SOLUZIONI DELL'APPELLO C DEL CORSO GE220 (30 GENNAIO 2013)

ESERCIZIO 1 (12 punti) Siano X_1 e X_2 due spazi topologici e sia A_i un sottoinsieme compatto di X_i (per i=1,2). Dimostrare che per ogni sottoinsieme aperto $W \subseteq X_1 \times X_2$ tale che $A_1 \times A_2 \subseteq W$, esistono sottoinsiemi aperti $U_i \subseteq X_i$ (per i=1,2) tale che $A_1 \times A_2 \subseteq U_1 \times U_2 \subseteq W$.

[Suggerimento: dimostrare prima il caso speciale in cui A_1 consiste di un punto.]

Soluzione:

Consideriamo prima il caso speciale in cui $A_1 = \{x\}$, per un certo $x \in X$. Per ogni $y \in A_2$, dalla definizione di topologia prodotto segue che esistono due aperti $U_y \subseteq X_1$ e $V_y \subseteq X_2$ tale che $(x,y) \in U_y \times V_y \subseteq W$. Siccome $\{x\} \times A_2 \cong A_2$ è compatto per ipotesi, esiste un insieme finito $\{y_1, \cdots, y_n\}$ di punti di A_2 tali che $\{x\} \times A_2 \subseteq \bigcup_{i=1}^n U_{y_i} \times V_{y_i}$. È ora facile verificare che gli aperti $U_1 := \bigcap_{i=1}^n U_{y_i} \subseteq X_1$ e $U_2 := \bigcup_{i=1}^n V_{y_i} \subseteq X_2$ sono tali che $\{x\} \times A_2 \subseteq U_1 \times U_2 \subseteq W$, q.e.d.

Consideriamo adesso il caso generale. Dal caso speciale sopra dimostrato segue che per ogni $x \in A_1$ esistono due aperti $U_1^x \subseteq X_1$ e $U_2^x \subseteq X_2$ tali che $\{x\} \times A_2 \subseteq U_1^x \times U_2^x \subseteq W$. Siccome A_1 è compatto per ipotesi, esiste un insieme finito $\{x_1, \ldots, x_m\}$ di punti di A_1 tali che $A_1 \subseteq \bigcup_{j=1}^m U_1^{x_j}$. È ora facile verificare che gli aperti $U_1 := \bigcup_{j=1}^m U_1^{x_j} \subseteq X_1$ e $U_2 := \bigcap_{j=1}^m U_2^{x_m} \subseteq X_2$ sono tali che $A_1 \times A_2 \subseteq U_1 \times U_2 \subseteq W$, q.e.d.

ESERCIZIO 2 (12 punti)

Sia $f:X\to Y$ una mappa quoziente tra spazi topologici e assumiamo che X sia compatto e di Hausdorff. Dimostrare che Y è di Hausdorff se e solo se f è una mappa chiusa.

Soluzione:

Supponiamo che Y sia di Hausdorff. Sia C un chiuso di X. Siccome X è compatto, allora anche C sarà compatto. Dunce f(C) è compatto perché la compattezza si preserva per immagini continue. Siccome Y è di Hausdorff per ipotesi, allora f(C) deve essere chiuso. Dunque f è una mappa chiusa, q.e.d.

Supponiamo ora che f sia una mappa chiusa. Siano y_1 e y_2 due punti distinti di Y. I sottoinsiemi $f^{-1}(y_1)$ e $f^{-1}(y_2)$ sono chiusi e disgiunti. Siccome X è normale (in quanto Hausdorff e compatto), esistono due aperti disgiunti U_1 e U_2 di X tali che $f^{-1}(y_1) \subseteq U_1$ e $f^{-1}(y_2) \subseteq U_2$. Consideriamo adesso i sottoinsiemi di Y (per i = 1, 2)

$$V_i := Y \setminus f(X \setminus U_i) = \{ y \in Y : f^{-1}(y) \subseteq U_i \}.$$

Siccome f è una mappa chiusa, allora V_i è un aperto di Y (per i=1,2). Inoltre V_1 e V_2 sono disgiunti e contengono, rispettivamente, y_1 e y_2 per le proprietà di U_1 e U_2 . Ne concludiamo che Y è di Hausdorff, q.e.d.

