Among the Z
g-periodic integral pavings of Rg, a special place is occupied by

the Delaunay decompositions associated to a positive semi-definite quadratic forms
in R

g, whose null space is defined over Q
g.

Definition 3.1.4. Let Q be a positive semi-definite quadratic form of rank
r in R

g, whose null space Null(Q) is defined over Q
g. For any α ∈ R

g, a lattice
element x ∈ Z

g is called α-nearest if

Q(x− α) = min{Q(y − α) : y ∈ Z
g}.

A Delaunay cell is defined as the closed convex hull of all elements of Z
g which

are α-nearest for some fixed α ∈ R
g. Together, all the Delaunay cells form a Z

g-
periodic integral paving of Rg of rank r, called the Delaunay decomposition of Q
and denoted DelQ. We say that a Z

g-periodic integral paving of Rg is a Delaunay
paving if it is isomorphic to DelQ for some quadratic form Q as before.
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Clearly, if two quadratic forms Q and Q′ are arithmetic equivalent in the sense
of Remark 3.1.2, then their associated Delaunay decompositions DelQ and DelQ′

are equivalent in the sense of Definition 3.1.3. This show that we can associate to
every tropical p.p. abelian variety an equivalence class of Delaunay decompositions
of Rg.

Definition 3.1.5. Given a tropical p.p. abelian variety A ∼= (Rg/Zg, Q) (see
Remark 3.1.2), the Delaunay decomposition [DelA] of A is defined to be

[DelA] := [DelQ].

We are now ready to summarize the main properties of the moduli space of
tropical p.p. abelian varieties.

Fact 3.1.6. (i) There exists a topological space Atr
g whose points are in

natural bijection with tropical p.p. abelian varieties of dimension g. Moreover, the
topological space Atr

g is normal (hence Hausdorff )!, locally compact, paracompact,
locally contractible, metrizable and second countable.

(ii) The topological space Atr
g admits a stratification into disjoint locally closed

subsets
Atr

g =
∐

[Δ]

Atr
g ([Δ]),

as [Δ] varies among all equivalence classes of Delaunay decompositions of Rg and

Atr
g ([Δ]) := {A ∈ Atr

g : [DelA] = [Δ]}.

(iii) Given two equivalence classes [Δ] and [Δ′] of Delaunay decompositions of
R

g, we have that
Atr

g ([Δ]) ⊇ Atr
g ([Δ′]) ⇐⇒ [Δ] ≥ [Δ′].

Proof. The construction of Atr
g and the properties (ii) and (iii) can be found

in [11, §4; 18, §4]. Note that the definition of Atr
g given in [11, Definition 4.2.2]

contains a mistake that was corrected in [18, Definition 4.9]. The topological
properties of Atr

g stated in (i) are proved in [19, §2]. �

3.1.7. The tropicalization map trop: Ag(K) → Atr
g . We want now to define the

tropicalization map trop: Ag(K) → Atr
g appearing in the diagram (1.1).

Recall that given an abelian variety A over K there is a canonical way of
extending it to a separated group scheme over SpecR, namely via the theory of
Néron models.

Definition 3.1.8. Given an abelian variety A over K, a Néron model of A
over SpecR is a smooth, separated and finite type group scheme N (A) → SpecR
such that its generic fiber N (A)K is isomorphic to A and, moreover, such that it
satisfies the following universal property (called the Néron mapping property): for
each smooth morphism Y → SpecR and any K-morphism φK : YK → N (A)K ∼= A
there exists a unique morphism φ : Y → N (A) over SpecR extending the given
morphism φK .

Clearly, the Néron mapping property uniquely characterizes the Néron model
of an abelian variety A over K, if it exists at all. Indeed, it is a deep theorem of
Néron that such models always exists.
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Fact 3.1.9 (Néron). Any abelian variety over K admits a Néron model N (A)
over SpecR.

For a proof, we refer the reader to the original paper of Néron [27] or to the
book [10] for a modern treatment.

Recall now that given any smooth group scheme A → SpecR (as for example
the Néron model N (A) of an abelian variety A defined over K), there exists an
open subgroup scheme Ao ⊆ A, called the neutral component of A, such that the
fibers of Ao → SpecR are the connected components of the fibers of A → SpecR
which contain the identity (see [1, Exposé VIB, Theorem 3.10]).

It was proved by Grothendieck (see [2, Esposé IX, Theorem 3.6]) that any
abelian variety over K is potentially semiabelian, i.e., that, after a finite extension
of K, the neutral component N (A)o of the Néron model of A is a semiabelian
scheme.

Fact 3.1.10 (Grothendieck). Given an abelian variety A over K, there exists
a finite extension K ⊆ K ′ such that the neutral component N (A′)o of the Néron
model N (A′) of A′ := A×KK ′ is a semiabelian scheme, i.e., the special fiber N (A′)os
of N (A′)o fits in a unique extension

(3.1) 0 → T ′ → N (A′)os → B′ → 0,

where T ′ is a torus over k of dimension r (called the rank of N (A′)os) and B′ is an
abelian variety over k of dimension g − r.

We call the scheme N (A′)o as above the semiabelian reduction of A with respect
to the extension K ⊆ K ′. It is the analogue for abelian varieties of the stable
reduction for curves (see §2.2.6). We also say that an abelian variety A over K has
semiabelian reduction if the neutral component N (A)o of the Néron model of A is a
semiabelian scheme. So Fact 3.1.10 is saying that any abelian variety A over K has
potentially semiabelian reduction, i.e., there exists a finite field extension K ⊆ K ′

such that A′ := A×K K ′ has semiabelian reduction.
Moreover, in the case where an abelian variety A over K has semiabelian re-

duction, Grothendieck has shown (see [2, Exposé IX, Theorem 10.4]) that any po-
larization ξ (for example a principal polarization) on A gives rise to a monodromy
pairing on the lattice of characters Λ(T ) := Hom(T,Gm) of the maximal torus T of
the central fiber of N (A)o, as in (3.1).

Fact 3.1.11 (Grothendieck). Let A be an abelian variety over K and assume
that A has semiabelian reduction. Denote by Λ(T ) := Hom(T,Gm) the lattice of
characters of the biggest torus T contained in the special fiber N (A)os of N (A)o as
in (3.1) and by Λ(T )R := Λ(T ) ⊗Z R the associated real vector space. Then any
polarization ξ on A gives rise to a positive definite quadratic form

(3.2) Qξ : ΛR ⊗ ΛR → R,

which is moreover integral over Λ (i.e., such that Qξ(Λ,Λ) ⊆ Z).

