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Tropical Teichmüller and Siegel spaces
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Abstract. In this paper, we present a unified study of the moduli space of
tropical curves and Outer space which we link via period maps to the moduli
space of tropical abelian varieties and the space of positive definite quadratic
forms. Our aim is to exhibit Outer space and the space of positive definite
quadratic forms as analogues of Teichmüller space and Siegel space, respec-
tively, in tropical geometry. All these spaces and the maps among them are

described within the category of ideal stacky fans, which we describe in detail.

1. Introduction

The aim of this paper is to develop a tropical analogue of Teichmüller space, of
Siegel space, and of the period map from the former space to the latter one. Indeed,
in some sense, this analogy has been known in geometric group theory well before
the advent of tropical geometry; however, we hope to convince the reader that the
tropical viewpoint can bring some new insight into the picture.

For the reader’s convenience, we start by first reviewing the classical theory
and then explaining the tropical analogy that we want to pursue here.

1.1. Classical theory: Teichmüller, Siegel and the period map. In
this subsection, we give a very short overview of the classical period map from the
Teichmüller space to the Siegel space, referring the reader to [ACG11, Chap. XV]
and [BL04, Chap. 8, Chap, 11] for more details and references.

Fix a connected, compact, orientable topological surface Sg of genus g ≥ 2.1 Let
x0 ∈ Sg and set Πg := π1(Sg, x0). The group H1(Sg,Z) = Πab

g := Πg/[Πg,Πg] ∼=
Z2g has a symplectic structure given by the intersection pairing (·, ·) on Sg. It is
possible to chose a basis of H1(Sg,Z) with respect to which (·, ·) is given by the
standard symplectic form

Q =

(
0 Ig

−Ig 0

)
.

The Teichmüller space Tg is the fine moduli space of marked Riemann sur-
faces of genus g, i.e. pairs (C, h) where C is a Riemann surface of genus g and

h : Sg

∼=−→ C is the homotopy class of an orientation-preserving homeomorphism,
called a marking of C. The space Tg is a complex manifold of dimension 3g − 3

2010 Mathematics Subject Classification. Primary .
1This assumption on g is made only for simplicity. Indeed, everything we are going to say is

trivial for g = 0 and it can be easily adapted to the case g = 1, where everything is much more
simple.
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which is homeomorphic (although not biholomorphic) to the unit ball in C3g−3 (see
[ACG11, Chap. XV, Thm. (4.1)]). In particular, Tg is a contractible space.

Consider now the outer automorphism group Out(Πg) := Aut(Πg)/ Inn(Πg) of
Πg. Since Sg is an Eilenberg-MacLane K(Πg, 1)-space, every element α ∈ Out(Πg)
is induced by a homotopy equivalence Sg → Sg which, by the Dehn-Nielsen-Baer

theorem, we may choose to be a homeomorphism αSg
: Sg

∼=−→ Sg. The map αSg
is

unique up to homotopy and we call it the geometric realization of α. The mapping
class group Γg is the index two subgroup of Out(Fg) consisting of the elements
α ∈ Out(Fg) such that the geometric realization αSg

is orientation-preserving.
The mapping class group acts on the Teichmüller space Tg by changing the

marking. More precisely, an element α ∈ Γg acts on Tg by sending (C, h) ∈ Tg to

(C, h) ◦ α := (C, h ◦ αSg
).

The action of Γg is properly discontinuous (see [ACG11, p. 452]) and the quotient
Mg := Tg/Γg is a complex quasi-projective variety which turns out to be the coarse
moduli space of Riemann surfaces of genus g.

The Siegel space Hg is the fine moduli space of marked principally polarized
(p.p. for short) abelian varieties of dimension g, i.e. triples (V/Λ, E, φ) where V is
a complex g-dimensional vector space, Λ ⊂ V is a full-dimensional lattice (so that
V/Λ is a complex torus of dimension g), E is a principal polarization on the torus

V/Λ and φ : (Z2g, Q)
∼=−→ (Λ, E) is a symplectic isomorphism (called a marking of

the principally polarized torus (V/Λ, E)). Recall that a principal polarization on
the complex torus V/Λ is a symplectic form E : V × V → R such that:

(i) E(Λ,Λ) ⊂ Z;
(ii) E(iv, iw) = E(v, w) for any v, w ∈ V ;

(iii) There exists a symplectic isomorphism (Z2g, Q)
∼=−→ (Λ, E).

The space Hg is a complex manifold of dimension
(
g+1
2

)
which is moreover con-

tractible (see [BL04, Sec. 8.1]).
The symplectic group Sp2g(Z) := Aut(Z2g, Q) acts on Hg by changing the mark-

ing. More precisely, an element α ∈ Sp2g(Z) acts onHg by sending (V/Λ, E, φ) ∈ Hg

into

(V/Λ, E, φ) ◦ α := (V/Λ, E, φ ◦ α).
The action of Sp2g(Z) is properly discontinuous (see [BL04, Prop. 8.2.5]) and the
quotient Ag := Hg/ Sp2g(Z) is a complex quasi-projective variety that is the coarse
moduli space of p.p. abelian varieties of dimension g (see [BL04, Thm. 8.2.6]).

Given a Riemann surface C of genus g, denote by Ω1
C the sheaf of Kähler differ-

entials on C; thus elements of H0(C,Ω1
C) are holomorphic 1-forms on C. The Jaco-

bian J(C) of C is the p.p. abelian variety of dimension g given by the complex torus
H0(C,Ω1

C)
∗/H1(C,Z) (where the injective mapH1(C,Z) ↪→ H0(C,Ω1

C)
∗ is given by

the integration of holomorphic 1-forms along 1-cycles) together with the principal
polarization EC coming from the intersection product on H1(C,Z). Any marking

h : Sg

∼=−→ C of C gives rise to a marking φh : (Z2g, Q) = (H1(Sg,Z), (·, ·))
∼=−→

(H1(C,Z), QC) of J(C). Associating to a marked Riemann surface of genus g its
marked Jacobian we get the following holomorphic map, called the period map:

Pg : Tg −→ Hg

(C, h) �→ (J(C), φh).
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Consider now the group homomorphism

χ : Γg −→ Sp2g(Z)

α �→ (αSg
)∗

where (αSg
)∗ : H1(Sg,Z)

∼=−→ H1(Sg,Z) is the symplectic automorphism induced by
the geometric realization αSg

of α. The map χ is indeed surjective (see [ACG11, p.
460]). It is easily checked that the period map Pg is equivariant with respect to
the homomorphism χ and to the actions of Γg on Tg and of Sp2g(Z) on Hg that
we described above. Therefore we get the following commutative diagram (in the
category of complex analytic spaces)

(1.1) Tg
Pg ��

��

Hg

��
Mg

tg �� Ag

where tg is the algebraic morphism, called the Torelli morphism, given by:

tg : Mg −→ Ag

C �→ J(C).

After this quick review of the classical theory, we can now explain the tropical
analogues of the above spaces and of the period map.

1.2. Tropical Teichmüller space. Pure tropical curves2, i.e. compact trop-
ical manifolds of dimension 1, are given by metric graphs, as shown in the break-
through paper [MZ07] of Mikhalkin-Zharkov. Note that a graph is an Eilenberg-
MacLaneK(Fg, 1)-space (for some natural number g, called the genus of the graph),
where Fg is the free group on g generators. Therefore, in the tropical picture, Rie-
mann surfaces of genus g are replaced by metric graphs of genus g; the fundamental
group Πg of a Riemann surface of genus g is replaced by the fundamental group
Fg of a graph of genus g; and the mapping class group Γg is replaced by the outer
automorphism group Out(Fg) of Fg (note that there are no orientation-preserving
restrictions in the tropical world). As in the classical case, in order to define a
marking of a tropical curve, we fix a graph of genus g, say the rose with g petals
(i.e. the graph which has a unique vertex and g loops attached to it) which we
denote by Rg, and we define a marking of a tropical curve C = (Γ, l) of genus g
(where Γ is the graph of genus g and l is the length function on the edges) to be
a homotopy equivalence h : Rg → Γ, up to an isometry of the metric graph (Γ, l);
see Definition 3.1.2 for the precise definition. This analogy has also been pointed
out by L. Caporaso in [Cap12b, Sec. 5].

Following [BMV11] (which was inspired by the analogy between the moduli
space of tropical curves and the moduli space of Deligne-Mumford stable curves)
it is convenient for our purposes to enlarge the class of pure tropical curves by
allowing (vertex)-weighted graphs. Therefore, a tropical curve will be throughout
this paper a metric weighted graph (Γ, w, l) satisfying a natural stability condition;

2These curves correspond to compact tropical curves up to tropical modifications in the
terminology of [MZ07]. Our definition of tropical curves is the slightly more general definition
proposed in [BMV11], see below. Therefore, we call this restricted subclass ”pure” tropical
curves, a term which was introduced by L. Caporaso in [Cap12b].
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we refer the reader to §3.3, where we also define a marking of an arbitrary tropical
curve.

In view of the previous definitions, it is now clear that the analogue of the
Teichmüller space should be the moduli space of marked metric graphs. Indeed,
such a moduli space, usually denoted by Xg and dubbed Outer space by P. Shalen,
was constructed, in the celebrated work of Culler-Vogtmann [CV86]3, as a fan
inside an infinite dimensional vector space; we review the construction of Xg in
§3.2. Moreover, the group Out(Fg) acts naturally on Xg by changing the marking,
and this action is known to be properly discontinuous. This action of Out(Fg) on
Xg has been successfully used to reveal some of the features of this very interesting
group (which was the original purpose of geometric group theorists in studying
Xg); we refer the reader to the survey papers [Vog02], [Bes02] and [Vog06] for
an update of the known results.

Our approach to the tropical Teichmüller theory is slightly different from the
one used by Culler-Vogtmann in the definition of Outer Space. We define the
(pure) tropical Teichmüller space, denoted by T tr

g (resp. T tr,p
g ) as an abstract

(i.e. not embedded) topological space by gluing together rational polyhedral cones
(resp. ideal rational polyhedral cones, i.e. rational polyhedral cones with some
faces removed) parametrizing marked (pure) tropical curves having fixed under-
lying marked (weighted) graph; see Definitions 3.1.8 and 3.3.14. In fact T tr,p

g is
homeomorphic to Xg, which amounts to saying that Xg has the simplicial topol-
ogy: this result is certainly well-known to the experts in geometric group theory,
and a proof can be found in [GL07]. The space T tr

g can be regarded as a bordifica-

tion (or partial compactification) of T tr,p
g

∼= Xg and, indeed, it provides a modular

description of the simplicial closure of Xg. It would be interesting to compare T tr
g

with the bordification of Xg constructed by M. Bestvina and M. Feighn in [BF00]
(see §7).

Topological spaces obtained by gluing together rational polyhedral (ideal) cones
via lattice-preserving linear maps are called (ideal) stacky fans in this paper. The
stacky fans previously introduced in [BMV11] and [Cha12] are special cases of
the more general definition presented here. Section 2 of this paper is devoted to the
study of (ideal) stacky fans: we prove that they have nice topological properties
(e.g., we prove that they are always Hausdorff and, under some mild conditions,
also locally compact, locally path-connected, second countable and metrizable; see
Corollary 2.1.13 and Proposition 2.1.14) and we define morphisms of ideal stacky
fans (see Definition 2.1.16). Moreover, we introduce admissible actions of groups on
(ideal) stacky fans (roughly, those actions sending ideal cones into ideal cones via
lattice-preserving linear maps; see Definition 2.2.3) and we show that quotients by
admissible actions do exist in the category of (ideal) stacky fans (see Propositions
2.2.6 and 2.2.9). Indeed, as it will be clear in a moment, it is this last property
that makes the category of ideal stacky fans particularly suited for the purposes of
this paper.

The tropical Teichmüller space T tr
g and its open subset T tr,p

g , the pure tropical
Teichmüller space, are indeed ideal stacky fans (see Propositions 3.1.9 and 3.3.15).
The group Out(Fg) acts on T tr

g and on T tr,p
g by changing the marking of the (pure)

3In loc. cit., the authors consider only marked metric graphs of genus g with total length
equal to one; however this is not very natural for our purpose, so we never normalize the total
length of a metric graph.
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tropical curves (see §3.4) and we show that this action is admissible in Proposi-
tion 3.4.1. The quotients M tr

g := T tr
g /Out(Fg) and M tr,p

g := T tr,p
g /Out(Fg) ∼=

Xg/Out(Fg) (which exist in the category of ideal stacky fans by what was said
before) are moduli spaces for tropical curves (resp. pure tropical curves) of genus
g; they coincide indeed with the moduli spaces first introduced in [BMV11] and
further studied in [Cha12] and [Cap12b] (see §4). Note also that we have natu-
ral maps of ideal stacky fans T tr

g → M tr
g and T tr,p

g → M tr,p
g which correspond to

forgetting the marking of the tropical curves (resp. pure tropical curves).

1.3. Tropical Siegel space. Following [BMV11] and slightly generalizing
[MZ07], we define a tropical principally polarized (=p.p.) abelian variety of dimen-
sion g to be a pair (V/Λ, Q) consisting of a g-dimensional real torus V/Λ and a
positive semi-definite quadratic form Q on V which is rational with respect to Λ,
i.e. such that its null space is defined over Λ ⊗Z Q. We say that a tropical p.p.
abelian variety (V/Λ, Q) is pure if Q is positive definite4. A marking of a tropical

p.p. abelian variety (V/Λ, Q) is an isomorphism of real tori φ : Rg/Zg
∼=−→ V/Λ, or

equivalently a linear isomorphism from Rg onto V sending Zg isomorphically onto
Λ.

Therefore, in the tropical setting, complex tori are replaced by real tori, the
symplectic form giving the polarization on a complex torus is replaced by a rational
positive semi-definite quadratic form, and the isomorphism of symplectic lattices
giving the marking is replaced by an isomorphism of lattices. In particular, the
symplectic group Sp2g(Z) is replaced by the general linear group GLg(Z).

Marked (pure) tropical p.p. abelian varieties of dimension g are naturally

parametrized by the cone Ωrt
g ⊂ R(

g+1
2 ) (resp. Ωg ⊂ R(

g+1
2 )) of rational positive

semi-definite (resp. positive definite) quadratic forms on Rg. Note that Ωg is an

open cone in R(
g+1
2 ) and Ωrt

g is a subcone of the closure Ωg of Ωg inside R(
g+1
2 ),

which consists of all the positive semi-definite quadratic forms.
In order to put an ideal stacky fan structure on Ωg and on Ωrt

g , we need to

choose an admissible decomposition Σ of Ωrt
g , which, roughly speaking, consists of a

fan of rational polyhedral cones whose support is Ωrt
g and such that GLg(Z) acts on

Σ with finitely many orbits (see Definition 5.1.3). There are few known examples
of such admissible decompositions of Ωrt

g : in §5.2 we review the definition and
main properties of two of them, namely the perfect cone decomposition ΣP (or first
Voronoi decomposition) and the 2nd Voronoi decomposition ΣV , both introduced
by Voronoi in [Vor1908]. Given any such admissible decomposition Σ of Ωrt

g , we

can define a stacky fan ΣHtr
g , which we call the tropical Siegel space associated to

Σ, by gluing together the cones of Σ using the lattice-preserving linear maps given
by the natural inclusions of cones of Σ (see Definition 5.3.3). The tropical Siegel
space ΣHtr

g contains an open subset ΣHtr,p
g ⊂ ΣHtr

g , called the pure tropical Siegel
space (associated with Σ), which is the ideal stacky fan obtained from the stacky
fan ΣHtr

g by removing the cones that are entirely contained in the boundary Ωrt
g \Ωg.

