Università degli studi Roma Tre - Corso di Laurea in Matematica $\overline{TUTORATO}$ \overline{DI} $\overline{GE110}$

Anno Accademico 2018/2019

Docente: Filippo Viviani

Tutori: Alessio Rampogna e Chiara Camerini

Tutorato 7 07 Maggio 2019

1. Data un'applicazione lineare $\Phi: V \longrightarrow W$, il conucleo di Φ è:

$$coker(\Phi) := W/Im(\Phi).$$

Dimostrare che se V e W hanno dimensione finita, allora:

$$dimV + dim \ coker(\Phi) = dim \ ker(\Phi) + dimW.$$

In particolare, se $dimV = dimW < \infty$, allora:

$$dim\ coker(\Phi) = dim\ ker(\Phi)$$

- 2. Siano $V := \mathbb{R}[x]_{\leq 3}$ e $h(x) = x^3 + x^2 \in V$. Si consideri il sottospazio $U := \langle h(x) \rangle \subset V$.
 - (i) Calcolare dim(V/U).
 - (ii) Dati $p(x) = 2x^3 x + 3$ e $q(x) = 9x^3 + 5x^2 2x + 6$ in V, determinare:

$$dim(\langle p(x), q(x) \rangle).$$

(iii) Detta $\pi: V \longrightarrow V/U$ la proiezione canonica associata al sottospazio U, indichiamo con $[p(x)] := \pi(p(x))$ e $[q(x)] := \pi(q(x))$ le classi di equivalenza dei polinomi p(x) e q(x). Dire se:

$$[q(x)] \in \langle [p(x)] \rangle.$$

3. Si consideri l'applicazione lineare $\Phi: \mathbb{R}^4 \longrightarrow \mathbb{R}^2$ tale che:

$$(x_1, x_2, x_3, x_4) \to (x_4 - 2x_1, x_1).$$

Sia $W := Ker(\Phi)$, risolvere le seguenti questioni:

- (i) Verificare che $dim(\mathbb{R}^4/W)=2$.
- (ii) Sia $\{e_1, e_2, e_3, e_4\}$ la base canonica di \mathbb{R}^4 . Posti

$$u_1 = -e_1 + e_2 \qquad u_2 = e_1 + 2e_3$$

stabilire se in \mathbb{R}^4/W si ha che:

$$[u_1] = [u_2].$$

- (iii) Determinare una base per \mathbb{R}^4/W .
- (iv) Detto $U = \langle u_1, u_2 \rangle$, stabilire se

$$\pi_{|_U}: U \longrightarrow \mathbb{R}^4/W$$

è un isomorfismo.

4. Sia $V = \mathbb{R}^3$ e $v_1, v_2, v_3 \in \mathbb{R}^3$ così fissati:

$$v_1 = (1, -1, 2)$$
 $v_2 = (1, 2, -1)$ $v_3 = (1, -1, 1)$

- (i) Dimostrare che $\mathcal{B} = \{v_1, v_2, v_3\}$ è una base di \mathbb{R}^3 .
- (ii) Calcolare \mathcal{B}^* , ovvero la base duale di \mathcal{B} .
- (iii) Sia $f \in V^*$ definita come:

$$f((x, y, z)) = 2x - y + z$$

calcolare $[f]_{\mathcal{B}^*}$