The quadratic form Qξ in (3.2) is called the monodromy pairing associated to
the polarized abelian variety (A, ξ).

We are now ready to define the tropicalization trop: Ag(K) → Atr
g appearing

in the diagram (1.1).
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Lemma-Definition 3.1.12. The tropicalization map

trop: Ag(K) → Atr
g

is defined by sending (A, ξ)∈Ag(K) into the tropical p.p. abelian variety (Rg/Λ′, Q′)
∈ Atr

g such that:
• Λ′ is equal to Λ′ := Z

g−r ⊕ Λ(T ′), where Λ(T ′) is the lattice of characters
of the torus T ′ appearing in the extension (3.1) with respect to some chosen field
extension K ⊆ K ′ such that the neutral component N (A′)o of the Néron model of
A′ := A×K K ′ is a semiabelian scheme;

• The quadratic form is identically zero on R
g−r := Z

g−r⊗ZR while on Λ(T ′)R
it is equal to

(3.3) Q′
Λ(T ′)R⊗Λ(T ′)R := Qξ′

[K ′ : K]
,

where Qξ′ is the monodromy pairing of Fact 3.1.11 associated to the p.p. abelian
variety (A′, ξ′) := (A, ξ)⊗K K ′ ∈ Ag(K ′).
The so-defined tropical p.p. abelian variety (Rg/Λ′, Q′) ∈ Atr

g does not depend on
the chosen field extension K ⊆ K ′ and is denoted by trop(A, ξ).

Proof. Let K ′ and K ′′ two finite field extensions of K such that the neutral
components N (A′)o (resp. N (A′′)o) of A′ := A×K K ′ (resp. A′′ := A×K K ′′) are
semiabelian schemes over the spectrum of the valuation ring R′ (resp. R′′) of K ′

(resp. K ′′).
As in the proof of Lemma-Definition 2.2.7, we can find a finite field extension

K ⊆ L, with valuation ring S, that contains K ′ and K ′′ as subfields. It fol-
lows from [2, Exposé IX, Corollary 3.3] that N (Ã)o = N (A′)o ×SpecR′ Spec(S) =
N (A′′)o ×SpecR′′ Spec(S), where Ã := A ×K L. In particular we can canonically
identify the lattice of characters Λ(T̃ ) of the maximal torus T̃ of N (Ã)os with the
lattice of characters Λ(T ′) (resp. Λ(T ′)) of the maximal torus T ′ (resp. T ′′) of
N (A′)os (resp. N (A′′)os).

With respect to these canonical identifications, the monodromy pairing Q
ξ̃

of
the p.p. abelian variety (Ã, ξ̃) = (A, ξ)×K L ∈ Ag(L) is related to the monodromy
pairing Qξ′ (resp. Qξ′′) of the p.p. abelian variety (A′, ξ′) := (A, ξ)×KK ′ ∈ Ag(K ′)
(resp. (A′′, ξ′′) := (A, ξ) ×K K ′′ ∈ Ag(K ′′)) via the formulas (see [2, Exposé IX,
(10.3.5)]):

(3.4) Q
ξ̃

= [L : K ′]Qξ′ = [L : K ′′]Qξ′′ .

By combining (3.3) and (3.4), we get that

Q′ = Qξ′

[K ′ : K]
=

Q
ξ̃

[L : K]
= Qξ′′

[K ′′ : K]
= Q′′,

where Q′ (resp. Q′′) is the quadratic form associated to the extension K ⊆ K ′

(resp. K ⊆ K ′′). This shows that the definition of trop(X) is independent of the
chosen field extension K ⊆ K ′. �

3.2. The moduli stack Ag of p.p. stable semi-abelic pairs. The moduli
stack Ag of principally polarized (p.p. for short) abelian varieties of dimension g
admits a modular compactification via p.p. stable semi-abelic pairs.
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Definition 3.2.1 (Alexeev). A p.p. stable semi-abelic pair of dimension g over
k is a triple (G � P,Θ) where

(i) G is a semiabelian variety of dimension g over k, that is an algebraic group
which is an extension of an abelian variety A by a torus T :

1 → T → G → A → 0.

(ii) P is a seminormal, connected, projective variety of pure dimension g.
(iii) G acts on P with finitely many orbits, and with connected and reduced

stabilizers contained in the toric part T of G.
(iv) Θ is an effective ample Cartier divisor on P which does not contain any

G-orbit, and such that h0(
P,OP (Θ)

)
= 1.

Recall that a k-variety X is said to have seminormal singularities if any mor-
phism Y → X from a k-variety Y which is bijective on k-points is an isomorphism.

Remark 3.2.2. If (A � P,Θ) is a p.p. stable semi-abelic pair with A being
an abelian variety, then P is a A-torsor and the divisor Θ ⊂ P gives rise to a well-
defined class [Θ] in the Néron-Severi group of A which is a principal polarization on
A. Conversely, every p.p. abelian variety (A, ξ) can be obtained in this way from a
unique p.p. stable semi-abelic pair (A � P,Θ). See [5, §3] for more details on this
correspondence.

The following celebrated result is due to Alexeev [5].

Fact 3.2.3 (Alexeev). The stack Amod
g of p.p. stable semi-abelic pairs of di-

mension g is proper over SpecZ. The stack Ag can be identified with the open
substack of Amod

g consisting of the p.p. stable semi-abelic pairs (G � P,Θ) such
that G is an abelian variety.

Unfortunately, the stack Amod
g is not irreducible (see [4]). Therefore, only one

of its irreducible components, called the main component of Amod
g and denoted

by Ag, will contain Ag. Indeed, it is known that the normalization of the main
component Ag is isomorphic to the 2nd Voronoi toroidal compactification AV

g of
Ag (see [8,26]). To the best of our knowledge, it is not known whether the main
component Ag is normal (see [12]).

3.2.4. The stratification of Ag(k). According to general theory developed in [5],
to every p.p. stable semi-abelic pair (G � P,Θ) over k, it is naturally associated
a Z

g-period integral paving of R
g, up to the action of GLg(Z), which captures

the combinatorics of the G-orbits on P . Moreover, such a paving is a Delaunay
decomposition if and if (G � P,Θ) belongs to the main component Ag (see [4]).
In this way we get a stratification of Ag into locally closed subsets parametrized by
equivalence classes of Delaunay decompositions of Rg.