The (pure) tropical Siegel space ΣHtr
g (resp. ΣHtr,p

g ) naturally parametrizes marked
(pure) tropical p.p. abelian varieties of dimension g (see Proposition 5.3.4(i)).
Moreover, there exists a continuous bijection Φ : ΣHtr

g → Ωrt
g which restricts to a

4In the paper [MZ07], only pure tropical p.p. abelian varieties are considered and they are
simply called tropical p.p. abelian varieties.
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homeomorphism from ΣHtr,p
g onto Ωg (see Proposition 5.3.4(ii)). Notice however

that the map Φ is certainly not a homeomorphism because Σ is not locally finite
at the boundary Ωrt

g \ Ωg (see Lemma 2.1.5). The topology that we put on ΣHtr
g

depends on the choice of the admissible decomposition Σ; indeed we do not know
if, varying Σ, the tropical Siegel spaces ΣHtr

g are homeomorphic among each other
or not (see §7).

The group GLg(Z) acts naturally on ΣHtr
g and on ΣHtr,p

g by changing the mark-
ing and it is easy to check that these actions are admissible (see Lemma 5.4.2). The
quotients ΣAtr

g := ΣHtr
g /GLg(Z) and

ΣAtr,p
g := ΣHtr,p

g /GLg(Z) (which exist in the
category of ideal stacky fans by what was said before) are moduli spaces for tropical
p.p. abelian varieties (resp. pure tropical p.p. abelian varieties) of dimension g;
they coincide indeed with the moduli spaces first introduced in [BMV11] and in
[Cha12]. Note also that we have natural maps of ideal stacky fans ΣHtr

g → ΣAtr
g

and ΣHtr,p
g → ΣAtr,p

g which correspond to forgetting the marking of the tropical
p.p. abelian varieties (resp. the pure tropical p.p. abelian varieties). In Propo-
sition 5.4.3(iii), we prove that the moduli spaces ΣAtr,p

g are homeomorphic to the
quotient Ωg/GLg(Z) for every admissible decomposition Σ. On the other hand,
the topology that we put on ΣAtr

g depends on the choice of Σ and we do not know

if, varying Σ, the different moduli spaces ΣAtr
g are homeomorphic among each other

or not (see §7).

1.4. Tropical period map. Following again [BMV11], which slightly gen-
eralizes the original definition of Mikhalkin-Zharkov [MZ07], to any (pure) tropical
curve C = (Γ, w, l) of genus g we can associate a (pure) tropical p.p. abelian vari-

ety of dimension g, called the JacobianÊ of C and denoted by J(C), which is given

by the real torus
H1(Γ,R)⊕ R|w|

H1(Γ,Z)⊕ Z|w| together with a rational positive semi-definite

quadratic form QC which is identically zero on R|w| and on H1(Γ,R) measures the
lengths of the cycles of Γ with respect to the length function l on Γ (see Definition
6.1.1). Moreover, a marking h of C naturally induces a marking φh of J(C) (see
Definition 6.1.2).

In Section 6.2, we define the tropical period map

Ptr
g : T tr

g −→ Ωrt
g

(C, h) �→ φ∗
h(QC),

which is shown to be a continuous map in Lemma-Definition 6.2.1.
A natural question then arises: can we lift the tropical period map to a map of

stacky fans

ΣPtr
g : T tr

g → ΣHtr
g

for some admissible decomposition Σ of Ωrt
g ? The answer is given in Theorem

6.2.6: such a map ΣPtr
g of stacky fans, called the Σ-period map, exists when Σ is

compatible with the period map Ptr
g in the sense that it sends cells of the stacky

fan T tr
g into cones of Σ (see Definition 6.2.3). For example, it is known that the

perfect cone decomposition ΣP and the 2nd Voronoi decomposition ΣV are both
compatible with the period map (see Fact 6.2.4).
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It is easily checked that the Σ-period map (when it exists) is equivariant with
respect to the natural group homomorphism

A : Out(Fg) → Out(Zg) = Aut(Zg) = GLg(Z)

induced by the abelianization homomorphism Fg → F ab
g = Zg (see Theorem

6.2.6(ii)). Therefore, for any Σ compatible with the period map, we have the fol-
lowing commutative diagram of stacky fans (which in some sense can be regarded
as the main result of this paper):

(1.2) T tr
g

ΣPtr
g ��

��

ΣHtr
g

��
T tr
g /Out(Fg) = M tr

g

Σttrg �� ΣAtr
g = ΣHtr

g /GLg(Z)

where Σttrg is the map, called the tropical Torelli map (with respect to Σ), that
sends a tropical curve C into its tropical Jacobian J(C) (see Theorem 6.2.6(iii)).
For the 2nd Voronoi decomposition ΣV , the tropical Torelli map was introduced in
[BMV11] and further studied in [Cha12].

The restriction of the above diagram (1.2) to the pure moduli spaces is inde-
pendent from the chosen admissible decomposition Σ and reduces to the following
commutative diagram of topological spaces

(1.3) Xg

Ptr,p
g ��

��

Ωg

��
Xg/Out(Fg)

ttr,pg �� Ωg/GLg(Z)

where Ptr,p
g (called the pure period map) is equal to the restriction of the tropical

period map ΣPtr
g to Xg

∼= T tr,p
g and ttr,pg (called the pure tropical Torelli map) is

equal to the restriction of the tropical Torelli map Σttrg (for any Σ as above) to

M tr,p
g

∼= Xg/Out(Fg); see Theorem 6.2.6(iv). Note that the diagram (1.2) can
be seen as a bordification (or partial compactification) of the diagram (1.3); the
vertical arrows are now topological quotient maps, in contrast to the vertical arrows
in (1.2).

Here is a concrete example that illustrates the effect of applying the maps in
(1.2) to a particular point in X3. Let Γ be the graph drawn at the top of Figure 2,
with three vertices and edges labeled a, b, c, d, and e. Let h : R3 → Γ be the marking
of Γ that sends the three loops of R3 to ab, cb, and ded, respectively, where e denotes
the reversal of e. Thus h is a homotopy equivalence. Suppose l : E(Γ) → R≥0 is a
length function on the edges of Γ. Then (Γ, l, h) is a point in X3, i.e. a metric graph
with a marking. Applying the period map Ptr

g to (Γ, l, h) yields a 3 × 3 positive
definite matrix

A =

⎛
⎝l(a) + l(b) l(b) 0

l(b) l(b) + l(c) 0
0 0 l(e)

⎞
⎠ .

The image of (Γ, l, h) under the quotient of X3 by Out(F3) is simply the pure
tropical curve (Γ, l) in M tr

3 . The period map Ptr
g then descends to the Torelli map
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ttr3 from M tr
3 to Atr

3 sending (Γ, l) to the GL3(Z)-equivalence class of the matrix A.
All of these maps will be defined precisely in this paper.

The paper is organized as follows. In Section 2 we introduce the category of
ideal stacky fans and we study quotients of ideal stacky fans by admissible actions.
In Section 3 we define the (pure) tropical Teichmüller space as a (ideal) stacky fan
and study the admissible action of Out(Fg) on them. In Section 4 we realize the
moduli space of (pure) tropical curves as a quotient of the (pure) Teichmüller space
by Out(Fg). In Section 5 we study the (pure) tropical Siegel space and identify its
quotient by GLg(Z) with the moduli space of (pure) tropical p.p. abelian varieties.
In Section 6 we study the (pure) tropical period map from the (pure) tropical
Teichmüller space to the (pure) tropical Siegel space and we identify its quotient
with the (pure) tropical Torelli map. Finally, in Section 7 we present some open
problems that naturally arise from our work.

After the completion of this work, we heard about the Ph.D. thesis [Bak11]
of Owen Baker at Cornell University, where the tropical period map (called the
Jacobian map in loc. cit.) from Outer space to the space of positive define quadratic
forms is also discussed. More specifically, the author uses the Jacobian map in
order to find an invariant deformation retract of Outer Space for genus 3, which is
then used to compute the first and second cohomology group of the kernel of the
abelianization map A : Out(F3) → GL3(Z) (which can be considered as a tropical
analogue of the classical Torelli subgroup of the mapping class group). We wonder
if the results presented here may help in finding an invariant deformation retract
of Outer Space in arbitrary genus, generalizing the results of O. Baker.

Moreover, after this paper was submitted for publication, two interesting preprints
[Ji] and [ACP] related to the topics discussed in this paper were posted on the
arXiv. In [Ji], Lizhen Ji uses the tropical period map to construct several Out(Fg)-
invariant complete geodesic length metrics on the Outer Space, some of them in-
duced by piecewise smooth Riemannian metrics. In [ACP], D. Abramovich, L.
Caporaso and S. Payne describe, among other results, M tr

g as the skeleton of the

stack Mg of smooth projective curves of genus g. They view M tr
g inside the cate-

gory of generalized cone complexes with integral structure, which is a subcategory
of the category of ideal stacky fans. Moreover, they construct a tropicalization map
from a suitable subset of the Berkovich analytification Man

g of Mg to the tropical

moduli space M tr
g , which generalizes the tropicalization map constructed by the

third author in [Viv].
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Calouste Gulbenkian program “Est́ımulo à investigação 2010”. F. Viviani is a



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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2. Ideal stacky fans and stratified quotients

Throughout, we will consider a fixed R-vector space V ∼= RI where |I| is
finite or countable. We endow V with the product topology and we fix a lattice
N ∼= ZI ⊂ RI in it.

2.1. Ideal fans and ideal stacky fans. We start this subsection by recalling
the definition of a rational polyhedral fan and introducing the concept of an ideal
fan, which is obtained from a rational polyhedral fan by removing some faces.

Definition 2.1.1. A rational polyhedral cone, or a cone, for short, is a closed,
convex set of the form

σ = {λ1x1 + · · ·λsxs : λi ∈ R≥0} ⊆ V

for some finite set x1, . . . , xs ∈ N . A rational polyhedral fan in V is a (possibly
infinite) collection Σ of cones of V satisfying:

• if τ is a face of σ ∈ Σ then τ ∈ Σ, and
• the intersection of two cones in Σ is a face of each.

The support of Σ, denoted supp(Σ), is the union of the cones in Σ.

Definition 2.1.2. An ideal rational polyhedral cone σ of V (or an ideal cone of
V , for short) is a convex subset of V obtained from an N -rational polyhedral cone
σ in V by removing some of its faces. A face of an ideal cone σ is the intersection
of σ with a face of σ. Thus, faces of ideal cones can be empty. We let σ0 denote
the relative interior of σ, so that σ0 is a rational open polyhedral cone.

Note that faces of σ are closed subsets of σ. The expression “ideal cones” is
taken from [CV86]5 ; when it is clear from the context, we will refer to ideal cones
simply as cones.

Definition 2.1.3. Suppose Σ = {σi} is a rational polyhedral fan in V . Fix
some subset of the cones of Σ whose support is denoted by Z. Then supp(Σ)\Z ⊆ V
can be written as a union of ideal cones in a natural way: if σi was a cone in Σ,
then replace it by the ideal cone σi obtained by deleting the faces of σi lying in
Z, or remove σi entirely if it lies in Z itself. We call a collection of ideal cones
Σ = {σi} obtainable in this way an ideal fan.

As with fans, the support of an ideal fan is the union of its ideal cones and
is denoted supp(Σ). Note also that if τ is a face of σ ∈ Σ then τ ∈ Σ, and the
intersection of two ideal cones in Σ is a face of each.

Definition 2.1.4. An ideal fan Σ in V is locally finite if every x ∈ supp(Σ)
has some open neighborhood that meets only finitely many ideal cones of Σ.

Equivalently, by shrinking the open neighborhoods, we see that Σ is locally
finite if and only if every x ∈ supp(Σ) is in only finitely many ideal cones and has
some neighborhood meeting only those cones.

5Indeed the word “ideal” occurs in other contexts with a similar meaning, e.g. “ideal tri-
angles” in hyperbolic geometry (see [Thu97, Prop. 2.4.12]) or “ideal boundaries” of a Riemann
surface (see [Bea84, Sec. 8.8]).
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Figure 1. Example of a non-locally finite ideal fan. The bottom-
left point, colored white, is omitted. Even though every point of
the ideal fan is in finitely many cones, every neighborhood of x
meets infinitely many cones.

Figure 2.1 illustrates that the property of being locally finite is stronger than
just the requirement that each point is in only finitely many ideal cones.

Lemma 2.1.5. Let Σ be an ideal fan in V , and let XΣ = (
∐

σi)/ ∼ be the space
obtained by gluing the ideal cones σi ∈ Σ on their overlaps. Then Σ is locally finite
if and only if the natural map XΣ → supp(Σ) is a homeomorphism.

Proof. The map f : ((
∐

σi)/ ∼) → supp(Σ) is obviously a continuous bijec-
tion. Suppose Σ is locally finite, let Z be a closed set in XΣ, and let x ∈ supp(Σ)
be a limit point of f(Z). By local finiteness, there is some cone σ such that x is a
limit point of f(Z) ∩ σ; hence Z is closed.

Conversely, suppose Σ is not locally finite at x ∈ supp(Σ). For j = 1, 2, . . .,
choose a cone σj ∈ Σ whose interior meets the open ball B1/j(x) of radius 1/j and
such that σj is not a face of any previously chosen cone. Such a choice is possible
since infinitely many cones meet B1/j(x). Pick any xj ∈ B1/j(x)∩σ0

j different from
x. Then the set {x1, x2, . . .} is closed in XΣ since each cone contains only finitely
many of its points, but as a subset of V , it contains x in its closure. �

Definition 2.1.6. Let V = Rm and V ′ = Rn with fixed lattices N ∼= Zm ⊂ V
and N ′ ∼= Zn ⊂ V ′ and let X,X ′ be ideal cones in V and V ′, respectively. We
say that a linear map L : V → V ′ is integral if L(N) ⊆ N ′. We say that it is a
lattice-preserving inclusion if it induces an inclusion X ↪→ X ′ identifying X with a
face of X ′, and if

L(N ∩ span(X)) = N ′ ∩ L(span(X)).

We now introduce ideal stacky fans, which are a slight strengthening of stacky
fans in the sense of [Cha12, Def. 3.2] (relaxing the definition in [BMV11, Def.
2.1.1]).

Definition 2.1.7. Let {Vi} is a collection of finite-dimensional real vector
spaces, each with a fixed associated lattice, and let {σi ⊆ Vi} be a collection of
ideal cones, one in each. Let {Lα : Vi → Vj} be a collection of lattice-preserving
linear maps inducing an identification σi ↪→ σj of σi with a face of σj . Here, we
allow i = j.