2

ESERCIZIO 3 (12 punti)

Sia d la distanza euclidea su \mathbb{R}^2 e $\underline{0}$ l'origine di \mathbb{R}^2 . Consideriamo la funzione $d^*: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}_{>0}$ definita da

$$d^*(x,y) = \begin{cases} d(x,\underline{0}) + d(\underline{0},y) & \text{se } x \neq y, \\ 0 & \text{se } x = y. \end{cases}$$

Dimostrare che:

- (i) (3 punti) d^* è una metrica su \mathbb{R}^2 .
- (ii) (3 punti) La topologia τ_{d^*} indotta da d^* è più fine della topologia euclidea τ_d indotta da d; tuttavia $\tau_{d^*} \neq \tau_d$.

Dire se:

- (a) (3 punti) \mathbb{R}^2 munito della topologia τ_{d^*} è Hausdorff o compatto.
- (b) (3 punti) d^* è completa o totalmente limitata.

Soluzione:

- (i) d^* è una metrica perché:
 - d^* è simmetrica: ovvio.
 - $d^*(x,x) = 0$ per definizione; se invece $x \neq y$ allora possiamo supporre, a meno di scambiare x con y, che $x \neq 0$ e dunque

$$d^*(x,y) \ge d(x,\underline{0}) > 0.$$

• d^* soddisfa la disuguaglianza triangolare. Infatti, dati tre elementi $x, y \in z$ a due a due distinti (altrimenti la disuguaglianza triangolare è banalmente soddisfatta) abbiamo che

$$d^*(x,y) = d(x,\underline{0}) + d(y,\underline{0}) \le d(x,\underline{0}) + d(z,\underline{0}) + d(z,\underline{0}) + d(y,\underline{0}) = d^*(x,z) + d^*(z,y).$$

(ii) Osserviamo innanzitutto che per ogni $x \neq y$ si ha che

$$d^*(x,y) = d(x,\underline{0}) + d(\underline{0},y) \ge d(x,y).$$

Quindi la palla $B_r^{d^*}(x)$ di raggio r e centro x rispetto alla metrica d^* è sicuramente contenuta nella palla $B_r^d(x)$ di raggio r e centro x rispetto alla metrica d. Pertanto la topologia τ_{d^*} è più fine della topologia euclidea τ_d .

Sia ora $x \neq \underline{0}$ e scegliamo un numero reale ϵ tale che $0 < \epsilon < d(x,\underline{0})$. Allora se $y \neq x$ abbiamo che

$$d^*(x,y) = d(x,0) + d(y,0) \ge d(x,0) > \epsilon$$
.

Dunque la palla $B_{\epsilon}^{d^*}(x)$ è uguale al singoletto $\{x\}$, e quindi $\{x\} \in \tau_{d^*}$. D'altra parte chiaramente $\{x\}$ non è un aperto per la topologia euclidea, e quindi $\{x\} \notin \tau_d$. Ciò mostra che $\tau_{d^*} \neq \tau_d$.

- (a) Sappiamo che $\tau_{d^*} \succcurlyeq \tau_d$ dal punto (ii). Allora, usando il fatto (ben noto) che (\mathbb{R}^2, τ_d) è di Hausdorff ma non compatto, si ha che:
 - (\mathbb{R}^2, τ_d) Hausdorff $\Rightarrow (\mathbb{R}^2, \tau_{d^*})$ Hausodorff.
 - (\mathbb{R}^2, τ_d) non compatto $\Rightarrow (\mathbb{R}^2, \tau_{d^*})$ non compatto.
- (b) Dimostreremo che d^* è completa ma non totalmente limitata.
 - d^* è completa. Infatti sia $(x_n)_{n\in\mathbb{N}}$ una successione di Cauchy rispetto alla metrica d^* . Siccome $d^* \geq d$ (come mostrato sopra) allora (x_n) è una successione di Cauchy anche rispetto a d. Siccome la metrica euclidea d è completa, allora (x_n) converge ad un certo elemento