Fact 3.2.5 (Alexeev). (i) A p.p. stable semi-abelic pair (G � P,Θ) ∈
Amod

g (k) determines an equivalence class of a Z
g-period integral pavings of R

g,
which we denote by [Δ(G � P,Θ)].

Furthermore, (G � P,Θ) belongs to the main irreducible component Ag(k)
if and only if [Δ(G � P,Θ)] is an equivalence class of Delaunay decompositions
of Rg.
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(ii) The topological space Ag(k) admits a stratification into disjoint locally
closed subsets

Ag(k) =
∐

[Δ]

Ag([Δ]),

as [Δ] varies among all equivalence classes of Delaunay decompositions of Rg and

Ag([Δ]) := {(G � P,Θ) ∈ Ag(k) : [Δ(G � P,Θ)] = [Δ]}.

Given two equivalence classes [Δ] and [Δ′] of Delaunay decompositions of Rg,
we have that

Ag([Δ]) ⊆ Ag([Δ′]) ⇐⇒ [Δ] ≥ [Δ′].

Proof. Part (i) follows from the general structure theorems on p.p. stable
semi-abelic varieties developed in [5] (see also [6, §2] for a nice discussion).

Part (ii): the strata of Ag are the images of the strata of the 2nd Voronoi
toroidal compactification AV

g under the finite normalization map AV

g → Ag (see
[4]) and the required properties are known for the strata of AV

g , as it follows from
the general theory of toroidal compactifications of Ag (see [8,26]). Therefore, the
same properties hold for the strata of Ag(k). �

3.2.6. The reduction map red: Ag(K) → Ag(k). We are now ready to define
the reduction map red: Ag(K) → Ag(k) appearing in the diagram (1.1). Since the
stack Ag is proper, the valuative criterion of properness for stacks gives that for any
map f : SpecK → Ag ⊆ Ag there exists a finite extension K ′ of K with valuation
ring R′ and a unique map φ : SpecR′ → Ag such that the following diagram is
commutative

SpecR′

φ

������
�����

�����
�����

�����
���

SpecK ′ ��

��

SpecK
f �� Ag

� � �� Ag.

In other words, given a p.p. abelian variety (A, ξ) ∈ Ag(K), up to a finite extension
K ⊆ K ′ with valuation ring R′, there exists a unique family of p.p. stable semi-
abelic pairs (G � P, Θ̃) over SpecR′, called the stable semi-abelic reduction of (A, ξ)
with respect to the extension K ⊆ K ′, such that (A, ξ) ×K K ′ is the p.p. abelian
variety associated to the generic fiber of (G � P, Θ̃), according to Remark 3.2.2.
Note that the residue field of R′ is equal to k, since k was assumed to be algebraically
closed.

Lemma-Definition 3.2.7. The reduction map

red: Ag(K) → Ag(k)

is defined by sending (A, ξ) ∈ Ag(K) to the central fiber (G � P, Θ̃)s ∈ Ag(k) of
the stable semi-abelic reduction (G � P, Θ̃) of (A, ξ) with respect to some finite
field extension K ⊆ K ′. The isomorphism class of (G � P, Θ̃)s ∈ Ag(k) does not
depend on the chosen field extension K ⊂ K ′ and is denoted by red(A, ξ).

Proof. Same proof as in Lemma-Definition 2.2.7 based on the uniqueness of
the stable semi-abelic reduction. �
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Now that we have defined the reduction map red: Ag(K) → Ag(k) and the
tropicalization map trop: Ag(K) → Atr

g , we can prove the second half of Theo-
rem B.

Proof of Theorem B(ii). We have to prove that for any p.p. abelian variety
(A, ξ) ∈ Ag(K) it holds

[Deltrop(A,ξ)] =
[
Δ

(
red(A, ξ)

)]
,

following the notations of Definition 3.1.5 and of Fact 3.2.5. This is simply a
restatement in our language of what Alexeev proved in [5, §5.7]. �

4. The Torelli maps

4.1. The tropical Torelli map. The tropical Torelli map ttrg : M tr
g → Atr

g has
been constructed in [11] and further studied in [18]. In order to recall the definition
of ttrg , we need first to recall the definition of the tropical Jacobian associated to a
tropical curve.

Definition 4.1.1. Let C = (Γ, w, l) be a tropical curve of genus g and total
weight |w|. The Jacobian Jac(C) of C is the tropical p.p. abelian variety of dimen-
sion g given by the real torus (H1(Γ,R) ⊕ R

|w|)/(H1(Γ,Z) ⊕ Z
|w|) together with

the positive semi-definite quadratic form QC = Q(Γ,w,l) which vanishes identically
on R

|w| and is given on H1(Γ,R) as

(4.1) QC

( ∑

e∈E(Γ)

αe · e
)

=
∑

e∈E(Γ)

α2
e · l(e).

In other words, the value of the quadratic form QC on a cycle of Γ, seen as
an element of H1(Γ,R), is equal to its length measured with respect to the length
function l of the tropical curve C.

Remark 4.1.2. The referee noticed that the quadratic form QC defined in (4.1)
appears already in the definition of the canonical polarization on the Jacobian of a
Mumford curve, see [23; 30, Proposition 2.2].

Fact 4.1.3 ([11]). The map (called the tropical Torelli map)

ttrg : M tr
g → Atr

g

C �→ Jac(C)

is a continuous map.

Indeed, it is proved in [11, Theorem 5.1.5] that ttrg is a full map of stacky fans,
i.e., that sends each strata of M tr

g surjectively onto some strata of Atr
g via a linear

map. In order to make this result more precise, we need to recall the definition of
the Delaunay decomposition of Rg associated to a stable weighted graph of genus g.

Definition 4.1.4. Let (Γ, w) be a stable weighted graph of genus g. Con-
sider the positive semi-definite quadratic form Q(Γ,w) on H1(Γ,R) ⊕ R

|w| which is
identically zero on R

|w| and is given on H1(Γ,R) by

(4.2) Q(Γ,w)

( ∑

e∈E(Γ)

αe · e
)

=
∑

e∈E(Γ)

α2
e.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

198 F. VIVIANI

By fixing an isomorphism of free abelian groups φ : H1(Γ,Z)
∼=−→ Z

b1(Γ), we can
view Q(Γ,w) as a positive semi-definite quadratic form on R

g. The equivalence class
[DelQ(Γ,w) ] of the induced Delaunay decomposition of R

g (which clearly does not
depend upon the chosen isomorphism φ) is called the Delaunay decomposition of
(Γ, w) and is denoted by [Del(Γ, w)].

