Nome candidato:

Numero di matricola:

APPELLO C DEL CORSO GE110 20 FEBBRAIO 2020

Tutte le risposte vanno argomentate chiaramente.

ESERCIZIO 1 (8 punti)

Si consideri lo spazio vettoriale \mathbb{C}^4 con base canonica $\{e_1, e_2, e_3, e_4\}$. Si consideri l'operatore lineare $\Phi \in \operatorname{End}(\mathbb{C}^4)$ univocamente determinato da

$$\begin{cases}
\Phi(e_1) = e_2, \\
\Phi(e_2) = 0, \\
\Phi(e_3) = -e_1 + 2e_2 + e_3, \\
\Phi(e_4) = -2e_1 + 5e_2 + 2e_3.
\end{cases}$$

- (A) Si calcoli il polinomio caratteristico di Φ .
- (B) Per ciascun autovalore di Φ si determinino gli autospazi generalizzati corrispondenti.
- (C) Si determini la forma canonica di Jordan di Φ e il polinomio minimo di Φ .
- (D) Per ciascun k = 0, 1, 2, 3, 4, determinare tutti vettori $v \in \mathbb{C}^4$ tale che $\mu_{\Phi,v}(x) = x^k$ (qualora esistano).
- (E) Si determini una base di Jordan, cioè una base ordinata \mathcal{B} di \mathbb{C}^4 tale che $M_{\mathcal{B}}(\Phi)$ si scrive in forma canonica di Jordan.

ESERCIZIO 2 (8 punti)

Si consideri la seguente matrice

$$A = \begin{pmatrix} 1 & 1 & -1 & -2 \\ -2 & -1 & 6 & 6 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Si consideri l'operatore lineare $\Psi \in \operatorname{End}(\mathbb{R}^4)$ la cui matrice canonica $M(\Psi)$ è uguale ad A e l'operatore lineare $\Pi \in \operatorname{End}(\mathbb{C}^4)$ la cui matrice canonica $M(\Pi)$ è uguale ad A.

- (A) Calcolare il polinomio caratteristico e il polinomio minimo di Ψ e di Π .
- (B) Si calcoli la decomposizione primaria di Ψ .
- (C) Per ciascun autovalore di Π, si calcolino gli autospazi generalizzati.
- (D) Si dica se Ψ e Π sono diagonalizzabili e, in caso affermativo, trovare delle basi diagonalizzanti.
- (E) Si calcolino tutti i vettori $v \in \mathbb{R}^4$ tale che $\mu_{\Psi,v}(x) = x^2 + 1$ (qualora esistano) e tutti i vettori $w \in \mathbb{C}^4$ tali che $\mu_{\Pi,w}(x) = x^2 x$ (qualora esistano).

ESERCIZIO 3 (8 punti)

Sia V_1 il sottospazio di \mathbb{Q}^4 formato dalle soluzioni del sistema lineare

$$\begin{cases} X_1 - X_3 - X_4 = 0, \\ X_2 - X_4 = 0, \\ X_1 - X_2 - X_3 = 0, \end{cases}$$

e sia V_2 il sottospazio di \mathbb{Q}^4 formato dalle soluzioni del sistema lineare

$$\begin{cases} X_1 + X_2 - X_3 = 0, \\ X_2 - X_4 = 0, \\ X_1 - X_3 + X_4 = 0, \end{cases}$$

- (A) Determinare una base di V_1 , di V_2 e di $V_1 \cap V_2$.
- (B) Calcolare la dimensione di $V_1 + V_2$ usando la formula di Grassmann, e scrivere $V_1 + V_2$ in forma cartesiana.
- (C) Dire se esiste un'applicazione lineare $\Phi \in \operatorname{End}(\mathbb{Q}^4)$ tale che $\ker \Phi = V_1$ e Im $\Phi = V_2$, e in caso affermativo, si scriva esplicitamente una tale Φ .
- (D) Usando l'identificazione canonica $(\mathbb{Q}^4)^* \cong \mathbb{Q}^4$, si calcolino $\operatorname{Ann}(V_1)$ e $\operatorname{Ann}(V_2)$ in forma cartesiana.
- (E) Scrivere $Ann(V_1) \cap Ann(V_2)$ in forma parametrica e $Ann(V_1) + Ann(V_2)$ in forma cartesiana.

ESERCIZIO 4 (7 punti)

Si consideri l'applicazione lineare $\Theta \in \text{Hom}(\mathbb{Q}^4, \mathbb{Q}^4)$ la cui matrice canonica è

$$M(\Theta) = B := \begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & -1 & -1 & 1 \\ 1 & 0 & -1 & 1 \\ 2 & 0 & -1 & 2 \end{pmatrix}.$$

- (A) Trovare una base di $Ker(\Theta)$ e un'equazione cartesiana di $Im(\Theta)$.
- (B) Trovare due matrici $P, Q \in M_4(\mathbb{Q})$ invertibili tali che $P \cdot B \cdot Q$ e' in forma canonica rispetto alla relazione di equivalenza tra matrici.
- (C) Usando l'identificazione canonica $(\mathbb{Q}^4)^* \cong \mathbb{Q}^4$, si consideri l'applicazione duale $\Theta^* \in \text{Hom}(\mathbb{Q}^4, \mathbb{Q}^4)$. Calcolare $\text{Ker}(\Theta^*)$ in forma parametrica e $\text{Im}(\Theta^*)$ in forma cartesiana.

ESERCIZIO 5 (9 punti)

Sia $\Phi \in \text{End}(V)$ un operatore. Si considerino due vettori v_1 e v_2 tali che $\text{mcd}(\mu_{\Phi,v_1},\mu_{\Phi,v_2}) = 1$. Dimostrare che:

- (i) $\langle \Phi, v_1 \rangle \oplus^{\text{int}} \langle \Phi, v_2 \rangle = \langle \Phi, v_1 + v_2 \rangle$.
- (ii) $\mu_{\Phi,v_1+v_2} = \mu_{\Phi,v_1} \cdot \mu_{\Phi,v_2}$.

[Suggerimento: dimostrare che $\langle \Phi, v_1 \rangle \cap \langle \Phi, v_2 \rangle = \{0\}$ e $\langle \Phi, v_1 + v_2 \rangle \subseteq \langle \Phi, v_1 \rangle + \langle \Phi, v_2 \rangle$. Usare questo per mostrare (ii), e concludere che vale (i).]