LetX = (
∐

σi)/ ∼, where∼ is the equivalence relation generated by identifying
each x with Lα(x) for all linear maps Lα. If X =

∐(
σ0
i /∼

)
as sets, then we say

that X is an ideal stacky fan with cells {σ0
i /∼}. We call a map Lα an inclusion

of faces. We say that σi is a stacky face of σj if i = j or there is a sequence of
inclusions of faces from σi to σj .
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Remark 2.1.8. Note that for fixed σ and σ′ in the definition above, there can
be only finitely many distinct maps Lα : σ→ σ′. For since Lα is lattice-preserving,
it must take the first lattice point on a ray of the closure of σ to a first lattice point
on a ray of the closure of σ′, so there are only finitely many choices.

Remark 2.1.9. Definition 2.1.7 allows for ideal cones instead of closed cones,
and it allows for infinitely many cones as well. However, a straightforward argu-
ment, essentially the one in [Cha12, Theorem 3.4] in the case of tropical moduli
space, shows that an ideal stacky fan on finitely many closed cones is a stacky fan
in the restricted sense of [Cha12, Def. 3.2].

Remark 2.1.10. If Σ = {σi} is an ideal fan in a finite-dimensional vector space
V , then the space XΣ = (

∐
σi)/∼, where ∼ is generated by inclusions of faces, is

trivially an ideal stacky fan with cells {σ0
i }. However, XΣ has the same topology as

supp(Σ) ⊆ V only in the case that Σ is locally finite; this is precisely Lemma 2.1.5.

Remark 2.1.11. Suppose instead that V is infinite-dimensional, Σ = {σi} is
an ideal fan in V , and each cone of Σ is simplicial, i.e. is a cone over a simplex,
possibly minus some faces. Pick a point eρ on each ray ρ of the associated (closed)

fan Σ, to be regarded as the “first lattice point” of that ray. Then a d-dimensional
cone σ ∈ Σ can be identified with an orthant σ′ = Rd

≥0 ⊂ Rd, possibly minus some

faces, by sending each point eρ to one of the standard basis vectors in Rd.
Then we associate a space XΣ to Σ by gluing the cones σ′ along their faces in

accordance with the fan structure of Σ; this space XΣ is again trivially a stacky
fan. Again by Lemma 2.1.5, it is homeomorphic to supp(Σ) if and only if Σ is
locally finite.

Ideal stacky fans enjoy remarkable topological properties.

Proposition 2.1.12. Any ideal stacky fan is homeomorphic to a cone over a
CW-complex minus a subcomplex.

Proof. Let X = (
∐

σi)/ ∼ be an ideal stacky fan. Assume first that each

σi is a closed cone. Take the barycentric subdivision of each σi; let {σ1
i , . . . , σ

li
i }

be the cones in the resulting complex. Let C = {σk
i }σi∈Σ,1≤k≤li be the set of

all of the barycentric pieces of the cones. Now, each Lα maps each cone in C
homeomorphically to another cone in C. Consider the equivalence relation on
the set C generated by the maps Lα in this way, and let J ⊆ C be a choice of
representatives. Then

X ∼=
∐

σk
i ∈J

σk
i / ∼′,

where ∼′ is generated by composing identifications via Lα and identifications of
faces within a barycentric subdivision. Note in particular that any such composite
map taking σk

i to itself must be the identity, since the vertices of σk
i correspond to

a faces of σi of distinct dimensions and each map Lα preserves this correspondence.
It follows that the space

∐
J σk

i / ∼′ is a cone over a CW-complex.
For a general ideal stacky fan, we may remove some of the faces of the cones σi

and repeat the above construction; hence we end up with a cone over a CW-complex
minus a subcomplex. �

Corollary 2.1.13. Any ideal stacky fan is
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• normal (hence Hausdorff);
• paracompact;
• locally contractible (hence locally path connected and locally connected).

Proof. Any CW-complex Y is normal (see [Hat02, Proposition A.3]), para-
compact (see [Hat02, Ex. 4, Sec. 4G, p. 460]) and locally contractible (see
[Hat02, Prop. A.4]). It is easily checked that these properties are preserved if we
remove a subcomplex A from Y and then take the cone over Y \ A. Hence the
result follows from Propostion 2.1.12. �

Thus, all of the spaces we shall consider in this paper are normal. In particular,
this proof unifies and generalizes the results [Cap12a, Theorem 5.2] and [Cha12,
Theorem 4.13] that the spaces M tr

g and Atr
g , whose definitions we will soon recall,

are Hausdorff.
Ideal stacky fans that satisfy a mild finiteness property enjoy further topological

properties.

Proposition 2.1.14. Let X = (
∐

σi)/∼ be an ideal stacky fan, and assume
that each ideal cone σi is a stacky face of only finitely many other ideal cones. Then
X is:

• locally compact;
• metrizable (hence first countable).

If, moreover, X has only countably many connected components, then X is also

• second countable (hence separable and Lindelöf).

Proof. Let X = (
∐

σi)/∼ be an ideal stacky fan satisfying the hypothesis.
Since each σi is a stacky face of only finitely many other cones, it follows from
Remark 2.1.8 that the surjective continuous map (

∐
σi) → (

∐
σi)/∼ is closed with

finite fibers. In particular, it is a perfect map, i.e. a surjective continuous map which
is closed and has compact fibers (see [Mun00, Ex. 26.12]). Since the topological
space

∐
σi is locally compact (because each ideal cone σi is), and it is well-known

that a perfect map preserves local compactness (see e.g. [Mun00, Ex. 31.7]), we
conclude that X is locally compact.

Observe next that, since X is locally path connected, X is the disjoint union
of its connected components (with the topology of the disjoint union). In order to
prove that X is metrizable, it is sufficient to prove that each of its connected com-
ponents is metrizable. Clearly, each connected component C of X inherits from X
the property of being locally compact, regular and paracompact (see also Corollary
2.1.13). Hence C is second countable by [Mun00, Ex. 41.10]. Since C is regu-
lar and second countable, the Urysohn metrization theorem (see [Mun00, Thm.
34.1]) implies that C is metrizable. Finally, if X has countably many connected
components, then since each of these connected components is second countable, it
follows that X itself is second countable.

�
Remark 2.1.15. The hypothesis that each ideal cone σi is a stacky face of only

finitely many other ideal cones cannot be removed from Proposition 2.1.14, as the
following example shows.

Consider the stacky fanX whose cones are σ0 := {0} ⊆ R0 and σn := R≥0 ⊂ R1

for every n ≥ 1, and whose inclusion of faces are Ln : σ0 ↪→ σn identifying σ0 with
the origin of σn, for every n ≥ 1. It is easily checked that X is not first countable
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at the point corresponding to σ0 (hence it is not metrizable) and it is not locally
compact.

There is a natural notion of morphism of ideal stacky fans that generalizes the
definition of morphism of stacky fans (see [BMV11, Def. 2.1.2]).

Definition 2.1.16. Let X and Y be ideal stacky fans with cells {σ0
i /∼} and

{τ0i /∼}, respectively. A continuous map f : X → Y is a morphism of ideal stacky
fans if for all σi, there exists a τj and an integral–linear map L : σi → τj such that
the following diagram commutes.

σi
L ��

��

τj

��
X

f �� Y

2.2. Admissible decompositions and stratified quotients. The aim of
this subsection is to introduce admissible decompositions and their corresponding
stratified quotients.

Definition 2.2.1. Let V be a finite-dimensional real vector space, let X ⊆ V ,
and let G be a group acting on X. An ideal fan Σ with support X is called an ideal
G-admissible decomposition of X if:

(i) the action of G permutes the cones on Σ, that is, if σ ∈ Σ and g ∈ G, then
σ · g ∈ Σ;

(ii) the action of g ∈ G on any σ ∈ Σ is given by a lattice-preserving linear map
V → V taking σ to σ · g.

Given an ideal G-admissible decomposition Σ of X, we now define a kind of
quotient space, called the stratified quotient, obtained by gluing representative
cones together. We will see that it is the same as the topological quotient X/G
in the case that Σ is locally finite, but is better behaved than X/G if not (see
Corollary 2.2.11 and Remark 2.2.12).

Definition 2.2.2. Let V be finite-dimensional, let Σ be an ideal G-admissible
decomposition of X ⊆ V , and let {σi} be a system of representatives for the G-
orbits of the cones in Σ. Given two representatives σi and σj and an element g ∈ G
such that σi · g is a face of σj , let Li,j,g : σi ↪→ σj be the corresponding lattice-
preserving linear map. (Here, we allow i = j.) Then the stratified quotient of X
with respect to Σ is

X//ΣG :=
(∐

σi

)
/∼

where ∼ is the equivalence generated by the maps Li,j,g. We emphasize thatX//ΣG
is a topological space with respect to the quotient topology.

With just a little more work, we can define G-admissible actions and stratified
quotients for any ideal stacky fan. We will need these more general definitions to
take quotients of Outer Space and its simplicial closure in Section 3.

Definition 2.2.3. Let X = (
∐

σi)/∼ be a stacky fan with cells {σ0
i /∼}. An

action of a group G on X is admissible if for each g ∈ G and σi, there exists some
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σj (necessarily unique) and a lattice-preserving map Lg,i : σi

∼=−→ σj such that the
following diagram of sets commutes.

σi

Lg,i ��

��

σj

��
X

g �� X

We say that σi and σj are in the same G-orbit if so.

Definition 2.2.4. Let X = (
∐

σi)/∼ be a stacky fan with cells {σ0
i /∼} and

inclusions of faces {Lα}, and suppose we have an admissible G-action on X. Let
{σj}j∈J be a set of G-orbit representatives. Then define the stratified quotient to
be

X//G = (
∐
j∈J

σj)/∼′,

where the quotient is over all identifications given by composite maps of the form

σi
Lg,i−→ σi · g

Lα−→ σj for all g, i, and j.

Remark 2.2.5. Definitions 2.2.1 and 2.2.2 are just special cases of Defini-
tions 2.2.3 and 2.2.4, namely, in the case that the ideal stacky fan is obtained from
an ideal polyhedral fan.

Proposition 2.2.6. Let X = (
∐

σi)/∼ be an ideal stacky fan with cells {σ0
i /∼

} and inclusions of faces {Lα}, and suppose we have an admissible G-action on X.
Let {σj}j∈J be a set of G-orbit representatives. Then the stratified quotient X//G is
an ideal stacky fan with cells {σ0

j /∼′}j∈J , and the map X → X//G is a morphism
of ideal stacky fans.

Proof. The only part of the first claim that needs checking is that the obvious
map from

∐
j∈J (σ0

j /∼′) to X is a bijection. It is a surjection since {σj} is a set of

representatives; on the other hand, if the images of σ0
j and σ0

j′ overlap, then some

g ∈ G takes σj to σj′ , so j = j′.
To show that X → X//G is a morphism, consider the following diagram of

topological spaces. ∐
σi

��

/{Lα}

��

∐
j∈J

σj

/{Lα◦Lg,i}

��
X �� X//G

The top map sends each cone σi to its representative via a lattice-preserving linear
map Lg,i. The bottom map exists (and is continuous), and makes the square
commute, because the left arrow is a quotient map. The maps Lg,i comprising
the top arrow of the commmutative square also give precisely the condition that
X → X//G is a morphism of ideal stacky fans. �

A priori, the definition of a stratified quotient depends on the choice of the
representatives for the G-orbits on Σ. However, we will prove next that this is not
the case and therefore that the above definition is well-posed, not just at the level
of topological spaces (see Proposition 2.2.9), but as ideal stacky fans.
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Proposition 2.2.7. The construction of X//G in Definition 2.2.4 does not
depend on our choice of representatives {σj}j∈J . More precisely, suppose that
{σ′

j}j∈J is another choice of representatives such that σ′
j and σj are G-equivalent

for each j. Let X//G and X/̃/G denote the respective corresponding ideal stacky

fans. Then there is an isomorphism of stacky fans between X//G and X/̃/G.

Proof. For each j, choose gj ∈ G with

σj · gj = σ′
j .

Then we obtain a map ∐
j∈J

(σj/∼)
(gj)j∈J−−−−−→

∐
j∈J

(σj/∼)

descending to a map

X//G −→ X/̃/G,

and this map is an isomorphism of stacky fans, as evidenced by the inverse map

X/̃/G → X//G constructed from the elements {g−1
j }j∈J . �

From Corollary 2.1.13, we get the following result.

Corollary 2.2.8. A stratified quotient is normal (hence Hausdorff).

In fact, stratified quotients are global quotients. (By the global quotient X/G
we just mean the set of G-orbits of X, endowed with the quotient topology.)

Proposition 2.2.9. Let X = (
∐

σi)/∼ be an ideal stacky fan, and suppose we
have an admissible G-action on X. Then we have a homeomorphism

X/G ∼= X//G.

Proof. As usual, let Lα denote the face inclusions of X, let Lg,i be the linear
map induced on a cone σi by g ∈ G as in Definition 2.2.3, and let J denote a
subcollection of cones that form a set of orbit representatives in the G-action on
X.

We have a surjective map π :
∐

σi �
∐

j∈J σj sending each cone to its rep-

resentative, and a section i :
∐

j∈J σj ↪→
∐

σi. The space X/G is obtained from∐
σi by quotienting by the face inclusions Lα to obtain X, and then taking the

quotient of X by the action of G. The space X//G is obtained from
∐

j∈J σj by
quotienting by maps of the form Lα ◦Lg,i. These maps are related by the diagram
below, and give rise to the maps f and g, depicted by dotted arrows, which make
both the forward and the backward squares commute.∐

σi

/Lα,G

��

π �� ∐
j∈J

σj
i

��

/Lα◦Lg,i

��
X/G

f �� X//G
h

��

Finally, from the fact that π ◦ i = id and i ◦ π sends a point to something in its
G-orbit, we conclude that h ◦ f = id and f ◦ h = id. �



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

60 CHAN, MELO, AND VIVIANI

Remark 2.2.10. It follows from Proposition 2.2.9 that the stratified quotient
X//G really is a quotient object with respect to G-equivalence in the category
of ideal stacky fans, in the sense that any morphism X → Y that respects G-
equivalence factors uniquely as a composite map X → X//G → Y of ideal stacky
fans.

Specializing Proposition 2.2.9 to the case of admissible G-actions on the ideal
stacky fans coming from a locally finite G-admissible decomposition of X ⊆ V , we
get the following

Corollary 2.2.11. Suppose that Σ is a locally finite G-admissible decomposi-
tion of X ⊆ V , and let XΣ be the stacky fan structure on X (see Lemma 2.1.5).
Then we have a homeomorphism

X/G ∼= XΣ//G.

In other words, for locally finite fans that are G-admissible decompositions, strati-
fied quotients are global quotients.