Remark 4.1.5. It is well known that an equivalent definition of [Del(Γ, w)] is
the following. Each edge e of Γ gives rise to a linear functional e∗ on H1(Γ,R)⊕R

|w|

which is identically zero on R
|w| and it is equal on H1(Γ,R) to

e∗
( ∑

f∈E(Γ)

αf · f
)

= αe.

After fixing an isomorphism φ : H1(Γ,Z)
∼=−→ Z

b1(Γ) as before, the Delaunay de-
composition [Del(Γ, w)] is the Z

g-periodic integral paving of R
g consisting of all

polyhedra which are cut out by all hyperplanes of equation e∗ = n for e ∈ E(Γ)
and n ∈ Z. We refer the reader to [14, §3.2] for more details on the Delaunay
decompositions associated to graphs.

Fact 4.1.6 ([11]). The tropical Torelli map ttrg sends the strata M tr
g (Γ, w) ⊂

M tr
g surjectively onto the strata Atr

g ([Del(Γ, w)] ⊂ Atr
g , i.e.,

ttrg
(
M tr

g (Γ, w)
)

= Atr
g ([Del(Γ, w)]

for each stable weighted graph (Γ, w) of genus g.

We can now prove the second half of Theorem A.

Theorem 4.1.7. The following diagram is commutative

(4.3)

Mg(K)

tg

��

trop �� M tr
g

ttrg

��
Ag(K)

trop �� Atr
g .

Proof. Let X be an element of Mg(K), i.e., a connected smooth projective
curve of genus g over K.

Assume first that X has a stable model over SpecR, i.e., there exists a family
X → SpecR of stable curves of genus g such that the generic fiber Xη is isomorphic
to X.

According to Lemma-Definition 2.4.1, trop(X) has combinatorial type equal
to the dual weighted graph (ΓXs

, wXs
) of the special fiber Xs of X and its length

function l : E(ΓXs
) → R>0 is such that, for every e ∈ E(ΓXs

):
(4.4) l(e) = wne

where wne
is the width of the node ne ∈ Xs corresponding to e (see §2.4).

By blowing up each node n of the central fiber Xs a number of times equal
to (wn − 1), we get that a new family of nodal curves Y → SpecR such that
Yη

∼= X and Y is regular. The central fiber Ys of Y is a nodal (nonstable, in
general) curve which is obtained from Xs by inserting at each node n of Xs a chain
of smooth rational curves of length equal to (wn − 1). This implies that the dual
graph ΓYs

of Ys is obtained from the dual graph ΓXs
of Xs by subdividing each
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edge e ∈ E(ΓXs
) a number of times equal to (wne

− 1). In particular, we have
a canonical isomorphism H1(ΓXs

,Z) ∼= H1(ΓYs
,Z). Moreover, the pull-back map

induces a canonical isomorphism J(Xs)
∼=→ J(Ys) between the generalized Jacobians

of Xs and of Ys.
According to [10, §9.3, Theorem 7], there exists a scheme J(Y) smooth and

separated over SpecR, called the relative Jacobian of the family Y → SpecR,
such that its generic fiber J(Y)η is isomorphic to the Jacobian J(Yη) = J(X)
of the generic fiber and its special fiber J(Y)s is isomorphic to the generalized
Jacobian J(Ys) of the special fiber. Moreover, a well-known result of Raynaud (see
[10, §9.5, Theorem 4]) says that, since Y is regular, the relative Jacobian J(Y) of
Y → SpecR is isomorphic to the neutral component N

(
J(X)

)o of the Néron model
of the Jacobian J(X) of X ∼= Yη. In particular, since J(Y) is a semiabelian scheme
over SpecR, the Jacobian J(X) of X has semiabelian reduction over K. Note that
the lattice of characters of the maximal subtorus of J(Y)s is canonically isomorphic
to H1(ΓYs

,Z) ∼= H1(ΓXs
,Z).

Now the Picard – Lefschetz formula (see [2, Exposé IX, Theorem 12.5]) says
that the monodromy pairing Qξ on H1(ΓYs

,R) associated to the principal polar-
ization [ΘX ] on J(X) induced by the theta divisor ΘX ⊂ Picg−1(X) ∼= J(X) (see
Fact 3.1.11) is equal to

(4.5) Q[ΘX ]

( ∑

e∈E(ΓYs )

αe · e
)

=
∑

e∈E(ΓYs )

α2
e

Using the canonical isomorphism H1(Ys,Z) ∼= H1(Xs,Z), it is immediate to check
that the above monodromy pairing Qξ on H1(Ys,Z) becomes isomorphic to the
quadratic form Qtrop(X) on H1(ΓXs

,R) defined by (4.1). By comparing Lemma-Def-
inition 3.1.12 with Definition 4.1.1, we see that trop(J(X), [ΘX ]) = Jac

(
trop(X)

)
,

which shows the commutativity of the diagram (4.3).
In the general case (when X does not have a stable reduction over K), we

can find a finite field extension K ⊆ K ′ with valuation ring R′ such that the base
change XK′ of X to K ′ admits a stable reduction X ′ → SpecR′. We can repeat
the above argument working with the family X ′ → SpecR′ with the following two
modifications: in defining the length of the tropical curve trop(X) we have to divide
the right hand side of (4.4) by [K ′ : K] and in defining the quadratic form giving
trop(X, [ΘX ]) we have to divide the monodromy pairing (4.5) by [K ′ : K]. Clearly,
with these two modifications, the equality trop(J(X), [ΘX ]) = Jac

(
trop(X)

)
con-

tinues to hold, and the commutativity of the diagram (4.3) in the general case
follows. �

4.1.8. The fibers of the tropical Torelli map ttrg . The aim of this subsection is
to recall the description of the fibers of ttrg obtained in [14].

A first step is to describe the strata M tr
g (Γ, w) of M tr

g that are mapped to
the same stratum Atr

g ([Δ]) of Atr
g . To this aim, we recall the following classical

definition, due to Whitney.

Definition 4.1.9 (Whitney). Two graphs Γ1 and Γ2 are said to be cyclically
equivalent (or 2-isomorphic), and we write Γ1 ≡cyc Γ2, if there exists a bijection
φ : E(Γ1) → E(Γ2) inducing a bijection between cycles of Γ1 and cycles of Γ2. We
denote by [Γ]cyc the cyclic isomorphism class of a graph Γ.
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In the sequel, graphs with edge-connectivity at least 3 will play an important
role. Here it is the standard definition.

