Nome candidato:

APPELLO A DEL CORSO GE210 30 GENNAIO 2021

Tutte le risposte vanno argomentate chiaramente.

ESERCIZIO 1 (7 punti)

Si considerino le seguenti forme bilineari simmetriche su $(\mathbb{Z}/5\mathbb{Z})^3$:

$$B_1\left(\begin{pmatrix} x_1\\x_2\\x_3\end{pmatrix}, \begin{pmatrix} y_1\\y_2\\y_3\end{pmatrix}\right) = 4x_1y_1 + 3x_1y_2 + 3x_2y_1 + 2x_3y_3,$$

$$B_2\left(\begin{pmatrix} x_1\\y_1\\z_1\end{pmatrix}, \begin{pmatrix} x_2\\y_2\\z_2\end{pmatrix}\right) = x_1y_1 + 3x_1y_2 + 3x_2y_1 + 2x_1y_3 + 2x_3y_1 + 4x_3y_3.$$

- (A) Calcolare il rango e il discriminante di B_1 e B_2 . Dire se B_1 e B_2 sono equivalenti.
- (B) Ridurre B_1 e B_2 a forma canonica.

ESERCIZIO 2 (7 punti)

Si consideri \mathbb{R}^3 con la base canonica \mathcal{E} e il prodotto scalare standard $\langle -, - \rangle$. Si consideri la matrice

$$A = \frac{1}{2} \begin{pmatrix} -1 & 3 & 0 \\ 3 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- (A) Si consideri la forma bilineare simmetrica $B \in \operatorname{Bil}^s(\mathbb{R}^3)$ tale che $M_{\mathcal{E}}(B) = A$. Si trovi una base rispetto alla quale B è in forma canonica.
- (B) Si consideri l'operatore $S \in \operatorname{End}(\mathbb{R}^3, \langle -, \rangle)$ tale che $M_{\mathcal{E}}(S) = A$. Si dica se S è ortonormalmente diagonalizzabile e, in caso affermativo, si determini una base ortonormale diagonalizzante e si scriva la matrice di S rispetto a tale base.

ESERCIZIO 3 (8 punti)

Su \mathbb{C}^2 , si consideri la forma sesquilineare Hermitiana

$$B\left(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}\right) = 5x_1\overline{x}_2 - 3ix_1\overline{y}_2 + 3iy_1\overline{x}_2 + 2y_1\overline{y}_2,$$

e l'operatore lineare

$$T: \mathbb{C}^2 \longrightarrow \mathbb{C}^2$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 2x \\ \left(\frac{3}{2} + 3i\right)x + iy \end{pmatrix}$$

- (A) Trovare una base di \mathbb{C}^2 rispetto alla quale B è in forma canonica. Dedurre che B definisce un prodotto scalare su \mathbb{C}^2 .
- (B) Si dica se T è ortonormalmente diagonalizzabile rispetto allo spazio vettoriale unitario (\mathbb{C}^2, B) e, in caso affermativo, trovare una base ortonormalmente diagonalizzabile.
- (C) Si dica se $T \in \text{End}(\mathbb{C}^2, B)$ è normale, Hermitiano, anti-Hermitiano, unitario, positivo o semipositivo.

ESERCIZIO 4 (8 punti)

Nello spazio affine numerico $\mathbb{A}^4_{\mathbb{R}}$ si considerino i due sottospazi affini

$$S := \left\{ \begin{pmatrix} t \\ 1 \\ 1 \\ s \end{pmatrix} : s, t \in \mathbb{R} \right\} \qquad \text{e} \qquad T : \left\{ \begin{matrix} X_3 - X_4 = 0 \\ X_2 + X_4 = 1. \end{matrix} \right.$$

Siano \overline{S} e \overline{T} le chiusure proiettive in $\mathbb{P}^4_{\mathbb{R}}$ di, rispettivamente, S e T.

- (A) Si scrivano S in forma cartesiana e T in forma parametrica, e si calcoli la loro dimensione.
- (B) Si dica se S e T sono paralleli e si stabilisca se S e T sono incidenti o sghembi.
- (C) Si determini l'intersezione $\overline{S} \cap \overline{T}$ e si calcoli dim $(\overline{S} + \overline{T})$.
- (D) Si considerino i punti all'infinito di S e T, cioè i sottospazi proiettivi $S_{\infty} := \overline{S} \cap H_0$ e $T_{\infty} := \overline{T} \cap H_0$ (dove H_0 è l'iperpiano all'infinito). Si determini $S_{\infty} \cap T_{\infty}$ e si calcoli dim $(S_{\infty} + T_{\infty})$.

ESERCIZIO 5 (10 punti)

Sia $(V, \langle -, - \rangle)$ uno spazio vettoriale euclideo o unitario e sia $P: V \to V$ un operatore tale che $P^2 = P$ (un tale operatore si chiama idempotente).

- (A) Dimostrare che 1 P è idempotente, dove $1 := id_V$.
- (B) Dimostrare che $\ker P = \operatorname{Im}(1 P)$ e $\operatorname{Im} P = \ker(1 P)$.
- (C) Dimostrare che $V = \ker P \oplus \operatorname{Im} P$.
- (D) Dimostrare che le seguenti condizioni sono equivalenti:
 - (a) P è la proiezione ortogonale su Im P.
 - (b) $\ker P$ è ortogonale a $\operatorname{Im} P$.
 - (c) P è semipositivo.
 - (d) P è autoaggiunto.
 - (e) P è normale.