Proof. We have homeomorphismsX ∼= XΣ andXΣ/G ∼= XΣ//G by Lemma 2.1.5
and Proposition 2.2.9. �

Remark 2.2.12. For an arbitrary (not necessarily locally finite) G-admissible
decomposition Σ of X ⊆ V , the continuous bijection XΣ → X of Lemma 2.1.5
induces a continuous bijection

X//ΣG ∼= XΣ//G ∼= XΣ/G −→ X/G,

where the homeomorphisms on the left hand side follow from Remark 2.2.5 and
Proposition 2.2.9. However, it is easy to construct examples of non-locally finite
decompositions Σ where the above continuous bijection is not a homeomorphism,
since the space on the left hand side is always Hausdorff (see Corollary 2.2.8) while
the space on the right hand side could very well be non-Hausdorff.

3. Tropical Teichmüller space

The aim of the present section is to introduce two spaces: the pure tropical
Teichmüller space, which we will denote by T tr,p

g , together with a closure of it,

which we will call tropical Teichmüller space and denote by T tr
g . These spaces

parametrize stable metric graphs (respectively stable metric weighted graphs) of
genus g together with a fixed isomorphism of their fundamental group with the free
group on g letters Fg.

The idea of considering spaces parametrizing stable metric graphs together
with such a marking is well-known in geometric group theory and is due to Culler
and Vogtmann, who introduced in [CV86] the space Xg, now called Outer space,
parametrizing such objects. There, the authors endow Outer space with a topol-
ogy by embedding it in an infinite-dimensional vector space; they also consider its
closure Xg in this space. The outer automorphism group Out(Fg) of the free group
Fg acts properly discontinuously (hence with finite stabilizers) on Xg by changing
the marking. The approach of deducing cohomological information on the group
Out(Fg) via its action on Xg has been extremely fruitful; we refer the reader to
[Vog02] and [Vog06] for a survey of the known results.

The objects parametrized by our pure tropical Teichmüller space are essentially
the same objects parametrized by Outer space, the only difference being one of
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convention: we do not normalize edge lengths as Culler and Vogtmann do. We do,
however, endow T tr,p

g and T tr
g with a topology in a different way: our strategy is

to consider cells consisting of marked metric graphs (resp. marked weighted metric
graphs) of the same topological type and glue them together in a similar way to what
was done in [BMV11] in order to construct the moduli space of tropical curves.
The resulting spaces are manifestly ideal stacky fans. In fact T tr,p

g is homeomorphic
to (non-normalized) Outer space (see Corollary 3.2.3); in other words, the induced
topology on Outer space coincides with the simplicial topology on it. On the other
hand, the ideal stacky fan T tr

g obtained from the simplicial structure on Xg has a

topology that is actually finer than the subspace topology on Xg; see Lemma 2.1.5.
We have rechristened Xg in this paper simply to emphasize that our reasons

and context for studying it are quite different from the usual ones; and to emphasize
that T tr,p

g is an object in the category of ideal stacky fans. We next describe the

construction of T tr,p
g and of Xg, following [Vog02, Part I].

3.1. Pure tropical Teichmüller space. Recall that given a graph Γ (pos-
sibly with loops or multiple edges), with vertex set V (Γ) and edge set E(Γ), the
genus of Γ is g(Γ) := |E(Γ)| − |V (Γ)| + 1; it is the dimension of the vector space
generated by the cycles of Γ. The valence of a vertex v, val(v), is defined as the
number of edges incident to v, with the usual convention that a loop around a
vertex v counts twice. We say that a graph Γ is stable if any vertex of Γ has valence
at least two.

Definition 3.1.1. A metric graph is a graph Γ together with a length function
l : E(Γ) → R>0. The volume of a metric graph (Γ, l) is the sum of the lengths of
the edges of Γ. We can regard (Γ, l) as a metric topological space.

A pure tropical curve C of genus g is a metric graph (Γ, l) such that Γ is a
stable graph of genus g(Γ) = g.

Pure tropical curves are special tropical curves, as we will see in Subsection 3.3.
The term pure was introduced by L. Caporaso in [Cap12b].

Now fix a graph Rg with one vertex v and g edges (a rose with g-petals) and
identify the free group Fg = F 〈x1, . . . , xg〉 with π1(Rg, v) in such a way that each
generator xi corresponds to a single oriented edge of Rg. Under this identification,
reduced words in Fg correspond to reduced edge-path loops starting at the vertex
v of Rg, and therefore we will make no distinction between them.

Definition 3.1.2.

(i) Let Γ be a graph of genus g. A marking on Γ is a homotopy equivalence
h : Rg → Γ. Here, Γ is viewed as a 1-complex, with a free fundamental group
of rank g. We say that the pair (Γ, h) is a marked graph of genus g. We regard
(Γ, h) and (Γ′, h′) as equivalent if there is an isomorphism of 1-complexes
γ : Γ → Γ′ with h ◦ γ homotopic to h′.

We are always interested in marked graphs only up to the above equiva-
lence, but for simplicity will just say “marked graph” instead of “equivalence
class of marked graphs” throughout.

(ii) A marked metric graph (Γ, l, h) consists of a metric graph (Γ, l) together with
a marking h : Rg → Γ of the underlying graph. We say that two marked
metric graphs (Γ, l, h) and (Γ′, l′, h′) are equivalent if there is an isometry
γ : (Γ, l) → (Γ′, l′) with h ◦ γ homotopic to h′. Again, we will always consider
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marked metric graphs only up to equivalence in this section, and for simplicity
we will write “marked metric graph” instead of “equivalence class of marked
metric graphs.”

(iii) A marked pure tropical curve (C, h) = (Γ, l, h) of genus g is a pure tropical
curve C = (Γ, l) of genus g together with a marking h : Rg → Γ of the
underlying graph Γ, up to equivalence. The stable marked graph (Γ, h) is
called the combinatorial type of the marked pure tropical curve.

Our next goal is to define the pure tropical Teichmüller space T tr,p
g , a space

that will parametrize marked pure tropical curves of genus g. We will show that it
is an ideal stacky fan in Proposition 3.1.9. We start by defining its cells.

Definition 3.1.3. Given a stable marked graph (Γ, h) of genus g, fix a num-

bering on its set of edges E(Γ). Let C0
(Γ,h) := R

|E(Γ)|
>0 be the open simplicial cone of

R|E(Γ)|, and write C(Γ,h) = R
|E(Γ)|
≥0 for its closure.

So, for example, graphs with k edges correspond to cones of dimension k, and an
Euler characteristic argument shows that all cones have dimension at most 3g − 3.

Remark 3.1.4. The points of C0
(Γ,h) are in bijection with (equivalence classes

of) marked metric graphs (Γ, l, h) for some length function l, or in other words with
pure tropical curves whose underlying combinatorial type is (Γ, h). Indeed, a point

in R
|E(Γ)|
>0 determines a length function l : E(Γ) → R>0. If l′ = l ◦ p is another

length function, where p : E(Γ) → E(Γ) is a permutation induced by a nontrivial
isometry ψ, then the marking ψ ◦ h must be different from h; for since Γ is not
homeomorphic to a circle, ψ cannot fix every loop of Γ.

The pure tropical Teichmüller space will be obtained by gluing certain partial
closures C(Γ,h) of C0

(Γ,h) along ideal faces corresponding to specializations of (Γ, h),

as we are now going to define.
3.1.1. Specializations of marked graphs.

Definition 3.1.5. Let (Γ, h) and (Γ′, h′) be two marked graphs of the same
genus g. We say that (Γ, h) specializes to (Γ′, h′), and we write (Γ, h) � (Γ′, h′),
if there is a surjective morphism of graphs π : Γ → Γ′ induced by contracting an
acyclic subgraph of Γ making the following diagram homotopy commutative.

Rg
h ��

h′
���

��
��

��
Γ

π

��
Γ′

Note that if (Γ, h) � (Γ′, h′) and Γ is stable then also Γ′ is stable.

Definition 3.1.6. Let (Γ, h) be a stable marked graph of genus g. Given a
subset S ⊆ E(Γ), let FS denote the face of C(Γ,h) corresponding to those length
functions l : E(Γ) → R≥0 that are zero on all edges in S. Then define C(Γ,h) to be

the ideal cone obtained from C(Γ,h) by removing those faces corresponding to sets
S ⊆ E(Γ) containing a cycle.

Thus, the nonempty faces of C(Γ,h) correspond to (equivalence classes of) spe-
cializations of (Γ, h). Indeed, a specialization (Γ, h) � (Γ′, h′) yields an obvious
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•

a

��

c

��b ��• d ��• e��

↙ ↘

•
c

��b ��•��
a

e�� •b 		

c



 d ��• e��

Figure 2. Two specializations of a graph Γ of genus 3. Denote
by e the reversal of the directed edge e. Suppose the marking of Γ
sends the three loops of R3 to ab, cb, and ded, respectively. Then
the marking specializes, on the left, to (ab, cb, e) and, on the right,
to (b, cb, ded).

inclusion ι : E(Γ′) → E(Γ) that induces, in turn, a lattice-preserving linear map
Lι : C(Γ′,h′) ↪→ C(Γ,h) sending C(Γ′,h′) to a face of C(Γ,h). Using these linear maps,
given a stable marked graph (Γ, h), we have a natural identification of sets

(3.1) C(Γ,h) =
∐

(Γ,h)�(Γ′,h′)

C0
(Γ′,h′),

where the union runs over all equivalence classes of stable marked graphs of genus
g which are obtained as specializations of (Γ, h). Summarizing, we have:

Lemma 3.1.7. Let (Γ, h) be a stable marked graph of genus g. Then the faces
of C(Γ,h) are in bijective correspondence with ideal cones C(Γ′,h′), where (Γ′, h′) is a
stable marked weighted graph of genus g such that (Γ, h) � (Γ′, h′). The identifica-
tion is given by a lattice-preserving linear map Lι : C(Γ′,h′) ↪→ C(Γ,h) sending C(Γ′,h′)

to a face of C(Γ,h).

3.1.2. The topology underlying pure tropical Teichmüller space. We are now
ready to define the pure tropical Teichmüller space T tr,p

g .

Definition 3.1.8. The pure tropical Teichmüller space of genus g is the topo-
logical space (with respect to the quotient topology)

T tr,p
g :=

(∐
C(Γ,h)

)
/ ≈

where the disjoint union (endowed with the disjoint union topology) runs through all
equivalence classes of stable marked graphs (Γ, h) of genus g and≈ is the equivalence
relation generated by the lattice-preserving linear maps Lι.

Proposition 3.1.9. The topological space T tr,p
g is an ideal stacky fan with cells

C0
(Γ,h). It parametrizes marked pure tropical curves of genus g.

Proof. To prove the first sentence, we only need to prove that the map

(3.2)
∐

C0
(Γ,h) →

(∐
C(Γ,h)

)
/ ≈

is bijective, where the disjoint unions run through all stable marked graphs (Γ, h)
of genus g; then the rest follows from the definition of T tr,p

g . It is injective because
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the linear maps in Lemma 3.1.7 never identify two different points in the relative
interiors of cones. It is surjective by (3.1). Finally, from the bijection (3.2) and
Remark 3.1.4, it follows that T tr,p

g parametrizes marked pure tropical curves of
genus g. �

3.2. Homeomorphism with Outer space. As mentioned above, for a fixed
genus g, the pure tropical Teichmüller space T tr,p

g and Culler-Vogtmann’s Outer
space Xg parametrize the same objects, provided that we do not normalize the
volume of the metric graphs as in [CV86]. We now recall the definition of Xg.

Let (Γ, l) be a metric graph; we will often write Γ for short, and regard Γ as a
metric space just as in Definition 3.1.1. A loop in Γ is the image of a map S1 → Γ.
It is immersed if it is a local homeomorphism onto its image. The length of an
immersed loop α is the sum of the lengths of the edges it traverses, counted with
multiplicity. The length of a non-immersed loop α is defined to be the length of
the unique up to homotopy immersed loop homotopic to α.

Recall that Fg denotes the free group on g letters, the graph Rg denotes the
rose with g petals, and that we fix an identification between Fg and π1(Rg, v),
where v is the unique vertex of Rg. So a word w ∈ Fg determines, up to homotopy,
a loop λ(w) in Rg; furthermore, two words determine the same loop, again up to
homotopy, if and only if they are in the same conjugacy class.

Let C denote the set of conjugacy classes of words in Fg. Then any marked
metric graph (Γ, l, h) of genus g determines a real valued function hC(Γ, l, h) on
C which assigns to each word w the length of the unique immersed loop in (Γ, l)
which is homotopic to h(λ(w)). As noted above, the definition of hC(Γ, l, h) does
not depend on the equivalence class of w.

Fact - Definition 3.2.1. [CV86] Outer space Xg is defined to be the set of
equivalence classes of stable marked metric graphs (Γ, l, h). The map hC : Xg → RC

defined above is an injection by [CM87], and we equip Xg ⊂ RC with the subspace
topology. Xg has a natural decomposition into a disjoint union of open simplicial
cones consisting of equivalence classes of marked metric graphs having the same
combinatorial type.

Notice that since we do not normalize the volume of the graphs as Culler and
Vogtmann do, we get an embedding of Xg in RC rather than in RPC as in [CM87],
and we get that Xg is a union of simplicial cones as opposed to simplices.

The following fact is “folklore” in geometric group theory. A proof appears in
[GL07]; in fact the result there pertains to a wider class of deformation spaces.

Proposition 3.2.2. [GL07, Proposition 5.4] The subspace topology on Outer
space coincides with the simplicial topology (obtained from gluing together the above
simplicial cones along shared boundaries.)

As an immediate corollary, we have:

Corollary 3.2.3. The pure tropical Teichmüller space T tr,p
g , with topology

described in Definition 3.1.8, is homeomorphic to Outer space Xg, with the subspace
topology.

Remark 3.2.4. Note that Xg itself can be regarded as the support of an ideal
fan Σ = {σi} whose cones are in bijection with stable marked graphs of genus
g [CV86]. As described in Remark 2.1.11, we may therefore associate an ideal
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stacky fan Xg,Σ to Xg: roughly speaking, we pull the space apart into its ideal
cones, impose a lattice on each cone separately, and then reglue. Corollary 3.2.3
then implies that Xg,Σ and T tr,p

g are isomorphic ideal stacky fans.

3.3. Tropical Teichmüller space. Having constructed T tr,p
g , we will now

construct a space, which we call tropical Teichmüller space and denote by T tr
g , by

replacing the ideal cones in T tr,p
g with closed cones. Roughly speaking, we allow

edge lengths to go to zero; we then have to do a little work to define a marking
on such a “pseudo-metric” graph and when two markings should be considered
the same.

Definition 3.3.1. A weighted graph is a pair (Γ, w) consisting of a graph Γ
and a function w : V (Γ) → Z≥0, called the weight function. A weighted graph is
called stable if any vertex v of weight zero (i.e. such that w(v) = 0) has valence
val(v) ≥ 3. The total weight of (Γ, w) is

|w| :=
∑

v∈V (Γ)

w(v),

and the genus of (Γ, w) is defined to be

g(Γ, w) := g(Γ) + |w|.

We will denote by 0 the identically zero weight function.

Definition 3.3.2. A tropical curve of genus g is a triple (Γ, w, l), where (Γ, w)
is a stable weighted graph of genus g and l : E(Γ) → R>0 is a length function on
the edges of Γ.

Note that pure tropical curves in the sense of Definition 3.1.1 are exactly the
tropical curves with total weight zero.