Definition 4.1.10. Let Γ be a connected graph.
(i) An edge e of Γ is called a separating edge (or a coloop or a bridge) if the

graph obtained by removing e is disconnected. Two edges e and f are said to
be coparallel if neither of them is a separating edge and the graph obtained by
removing e and f is disconnected.

(ii) Γ is said to be 3-edge-connected if Γ does not have separating edges nor
pairs of coparallel edges.

It is easy to see that the property of being coparallel defines an equivalence
relation on the set of non separating edges of Γ. The equivalence classes with
respect to this equivalence relation are called coparallel classes2.

There is a canonical way of obtaining a 3-edge-connected graph, up to cyclic
isomorphism, starting from any graph.

Definition 4.1.11. Let Γ be a connected graph. A 3-edge-connectivization of
Γ is a graph, denoted by Γ3, obtained from Γ by contracting all the separating
edges and all but one among the edges of each coparallel class of Γ. The cyclic
isomorphism class of Γ3 (which is well-defined and it does not depend on the choice
of Γ3) is called the 3-edge-connectivization class of Γ and is denoted by [Γ3]cyc.

After these preliminary definitions, we can now recall the following result
(proved in [14, §3.2]) which characterize the stable weighted graphs that have the
same associated Delaunay decomposition.

Fact 4.1.12 (Caporaso – Viviani). Let (Γ1, w1) and (Γ2, w2) two stable weighted
graphs of genus g. Then

[Del(Γ1, w1)] = [Del(Γ2, w2)] ⇐⇒ [Γ3
1]cyc = [Γ3

2]cyc.

We turn now to the following natural question: for which tropical curves C,C ′ ∈
M tr

g it holds that ttrg (C) = ttrg (C ′)? We first need a couple of definitions.

Definition 4.1.13. Two tropical curves C = (Γ, w, l) and C ′ = (Γ′, w′, l′) are
cyclic isomorphic, and we write C ≡cyc C ′, if there exists a bijection φ : E(Γ) →
E(Γ′), commuting with the length functions l and l′, that induces a cyclic isomor-
phism between Γ and Γ′. We denote by [C]cyc the cyclic isomorphism equivalence
class of a tropical curve C.

Similarly to Definition 4.1.10, we have the following

Lemma-Definition 4.1.14. Let C = (Γ, l, w) a tropical curve. A 3-edge-
connectivization of C is a tropical curve C3 = (Γ3, l3, w3) obtained in the following
manner :

(i) Γ3 is a 3-edge-connectivization of Γ in the sense of Definition 4.1.11, i.e.,
Γ3 is obtained from Γ by contracting all the separating edges of Γ and, for each
coparallel class S of Γ, all but one the edges of S, which we denote by eS ;

2These equivalence classes were called C1-sets in [14], with a terminology coming from al-
gebraic geometry (see [15]). Here we choose to use the more graph-theoretic terminology of
coparallel in order to suggest that the coparallel equivalence relation is the dual notion (in the
sense of matroid theory) of the parallel equivalence relation.
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(ii) w3 is the weight function on Γ3 induced by the weight function w on Γ
in the following way: at each contraction of some edge of Γ, the new vertex has
weight with respect to w3 equal to the sum of the weights with respect to w of the
two vertices mapping to it;

(iii) l3 is the length function on Γ3 given by

l3(eS) =
∑

e∈S

l(e),

for each coparallel class S of Γ.
The cyclic isomorphism class of C3 is well-defined; it will be called the 3-edge-
connectivization class of C and denoted by [C3]cyc.

The following result was proved by Caporaso –Viviani in [14, Theorem 4.1.9]
in the case when the total weights of the tropical curves are zero and then the
proof was easily adapted to the general case by Brannetti – Melo –Viviani in [11,
Theorem 5.3.3].

Fact 4.1.15 (Caporaso – Viviani). Let C1, C2 ∈ M tr
g . Then

ttrg (C1) = ttrg (C2) ⇐⇒ [C3
1 ]cyc = [C3

2 ]cyc.

The previous Fact allows us to describe a locally closed subset of M tr
g where

the tropical Torelli map ttrg is injective.
Recall that a connected graph Γ is said to be 3-vertex-connected if, for any pair

{v1, v2} of (possibly equal) vertices of Γ, the graph Γ \ {v1, v2} obtained from Γ by
removing v1, v2 together with all the edges that are adjacent to them is connected.
It is easily seen that a 3-vertex-connected graph is also 3-edge-connected in the
sense of Definition 4.1.10.

Corollary 4.1.16. The tropical Torelli map ttrg : M tr
g → Atr

g is injective on the
locally closed subset F of M tr

g consisting of tropical curves C whose combinatorial
type (Γ, w) is such that Γ is 3-vertex-connected and g(Γ) = g.

Proof. Since F is the union of strata of M tr
g , it is clear that F is locally closed.

Now it follows from a classical result of Whitney (see [14, Theorem 2.2.4] and the
references therein) that if C1, C2 ∈ F then

[C3
1 ]cyc = [C1]cyc = [C2]cyc = [C3

2 ]cyc ⇐⇒ C1 = C2,

which, together with Fact 4.1.15, finishes the proof. �

4.2. The compactified Torelli morphism. The Torelli morphism tg : Mg

→ Ag can be extended to a modular morphism t̄g :Mg → Ag, as shown by Alexeev
in [6]. Before recalling his result, we need the following definitions.

Definition 4.2.1. Let X be a stable curve of arithmetic genus g over k.
(i) The generalized Jacobian J(X) of X is the semiabelian variety parametriz-

ing line bundles on X of multidegree 0, i.e., having degree 0 on each irreducible
component of X.

(ii) The degree g− 1 canonical compactified Jacobian P g−1
X of X is the moduli

space of torsion-free, multirank 1 (i.e., having rank 1 on each irreducible component
of X) and degree g − 1 sheaves I on X that are ωX -semistable.
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(iii) The theta divisor ΘX of X is the closed reduced subscheme of P g−1
X defined

by
ΘX := {I ∈ P g−1

X : h0(X, I) > 0}.