 $y \in \mathbb{R}^2$ rispetto alla topologia euclidea τ_d . Facciamo ora vedere che (x_n) converge a y anche rispetto alla topologia τ_{d^*} . Infatti se $y = \underline{0}$ allora

$$d^*(x_n, \underline{0}) = d(x_n, \underline{0}) \longrightarrow 0,$$

il che mostra che (x_n) converge a $\underline{0}$ anche rispetto alla topologia τ_{d^*} . Se invece $y \neq \underline{0}$ allora, usando il fatto che (x_n) è di Cauchy rispetto a d^* e (x_n) converge a y rispetto alla topologia τ_d , si ha che per ogni $0 < \epsilon < \frac{2}{3}d(\underline{0},y)$ esiste $N \in \mathbb{N}$ tale

(*)
$$\begin{cases} d(x_n, y) < \epsilon \text{ per ogni } n \ge N, \\ d^*(x_n, x_N) < \epsilon \text{ per ogni } n \ge N. \end{cases}$$

Per ogni $n \geq N$ tale che $x_n \neq x_N$, allora si ha che (usando la disuguaglianza triangolare per d e le proprietá (*))

$$d^*(x_n, x_N) = d(x_n, \underline{0}) + d(\underline{0}, x_N) \ge d(\underline{0}, y) - d(x_n, y) + d(\underline{0}, y) - d(x_N, y) =$$
$$= 2d(\underline{0}, y) - 2\epsilon > \epsilon,$$

il che contraddice (*). Dunque necessariamente dobbiamo avere che $x_n = x_N$ per ogni $n \ge N$. Siccome (x_n) converge a y rispetto a τ_d allora necessariamente $x_N = y$ e dunque (x_n) converge a y anche rispetto alla topologia τ_{d^*} .

• d^* non è totalmente limitata. Infatti, se lo fosse, siccome d^* é completa (come mostrato sopra), allora (\mathbb{R}^2 , τ_{d^*}) sarebbe compatto, contrariamente a quanto mostrato in (a).

ESERCIZIO 4 (16 punti)

Si consideri l'azione di $\mathbb{Z}_2 := \mathbb{Z}/2\mathbb{Z}$ su \mathbb{S}^n (con $n \geq 1$) tale che l'azione del generatore i di \mathbb{Z}_2 è data da:

$$i: \mathbb{S}^n \longrightarrow \mathbb{S}^n$$

 $x \mapsto -x.$

- (i) (4 punti) Dimostrare che l'azione sopre descritta è libera e propriamente discontinua.
- (ii) (4 punti) Dimostrare che $\mathbb{S}^n/\mathbb{Z}_2$ è una varietà topologica.
- (iii) (4 punti) Dimostrare che $\mathbb{S}^1/\mathbb{Z}_2$ è omeomorfo a \mathbb{S}^1 .
- (iv) (4 punti) Calcolare il gruppo fondamentale di $\mathbb{S}^n/\mathbb{Z}_2$ per ogni $n \geq 1$.

Soluzione:

- (i) Dato un punto $p \in \mathbb{S}^n$ si consideri l'emisfero aperto S_p ottenuto intersecando \mathbb{S}^n con il semispazio aperto $\{x \in \mathbb{R}^{n+1} : (x,p) > 0\}$ dove (,) è il prodotto scalare euclideo su \mathbb{R}^{n+1} . Chiaramente l'involuzione i manda S_p omeomorficamente su S_{-p} . Siccome $S_p \cap S_{-p} = \emptyset$. l'azione è libera e propriamente discontinua.
- (ii) Useremo il fatto ben noto che \mathbb{S}^n è una varietà topologica di dimensione n e dunque soddisfa le proprietà di cui sopra. Sia $p: \mathbb{S}^n \to \mathbb{S}^n/\mathbb{Z}_2$ la mappa di proiezione al quoziente. Siccome l'azione di \mathbb{Z}_2 è libera e propriamente discontinua (per il punto (i)), allora p è un rivestimento e dunque un omeomorfismo locale e una mappa aperta.