In order to endow weighted graphs with a marking, we will use the strategy of
A. Omini and L. Caporaso in [AC] that treats a weight of w > 0 at a vertex as a
bouquet of w loops attached to that vertex.

Definition 3.3.3. Let (Γ, w) be a weighted graph. Then the virtual graph of
(Γ, w) is the graph Γw obtained from Γ by attaching to every vertex v exactly w(v)
loops , which will be called the virtual loops of Γw.

Definition 3.3.4. A pseudo-metric graph is a pair (Γ, l) where Γ is a graph
and l : E(Γ) → R≥0 is a length function on the edges which is allowed to vanish
only on loop edges of Γ. A pseudo-metric graph (Γ, l) is said to be stable if the
underlying graph Γ is stable.

Given a tropical curve (Γ, w, l), we associate to it the pseudo-metric graph
(Γw, lw), where lw is the length function obtained by extending l to be equal to 0
on the virtual loops of Γw.

Notice that the virtual graph Γw is an unweighted graph of the same genus as
(Γ, w), so the correspondence above gives a bijection between tropical curves and
stable pseudo-metric graphs of fixed genus.

Definition 3.3.5. Let (Γ, w) be a weighted graph of genus g. Then a marking
on (Γ, w) is a marking on Γw, that is, a homotopy equivalence h : Rg → Γw.
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We will shortly define two markings of weighted graphs to be equivalent if,
roughly speaking, they are the same up to homotopy and up to interchanging
sequences of virtual loops based at the same vertex. To make this definition precise
requires some notation, as follows.

Recall that Rg is the graph consisting of g loops γ1, . . . , γg at a vertex v, and
let h : Rg → Γ be any map. By moving the image of v appropriately and then

“pulling tight” along each γi, we see that h is homotopic to some h̃ : Rg → Γ that
sends v to a point of Γ which is not a vertex (any point of Γ of zero weight will do)
and furthermore immerses the interior of each γi.

Definition 3.3.6. Two markings h, h′ : Rg → Γw of (Γ, w) are equivalent if,
after homotoping h and h′, we have

(i) h(v) = h′(v) is a point of Γ which is not a vertex,
(ii) h and h′ are immersions on the interiors of each γi, and
(iii) for each i = 1, . . . , g, the directed loop h′(γi) is obtained, up to homotopy

fixing the basepoint, from the directed loop h(γi) by repeatedly replacing
sequences of virtual loops at a vertex with other sequences of virtual loops at
that vertex. (These sequences of virtual loops are allowed to be empty: in
other words, one may add or remove virtual loops at a vertex.)

Two marked weighted graphs (Γ, w, h) and (Γ′, w′, h′) are equivalent if there is an

isomorphism Γw → (Γ′)w
′
of 1-complexes that takes virtual loops to virtual loops

and sends h into the equivalence class of h′. Two marked metric weighted graphs
(Γ, w, l, h) and (Γ′, w′, l′, h′) are equivalent if the underlying marked weighted graphs
(Γ, w, h) and (Γ′, w′, h′) are equivalent via an isomorphism that respects the length
function l on the edges of Γ.

As in the previous section, we are interested in marked weighted graphs (resp. marked
metric weighted graphs) up to equivalence, and will often drop the phrase “equiv-
alence class of” for simplicity.

Remark 3.3.7. The reason for conditions (i) and (ii) above is to prohibit adding
a virtual loop at a vertex v to a path that passes through v and then immediately
backtracks; roughly speaking, this is because such a path can be homotoped to one
that does not backtrack through v, but a path that uses a virtual loop at v cannot
be homotoped in that way.

We can now define marked tropical curves.

Definition 3.3.8. A marked tropical curve (C, h) of genus g is a tropical curve
C = (Γ, w, l) of genus g together with a marking h : Rg → Γw of the underlying
weighted graph (Γ, w), up to equivalence.

Given a marked tropical curve (C, h) = (Γ, w, l, h), we call the marked weighted
graph (Γ, w, h) the combinatorial type of the tropical curve.

Definition 3.3.9. Given a stable marked weighted graph (Γ, w, h) of genus g,
fix a numbering on its set of edges E(Γ). Write

C0
(Γ,w,h) := R

|E(Γ)|
>0 and C(Γ,w,h) := R

|E(Γ)|
≥0

for the open and closed simplicial cones, respectively, in R|E(Γ)|.

Lemma 3.3.10. Let (Γ, w, h) be (an equivalence class of) a stable marked weighted
graph. Then the points of C0

(Γ,w,h) are in bijection with the set of (equivalence classes
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of) marked metric weighted graphs (Γ, w, l, h) for some length function l, or in other
words with marked tropical curves of combinatorial type (Γ, w, h).

Proof. The argument is just a slight strengthening of Remark 3.1.4. A point

in R
|E(Γ)|
>0 determines a length function l : E(Γ) → R>0. Suppose ψ is a non-

trivial isometry of (Γ, l, w). That is, ψ is an isomorphism of Γw restricting to
an isomorphism of Γ that respects l and w, such that the induced permutation
p : E(Γ) → E(Γ) is nontrivial. We want to show that ψh is not equivalent to h.

Just as in Remark 3.1.4, if ψ moves some loop in Γ to a nonhomotopic loop,
we are done. So we may assume ψ fixes every loop in Γ. Furthermore, ψ must
fix every vertex of positive weight, otherwise ψh would differ from h on the virtual
loops. Then ψ restricts to the identity on Γ, contradiction. �

Generalizing Definition 3.1.5, we now introduce specializations of weighted
graphs and marked weighted graphs.

Definition 3.3.11. Let (Γ, w) and (Γ′, w′) be weighted graphs. We say that
(Γ, w) specializes to (Γ′, w′), and we write (Γ, w) � (Γ′, w′), if Γ′ is obtained from
Γ by collapsing some of its edges and if the weight function of the specialized curve
changes according to the following rule: if we contract a loop e around a vertex v
then we increase the weight of v by one; if we contract an edge e between two distinct
vertices v1 and v2 then we obtain a new vertex with weight equal to w(v1)+w(v2).

Note that if (Γ, w) � (Γ′, w′) then (Γ, w) and (Γ′, w′) have the same genus; if
moreover (Γ, w) is stable then (Γ′, w′) is stable.

Definition 3.3.12. Let (Γ, w, h) be a marked weighted graph. Consider a
specialization (Γ, w) � (Γ′, w′) and call S ⊆ E(Γ) the subset consisting of the
edges of Γ that are contracted in order to obtain Γ′. Now pick any spanning forest
of S and contract the edges in it. This operation yields a marking h′ on (Γ′)w

′
since

it contracts no cycles. Picking a different spanning forest produces an equivalent
marking, so we have a marked weighted graph (Γ′, w′, h′) that is well-defined up to
equivalence. We say that (Γ′, w′, h′) is a specialization of (Γ, w, h) in this situation
and we write (Γ, w, h) � (Γ′, w′, h′)

Just as in §3.1, a specialization (Γ, w, h) � (Γ′, w′, h′) yields an obvious in-
clusion ι : E(Γ′) → E(Γ) that induces, in turn, a lattice-preserving linear map
Lι : C(Γ′,w′,h′) ↪→ C(Γ,w,h) sending C(Γ′,w′,h′) to a face of C(Γ,w,h). Using these linear
maps, given a stable marked weighted graph (Γ, w, h), we have a natural identifi-
cation of sets

(3.3) C(Γ,w,h) =
∐

(Γ,w,h)�(Γ′,w′,h′)

C0
(Γ′,w′,h′),

Summarizing, we have:

Lemma 3.3.13. Let (Γ, w, h) be (an equivalence class of) a stable marked weighted
graph of genus g. Then the faces of C(Γ,w,h) are in bijective correspondence with

cones C(Γ′,w′,h′), where (Γ′, w′, h′) is a specialization of (Γ, w, h). The identification

is given by the lattice-preserving linear map Lι : C(Γ′,w′,h′) ↪→ C(Γ,w,h).

Definition 3.3.14. The tropical Teichmüller space of genus g is the topological
space (with respect to the quotient topology)

T tr
g :=

(∐
C(Γ,w,h)

)
/ ≈
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where the disjoint union (endowed with the disjoint union topology) runs over
all stable marked weighted graphs (Γ, w, h) of genus g, and ≈ is the equivalence
relation generated by the lattice-preserving linear maps Lι.

Proposition 3.3.15. The topological space T tr
g is a stacky fan with cells C0

(Γ,w,h).

It parametrizes marked tropical curves (Γ, w, l, h) of genus g.

Proof. The proof is analogous to the one for Proposition 3.1.9. For the first
part, we only need to prove that the map

(3.4)
∐

C0
(Γ,w,h) →

(∐
C(Γ,w,h)

)
/ ≈

is bijective. It is injective because the linear maps in Lemma 3.3.13 never identify
two different points in the relative interiors of cones. It is surjective by (3.3).
Finally, from the bijection (3.4) and Lemma 3.3.10, it follows that T tr

g parametrizes
marked tropical curves of genus g. �

3.4. Action of outer automorphism group on Outer Space. The group

Out(Fg) = Aut(Fg)/ Inn(Fg)

acts on Xg by changing the markings. More precisely, given α ∈ Aut(Fg), consider
its geometric realization αR : Rg → Rg, i.e. the homeomorphism, unique up to
homotopy, that fixes the vertex v of Rg and such that the induced automorphism
(αR)∗ : Fg = π1(Rg, v) → π1(Rg, v) = Fg is equal to α ∈ Aut(Fg). Then define
(Γ, l, h) ·α = (Γ, l, h ◦αR). It is easy to see that this action is well defined and that
inner automorphisms act trivially, so we get an action from Out(Fg) onXg. We may
equally well view this as an action on T tr,p

g , since T tr,p
g

∼= Xg by Corollary 3.2.3.
Note that the stabilizer of any marked graph (Γ, l, h) is equal to the group of
isometries of (Γ, l), and thus it is finite.

The action of Out(Fg) on T tr,p
g extends to an action of Out(Fg) on T tr

g , again
by changing the marking.

Proposition 3.4.1. The Out(Fg)-actions on T tr,p
g and T tr

g are admissible with
respect to the ideal stacky fan structures of the latter spaces, in the sense of Defi-
nition 2.2.3.

Proof. The action of α ∈ Out(Fg) preserves the tropical curve underlying
the marked tropical curve, so in each case, each cone C(Γ,w,h) of T tr,p

g is mapped
to some cone C(Γ,w,h′) via a map that is clearly a lattice-preserving isomorphism
(and similarly for the cones in T tr

g .) Thus the conditions of Definition 2.2.3 are
satisfied. �

4. Moduli space of tropical curves

The moduli space M tr
g of tropical curves of genus g was first constructed in

[BMV11] (see also [Cap12b] and [Cha12]). We start by reviewing this construc-
tion, adapting it to the new definition 2.1.7 of stacky fans, which is slightly different
from the definitions of stacky fans given in [BMV11] and [Cha12] (see however
Remark 2.1.9). We also introduce the open subspace M tr,p

g ⊂ M tr
g parametrizing

pure tropical curves of genus g and show that it is an ideal stacky fan.
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Definition 4.0.2. Given a stable weighted graph (Γ, w) of genus g, fix a num-
bering on its set of edges E(Γ). Write

C0
(Γ,w) := R

|E(Γ)|
>0 and C(Γ,w) := R

|E(Γ)|
≥0

for the open and closed simplicial cones, respectively, in R|E(Γ)|.

Let (Γ, w) be a stable, weighted graph and let Aut(Γ, w) be its automorphism
group. Then Aut(Γ, w) acts on C0

(Γ,w) and on its closure C(Γ,w) by permuting coor-

dinates.

Remark 4.0.3. The points of C0
(Γ,w)/Aut(Γ, w) are in bijection with the set of

tropical curves of combinatorial type (Γ, w), i.e. tropical curves of the form (Γ, w, l)
for some length function l.

Remark 4.0.4. For each α ∈ Aut(Γ, w), denote by Lα : C(Γ,w) → C(Γ,w) the

induced lattice-preserving linear map. Note that the points of C0
(Γ,w)/Aut(Γ, w) are

in bijection with the points in the quotient C0
(Γ,w)/ ∼, where ∼ is the equivalence

relation generated by the lattice preserving linear maps Lα|C0
(Γ,w)

, α ∈ Aut(Γ, w).

Let now (Γ, w) � (Γ′, w′) be a specialization of weighted graphs as defined in
Definition 3.3.11. As in §3.3, a specialization (Γ, w) � (Γ′, w′) yields an obvious
inclusion ι : E(Γ′) → E(Γ) that induces, in turn, a lattice-preserving linear map
Lι : C(Γ′,w′) ↪→ C(Γ,w) sending C(Γ′,w′) to a face of C(Γ,w). Analogously to (3.3),
using these linear maps, given a stable weighted graph (Γ, w), we have a natural
identification of sets

(4.1) C(Γ,w) =
∐

(Γ,w)�(Γ′,w′)

C0
(Γ′,w′),

Similarly to Lemma 3.3.13, we have the following

Lemma 4.0.5. Let (Γ, w) be a stable graph of genus g. Then the faces of C(Γ,w)

are in bijective correspondence with the cones C(Γ′,w′), where (Γ′, w′) is a special-
ization of (Γ, w). The identification is given by the lattice-preserving linear map
Lι : C(Γ′,w′) ↪→ C(Γ,w).

Definition 4.0.6. The moduli space of tropical curves of genus g is the topo-
logical space (with respect to the quotient topology)

M tr
g :=

(∐
C(Γ,w)

)
/ ≈

where the disjoint union (endowed with the disjoint union topology) runs over all
stable weighted graphs (Γ, w) of genus g, and≈ is the equivalence relation generated
by the lattice-preserving linear maps Lι and Lα.

Let Γ be a stable graph of genus g, which can view as the stable weighted graph
(Γ, 0) with zero weight function. Denote by CΓ the ideal subcone of CΓ := C(Γ,0)

whose ideal faces correspond (via Lemma 4.0.5) to the specializations (Γ, 0) �
(Γ′, 0) such that the weight function remains identically zero. In other words,
the points of CΓ correspond to pure tropical curves whose combinatorial type is a
specialization of Γ. Clearly CΓ contains the open cone C0

Γ := C0
(Γ,0).
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Definition 4.0.7. The moduli space of pure tropical curves of genus g is the
topological space (with respect to the quotient topology)

M tr,p
g :=

(∐
CΓ

)
/ ≈

where the disjoint union (endowed with the disjoint union topology) runs over all
stable graphs Γ of genus g, and ≈ is the equivalence relation generated by the
lattice-preserving linear maps Lι and Lα.

Proposition 4.0.8. The topological space M tr
g (resp. M tr,p

g ) is a stacky fan

(resp. an ideal stacky fan) with cells C0
(Γ,w)/∼ (resp. C0

Γ/∼) as (Γ, w) (resp. Γ)

runs over all stable weighted graphs (Γ, w) (resp. stable graphs Γ) of genus g. It
parametrizes tropical curves (Γ, w, l) (resp. pure tropical curves (Γ, l)) of genus g.