It is well known that J(X) is the extension of the Jacobian J(X̃) of the nor-
malization X̃ of X (which has dimension equal to the geometric genus of X) by a
torus whose lattice of characters can be naturally identified with the first homol-
ogy group H1(ΓX ,Z) of the dual graph ΓX of X. Note also that the generalized
Jacobian J(X) acts naturally on P g−1

X by tensor product.
The following result was proved by Alexeev in [6].

Fact 4.2.2 (Alexeev). (i) For any stable curve X of genus g, the triple
(J(X) � P g−1

X ,ΘX) is a p.p. stable semi-abelic pair of dimension g.
(ii) The Torelli morphism tg : Mg → Ag extends to a morphism t̄g :Mg → Ag,

called the compactified Torelli morphism, which sends a stable curve X into the p.p.
stable semi-abelic pair (J(X) � P g−1

X ,ΘX).
(iii) The compactified Torelli morphism t̄g sends the stratumMg(Γ, w)⊂Mg(k)

into the stratum Ag([Del(Γ, w)]) ⊆ Ag(k).

Using the above result, we can now easily prove the first half of Theorem A.

Theorem 4.2.3. The following diagram is commutative

(4.6)

Mg(k)

t̄g
��

Mg(K)

tg

��

red��

Ag(k) Ag(K).red��

Proof. Consider an element of Mg(K), i.e., a morphism f : SpecK → Mg ⊂
Mg. By applying the valuative criterion of properness to the stack Mg, we get
that, up to a finite extension K ⊆ K ′ with valuation ring R′, we can extend the
morphism f to a morphism φ : SpecR′ →Mg. In this way we get a commutative
diagram

SpecR′

φ

�������
�����

�����
�����

�����
���

Spec k� �s��

Mg

t̄g
��

Mg

tg

��

� ��� SpecK
f�� SpecK ′��

��

η

��

Ag Ag
� ���

where the upper triangle is commutative by construction and the bottom left square
is commutative by Fact 4.2.2. As explained in 2.2.6, the first reduction map
red: Mg(K) →Mg(k) sends the morphism f : SpecK → Mg into the morphism
φ◦s : Spec k →Mg. Analogously, as explained in §3.2.6, the second reduction map
red: Ag(K) → Ag(k) sends the morphism tg ◦ f : SpecK → Ag into the morphism
t̄g ◦ φ ◦ s : Spec k → Ag. The commutativity of the diagram (4.6) now follows. �
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4.2.4. The fibers of the compactified Torelli morphism t̄g. The aim of this sub-
section is to recall the description of the fibers of the compactified Torelli morphism
t̄g :Mg(k) → Ag(k) obtained in [15]. Before doing that, we need to recall some
definitions.

Definition 4.2.5. Given a stable curve X of genus g, consider its partial
normalization τ : X̂ → X at the separating nodes of X, i.e., the nodes n of X such
that the partial normalization of X at n is disconnected. Write

X̂ := X1 � · · · �Xs,

where s∈N and each Xi is a connected nodal curve. We call the curves {X1, . . . , Xs}
the separating blocks of X.

Note that the separating blocks of X are connected nodal curves free from
separating nodes, which are however not stable in general. Consider one of the sep-
arating blocks Xi. If Xi has arithmetic genus pa(Xi) equal to zero, then Xi

∼= P
1.

Otherwise, Xi is semistable, i.e., it is a connected nodal curves such that its canon-
ical line ωXi

has nonnegative (possibly zero) degree on each irreducible component
of Xi. If, moreover, pa(Xi) ≥ 2, then we can consider its stabilization, denoted
by Xi, which is the image of Xi under the map given by |ωm

Xi
| for m sufficiently

large (indeed any m ≥ 3 suffices). It is easy to see that Xi is obtained from Xi by
contracting to a node all the exceptional subcurves E ⊂ Xi, i.e., subcurves E ∼= P

1

such that E intersect the complementary subcurve Xi \ E in two points. We can
extend the definition of the stabilization Xi to the case where pa(Xi) = 1 as it
follows: if Xi is smooth then we set Xi = Xi; if Xi is not smooth (which happens
exactly when Xi is a cycle of rational smooth curves) then we set Xi be equal to
the rational irreducible curve with one node.

For a nodal curve X without separating nodes, we can partition the set Xsing
of nodes of X into C1-sets as in [15, Lemma-Definition 2.1.1].

Definition 4.2.6. Let X be a connected nodal curve free from separating
nodes. A separating pair {n1, n2} of nodes of X is a pair consisting of two nodes n1
and n2 of X such that the partial normalization of X at n1 and n2 is disconnected.

Being a separating pair of nodes is an equivalence relation on the set of nodes
Xsing of X and we call the associated equivalence classes the C1-sets of X. We
denote by Set1 X the collection of all C1-sets of X.

Note that the C1-sets of X correspond exactly to the coparallel classes (see
Definition 4.1.10) of edges in the dual graph ΓX of X.

Wenow recall the definition ofC1-equivalence introduced in [15, Definition 2.1.5].
Definition 4.2.7 (C1-equivalence). Let X and X ′ be connected nodal curves

free from separating nodes; denote by ν : Xν → X and ν′ : X ′ν → X ′ their normal-
izations. X and X ′ are C1-equivalent if the following conditions hold

(A) There exists an isomorphism φ : Xν
∼=−→ X ′ν .

(B) There exists a bijection between their C1-sets

ψ : Set1 X
∼=−→ Set1 X ′

such that φ
(
ν−1(S)

)
= ν′−1(

ψ(S)
)
.

The above C1-equivalence relation can be realized via a sequence of twisting
operations at pairs of separating nodes.
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Definition 4.2.8 (Twist-equivalence). Let X be a connected nodal curve free
from separating nodes. Consider a separating pair {n1, n2} of nodes of X. Denote
by ε : Y → X the partial normalization of X at n1 and n2, denote by Y1 and Y2
the connected components of Y and let ν−1(n1) = {p1, p2} and ν−1(n2) = {q1, q2}
with p1, q1 ∈ Y1 and p2, q2 ∈ Y2. In particular X is obtained from Y by gluing p1
with p2 and q1 with q2; or in symbols

X = Y

{p1 ∼ p2, q1 ∼ q2} .

The twist of X at {n1, n2} is the curve X ′ obtained from Y by gluing p1 with q2

and q1 with p2, or in symbols:

X ′ = Y

{p1 ∼ q2, q1 ∼ p2} .

We say that two connected nodal curves free from separating nodes X and X ′

are twist-equivalent if X ′ can be obtained from X via a sequence of twisting at
separating pairs of nodes.

