Tutorato di GE220

AA. 2011-2012

Docente: Prof. Filippo Viviani Tutore: Martina Patone

7 Maggio 2012

- 1. Sia J un intervallo aperto (limitato o no) di \mathbb{R} . Dimostrare che un intervallo J' di \mathbb{R} é omeoemorfo a J se e solo se J é aperto.
- 2. Dimostrare che S^1 e I = [0, 1] non sono omeomorfi.
- 3. Dimostrare che $\mathbb Q$ non é connesso.
- 4. Dimostrare che \mathbb{R} non é omeomorfo a \mathbb{R}^n , per ogni $n \geq 2$.
- 5. Dimostrare che se X ha la topologia discreta allora gli unici insiemi connessi sono i punti.
- 6. Dimostrare che X é connesso se e solo se ogni funzione continua da X ad uno spazio discreto é costante.
- 7. Dire quali tra questi sottospazi di \mathbb{R}^2 sono connessi e connessi per archi:
 - $\{(x,y); x^2 + y^2 < 1\};$
 - $\{(x,y); x^2 + y^2 > 1\};$
 - $\{(x,y); x^2 + y^2 = 1\};$
 - $\{(x,y); x^2 + y^2 \neq 1\};$
- 8. Riconoscere quali dei seguenti sottoinsiemi di \mathbb{R}^2 sono sconnessi:
 - (a) $A = \mathbb{R}^2 \setminus \{(x,0); x \neq 0\};$
 - (b) $B = P \setminus \{(0, y) : y \text{ irrazionale}\}, \text{ dove } P = \{(x, y); -1 \le x, y \ge 1\};$
 - (c) $C = D_1(1,0) \cup D_1(-1,0);$
 - (d) $D = \bar{C}$;
 - (e) $E = C \cup \{(0,0)\}.$
- 9. Dimostrare che $\forall t \in \mathbb{R}^2$,

$$X_t = \{(x, y) | xy = t\}$$

non é omeomorfo a \mathbb{R} .

10. Sia $\{A_n\}$ una successione di sottoinsiemi connessi di X tali che $A_n \cup A_{n+1} \neq \emptyset \forall n$. Dimostrare che $\bigcap_n A_n$ é connesso.

- 11. Sia $\{A_{\alpha}\}$ una famiglia di sotto
insiemi connessi di X. Sia $A\subset X$ connesso. Mostrare che se $A\cap A_{\alpha}\neq\emptyset \forall \alpha$, allor
a $A\cup\{\bigcup_{\alpha}A_{\alpha}\}$ é connesso.
- 12. \mathbb{R}_l é connesso? {l=lower limit topology}
- 13. Mostrare che se X é infinito, allora X con la topoogia cofinito é connesso.
- 14. Sia $A \subset X$. Mostrare che se C é un sottoinsieme connesso di X che interseca sia A che $X \setminus A$, allora C interseca Fr(A).
- 15. Sia $f: X \longrightarrow X$ continua. Mostrare che se X = [0,1] allora $\exists x \in X$ tale che f(x) = x. Cosa succede se X = (0,1) e X = [0,1]?