Proof. We will prove the statement forM tr
g , the case ofM tr,p

g being analogous.
For the first part we only need to prove that

(4.2)
∐

(C0
(Γ,w)/ ∼) →

(∐
C(Γ,w)

)
/ ≈

is bijective, where the disjoint union runs over all stable weighted graphs (Γ, w) of
genus g; then the rest follows from the definition of M tr

g .
The map (4.2) is surjective by (4.1). In order to prove that it is injective,

consider two points x and y lying in C0
(Γ,w) and C0

(Γ′,w′), respectively. Then, since the

maps Lι associated to specializations of weighted graphs never identify two different
points in the relative interior of cones, x and y are identified in

(∐
C(Γ,w)

)
/ ≈ if

and only if (Γ, w) = (Γ′, w′) and there is α ∈ Aut(Γ, w) such that Lα(x) = y. The
injectivity of (4.2) now follows from Remark 4.0.4.

Finally, combining the bijection (4.2) with Remarks 4.0.3 and 4.0.4, it follows
that M tr

g parametrizes tropical curves of genus g. �

Recall that the outer automorphism group Out(Fg) acts on T tr,p
g and on T tr

g

by changing the markings (see §3.4) and that the action is admissible with respect
to their ideal stacky fan structures (see Proposition 3.4.1). We can then form
the stratified quotients of T tr,p

g //Out(Fg) and T tr
g //Out(Fg) which, by Proposition

2.2.6 are again ideal stacky fans endowed with a map of ideal stacky fans from
T tr,p
g and T tr

g , respectively. The next result shows that these stratified quotients

are isomorphic, as ideal stacky fans, to M tr,p
g and M tr

g , respectively.

Proposition 4.0.9. The moduli space of pure tropical curves (resp. tropical
curves) M tr,p

g (resp. M tr
g ) is the stratified quotient, hence global quotient, of T tr,p

g

(resp. T tr
g ) modulo the action of Out(Fg).

Proof. We will again prove the statement only for M tr
g , since the case of

M tr,p
g is analogous. Note that the cones of T tr

g fall into orbits under the admissible
action of Out(Fg) precisely according to the isomorphism type of (Γ, w), since the
Out(Fg) acts transitively on the markings of a weighted graph (Γ, w). So the cells

of T tr
g //Out(Fg) are indeed of the form C(Γ,w) as (Γ, w) ranges over combinatorial

types of genus g tropical curves.
Next, the linear maps in Definition 2.2.4, along which the cones C(Γ,w) are

glued, are of the form

C(Γ′,w′,h′) −→ C(Γ′,w′,h′′) ↪−→ C(Γ,w,h),
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where the first map, induced by an Out(Fg)-action as in Proposition 3.4.1, changes
the marking, and the second map, induced by a specialization as in Lemma 3.3.13,
is an inclusion of faces. It follows that for every isomorphism (Γ′, w′) with a spe-
cialization of (Γ, w), we obtain a gluing map C(Γ′,w′) ↪→ C(Γ,w), and furthermore,
all gluing maps in the stratified quotient are of this form. Such maps correspond
precisely to specializations of weighted graphs and to automorphisms of weighted
graphs: the former occur when the inclusion C(Γ′,w′,h′′) ↪−→ C(Γ,w,h) of faces in
the composition above is proper, while the latter occur when the inclusion is non-
proper, that is, bijective. �

Corollary 4.0.10. We have a homeomorphism

M tr,p
g

∼= Xg/Out(Fg).

Proof. Combine Proposition 4.0.9 with Corollary 3.2.3.
�

5. Tropical Siegel space and moduli space of tropical abelian varieties

The aim of this section is to introduce the moduli space of tropical abelian
varieties and a cover of it, which we call the tropical Siegel space, parametrizing
marked tropical abelian varieties. Our construction will depend upon the choice of
an admissible decomposition of the cone of positive definite quadratic forms, which
we now review. Our treatment of this and of several other important definitions in
this section follows [BMV11].

5.1. Admissible decompositions. We denote by R(
g+1
2 ) the vector space of

quadratic forms in Rg (identified with g× g symmetric matrices with coefficients in

R) and by Ωg the cone in R(
g+1
2 ) of positive definite quadratic forms. The closure

Ωg of Ωg inside R(
g+1
2 ) is the cone of positive semi-definite quadratic forms. We will

be working with a partial closure of the cone Ωg inside Ωg, the so called rational
closure of Ωg (see [Nam80, Sec. 8]).

Definition 5.1.1. A positive definite quadratic form Q is said to be rational
if the null space Null(Q) of Q (i.e. the biggest subvector space V of Rg such that
Q restricted to V is identically zero) admits a basis with elements in Qg.

We will denote by Ωrt
g the cone of rational positive semi-definite quadratic

forms.

The group GLg(Z) acts on the vector space R(
g+1
2 ) of quadratic forms via the

usual law h ·Q := hQht, where h ∈ GLg(Z) and ht is the transpose matrix. Clearly,
the cones Ωg and Ωrt

g are preserved by the action of GLg(Z).

Remark 5.1.2. It is well-known (see [Nam80, Sec. 8]) that a positive semi-
definite quadratic form Q in Rg belongs to Ωrt

g if and only if there exists h ∈ GLg(Z)
such that

hQht =

(
Q′ 0
0 0

)
for some positive definite quadratic form Q′ in Rg′

, with 0 ≤ g′ ≤ g.

The cones Ωg and its rational closure Ωrt
g are not polyhedral. However they can

be subdivided into rational polyhedral subcones in a nice way, as in the following
definition (see [Nam80, Lemma 8.3]).
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Definition 5.1.3. An admissible decomposition of Ωrt
g is a collection Σ = {σμ}

of rational polyhedral cones of Ωrt
g such that:

(i) If σ is a face of σμ ∈ Σ then σ ∈ Σ;
(ii) The intersection of two cones σμ and σν of Σ is a face of both cones;
(iii) If σμ ∈ Σ and h ∈ GLg(Z) then h · σμ · ht ∈ Σ.
(iv) #{σμ ∈ Σ mod GLg(Z)} is finite;
(v) ∪σμ∈Σσμ = Ωrt

g .

We say that two cones σμ, σν ∈ Σ are equivalent if they are conjugated by an
element of GLg(Z). We denote by Σ/GLg(Z) the finite set of equivalence classes
of cones in Σ. Given a cone σμ ∈ Σ, we denote by [σμ] the equivalence class
containing σμ.

Definition 5.1.4. Let Σ = {σμ} be an admissible decomposition of Ωrt
g . Define

Σ|Ωg
to be the restriction of Σ to Ωg, i.e.,

Σ|Ωg
:= {Ωg ∩ σμ : σμ ∈ Σ and the intersection is non-empty}.

It is clear from the definition that ∪σμ∈Σ|Ωg
σμ = Ωg.

Proposition 5.1.5. Let Σ be an admissible decomposition of Ωrt
g as in Def-

inition 5.1.3. Then Σ (resp. Σ|Ωg
) is a GLg(Z)-admissible decomposition of Ωrt

g

(resp. Ωg) in the sense of Definition 2.2.1.

Proof. Let us first prove the statement for Σ. The fact that Σ is a (rational
polyhedral) fan with support equal to Ωrt

g together with the fact that the action

of GLg(Z) on Ωrt
g permutes the cones of Σ follows from Definition 5.1.3. In order

to prove that Σ is a GLg(Z)-admissible decomposition of Ωrt
g , it remains to check

that the maps induced by the action of an element of GLg(Z) on the cones of Σ are
linear and lattice-preserving. In fact, given h ∈ GLg(Z) and a cone σ ∈ Σ, then h
induces a linear isomorphism between σ and h · σ = σ′ for some σ′ ∈ Σ. Moreover,

a positive semi-definite matrix A ∈ σ is such that h ·A = hAht ∈ Z(
g+1
2 ) if and only

if A ∈ Z(
g+1
2 ) and the result follows.

Let us now prove the statement for Σ|Ωg
. We begin by showing that Ωrt

g \Ωg is a

union of cones of Σ. Let A ∈ Ωrt
g \Ωg and assume that A lies in the relative interior

of a cone σ. It suffices to show that the whole cone σ is contained in Ωrt
g \ Ωg.

Suppose that σ is generated by matrices A1, . . . , Ak ∈ Ωrt
g . Since A ∈ Ωrt

g \ Ωg

then there exists x ∈ Rn such that xAxt = 0. Since A can be written as a strictly
positive linear combination of all the Ai’s (because it is in the relative interior of σ),
then we have that xAix

t = 0 for i = 1, . . . , k. This implies that any element B ∈ σ
satisfies xBxt = 0, hence that σ ∈ Ωrt

g \ Ωg, as required. We deduce that Σ|Ωg
is

the (rational polyhedral) ideal fan obtained from Σ from removing the cones which
are entirely contained in Ωrt

g \ Ωg. It is clear that the support of Σ|Ωg
is equal to

Ωg. The fact that Σ|Ωg
is a GLg(Z)-admissible decomposition of Ωg follows now

from the analogous fact for Σ together with the fact that the action of GLg(Z) on
Ωrt

g preserves Ωg (see Remark 5.1.2).
�

The following result will be very useful in what follows.

Lemma 5.1.6. For any admissible decomposition Σ of Ωrt
g , the restriction Σ|Ωg

is a locally finite ideal fan.
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Proof. Let x ∈ Ωg and consider a closed polyhedral subcone C ⊂ Ωg contain-
ing x in its interior (clearly there are plenty of such subcones). Take now any cone
σμ ∈ Σ. From the classical theory of Siegel sets (see [AMRT75, Chap. II.4]), it
follows that the set

Gσμ
:= {h ∈ GLg(Z) : h · σμ ∩ C �= ∅} ⊂ GLg(Z)

is finite (see [AMRT75, Corollary at page 116]). Using this and the fact that
there are only finitely many GLg(Z)-equivalence classes of cones of Σ (see Definition
5.1.3), we conclude that

#{σμ ∈ Σ : σμ ∩ C �= ∅} < ∞.

This shows that Σ|Ωg
is a locally finite ideal fan with support equal to Ωg.

�

5.2. Examples of admissible decompositions. A priori, there could exist
infinitely many admissible decompositions of Ωrt

g . However, as far as we know, only
three admissible decompositions are known for every integer g (see [Nam80, Chap.
8] and the references therein), namely:

(i) The perfect cone decomposition (also known as the first Voronoi decomposi-
tion), which was first introduced in [Vor1908];

(ii) The 2nd Voronoi decomposition (also known as the L-type decomposition),
which was first introduced in [Vor1908];

(iii) The central cone decomposition, which was introduced in [Koe60].

Each of them plays a significant (and different) role in the theory of the toroidal
compactifications of the moduli space of principally polarized abelian varieties (see
[Igu67], [Ale02], [S-B06]).

Example 5.2.1. If g = 2 then all the above three admissible decompositions
coincide. In Figure 3 we illustrate a section of the 3-dimensional cone Ωrt

2 , where
we represent just some of the infinite cones of the admissible decompositions. Note
that, for g = 2, there is only one GLg(Z)-equivalence class of maximal dimensional
cones, namely the principal cone σ0

prin (see [Nam80, Sec. (8.10)]).

In this paper, we will consider the perfect cone decomposition and the 2nd
Voronoi decomposition since these behave well with respect to the period mapping
(see Section 6).

5.2.1. The perfect cone decomposition ΣP.
In this subsection, we review the definition and the main properties of the

perfect cone admissible decomposition (see [Vor1908] for more details and proofs,
or [Nam80, Sec. (8.8)] for a summary).

Consider the function μ : Ωg → R>0 defined by

μ(Q) := min
ξ∈Zg\{0}

Q(ξ).

It can be checked that, for any Q ∈ Ωg, the set

M(Q) := {ξ ∈ Zg : Q(ξ) = μ(Q)}
is finite and non-empty. For any ξ ∈ M(Q), consider the rank one quadratic form
ξ · ξt ∈ Ωrt

g . We denote by σ[Q] the rational polyhedral subcone of Ωrt
g given by the

convex hull of the rank one forms obtained from elements of M(Q), i.e.

σ[Q] := R≥0〈ξ · ξt〉ξ∈M(Q).
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Figure 3. A section of Ωrt
2 and its admissible decomposition. In

this case, the perfect cone decomposition, 2nd Voronoi decompo-
sition, and central cone decomposition are all the same.

One of the main results of [Vor1908] is the following

Fact 5.2.2 (Voronoi). The set of cones

ΣP := {σ[Q] : Q ∈ Ωg} ∪ {0}
yields an admissible decomposition of Ωrt

g , known as the perfect cone decomposition.

The quadratic forms Q such that σ[Q] has maximal dimension
(
g+1
2

)
are called

perfect, hence the name of this admissible decomposition. The interested reader is
referred to [Mar03] for more details on perfect forms.

Example 5.2.3. Let us compute ΣP in the case g = 2 (compare with Figure

3). Let R12 =

(
1 −1
−1 1

)
, R13 =

(
1 0
0 0

)
, R23 =

(
0 0
0 1

)
. Then, up to GLg(Z)-

equivalence, an easy computation shows that the unique non-zero cones in ΣP are

σ

[(
1 1/2
1/2 1

)]
= R≥0〈R12, R13, R23〉 =

{(
a+ c −c
−c b+ c

)
: a, b, c ≥ 0

}
,

σ

[(
1 λ
λ 1

)]
= R≥0〈R13, R23〉 =

{(
a 0
0 b

)
: a, b ≥ 0

}
for any − 1/2 < λ < 1/2,

σ

[(
1 λ
λ μ

)]
= R≥0〈R13〉 =

{(
a 0
0 0

)
: a ≥ 0

}
for any μ > max{1, λ2,±2λ}.

5.2.2. The 2nd Voronoi decomposition ΣV.
In this subsection, we review the definition and main properties of the 2nd

Voronoi admissible decomposition (see [Vor1908], [Nam80, Chap. 9(A)] or [Val03,
Chap. 2] for more details and proofs).

The Voronoi decomposition is based on the Delone subdivision Del(Q) associ-
ated to a quadratic form Q ∈ Ωrt

g .
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Definition 5.2.4. Given Q ∈ Ωrt
g , consider the map lQ : Zg → Zg ×R sending

x ∈ Zg to (x,Q(x)). View the image of lQ as an infinite set of points in Rg+1, one
above each point in Zg, and consider the convex hull of these points. The lower
faces of the convex hull can now be projected to Rg by the map π : Rg+1 → Rg

that forgets the last coordinate. This produces an infinite Zg-periodic polyhedral
subdivision of Rg, called the Delone subdivision of Q and denoted Del(Q).

It can be checked that if Q has rank g′ with 0 ≤ g′ ≤ g then Del(Q) is a
subdivision consisting of polyhedra such that the maximal linear subspace contained
in them has dimension g − g′. In particular, Q is positive definite if and only if
Del(Q) is made of polytopes, i.e. bounded polyhedra.

Now, we group together quadratic forms in Ωrt
g according to the Delone subdi-

visions that they yield.

Definition 5.2.5. Given a Delone subdivision D (induced by some Q0 ∈ Ωrt
g ),

let

σ0
D = {Q ∈ Ωrt

g : Del(Q) = D}.