Lemma 4.2.9. Let X and X ′ be connected nodal curves free from separating
nodes. Then X and X ′ are C1-equivalent if and only if they are twist-equivalent.

Proof. This follows from the discussion in [15, §2.3.2]. �

With this definitions, we can now recall the description of the fibers of t̄g
obtained in [15].

Fact 4.2.10 (Caporaso – Viviani). Let X,X ′ ∈ Mg(k) two stable curves of
genus g. Denote by {X1, . . . , Xr} (resp. {X ′

1, · · · , X ′
r′}) the separating blocks of X

(resp. X ′) that have arithmetic genus greater than zero.
The following are equivalent:

(i) t̄g(X) = t̄g(X ′).
(ii) We have that r = r′ and, up to reordering the separating blocks, we have

that Xi is C1-equivalent to X ′
i for each 1 ≤ i ≤ r = r′.

(iii) We have that r = r′ and, up to reordering the separating blocks, we have
that Xi is twist-equivalent to X ′

i for each 1 ≤ i ≤ r = r′.

Proof. The equivalence (i) ⇔ (ii) is a restatement of [15, Theorem 2.1.7].
The equivalence (ii) ⇔ (iii) follows from Lemma 4.2.9. �

Corollary 4.2.11. The compactified Torelli morphism t̄g :Mg(k) → Ag(k) is
injective on the open subset ofMg(k) consisting of stable curves without separating
nodes nor separating pairs of nodes.

We end this subsection with a reformulation of Fact 4.2.10 in the case of curves
X free from separating nodes and not hyperelliptic (in the sense of [16, Defini-
tion 3.9]), i.e., such that there does not exist two smooth points p, q ∈ X with
h0(

X,OX(p + q)
)

= 2. Note that if X is a stable curve of genus g ≥ 2 free from
separating nodes, then ωX is base point free by [16, Theorem D] and hence the com-
plete linear system |ωX | defines a morphism φ|ωX | : X → P

g−1 (well-defined only up
to composing with a projectivity of Pg−1), called the canonical morphism. Using
results of Catanese [16] and Catanese – Franciosi – Hulek – Reid [17], the image of
the canonical morphism is described as it follows.
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Theorem 4.2.12. Let X be a stable curve X of genus g ≥ 2 free from sepa-
rating nodes and not hyperelliptic. Then φ|ωX |(X) is the curve obtained from X
by identifying all the nodes belonging to the same C1-set S into a unique point
which is moreover a seminormal singularity of multiplicity 2|S|, i.e., analytically
isomorphic to the origin in the union of the coordinates axes of An with n = 2|S|.

Proof. The canonical morphism φ|ωX | is an isomorphism away from the sep-
arating nodes of X, as it follows from the proof of [17, Theorem 3.6]. Moreover
from [16, Theorem E] it follows that φ|ωX | sends all the nodes belonging to a C1-
set S into the same point pS and, moreover, that pS �= pS′ if S and S′ are two
distinct C1-sets. Finally, from [16, Remafk 3.8], it follows that each point pS is
analytically isomorphic to the origin in the union of the coordinates axes of A

n

with n = 2|S|. �

Theorem 4.2.13. Let X,X ′ ∈Mg(k) two stable curves of genus g free from
separating nodes and not hyperelliptic. Then

t̄g(X) = t̄g(X ′) ⇐⇒ φ|ωX |(X) ∼= φ|ωX′ |(X ′).

Proof. According to the above Fact 4.2.12, the curve φ|ωX |(X) can be con-
structed from the normalization Xν of X by gluing together the points ν−1(S), for
each C1-set S, into a seminormal singular point (note there is a unique way of per-
forming this gluing, i.e., seminormal curve singularities do not have local moduli).
Therefore, φ|ωX |(X) depends only on the C1-equivalence class of X and, conversely,
we can recover X up to C1-equivalence from the curve φ|ωX |(X). The Theorem
now follows from Fact 4.2.10. �

5. The anticontinuity of the reduction maps

The aim of this Section is to prove the anticontinuity of the reduction maps
appearing in the diagram (1.1). Indeed, this will follow from Corollary 5.0.4 which
says that the same is true for any proper stack.

Recall that, as usual (see §1.0.2), we fix a complete DVR R with maximal ideal
m and we assume that its residue field k := R/m is algebraically closed. Given an
element x ∈ R, we denote by x̄ ∈ k its reduction modulo the maximal ideal m.

The following well-known lemma is the key result for what follows.

Lemma 5.0.1. For any positive integer n consider the reduction map
red: Rn → kn

x = (x1, . . . , xn) �→ red(x) := (x̄1, . . . , x̄n).

If we put the non-Archimedean topology on Rn and the Zariski topology on kn, then
the reduction map red is anticontinuous, i.e., the inverse image of a closed subset
is an open subset or, equivalently, the inverse image of an open subset is a closed
subset.

Proof. Consider a Zariski closed subset C ⊆ kn. By definition of the Zariski
topology on kn, this means that there exists a finite number of polynomials F1, . . . ,
Fr ∈ k[t1, . . . , tn] such that

(5.1) C =
r⋂

i=1
V (Fi) :=

r⋂

i=1
{z ∈ kn : Fi(z) = 0}.
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For any 1 ≤ i ≤ r, we choose a polynomial F̃i ∈ R[t1, . . . , tn] whose reduction
red(F̃i) is equal to Fi, where the reduction of a polynomial with coefficients in R
is the polynomial with coefficients in k obtained by reducing modulo m each of its
coefficients. For an element x ∈ Rn, we see that

(5.2) 0 = Fi

(
red(x)

)
= red

(
F̃i(x)

)
⇐⇒ |F̃i(x)| < 1.

For any polynomial F ∈ R[t1, . . . , tn], consider the evaluation function
ΦF : Rn → R

x �→ ΦF (x) := F (x).

Clearly, the function ΦF is continuous with respect to the non-Archimedean topol-
ogy on the domain and the codomain. Using the evaluation functions, the equiva-
lence (5.2) can be rewritten as

(5.3) red−1(
V (Fi)

)
= Φ−1

F̃i

(m).

Therefore the inverse image of each V (Fi) under the reduction map red is open
(recall that m ⊂ R is open in the non-Archimedean topology being equal to the
open ball centered at 0 and of radius 1, see §1.0.2); the same is true for red−1(C)
because of the representation as in (5.1), which concludes the proof. �

We can now define the non-Archimedean topology on the set X (R) :=
Hom(SpecR,X ) (resp. X (K) := Hom(SpecK,X )) of R-valued (resp. K-points)
points of any stack X of finite type over SpecR.

