Nome candidato:

Numero di matricola:

APPELLO A DEL CORSO AC310 27 GENNAIO 2016

ESERCIZIO 1 (8 punti)

Consideriamo la serie di potenze $f(T) := \sum_{n=1}^{\infty} (-1)^{n-1} \frac{T^n}{n}$.

- (i) Calcolare il raggio di convergenza della serie f(T).
- (ii) Per ogni $w \in \mathbb{C}^*$ e ogni $\alpha \in \mathbb{C}$, si consideri la funzione

$$L(z) := \alpha + f\left(\frac{z-w}{w}\right).$$

Dire qual è il dominio di definizione U di L e dimostrare che L'(z) = 1/z per ogni $z \in U$.

(iii) Dire per quali valori di $w \in \alpha$ si ha che $e^{L(z)} = z$ per ogni $z \in U$.

ESERCIZIO 2 (8 punti)

Dimostrare che una funzione olomorfa intera $f:\mathbb{C}\to\mathbb{C}$ non costante ha immagine densa.

[Suggerimento di una possibile soluzione (ma ci sono anche altre soluzioni possibili): considerare lo sviluppo in serie di f in 0 e distinguire due casi a seconda che ci sia un numero infinito o finito di termini non nulli. Nel primo caso considerare la funzione g(z) = f(1/z)....e nel secondo caso?]

ESERCIZIO 3 (6 punti)

Calcolare l'integrale $\int_0^{+\infty} \frac{1}{1+x^n} dx$ per ogni intero $n \ge 2$.

[Suggerimento: Per $R \gg 0$, considerare l'integrale di $\frac{1}{1+z^n}$ lungo la curva composta dal segmento da 0 a R, dall'arco di circonferenza di centro 0 da R a $Re^{2\pi i/n}$ e dal segmento da $Re^{2\pi i/n}$ a 0....]

ESERCIZIO 4 (6 punti)

Dimostrare che il gruppo $\operatorname{PGL}_2(\mathbb{C})$ delle trasformazioni lineari fratte è generato dalle seguenti trasformazioni:

- (i) $T_b(z) = z + b$ (traslazione per $b \in \mathbb{C}$);
- (ii) J(z) = 1/z (inversione);
- (iii) $M_a(z) = az$ (moltiplicazione per $a \in \mathbb{C}^*$).

ESERCIZIO 5 (teorico) (10 punti)

Sia $\Lambda \subset \mathbb{C}$ un reticolo e siano $\mathfrak{p}_{\Lambda}(z)$ la funzione di Weierstrass associata a Λ e $\mathfrak{p}'_{\Lambda}(z)$ la sua derivata. Per ogni intero r > 2, sia $G_r(\Lambda) := \sum_{0 \neq \omega \in \Lambda} \frac{1}{\omega^r} \in \mathbb{C}$. Dimostrare che:

(a) Le funzioni $\mathfrak{p}_{\Lambda}(z)$ e $\mathfrak{p}'_{\Lambda}(z)$ soddisfano la relazione

$$\mathfrak{p}'_{\Lambda}(z)^2 = 4\mathfrak{p}_{\Lambda}(z)^3 - 60G_4(\Lambda)\mathfrak{p}_{\Lambda}(z) - 140G_6(\Lambda).$$

(b) Ogni funzione ellittica rispetto a Λ si scrive come funzione razionale in $\mathfrak{p}_{\Lambda}(z)$ e $\mathfrak{p}'_{\Lambda}(z)$.

1