It can be checked that the set σ0
D is a relatively open (i.e. open in its linear

span) rational polyhedral cone in Ωrt
g . Let σD denote the Euclidean closure of σ0

D

in R(
g+1
2 ), so σD is a closed rational polyhedral cone and σ0

D is its relative interior.
We call σD the secondary cone of D.

Now, the action of the group GLg(Z) on Rg induces an action of GLg(Z)
on the set of Delone subdivisions: given a Delone subdivision D and an element
h ∈ GLg(Z), denote by h · D the Delone subdivision given by the action of h
on D. Moreover, GLg(Z) acts naturally on the set of secondary cones {σD :
D is a Delone subdivision of Rg} in such a way that

h · σD := {hQht : Q ∈ σD} = σh·D.

Another of the main results of [Vor1908] is the following

Fact 5.2.6 (Voronoi). The set of secondary cones

ΣV := {σD : D is a Delone subdivision of Rg}

yields an admissible decomposition of Ωrt
g , known as the second Voronoi decompo-

sition.

The cones of ΣV having maximal dimension
(
g+1
2

)
are those of the form σD for

D a Delone subdivision which is a triangulation, i.e. such that D consists only of
simplices (see [Val03, Sec. 2.4]). We refer the reader to [MV12] for a comparison
between the 2nd Voronoi decomposition ΣV and the perfect decomposition ΣP .

Example 5.2.7. Let us compute ΣV in the case g = 2 (compare with Figure
3 and with Example 5.2.3). Combining the taxonomies in [Val03, Sec. 4.1, Sec.
4.2], we may choose four representatives D1, D2, D3, D4 for GLg(Z)-orbits of De-
lone subdivisions as in Figure 4, where we have depicted the part of the Delone
subdivision that fits inside the unit cube in R2.
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D 1 D 2 D 3 D 4

Figure 4. Delone subdivisions for g = 2 (up to GLg(Z)-equivalence).

We can describe the corresponding secondary cones as follows. LetR12 =

(
1 −1
−1 1

)
,

R13 =

(
1 0
0 0

)
, R23 =

(
0 0
0 1

)
as in Example 5.2.3. Then

σD1
= R≥0〈R12, R13, R23〉 =

{(
a+ c −c
−c b+ c

)
: a, b, c ≥ 0

}
,

σD2
= R≥0〈R13, R23〉 =

{(
a 0
0 b

)
: a, b ≥ 0

}
,

σD3
= R≥0〈R13〉 =

{(
a 0
0 0

)
: a ≥ 0

}
,

σD4
= {0}.

5.3. Tropical Siegel space. The aim of this subsection is to introduce the
tropical Siegel space, which parametrizes marked tropical abelian varieties, whose
definition we now introduce.

Definition 5.3.1.

(i) A tropical p.p. (= principally polarized) abelian variety A of dimension g is
a pair (V/Λ, Q) consisting of a g-dimensional real torus V/Λ (so that V is a
g-dimensional real vector space and Λ ⊂ V is a full-dimensional lattice) and
Q is a positive semi-definite quadratic form on V such that the null space
Null(Q) of Q is defined over Λ ⊗ Q, i.e. it admits a basis with elements in
Λ⊗Q.

A tropical p.p. abelian variety A = (V/Λ, Q) is said to be pure if Q is
positive definite.

(ii) A marking on a p.p. abelian variety A = (V/Λ, Q) is an isomorphism φ :

Rg/Zg
∼=→ V/Λ of real tori, or equivalently a linear isomorphism from Rg onto

V sending Zg isomorphically onto Λ.
We say that (A, φ) = (V/Λ, Q, φ) is a marked tropical p.p. abelian variety.

The above definition of tropical p.p. abelian varieties is due to [BMV11],
generalizing slightly the definition of [MZ07], where only pure tropical p.p. abelian
varieties are considered.

Indeed, marked tropical p.p. abelian varieties up to isomorphism are the same
thing as positive semi-definite quadratic forms, as observed in the following

Remark 5.3.2.

(i) Every marked tropical p.p. abelian variety (V/Λ, Q, φ) is uniquely determined
by the quadratic form φ∗(Q) on Rg obtained by pulling back the quadratic
form Q on V via the marking φ.
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(ii) Every tropical p.p. abelian variety A = (V/Λ, Q) is isomorphic to a trop-
ical p.p. abelian variety of the form (Rg/Zg, Q′). Moreover, we have that
(Rg/Zg, Q) ∼= (Rg/Zg, Q′) if and only if there exists h ∈ GLg(Z) such that
Q′ = hQht, i.e. if and only if Q and Q′ are arithmetically equivalent.

Given any admissible decomposition Σ of Ωrt
g , we consider the ideal stacky fan

associated to the fan Σ, which we view as the tropical analogue of the classical
Siegel space.

Definition 5.3.3. Let Σ be an admissible decomposition of Ωrt
g . We denote

by ΣHtr
g (resp. ΣHtr,p

g ) the stacky fan (resp. ideal stacky fan) associated to the fan
Σ (resp. the ideal fan Σ|Ωg

) according to Remark 2.1.10 and we call it the tropical
Siegel space (resp. the pure tropical Siegel space) associated with Σ.

Any (pure) tropical Siegel space parametrizes marked (pure) tropical p.p. abelian
varieties, as shown in the following

Proposition 5.3.4. Fix an admissible decomposition Σ of Ωrt
g .

(i) The tropical Siegel space ΣHtr
g (resp. the pure tropical Siegel space ΣHtr,p

g ) is a
stacky fan (resp. an ideal stacky fan) parametrizing marked tropical p.p. abelian
varieties (resp. marked pure tropical p.p. abelian varieties) of dimension g.

(ii) The map

(5.1)
Φ : ΣHtr

g −→ Ωrt
g

(V/Λ, Q, φ) �→ φ∗(Q)

is a continuous bijection which restricts to a homeomorphism between ΣHtr,p
g

and Ωg.

Proof. The map Φ is continuous by the proof of Lemma 2.1.5 and bijective
by Remark 5.3.2(i). Since Σ|Ωg

is a locally finite ideal fan by Lemma 5.1.6, Lemma

2.1.5 implies that the restriction of Φ to ΣHtr,p
g induces a homeomorphism between

ΣHtr,p
g and Φ(ΣHtr,p

g ) = Ωg. �

5.4. Moduli space of tropical abelian varieties. The aim of this sub-
section is to introduce the moduli space of tropical p.p. abelian varieties of fixed
dimension g.

Definition 5.4.1. Let Σ be an admissible decomposition of Ωrt
g . We denote by

ΣAtr
g (resp. ΣAtr,p

g ) the stacky fan (resp. ideal stacky fan) obtained as the stratified

quotient of Ωrt
g (resp. Ωg) with respect to the GLg(Z)-admissible decomposition Σ

(resp. Σ|Ωg
) as in Definition 2.2.2.

Consider the action of GLg(Z) on
ΣHtr

g given by changing the markings. More

precisely, an element h ∈ GLg(Z) acts on ΣHtr
g by sending (A, φ) ∈ ΣHtr

g into

(A, φ ◦ h) where h : Rg/Zg
∼=→ Rg/Zg is the isomorphism induced by the linear

map h. Clearly the ideal stacky subfan ΣHtr,p
g ⊆ ΣHtr

g is preserved by the action

of GLg(Z). Observe that the above defined action of GLg(Z) on ΣHtr
g makes the

map Φ of (5.1) equivariant with respect to the natural action of GLg(Z) on Ωrt
g (see

§5.1).
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Lemma 5.4.2. Fix an admissible decomposition Σ of Ωrt
g . The action of GLg(Z)

on the stacky fan ΣHtr
g (resp. on the ideal stacky fan ΣHtr,p

g ) defined above is
admissible.

Proof. This follows by combining Proposition 5.1.5 and Remark 2.2.5. �

We can now prove that the space ΣAtr
g (resp. ΣAtr,p

g ) is a moduli space for
tropical p.p. abelian varieties (resp. pure tropical p.p. abelian varieties) and it is
a quotient of the tropical Siegel space ΣHtr

g (resp. the pure tropical Siegel space
ΣHtr,p

g ) by the group GLg(Z).

Proposition 5.4.3. Fix an admissible decomposition Σ of Ωrt
g .

(i) ΣAtr
g (resp. ΣAtr,p

g ) is a stacky fan (resp. ideal stacky fan) parametrizing trop-
ical p.p. abelian varieties (resp. pure tropical p.p. abelian varieties) of dimen-
sion g.

(ii) There is a morphism of stacky fans ΣHtr
g → ΣAtr

g (resp. of ideal stacky fans
ΣHtr,p

g → ΣAtr,p
g ) which realizes ΣAtr

g (resp. ΣAtr,p
g ) as the stratified quotient,

hence global quotient, of ΣHtr
g (resp. ΣHtr,p

g ) by the group GLg(Z).

(iii) ΣAtr,p
g is homeomorphic to the quotient of Ωg by the group GLg(Z).

Proof. The actions of GLg(Z) on the stacky fan ΣHtr
g and on the ideal stacky

fan ΣHtr,p
g are admissible by Lemma 5.4.2. Moreover, the stratified quotient of

ΣHtr
g (resp. ΣHtr,p

g ) by the group GLg(Z) is clearly isomorphic to the stacky fan
ΣAtr

g (resp. to the ideal stacky fan ΣAtr,p
g ) again by Remark 2.2.5. Therefore, part

(ii) follows by combining Proposition 2.2.6 and Proposition 2.2.9.
Part (i) follows now from part (ii) together with Proposition 5.3.4(i) and Re-

mark 5.3.2(ii).
Part (iii) follows from part (ii) together with Proposition 5.3.4(ii).

�

6. The tropical period map

The aim of this section is to define the tropical period map from the (pure)
tropical Teichmüller space to the (pure) tropical Siegel space and to show that it
descends to the tropical Torelli map studied in [BMV11] and [Cha12]. The period
map will send a marked tropical curve into its marked tropical Jacobian, that we
are now going to describe.

6.1. (Marked) tropical Jacobians. The tropical Jacobian of a tropical curve
was defined in [BMV11, Sec. 5.1], following the earlier definition of Mikhalkin-
Zharkov in [MZ07, Sec. 6] in the case of pure tropical curves.

Definition 6.1.1. Let C = (Γ, w, l) be a tropical curve of genus g. The trop-
ical Jacobian (or simply the Jacobian) of C is the tropical p.p. abelian variety of
dimension g

J(C) :=

(
H1(Γ,R)⊕ R|w|

H1(Γ,Z)⊕ Z|w| , QC

)



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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where the quadratic form QC is identically zero on R|w| and it is given on H1(Γ,R)
by

(6.1) QC

⎛
⎝ ∑

e∈E(Γ)

αe · e

⎞
⎠ =

∑
e∈E(Γ)

α2
e · l(e).

Note that a tropical curve C is pure (i.e. w = 0) if and only if its tropical Jacobian
J(C) is pure (i.e. QC is positive definite).

Corresponding to any marking of a tropical curve is a marking of its Jacobian.

Definition 6.1.2. Let (C, h) = (Γ, w, l, h) be a marked tropical curve of genus
g. The marked tropical Jacobian (or simply the marked Jacobian) of (C, h) is the
marked tropical p.p. abelian variety of dimension g

J(C, h) = (J(C), φh),

where J(C) is the Jacobian of C and

φh :
Rg

Zg

∼=−→ H1(Γ,R)⊕ R|w|

H1(Γ,Z)⊕ Z|w|

is the marking of J(C) which is induced by the linear isomorphism

Rg = H1(Rg,R)
∼=−→
h∗

H1(Γ
w,R) ∼= H1(Γ,R)⊕ R|w|

where the first isomorphism is induced by the marking h : Rg → Γw and the second
isomorphism is induced by the canonical map Γw → Γ that contracts the virtual
loops of Γw (see Definition 3.3.3).

It is easy to see that the above defined marking φh on J(C) depends only on
the equivalence class of h (see Definition 3.3.6); therefore, the above definition is
well posed. Moreover, it is clear that a marked tropical curve (C, h) is pure if and
only if its marked tropical Jacobian (J(C), φh) is pure.

6.2. The tropical period map. The tropical period map is defined as it
follows.

Lemma - Definition 6.2.1. The tropical period map is the continuous map

Ptr
g : T tr

g −→ Ωrt
g

(C, h) �→ φ∗
h(QC).

Proof. We have to prove that the map Ptr
g is continuous. According to the

Definition 3.3.14 of the tropical Teichmüller space T tr
g , it is enough to show that

the restriction of Ptr
g to the cone C(Γ,w,h), for each stable marked graph (Γ, w, h) of

genus g, is continuous. This follows from the fact that the quadratic form QC on

H1(Γ,R) depends continuously on the lengths l ∈ R
|E(Γ)|
≥0 , as is clear from formula

(6.1).
�

Remark 6.2.2. By the observation before Definition 6.1.1, we have that

(Ptr
g )−1(Ωg) = T tr,p

g .
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Recall that the tropical Teichmüller space T tr
g has a natural stacky fan structure

(see Proposition 3.3.15). On the other hand, the stacky fan structure of Ωrt
g depends

on the choice of an admissible decomposition Σ of Ωrt
g (see Definition 5.3.3). Some

admissible decompositions of Ωrt
g are compatible with the tropical period map Ptr

g

in the following sense.

Definition 6.2.3. An admissible decomposition Σ of Ωrt
g (see Definition 5.1.3)

is said to be compatible with the tropical period map if for each cell C0
(Γ,w,h) of T tr

g

there exists a cone σ ∈ Σ such that

Ptr
g (C(Γ,w,h)) ⊆ σ.

Indeed, the two admissible decompositions that we have described in Section
5.2, namely the perfect cone decomposition and the 2nd Voronoi decomposition,
are compatible with the tropical period map.

Fact 6.2.4 (Mumford-Namikawa, Alexeev-Brunyate). The perfect cone decom-
position ΣP and the 2nd Voronoi decomposition ΣV are compatible with the tropical
period map.

Proof. The fact that ΣV is compatible with the tropical period map is due to
Namikawa [Nam73] (who says that Mumford was aware of it); the fact that ΣP is
compatible with the tropical period map is due to Alexeev-Brunyate [AB12]. �

Remark 6.2.5. It is known that the central cone decomposition (studied in
[Koe60] and [Igu67]) is not compatible with the tropical period map if g ≥ 9
(see [AB12]), while it is compatible with the tropical period map if g ≤ 8 (see
[Aetal12]).

Given an admissible decomposition Σ of Ωrt
g that is compatible with the tropical

period map Ptr
g , we can lift Ptr

g to a map of stacky fans with codomain the tropical

Siegel space ΣHtr
g associated to Σ (see Definition 5.3.3).