Definition 5.0.2 (Non-Archimedean topology). (i) Let X → SpecR be
an affine scheme of finite type over SpecR and let j : X ↪→ A

N
R be a closed embed-

ding into the N -dimensional affine space over R for some N . The non-Archimedean
topology on the set of R-valued points of X(R) is the subspace topology with re-
spect to the natural inclusion jR : X(R) ⊆ A

N
R (R) = RN and the non-Archimedean

topology on RN .
In a similar way, we define the non-Archimedean topology on X(K).
(ii) Let X → SpecR be a (Artin) stack of finite type over SpecR and choose an

atlas f : X → X (i.e., f a surjective and smooth morphism and X is a scheme over
SpecR) of X with X affine and of finite type over SpecR. The non-Archimedean
topology on the set X (R) of R-valued points of X is the quotient topology with
respect to the natural surjective map fR : X(R) → X (R) and the non-Archimedean
topology on X(R).

In a similar way, we define the non-Archimedean topology on X (K).

We leave to the reader the straightforward verification that the above definitions
do not depend on the choices made, i.e., the embedding j in (i) and the atlas f in
(ii).

We can now prove the main result of this section. The result is certainly well-
known to the experts (see [29, §3.4.1] for the case of strictly K-affinoid spaces and
[29, §5.2.4] for the case of formal schemes over SpecR) but we include a proof for
the lack of a suitable reference in the case of stacks of finite type over SpecR.

Theorem 5.0.3. Let X a stack of finite type over SpecR and consider the
reduction map

redX : X (R) := Hom(SpecR,X ) → X (k) := Hom(Spec k,X )
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induced by composing with the map s : Spec k → SpecR. If we put the non-
Archimedean topology on X (R) and the Zariski topology on X (k), then redX be-
comes an anticontinuous map.

Proof. We first prove the theorem in two special cases.

Case I. Assume that X = A
n for some n.

In this case, the theorem reduces to Lemma 5.0.1.
Case II. Assume that X is an affine scheme of finite type over SpecR.
Choose a closed embedding j : X ↪→ A

N for some N as in Definition 5.0.2(i).
This induces a commutative diagram

(5.4)

X (R) redX ��
��

jR
��

X (k)� �
jk
��

A
N (R)

red
AN �� AN (k),

where the vertical arrows are injective. If we put the non-Archimedean topology
on the sets on the left of the diagram and the Zariski topology on the sets on the
right of the diagram, then we have that:

• redAN is anticontinuous by Case I;
• jR is continuous by Definition 5.0.2(i);
• jk is a closed continuous map since j is an embedding.

Now, using the above facts, an easy diagram chase in (5.4) shows that redX is
anticontinuous and Case II is proved.

Let us now consider an arbitrary stack X of finite type over SpecR. Choose
an atlas f : X � X with X affine and of finite type over SpecR as in Defini-
tion 5.0.2(ii). This induces a commutative diagram

(5.5)

X(R) redX ��

fR
����

X(k),

fk
����

X (R) redX �� X (k)

where the vertical arrows are surjective. If we put the non-Archimedean topology
on the sets on the left of the diagram and the Zariski topology on the sets on the
right of the diagram, then we have that:

• redX is anticontinuous by Case II;
• fR is a quotient map by Definition 5.0.2(ii);
• fk is a continuous map because it is induced by the morphism of stacks
f .

Now, using the above facts, an easy diagram chase in (5.5) shows that redX is
anticontinuous. �

In the case of proper stacks X over SpecR, we can extend the reduction map
to the set of K-valued points.
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Corollary 5.0.4. Let X be a proper stack over SpecR. Then the reduction
map redX can be extended to a map r̃edX : X (K) → X (k) as in the following dia-
gram

X (R) redX ��
� �

��

X (k)

X (K)
r̃edX

�����������

Moreover, r̃edX is anticontinuous with respect to the non-Archimedean topology on
X (K) and the Zariski topology on X (k).

Proof. Let us denote by E the set of all the finite degree extensions K ⊆ L.
For each L ∈ E , we denote by RL the valuation ring of L with respect to the unique
extension of the valuation val on K to a valuation valL on L (see §1.0.2).

Since K is complete with respect to the valuation val, for each L ∈ E there
is a unique extension of the valuation val on K to a valuation valL on L, which
is moreover still complete. We denote by RL ⊂ L the associated valuation ring.
Since k is algebraically closed, the residue field of each of the rings RL (for L ∈ E)
is equal to k. Therefore, we get a diagram

(5.6)
⋃

L∈E
X (L) η←−

⋃

L∈E
X (RL) redX−−−→ X (k).

We endow the sets appearing in (5.6) with the following topologies: on X (k) we put
the Zariski topology; on

⋃
L∈E X (L) we put the finest topology for which all the in-

clusions X (L) ↪→
⋃

L∈E X (L) are continuous with respect to the non-Archimedean
topology on X (L); the topology on

⋃
L∈E X (RL) is defined in a similar way. With

respect to these topologies, the map η is clearly continuous while the map redX is
anticontinuous by Theorem 5.0.3. Moreover the valuative criterion for properness
of stacks applied to X implies that η is an homeomorphism. We define a map
r̃edX : X (K) → X (k) by composing the injection X (K) ↪→

⋃
L∈E X (L), the homeo-

morphism η−1 and the reduction map redX . It is now clear the map r̃edX satisfies
all the required properties. �

Proof of Theorem C. It is easily checked that the reduction map red:
Mg(K) →Mg(k) constructed in Lemma-Definition 2.2.7 is the restriction of the
reduction map r̃edMg

:Mg(K) →Mg(k) constructed in Corollary 5.0.4 to the open
subset Mg(K) ⊂Mg(K). Therefore the anticontinuity of red: Mg(K) →Mg(k)
follows the anticontinuity of the reduction map r̃edMg

proved in Corollary 5.0.4.
A similar argument applies to the reduction map red: Ag(K) → Ag(k) us-

ing the anticontinuity of the reduction map r̃edAg
: Ag(K) → Ag(k) (again from

Corollary 5.0.4). �
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Algébrica (PTDC/MAT/111332/2009) and by the MIUR project Spazi di moduli e
applicazioni (FIRB 2012).

References
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