Dobbiamo mostrare che $\mathbb{S}^n/\mathbb{Z}_2$ è:

- 4
- (a) Hausdorff;
- (b) II numerabile;
- (c) localmente omeomorfo a \mathbb{R}^n .

La proprietà (c) segue dal fatto che, essendo p un omeomorfismo locale, $\mathbb{S}^n/\mathbb{Z}_2$ è localmente omeomorfo a \mathbb{S}^n che a sua volta è localmente omeomorfo a \mathbb{R}^n (per esempio via proiezione stereografica).

La proprietà (b) segue dall'analoga proprietà per \mathbb{S}^n e dal fatto che p è aperta: se $\{U_n\}_{n\in\mathbb{N}}$ è una base per la topologia di \mathbb{S}^n allora $\{p(U_n)\}_{n\in\mathbb{N}}$ è una base per la topologia di $\mathbb{S}^n/\mathbb{Z}_2$.

Mostriamo la proprietà (a). Siano $p(z_1)$ e $p(z_2)$ due punti distinti di $\mathbb{S}^n/\mathbb{Z}_2$. Sia ϵ un numero reale più piccolo della distanza minima tra i quattro punti $z_1, -z_1, z_2, -z_2$ di \mathbb{S}^n . Sia U_i (per i=1,2) l'aperto di \mathbb{S}^n ottenuto intersecando \mathbb{S}^n con la palla in \mathbb{R}^{n+1} di centro z_i e di raggio ϵ . Per la nostra scelta di ϵ , gli aperti $U_1 \cup a(U_1)$ e $U_2 \cup a(U_2)$ sono disgiunti. Dunque $p(U_1)$ e $p(U_2)$ sono due aperti disgiunti di $\mathbb{S}^n/\mathbb{Z}_2$ tali che $p(z_1) \in p(U_1)$ e $p(z_2) \in p(U_2)$, q.e.d.

- (iii) Identifichiamo \mathbb{S}^1 con la sfera unitaria nel piano dei numeri complessi \mathbb{C} . Consideriamo la mappa $f: \mathbb{S}^1 \to \mathbb{S}^1$ che manda $z \in \mathbb{S}^1 \subset \mathbb{C}$ in $z^2 \in \mathbb{S}^1 \subset \mathbb{C}$. Chiaramente f è una mappa continua e suriettiva. Inoltre f è una mappa chiusa in quanto il dominio è compatto e il codominio è di Hausdorff. Dunque, f è una mappa quoziente. Due punti distinti z e y sono tali che $f(z) = z^2 = y^2 = f(y)$ se e solo se z = -y. Questo implica che f è la mappa quoziente per l'azione di \mathbb{Z}_2 ; in particolare $\mathbb{S}^1/\mathbb{Z}_2 = \mathbb{S}^1$, q.e.d.
- (iv) Se n = 1, usando il punto (iii), otteniamo:

$$\pi_1(\mathbb{S}^1/\mathbb{Z}_2) = \pi_1(\mathbb{S}^1) = \mathbb{Z}.$$

Supponiamo ora che $n \geq 2$. Scegliamo un punto $x_0 \in \mathbb{S}^n$ e sia $[x_0] \in \mathbb{S}^n/\mathbb{Z}_2$ la sua immagine tramite la mappa quoziente $p: \mathbb{S}^n \to \mathbb{S}^n/\mathbb{Z}_2$. Sappiamo che \mathbb{S}^n è semplicemente connesso per $n \geq 2$; dunque $\pi_1(\mathbb{S}^n, x_0) = 0$. Inoltre, siccome \mathbb{S}^n è localmente connesso per archi e connesso per archi e l'azione di \mathbb{Z}_2 su \mathbb{S}^n è libera e propriamente discontinua, allora dalla teoria delle azioni di gruppi libere e propriamente discontinue sappiamo che

$$\mathbb{Z}_2 = \pi_1(\mathbb{S}^n/\mathbb{Z}_2, [x_0])/p_*(\pi_1(\mathbb{S}^n, x_0)) = \pi_1(\mathbb{S}^n/\mathbb{Z}_2, [x_0]).$$