Theorem 6.2.6. Let Σ be an admissible decomposition of Ωrt
g that is compatible

with the tropical period map in the sense of Definition 6.2.3. Then there exists a
map of stacky fans, which we call the Σ-period map:

ΣPtr
g : T tr

g −→ ΣHtr
g

(C, h) �→ (J(C), φh)

such that:

(i) The composition of ΣPtr
g with the continuous bijection Φ : ΣHtr

g → Ωrt
g

(see Proposition 5.3.4(ii)) is the tropical period map Ptr
g of Lemma-Definition

6.2.1.
(ii) ΣPtr

g is equivariant with respect to the homomorphism of groups

A : Out(Fg) → Out(Zg) = Aut(Zg) = GLg(Z)

induced by the abelianization homomorphism Fg → F ab
g = Zg, and the ad-

missible actions of Out(Fg) on T tr
g (see Proposition 3.4.1) and of GLg(Z) on

ΣHtr
g (see Lemma 5.4.2).
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(iii) We have a commutative diagram of stacky fans

(6.2) T tr
g

ΣPtr
g ��

��

ΣHtr
g

��
M tr

g

Σttrg �� ΣAtr
g

where the left vertical map is the (stratified) quotient by Out(Fg), the right
vertical arrow is the (stratified) quotient by GLg(Z), and the map Σttrg , called
the tropical Torelli map with respect to Σ, sends a tropical curve C into its
tropical Jacobian J(C).

(iv) The restriction of the diagram (6.2) to the pure moduli spaces is independent
of the choice of Σ and it can be identified with the commutative diagram

(6.3) Xg

Ptr,p
g ��

��

Ωg

��
Xg/Out(Fg)

ttr,pg �� Ωg/GLg(Z)

where Ptr,p
g is the continuous map (called the pure tropical period map):

Ptr,p
g : Xg −→ Ωg

(C, h) �→ φ∗
h(QC).

and ttr,pg is the continuous map (called the pure tropical Torelli map) induced

from Ptr,p
g by quotienting the domain by Out(Fg) and the codomain by GLg(Z).

Proof. Part (i) follows from the explicit descriptions of the maps Ptr
g and

ΣPtr
g together with Proposition 5.3.4(ii).

Let us now prove that ΣPtr
g is a map of stacky fans. Since Σ is compatible

with the tropical period map by hypothesis, given a cell C0
(Γ,w,h), we can find a cone

σ ∈ Σ such that Ptr
g (C(Γ,w,h)) ⊆ σ. Therefore, we get the following commutative

diagram

(6.4) C(Γ,w,h)

Ptr
g ��

� �

��

σ �
� �� Ωrt

g

T tr
g ΣPtr

g

�� ΣHtr
g

Φ

��

where, moreover, the natural map Φ−1(σ) → σ is a homeomorphism. The re-
striction of the map Ptr

g to C(Γ,w,h) is the restriction of an integral linear map

RE(Γ)→ R(
g+1
2 ), as it follows easily from formula (6.1). Therefore, the above com-

mutative diagram shows that ΣPtr
g is a continuous map and that, moreover, it is a

map of stacky fans.
Part (ii). As explained in §3.4, the class [α] ∈ Out(Fg) of an element α ∈

Aut(Fg) will send (C, h) ∈ T tr
g into (C, h) · [α] = (C, h ◦ αR), where αR : Rg → Rg

is the geometric realization of α, i.e. the homeomorphism of Rg, unique up to ho-
motopy, that fixes the vertex v of Rg and such that the induced automorphism of
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the fundamental group (αR)
π1
∗ ∈ Aut(π1(Rg, v)) = Aut(Fg) is equal to α. Accord-

ing to Definition 6.1.2, the marking φh◦αR
of J(C) induced by h ◦ αR is equal to

φh ◦ (αR)
H1∗ where (αR)

H1∗ : Rg/Zg
∼=−→ Rg/Zg is the isomorphism induced by the

element (αR)
H1
∗ ∈ Aut(H1(Rg,Z)) = Aut(Zg) = GLg(Z). Since H1(Rg,Z) is the

abelianization of π1(Rg, v)
ab, we get that

(αR)
H1
∗ = A((αR)

π1
∗ ) = A(α).

From this equality and the definition of the action of GLg(Z) on ΣHtr
g (see §5.4),

we deduce that

J((C, h) · [α]) = J(C, h ◦ αR) = (J(C), φh ◦ A(α)) = J(C, h) ◦ A(α),

which concludes the proof of (ii).
Part (iii): from (ii) it follows that the map ΣPtr

g induces, by passing to the quo-

tient, a continuous map Σttrg from T tr
g /Out(Fg), which is homeomorphic to M tr

g

by Proposition 4.0.9, to ΣHtr
g /GLg(Z), which is homeomorphic to ΣAtr

g by Propo-
sition 5.4.3. Moreover, these two quotients are also stratified quotients (again by
Propositions 4.0.9 and 5.4.3) and therefore it follows easily that the tropical Torelli
map Σttrg is also a map of stacky fans. Since the group Out(Fg) (resp. GLg(Z))

acts on T tr
g (resp. on ΣHtr

g ) by changing the marking, it is clear that the tropical

Torelli map Σttrg sends C ∈ M tr
g into J(C) ∈ ΣAtr

g . Finally, the commutativity of

the diagram (6.2) follows directly from the definition of the map Σttrg .

Part (iv): the map ΣPtr
g sends T tr,p

g into ΣHtr,p
g as it follows from (i) together

with Remark 6.2.2. Moreover, since we have the homeomorphisms T tr,p
g

∼= Xg (see

Proposition 3.1.9) and ΣHtr,p
g

∼= Ωg (see Proposition 5.3.4(ii)), it is clear, using also

(i), that the restriction of ΣPtr
g to T tr,p

g coincides with the pure tropical period

map Ptr,p
g . Finally, from the homeomorphisms M tr,p

g
∼= Xg/Out(Fg) (see Corollary

4.0.10) and ΣAtr,p
g

∼= Ωg/GLg(Z) (see Proposition 5.4.3(iii)), we deduce that the

restriction of Σttrg to M tr,p
g coincides with the pure tropical Torelli map ttr,pg . �

According to Fact 6.2.4, we can specialize the above Theorem 6.2.6 to the case
where Σ is either equal to the perfect cone decomposition ΣP or to the 2nd Voronoi
decomposition ΣV . In particular, the tropical Torelli map ΣV tg with respect to
the 2nd Voronoi decomposition was studied in detail in [BMV11] and [Cha12], to
which we refer for further details.

7. Open questions

We end this paper with the following open questions:

(1) In [BF00], M. Bestvina and M. Feighn constructed a bordification of
Outer space. It would be interesting to compare their bordification of
Xg with our bordification T tr

g of T tr,p
g

∼= Xg. Added in proof: Lizhen Ji
informed us that there is a surjective continuous map from the Bestvina-
Feighn’s bordification of Outer Space to T tr

g .
(2) As the reader may have noticed, the construction of the tropical Siegel

space ΣHtr
g and the moduli space ΣAtr

g of tropical p.p. abelian varieties
depend on the choice of an admissible decomposition Σ of the cone of
rational positive semi-definite quadratic forms. If we restrict to the pure



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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open subsets ΣHtr,p
g ⊂ ΣHtr

g and ΣAtr,p
g ⊂ ΣAtr

g then Proposition 5.3.4(ii)
and Proposition 5.4.3(iii) give the homeomorphisms

ΣHtr,p
g

∼= Ωg and ΣAtr,p
g

∼= Ωg/GLg(Z).

However, we don’t know if the topology of ΣHtr
g and of ΣAtr

g depends or
not on the choice of the admissible decomposition Σ.

In particular, it would be very interesting to use the results of [MV12]
in order to compare ΣP Htr

g and ΣV Htr
g (resp. ΣPAtr

g and ΣVAtr
g ), where ΣP

is the perfect cone decomposition (see Subsection 5.2.1) and ΣV is the 2nd
Voronoi decomposition ΣV (see Subsection 5.2.2). Added in proof: Lizhen
Ji informed us that, for every admissible decomposition Σ, the tropical
Siegel space ΣHtr

g is homeomorphic to a Satake partial compactification

of the symmetric cone Ωg and its quotient ΣAtr
g is the cone over a Satake

compactification of the associated locally symmetric space of quadratic
forms of determinant 1. In particular, the topology of ΣHtr

g and of ΣHtr
g

is independent of the choice of the admissible decomposition Σ.
(3) In [BMV11] (based on the results of [CV10]), the authors described the

fibers of the tropical Torelli map ΣV tg : M tr
g → ΣV Atr

g with respect to the
2nd Voronoi decomposition ΣV (clearly the same description works for any
tropical Torelli map Σttrg , because all the tropical Torelli maps coincide
set-theoretically). It should be possible to derive from the results in loc.
cit. a description of the fibers of the tropical period map Ptr

g : T tr
g → Ωrt

g

(or equivalently of the Σ-period map ΣPtr
g : T tr

g → ΣHtr
g for any admissible

decomposition Σ which is compatible with the tropical period map).
(4) In [BMV11] (see also [Cha12]), the authors give a characterization of

the image of the tropical Torelli map ΣV tg : M tr
g → ΣV Atr

g with respect
to the 2nd Voronoi decomposition ΣV (indeed, using [MV12], a similar
description can be given for the tropical Torelli map ΣP tg : M tr

g → ΣP Atr
g

with respect to the perfect cone decomposition ΣP ). It would be interest-
ing to derive from the results of loc. cit. a characterization of the image
of the ΣV -period map ΣV Pg : T tr

g → ΣV Htr
g and of the ΣP -period map

ΣPPg : T tr
g → ΣP Htr

g .

References

[ACP] D. Abramovich, L. Caporaso, S. Payne: The tropicalization of the moduli space of
curves. Preprint arXiv:1212.0373v1.

[Ale02] Valery Alexeev, Complete moduli in the presence of semiabelian group action, Ann.
of Math. (2) 155 (2002), no. 3, 611–708, DOI 10.2307/3062130. MR1923963
(2003g:14059)

[AB12] Valery Alexeev and Adrian Brunyate, Extending the Torelli map to toroidal compactifi-
cations of Siegel space, Invent. Math. 188 (2012), no. 1, 175–196, DOI 10.1007/s00222-
011-0347-2. MR2897696

[Aetal12] Valery Alexeev, Ryan Livingston, Joseph Tenini, Maxim Arap, Xiaoyan Hu, Lauren
Huckaba, Patrick McFaddin, Stacy Musgrave, Jaeho Shin, and Catherine Ulrich, Ex-
tended Torelli map to the Igusa blowup in genus 6, 7, and 8, Exp. Math. 21 (2012),
no. 2, 193–203, DOI 10.1080/10586458.2012.632755. MR2931314

[AC] O. Amini, L. Caporaso: Riemann-Roch theory for weighted graphs and tropical curves.
To appear in Adv. Math. (available at arXiv:1112.5134v3).

http://www.ams.org/mathscinet-getitem?mr=1923963
http://www.ams.org/mathscinet-getitem?mr=1923963
http://www.ams.org/mathscinet-getitem?mr=2897696
http://www.ams.org/mathscinet-getitem?mr=2931314


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

84 CHAN, MELO, AND VIVIANI

[ACG11] Enrico Arbarello, Maurizio Cornalba, and Pillip A. Griffiths, Geometry of algebraic
curves. Volume II, Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences], vol. 268, Springer, Heidelberg, 2011. With a
contribution by Joseph Daniel Harris. MR2807457 (2012e:14059)

[AMRT75] A. Ash, D. Mumford, M. Rapoport, and Y. Tai, Smooth compactification of locally
symmetric varieties, Math. Sci. Press, Brookline, Mass., 1975. Lie Groups: History,
Frontiers and Applications, Vol. IV. MR0457437 (56 #15642)

[Bak11] O. Baker: The Jacobian map on Outer Space. Ph.D. Thesis (2011), Cornell University.
[Bea84] A. F. Beardon, A primer on Riemann surfaces, London Mathematical Society Lec-

ture Note Series, vol. 78, Cambridge University Press, Cambridge, 1984. MR808581
(87h:30090)

[Bes02] Mladen Bestvina, The topology of Out(Fn), (Beijing, 2002), Higher Ed. Press, Beijing,
2002, pp. 373–384. MR1957048 (2004a:57002)

[BF00] Mladen Bestvina and Mark Feighn, The topology at infinity of Out(Fn), Invent. Math.
140 (2000), no. 3, 651–692, DOI 10.1007/s002220000068. MR1760754 (2001m:20041)

[BL04] Christina Birkenhake and Herbert Lange, Complex abelian varieties, 2nd ed.,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences], vol. 302, Springer-Verlag, Berlin, 2004. MR2062673 (2005c:14001)

[BMV11] Silvia Brannetti, Margarida Melo, and Filippo Viviani, On the tropical Torelli map,
Adv. Math. 226 (2011), no. 3, 2546–2586, DOI 10.1016/j.aim.2010.09.011. MR2739784
(2012e:14121)

[Cap12a] Lucia Caporaso, Geometry of tropical moduli spaces and linkage of graphs, J. Com-
bin. Theory Ser. A 119 (2012), no. 3, 579–598, DOI 10.1016/j.jcta.2011.11.011.
MR2871751 (2012m:05099)

[Cap12b] L. Caporaso: Algebraic and tropical curves: comparing their moduli spaces. In Hand-
book of Moduli, Volume I (editors: G. Farkas, I. Morrison), Advanced Lectures in
Mathematics, Volume XXIV (2012), 119–160.

[CV10] Lucia Caporaso and Filippo Viviani, Torelli theorem for graphs and tropical
curves, Duke Math. J. 153 (2010), no. 1, 129–171, DOI 10.1215/00127094-2010-022.
MR2641941 (2011j:14013)

[Cha12] Melody Chan, Combinatorics of the tropical Torelli map, Algebra Number Theory 6
(2012), no. 6, 1133–1169, DOI 10.2140/ant.2012.6.1133. MR2968636

[CV86] Marc Culler and Karen Vogtmann, Moduli of graphs and automorphisms of free
groups, Invent. Math. 84 (1986), no. 1, 91–119, DOI 10.1007/BF01388734. MR830040
(87f:20048)

[CV91] Marc Culler and Karen Vogtmann, The boundary of outer space in rank two, Arboreal
group theory (Berkeley, CA, 1988), Math. Sci. Res. Inst. Publ., vol. 19, Springer, New
York, 1991, pp. 189–230, DOI 10.1007/978-1-4612-3142-4 8. MR1105335 (92i:57001)

[CM87] Marc Culler and John W. Morgan,Group actions on R-trees, Proc. London Math. Soc.
(3) 55 (1987), no. 3, 571–604, DOI 10.1112/plms/s3-55.3.571. MR907233 (88f:20055)

[GL07] Vincent Guirardel and Gilbert Levitt, Deformation spaces of trees, Groups Geom.
Dyn. 1 (2007), no. 2, 135–181, DOI 10.4171/GGD/8. MR2319455 (2009a:20041)

[Hat02] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.
MR1867354 (2002k:55001)

[Igu67] Jun-ichi Igusa, A desingularization problem in the theory of Siegel modular functions,
Math. Ann. 168 (1967), 228–260. MR0218352 (36 #1439)

[Ji] L. Ji: Complete invariant geodesic metrics on outer spaces and Jacobian varieties of
tropical curves. Preprint arXiv:1211.1995v1.
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